
Konputazio Zientzia eta Adimen Artifizialaren Saila

Departamento de Ciencia de la Computación e Inteligencia Artificial

Department of Computer Science and Artificial Intelligence

Broadening the Horizon of Adversarial Attacks

in Deep Learning

by

Jon Vadillo

Supervised by Roberto Santana and Jose A. Lozano

Donostia - San Sebastián, November 2022

(c)2023 JON VADILLO JUEGUEN

“Machines take me by surprise
with great frequency.”

— Alan Turing

Acknowledgement

These first lines cannot be addressed to anyone other than my advisors,
Roberto Santana and Jose A. Lozano, whose invaluable support, trust and
guidance during all these years have been essential for the development of
this thesis. I hope that we can keep working together in the future. Thank
you very much.

I also owe a debt of gratitude to Professor Marta Kwiatkowska for allow-
ing me to complete a research stay as a visitor in her research group at the
University of Oxford. This gratitude is also extended to the members of the
QAVAS research group, the Computer Science Department and Reuben Col-
lege, specially to Aleks, Artem, Benjie, Emanuele, Pascale, Pian and Xiyue,
for making my stay a really enjoyable and productive one.

Special thanks go also to my friends in the Intelligent Systems Group, and
to an endless list of members in the Faculty of Computer Science, whose
company and help during this stage has been an important part of it. In
addition, I would also like to acknowledge the great work of John Kennedy
in proofreading our work, which has contributed greatly to the readability of
this dissertation.

I am grateful to the Spanish Ministry of Science, Innovation and Universities
for financially supporting this project (through the FPU19/03231 grant). In
addition, this work has been partially supported by the Basque Government
(through the ELKARTEK program) and by the Spanish Ministry of Economy
and Competitiveness MINECO (project PID2019-104966GB-I00).

Last but not least, I would like to thank the endless support of my family and
friends. This thesis is also for them.

Contents

Symbols . 1

1 Introduction . 3
1.1 Objectives . 5
1.2 Outlook of the Dissertation . 6

2 Background . 7
2.1 Machine Learning . 7
2.2 Deep Neural Networks . 9
2.3 Adversarial Examples . 13

3 Extending Adversarial Attacks to Produce Adversarial
Class Probability Distributions . 19
3.1 Introduction . 19
3.2 Producing Specific Class Probability Distributions 21
3.3 Constructing Optimal Transition Matrices to Guide Targeted

Attacks . 24
3.4 Validating Our Proposals: Setup and Results 30
3.5 Counteracting Label-Shift Detection Algorithms in Data

Streaming Scenarios . 42
3.6 Conclusions . 46

4 When and How to Fool Explainable Models (and
Humans) with Adversarial Examples . 49
4.1 Introduction . 49
4.2 Related Work . 51
4.3 Extending Adversarial Examples for Explainable ML Scenarios 56
4.4 Illustration of Context-Aware Adversarial Attacks 66
4.5 Conclusions . 77

X Contents

5 Analysis of Dominant Classes in Universal Adversarial
Perturbations . 79
5.1 Introduction . 79
5.2 Related Work . 80
5.3 Proposed Framework . 83
5.4 Dominant Classes in Speech Command Classification 87
5.5 Hypotheses About the Existence of Dominant Classes 90
5.6 Conclusions . 104

6 Conclusions and Future Work . 107
6.1 Contributions . 107
6.2 Future Work . 109

7 Publications . 113
7.1 Main Research Line . 113
7.2 Other Developed Work . 113

References . 115

Appendices . 133

A Annex for Chapter 3 . 135
A.1 Results with Different Adversarial Attacks 135
A.2 Reducing the Size of the Set X . 141

B Annex for Chapter 5 . 143

Symbols

General nomenclature

X Input space

Y Output space

x Input

y Output

d Input dimensionality

k Number of classes

P(X) Input data distribution

P(Y) Probability distribution for the output classes

P(X,Y) Joint data distribution

f(·)i Softmax value corresponding to the i-th class

f̂(·)i Logit value corresponding to the i-th class

x′ Adversarial example

ε Perturbation budget (i.e., distortion threshold)

Acronyms

AI Artificial Intelligence

ML Machine Learning

DL Deep Learning

DNN Deep Neural Network

2 Symbols

FGSM Fast Gradient Sign Method

PGD Projected Gradient Descent

DF DeepFool

C&W Carlini & Wagner attack

dB Decibel

MFCC Mel-Frequency Cepstral Coefficient

SVD Singular Value Decomposition

i.i.d. Independent and identically distributed

u.a.r. Uniformly at random

1

Introduction

The advances in the field of Artificial Intelligence (AI) over the past years have
improved the capabilities of intelligent systems to unprecedented levels, given
rise to flourishing technologies with an ever-increasing presence in real-world
scenarios, such as virtual assistants, self-driving vehicles, or computer-aided
diagnosis systems. The outstanding success of these technologies is primarily
due, along with the availability of large volumes of data and advances in com-
puting systems, to Deep Learning (DL) models such as Deep Neural Networks
(DNNs), which are capable of efficiently learning to perform highly complex
tasks from data. Indeed, DNN based approaches are currently the state-of-
the-art in the great majority of AI tasks, particularly in those involving un-
structured data, including, but not limited to, large scale object recognition,
image segmentation, face recognition, automatic speech recognition, natural
language processing or advanced control.
At the same time, the success of DNNs is due to several reasons. First, the
great expressiveness of these models makes them universal approximators [67],
implying that any function or input-output mapping can be approximated
by a DNN with an arbitrary degree of accuracy. Moreover, unlike other AI
paradigms such as symbolic methods or knowledge-based systems, DNNs are
able to improve their predictive performance just from instances of the prob-
lem to be solved, without requiring hand-crafted or ad-hoc solutions. For
these reasons, DL based paradigms represent a powerful and general frame-
work that can be applied in a large number of complex problems for which
finding explicit solutions is unfeasible.
Nevertheless, despite their remarkable performance, these models still face
several limitations when it comes to their deployment in real-world scenarios.
Indeed, given the high standards required in tasks as critical as autonomous
driving, healthcare or criminal justice, the acceptance of these models is not
subject only to their accuracy, but also to their trustworthiness and fairness.
Unfortunately, DNNs are still far from being fully reliable. One of their main
disadvantages lies in the complexity of the architectures and computational
processes employed. Although this complexity provides the model with the

4 1 Introduction

necessary computational requirements to address difficult tasks with high ef-
fectiveness, it also makes it intractable to analyze the model’s inference process
in detail. Due to this opacity, DNNs are often considered “black-box models”,
which gives rise to a number of consequences. First, the impossibility of fully
understanding how the model determines a prediction for a given input re-
duces their reliability in scenarios where the “reasoning” is as important as
the final prediction. A representative example of these scenarios is healthcare,
where it is vital to understand which are the factors that determine a patient’s
condition in order to be able to make an appropriate diagnosis and treatment.
Apart from that, another negative consequence of the opacity of the predic-
tion process is the difficulty of detecting flaws, biases or vulnerabilities in the
models, also impeding the provision of provable guarantees for the correctness
or fairness of the predictions.
Furthermore, another important limitation of DNNs is their high vulnerability
to adversarial examples: inputs purposefully manipulated by an adversary
in order to change the output classification of the model and, at the same
time, ensure that the modifications are imperceptible to humans [18, 158].
An illustration of such an adversarial attack is shown in Figure 2.1. The
discovery of adversarial examples revealed a surprisingly high instability in
these models, which is in conflict with the remarkable accuracy and robustness
observed empirically when tested on natural inputs, or on inputs with small
yet random corruptions, such as white or Gaussian noise. Consequently, these
vulnerabilities put even more into question the reliability of DNNs in critical
and real-world tasks, in which adversaries might take advantage of those flaws
or security issues.
The concerning implications of adversarial examples and their intriguing na-
ture has resulted in a prolific research field in the past ten years, particularly in
offensive strategies, which has led to uncountable attack methods, that is, pro-
cedures that exploit different vulnerabilities of the models in order to generate
adversarial examples. This wide attack repertoire allows attacks for multiple
goals and scenarios to be generated. For instance, adversarial examples can be
designed to force a classification model to produce a specific incorrect class,
or, in contrast, to ensure only that the provided class is incorrect (without
prioritizing any incorrect class). To achieve any of these goals, most methods
generate perturbations which are specifically optimized for each input individ-
ually, since this allows simple and highly efficient procedures to be employed.
Nevertheless, at the cost of higher computational cost and amount of distor-
tion, it is also possible to produce universal perturbations capable of fooling
the model in an input-agnostic fashion, allowing, for instance, to deploy at-
tacks in real-time, given that the perturbation is already precomputed. In
addition, generally, most of the attack strategies assume a scenario where the
adversary can access all the information about the model in order to produce
the perturbations, including all its parameters or training details. Even so, ad-
versarial examples can be generated even when the adversary only can observe
the output of the model (e.g., the confidence assigned to each possible class),

1.1 Objectives 5

opening the door for attacks even in highly constrained real-world scenarios.
Similarly, some attack approaches aim to increase the risk of adversarial ex-
amples in other realistic scenarios, such as creating perturbations that can
remain effective when deployed in the physical world [24, 44, 89, 181, 185],
or perturbations transferable across multiple target models or architectures,
which have not been used to generate the perturbations [106, 199].
All these research efforts have, therefore, expanded the notions and the scope
of adversarial attacks, and, consequently, the capabilities of the adversaries.
However, it is worth stating that, somewhat paradoxically, advances in offen-
sive methods contribute directly to a safer use of DNNs. Indeed, this research
is fundamental in order to assess the risks of these technologies as well as
the possible threats that an adversary might pose or their implications, which
is crucial to promote a more aware and secure use of DL based technologies
in practice. At the same time, these discoveries frequently expose previously
unknown properties of DNNs, which promotes further studies in the field,
ranging from theoretical analyses about the functioning of the models to the
development of more robust architectures or learning strategies, contributing,
ultimately, to more secure and reliable systems. For all these reasons, the
study of novel attack strategies and vulnerabilities continues being an urgent
and important research field.

1.1 Objectives

Despite this extensive research and the wide range of attack approaches al-
ready proposed in the literature, the possibilities of adversarial attacks have
not been fully explored yet.
For instance, the literature on adversarial examples has focused on producing
misclassifications for each input isolatedly, without considering the potential of
coordinating attacks for multiple inputs. In addition, the definition or utility of
adversarial examples is unclear for scenarios in which their undetectability can
be compromised. This is evident in scenarios in which a human assesses no only
the input sample, but also the prediction, or even an explanation computed
to justify that prediction, since, in such cases, the inconsistencies are likely
to be noticed by the human. Thus, the role of the user is a critical factor to
be considered in order to design, evaluate or even define adversarial examples
against explainable models. Nevertheless, this factor is often overlooked in the
literature, and, therefore, its implications have not been fully formalized or
developed yet. Finally, as stated above, the discovery of new vulnerabilities
often reveals previously unknown or unexplored properties in DNNs. Studying
and characterizing these properties is, therefore, essential to determine the
extent of their implications, that is, what additional vulnerabilities they may
entail or how these properties could be exploited to improve existing attacks.
For all these reasons, this dissertation will be devoted to explore novel vul-
nerabilities and more general notions of adversarial examples, which allow

6 1 Introduction

an adversary to carry out novel types of attacks in new domains, scenarios
and types of problems as well as achieve malicious objectives that cannot be
realized by conventional approaches, thereby broadening the horizon of ad-
versarial examples in DL.

1.2 Outlook of the Dissertation

This dissertation begins by presenting the background and preliminary con-
cepts in Chapter 2, focusing on introducing DNNs, which will be the main
focus of the study, as well as the field of adversarial examples. Afterwards,
the main contributions of the dissertation will be fully developed in Chapters
3, 4 and 5, summarized as follows.
In Chapter 3, we propose a novel probabilistic framework to generalize and
extend adversarial attacks in order to produce a desired probability distri-
bution for the output classes when we apply the attack method to a large
number of inputs. This novel “multiple-instance” attack paradigm provides
the adversary with greater control over the target model, thereby exposing,
in a wide range of scenarios, threats that cannot be conducted by the conven-
tional paradigms.
In Chapter 4, we explore the possibilities and limits of adversarial attacks for
explainable models. For this purpose, we first extend the notion of adversarial
examples to fit in scenarios in which the inputs, the output classifications and
the explanations of the model’s decisions are assessed by humans. Next, we
study whether (and how) adversarial examples can be generated for explain-
able models under human assessment, identifying and illustrating the attack
strategies that should be adopted in each scenario to successfully deceive the
model, and even the human querying the model.
In Chapter 5, we investigate an intriguing phenomenon of universal (i.e.,
input-agnostic) adversarial perturbations, which has been reported previously
in the literature, yet without a proven justification: universal perturbations
change the predicted classes for most inputs into one particular (dominant)
class, even if this behavior is not specified during the creation of the per-
turbation. In order to justify the cause of this phenomenon, we propose and
experimentally test a number of hypotheses. Our analyses reveal interesting
properties of universal perturbations, suggest new methods to generate such
attacks and provide an explanation of dominant classes, under both a geo-
metric and a data-feature perspective, contributing to a better understanding
of these vulnerabilities.
Finally, Chapter 6 concludes the dissertation by summarizing the work and
the main contributions, as well as identifying several future research directions
derived from them.

2

Background

2.1 Machine Learning

Machine Learning (ML), as a branch of AI, pursues the goal of generating
computational models capable of performing tasks that require intelligent rea-
soning or cognition. In particular, the main distinguishing feature of ML is
that the intelligent behavior is learned from data or examples derived from
the problem to be solved. This avoids having to formulate an explicit solution
for the problem, which has proven to be cumbersome or unfeasible when it
comes to tasks with a high level of abstraction or complexity.
In essence, ML models can be formulated as a parametric function fθ : X → Y
mapping inputs from an input space X to an output space Y based on a set of
parameters θ.1 In this context, inputs x ∈ X represent a characterization of a
phenomenon, event, signal or object of interest, and are generally formalized
as a d-dimensional attribute-vector x = [x1, . . . , xd], where xi represents the
i-th attribute, i ∈ {1, . . . , d}. On the other hand, the outputs in Y represent
the possible responses for the inputs.
Two main types of problems can be considered depending on the charac-
teristics of the output space Y , or, in other words, the type of output to
be produced given an input. In classification problems, which will be the
focus of this presentation, Y represents a finite set of categories, often de-
nominated classes or labels, and the goal of the task is to classify inputs in
their corresponding categories. The set of output classes will be denoted as
Y = {y1, . . . , yk}, where yi represents the i-th class and k the total number
of classes. Thus, ML models implemented for classification tasks, often de-
nominated classifiers, implicitly partition the input space into classification
regions, or, equivalently, define decision boundaries that separate inputs cor-
responding to different classes. In contrast, in regression problems, Y is a

1 Throughout the dissertation, when the use of a parameter set is implicit, the
reference to θ will be omitted from fθ and only the notation f will be used, for
the sake of simplicity.

8 2 Background

continuous space (e.g., Y = R), and, thus, regression models aim to capture
the function that best fits the relationship or correlations between the input
attributes and the output value. Popular examples of regression problems are
weather forecasting, stock market analysis or predicting the frequency of an
event or phenomenon (e.g., the number of people affected by a disease in a
future time interval).
As stated above, the key distinguishing feature of ML is its ability to learn
from data. Although this can be accomplished based on different data-driven
learning paradigms, this dissertation will be focused on the most relevant one
in the literature: supervised learning.
In the supervised learning paradigm, the availability of a set of representative
instances of the problem is assumed, called the training dataset, in which
each element consists of a pair

(
x(i), y(i)

)
formed by an input of the problem

x(i) and the corresponding ground-truth response y(i) (i.e., the value that
the model is expected to return for that particular input). The dataset will

be denoted as D =
{(
x(i), y(i)

)}ND
i=1

, with ND representing its size, that is,
the number of samples in the dataset. Generally, the training instances are
assumed to be independent and identically distributed (i.i.d.) samples from
the true yet unknown data distribution P(X,Y):(

x(i), y(i)
) i.i.d.∼ P(X,Y), i = 1, . . . , ND. (2.1)

A convenient characteristic of the supervised learning paradigm is that the
availability of the training dataset enables the predictive error of the model
to be measured directly, by comparing the predictions with the ground-truth
values using a loss function L(x, y, fθ). This allows estimating the optimal
parameters for the model (i.e., those that minimize the expected error on
the true data distribution) by means of finding the set of parameters that
minimizes the empirical loss on D:

θ∗ = argmin
θ

E [L(x, y, fθ)] (2.2)

≈ argmin
θ

1

ND

ND∑
i=1

[
L
(
x(i), y(i), fθ

)]
. (2.3)

Based on this setup, the different ML methods differ in i) the form of the
predictive function fθ, that is, the strategy employed to model the data and
process the input samples to determine the prediction, and ii) the particular
optimization strategy employed to minimize the empirical loss of the model
given D. In this dissertation, we will focus on one particular type of ML
method, known as Deep Neural Networks, and which currently constitute the
state-of-the-art in the great majority of AI tasks. Due to their relevance and
influence, the study of these models currently represents a prominent area
within the field of ML, popularly known as Deep Learning.

2.2 Deep Neural Networks 9

2.2 Deep Neural Networks

In the context of ML, Deep Neural Networks (DNNs) are computational mod-
els inspired by the biological neural networks of animal brains. More particu-
larly, these models mimic, in a loosely simplified manner, the propagation of
information through the biological neural networks. This process is assumed
to be triggered by an inputs stimulus, which is captured by specialized input
neurons. The captured information is then propagated through the network by
means of triggering or activating other neurons, finally arriving to specialized
type of output neurons, which produce a response to the input stimuli.
Formally, DNNs can be defined as computational graphs in which nodes rep-
resent neurons, while the (directed) edges represent the connections between
neurons. More particularly, each neuron acts as a computational unit, taking
as input the values of the neurons connected to it, and computing an output
value that will be propagated to the neurons to which it is connected. In or-
der to enable an organized flow of information, DNNs are generally arranged
in different layers, in which a layer represents a subset of neurons. The way
in which these layers are arranged and the way in which the information is
propagated through them, usually denominated as the architecture, leads to
different types of DNNs. In fact, the architectures can highly determine the
expressivity of the models, and, consequently, the performance of the DNN in
a particular task. For instance, some architectures are better suited to extract
spatial information in vision tasks, whereas others are more appropriate to
process sequential data in which there is an inherent order in their values,
such as audio signals or text sentences.
In this dissertation, we will focus on Deep Neural Networks (DNNs), a term
coined for those NNs that employ multiple layers to process the inputs and
determine the prediction. Furthermore, we will assume feed-forward DNNs,
in which layers are arranged sequentially so that the values of the neurons in
the l-th layer depends only on those of the previous layers. In the following
sections, we describe the most common types of feed-forward DNNs, which
will also be the focus of this thesis: Multi-Layer Perceptrons and Convolutional
Neural Networks.

2.2.1 Multi-Layer Perceptrons

In Multi-Layer Peceptrons (MLPs) [33, 67], which constitute the most basic
DNN layout, each neuron in the l-th layer is connected only to the neurons
in the l − 1-th layer, and no connections are assumed between neurons of
the same layer. Thus, two consecutive layers form a complete bipartite graph,
often called Fully Connected (FC) layers or Dense layers.
Let L represent the number of layers in the network, and let the neuron values
in the l-th layer, l ∈ {1, . . . , L}, be denoted as:

xl =
[
xl1,x

l
2, . . . ,x

l
nl

]
, (2.4)

10 2 Background

where nl denotes the number of neurons in layer l. The values of the first layer
l = 1, named as the input layer, will contain the input information, that is:

x1 = x. (2.5)

Afterwards, the values of each layer l ∈ {2, . . . , L} will be determined based
on an affine transformation of the values in the previous layer l − 1, followed
by an activation function σ:

xl = σ
(
xl−1 ·W l + bl

)
, (2.6)

where W l is a nl−1 × nl weight matrix and bl ∈ Rnl is known as the bias
term of layer l. The propagation process described in Equation (2.6) and the
role of each term is clarified as follows. First, from the term xl−1 ·W l, it can
be seen that the value of each neuron xlj ∈ xl is based on a weighted sum of
the neurons in the previous layer, in which the contribution of each neuron
xl−1i is weighted according to the weight wli,j of the corresponding connection

or edge, that is,
∑nl−1

i=1 xl−1i · wli,j . Second, the role of activation functions
is to introduce more expressiveness in the propagation process. Indeed, non-
linear activation functions are conventionally chosen, which enables modeling
non-linear transformations of the data. Otherwise, the value of each layer
will be a linear transformation of the input, what would drastically limit
the expressiveness of the model, as only linear decision boundaries could be
modeled. Third, the bias term has the effect of shifting the activation function
for each neuron, further enhancing the expressiveness of the model.
The propagation process defined in Equation (2.6) continues until the last
layer of the model, known as the output layer, designed to contain one neuron
per class. Generally, the softmax function is applied as the activation function
of the output layer:

xLi = Softmax(z)i =
ezi∑k
j=1 e

zj
, i = 1, . . . , k, (2.7)

where z = xL−1 ·WL + bL represents the pre-activation values of the neurons
in the output layer, popularly known as logits. Conveniently, the softmax
function normalizes the final values so that

∑k
i=1 xLi = 1 and 0 ≤ xLi ≤ 1,

i = 1, . . . , k, allowing them to be interpreted as a categorical probability
distribution over the output classes, and xLi as the probability of the input
belonging to the class yi according to the model. Finally, based on the softmax
values, the most likely or probable class can be taken as the final prediction:

f(x) = yc, where c = argmax
i={1,...,k}

xLi (2.8)

For the sake of simplicity, in the remainder of the dissertation, the logit and
softmax value corresponding to the class yi will be denoted as f̂(x)i and f(x)i,
respectively.

2.2 Deep Neural Networks 11

2.2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [85, 93, 94] introduce to the architec-
ture of the DNN a particular type of layer known as convolutional layer. The
key advantage of these layers, first studied in image recognition tasks, is that
they enable a more powerful and location-invariant feature extraction pro-
cess,2 which results in models with enhanced spatial reasoning capabilities in
comparison to MLPs. Indeed, CNNs have proven to be remarkably effective in
detecting complex discriminative patterns in inputs with a spatial structure,
boosting the performance of DNNs in a wide range of tasks, and constituting
one of the major breakthroughs in modern DL.
Let us assume a 3-dimensional input x ∈ Rdh×dw×dc , where dh, dw and dc
represent its height, width and depth (e.g., the number of channels in an im-
age). Convolutional layers employ at least one filter or kernel κ ∈ Rd′w×d′h×dc ,
with d′w ≤ dw and d′h ≤ dh, which is convolved3 across the height and width
dimensions of the input. This convolution returns a two-dimensional (single-
channel) output, representing a filtered version of the input, known as acti-
vation map. Each convolutional layer can employ several filters in order to
enable the detection of different features in the same input. Thus, the output
of each convolutional layer will be a set of stacked activation maps, which will
be propagated to the next layer. In addition, convolutional layers are usually
complemented by pooling layers, which down-sample the activation maps by
means of aggregating their values, for instance, by computing the average or
maximum value of different patches in each map.
Put together, a sequence of convolutional and pooling layers leads to a power-
ful feature extraction process in which, as shown in previous works [184, 188],
the complexity of the features increases with the depth of the layer (i.e., how
far it is from the input layer). While the first convolutional layers often extract
simple features such as the presence of edges or corners, deeper layers might be
able to detect much more sophisticated patterns such as physiological charac-
teristics or textures. Therefore, the complete architecture of a standard CNN
consists of several convolutional and pooling layers, followed by a FC-layer,
which, based on the extracted features, computes the final prediction.
Finally, it is worth stating that, although CNNs have been mostly studied
in computer vision tasks due to their suitability for image data, they have
proven to be effective also for other types of data and classification tasks,
such as keyword spotting in audio signals [142].

2 In this dissertation, unless otherwise specified, features are assumed to be abstract
representations derived from patterns in the input data distribution (e.g., how
round the objects in an image are), rather than the set of individual attributes
that characterize the data (e.g., the set of pixels of an image).

3 The convolution can be understood as a sliding-operation which, at each step,
performs a dot-product between the filter and an input patch. Further details on
this operation and its application to CNNs can be consulted in [99].

12 2 Background

2.2.3 Training Deep Neural Networks

As explained in Section 2.1, the learning or training phase of a ML model is
based on optimizing its set of parameters θ in order to minimize a loss function
L, evaluated on a training dataset D. In the context of DNNs, θ represents
the set of weights and biases of each layer, assuming that the remaining ar-
chitectural configurations or hyperparameters (e.g., the number of layers, the
activation function employed in each layer, etc.) are fixed beforehand.4

Given that the inference process of standard DNNs is end-to-end differen-
tiable, their learning phase can be realized by gradient descent: an iterative
optimization approach based on, first, computing the gradients of the loss
function with respect to the parameters of the model, and, second, adjust-
ing the parameter values by moving them in the opposite direction of the
gradient, hence minimizing the loss function. Conventionally, the first step
is implemented using the prominent back-propagation algorithm [93], which
allows those gradients to be computed efficiently by means of applying the
derivative chain-rule in a backward fashion, (i.e., propagating the computa-
tion from the last layer to the first layer). This is, therefore, a central algo-
rithm in DL, which enabled scaling DNNs to large architectures and complex
high-dimensional problems.
In its most general form, each gradient descent step is performed by comput-
ing the average of the gradients for the entire training dataset, and adjusting
the parameters based on the directions determined by this aggregated result.
This approach is popularly known as deterministic or batch gradient descent.
However, processing all the training inputs is often impractical when it comes
to datasets with a large number of samples. In order to tackle this drawback
and increase the computational efficiency of the training process, in practice,
only a random subset of samples can processed at each step, at the cost of rely-
ing on an estimation of the gradients to adjust the parameters, what generally
leads to a more unstable convergence. The particular case in which only one
sample is processed at a time is denominated stochastic gradient descent or
online learning, which is particularly well-suited for budget-constrained (e.g.,
limited memory) learning scenarios. However, using only one input sample
leads often to very noisy gradient estimations, which can dramatically slow
the convergence of the training process and lead to poor fits in practice. Thus,
in most modern scenarios, a better trade-off between efficiency and effective-
ness is achieved by mini-batch gradient descent, in which a small subset of
N > 1 samples is employed at each step, thus relying on a more robust esti-
mation of the gradient.

4 In practice, the hyperparameters can also be experimentally tuned to improve the
effectiveness of the model for the task at hand, often referred to as hyperparameter
tuning.

2.3 Adversarial Examples 13

2.3 Adversarial Examples

Adversarial examples [158] are inputs deliberately manipulated by a malicious
actor with the purpose of i) fooling the model into providing incorrect predic-
tions, and ii) ensuring that the perturbations are imperceptible to humans.
An illustration of an adversarial example is shown in Figure 2.1. The im-
perceptibility constraint ensures that the adversarial perturbation introduced
to the inputs does not legitimate the change in the output classification. At
the same time, the fact that imperceptible perturbations can fool DL models
raised alarms regarding the vulnerability of these models. Indeed, adversarial
examples have shown to be applicable to a wide range of high stakes and
human-centered applications, such as healthcare systems [77], surveillance
systems [12, 149, 198], automatic speech recognition [26], machine transla-
tion [17, 31, 40], dialogue or question and answering systems [34, 180], and
financial applications such as credit loan approval or fraud detection systems
[13, 27, 47, 87, 137]. The vulnerability to adversarial attacks has also been
exposed in a wide range of popular Machine Learning as a Service APIs
[20, 71, 126].

COVID-19 (1.000)

(a) Original input

normal (1.000)

(b) Adversarial example

Fig. 2.1: Illustration of an adversarial example generated for a chest X-ray
classification task, in which the objective is to categorize the status of the
patient as one of three classes: “normal”, Covid-19, or (non-Covid) pneumonia
(more details in Section 4.4.1). (a) Original input sample in which the patient
is diagnosed with Covid-19. (b) Adversarially manipulated input, which is
misclassified by the model as “normal” (i.e., no disease found in the patient)
despite being perceptually identical to the original image.

2.3.1 Taxonomy of Adversarial Attacks

The extensive research in the last few years has led to uncountable attack
methods and paradigms, that is, procedures that exploit different vulnerabili-
ties of the models in order to generate adversarial examples for multiple goals

14 2 Background

and scenarios. Consequently, different categories of attacks are considered in
the literature depending on factors such as the specific type of error to be
produced, the scope of the perturbation and the resources available to the
adversary [186]. In this section, we present the main categories in order to
describe the most common attack paradigms studied in the literature.
� Type of misclassification: Two main types of attacks can be differenti-

ated depending on the type of error that wants to be produced: untargeted
attacks and targeted attacks. On the one hand, untargeted attacks aim to
produce an adversarial perturbation r capable of producing a misclassifi-
cation of the model, that is, f(x+ r) 6= f(x), without any preference over
the incorrect class. In contrast, targeted attacks aim to force the model to
produce one particular incorrect class yt 6= f(x), that is, f(x+ r) = yt.

� Scope of the perturbation: In addition, different types of perturbations
can be considered depending on whether they are generated for one specific
input at hand (individual perturbations) [25, 59, 107, 116, 158] or whether
they are designed to be input-agnostic and therefore effective with inde-
pendence of the input in which they are applied (universal perturbations)
[79, 114, 118, 120]. Although individual perturbations have been the main
focus of study in the literature, universal perturbations allow adversarial
attacks to be produced in scenarios where individual perturbations are im-
practical (for instance, scenarios requiring a fast or real-time computation
of adversarial examples), or performing a high number of attacks more
efficiently, avoiding having to generate a new (individual) perturbation for
each new input. Nevertheless, given the fact that universal perturbations
address a more general goal than the individual counterparts, generat-
ing effective universal perturbations has proven to be more challenging,
requiring higher amounts of perturbation and more computational time.

� Resources available to the adversary: The information required by
the adversary in order to effectively generate attacks leads to two main
scenarios. On the one hand, in the white-box scenario, the adversary has
full knowledge about the model internals (e.g., its architecture, weights
or hyperparameters) and its training details. This allows highly efficient
attacks to be generated, most of them relying on gradient-based strategies
[25, 59, 107, 114, 116, 158]. On the other hand, in black-box scenarios
the adversary has no knowledge about the model [9, 22, 71, 126]. More
intermediate scenarios (sometimes referred to as gray-box scenarios) can
be assumed when the adversary has limited access to the models, such as
the output confidences assigned to every possible class or the logit values
[71]. The opacity in terms of model details requires more costly strategies
than those used in the white-box scenario, such as evolutionary algorithms
[9, 133], gradient estimations [29, 71], or the use of surrogate models to
generate the attack that are afterwards transferred to the initial model
[106, 126].

� Type of deployment: Finally, a key aspect of adversarial examples is
how those inputs are fed to the model. Generally, the assumed scenarios

2.3 Adversarial Examples 15

in research works allow the input to be modified “digitally”, which is af-
terwards fed to the model. In other cases, physical adversarial examples
are crafted (e.g., printed traffic signs or malicious speech commands re-
produced by a speaker) that are effective even when the signal is captured
“over-the-air” and fed to the model [44, 149, 179]. This allows circumvent-
ing the possible limitation in real-world scenarios in which the adversary
might not have access to the digital files.

A summary of the taxonomy described can be consulted in Table 2.1. We also
refer the reader to the work of [186] for a more comprehensive and fine-grained
survey on adversarial examples.

Factor Categories Explanation / goal

Type of
misclassification

Targeted Produce one particular incorrect output class.

Untargeted
Produce an incorrect class without any preference over the
available classes.

Scope of the
Perturbation

Individual Optimized for one particular input.
Universal Optimized to be applicable to multiple inputs.

Resources
available to the
adversary

White-box
scenario

The adversary has full knowledge of the model (e.g., weights,
hyperparameters, training details, etc.).

Black-box
scenario

The adversary has none (or very limited) information about
the details of the model, which is considered a “black-box”.

Type of
deployment

“Digital-world”
The adversarial example is crafted digitally (i.e., by
manipulating the “digital file”) and is sent to the model “as-is”.

“Physical-world”
The adversarial example is generated “physically” in order
to fool the model when the input is captured “over-the-air”.

Table 2.1: Summary of the main taxonomy used to describe and categorize
adversarial attacks.

2.3.2 How to Generate Adversarial Perturbations: Overview of the
Main Methods

The first adversarial attack algorithm against DNNs was proposed in [158], in
which, given an input x and a target class yt ∈ Y , the search of the adversarial
perturbation r is formulated as the following optimization problem:

minimize ||r||2 (2.9)

such that 1. f(x+ r) = yt, (2.10)

2. x+ r ∈ X, (2.11)

which was solved by L-BFGS, a general-purpose second-order optimization
technique. Since the discovery of these vulnerabilities, more sophisticated
methods have been proposed, allowing to generate adversarial examples using
more efficient and effective approaches. In this section, we describe the most
influential attack algorithms proposed in the literature in order to generate
adversarial examples, which will also be employed in this dissertation.

16 2 Background

2.3.2.1 Fast Gradient Sign Method

In [59], a single-step gradient ascent approach was proposed, called Fast Gra-
dient Sign Method (FGSM), to efficiently generate untargeted adversarial per-
turbations using a first-order approximation strategy. In particular, the attack
strategy is based on linearizing the cross-entropy loss function L(x, yc, f),
where yc = f(x), and perturbing the input in the direction determined by the
gradient of L(x, yc, f) with respect to the input x, ∇xL(x, yc, f). Thus, the
adversarial example x′ is generated according to the following closed formula:

x′ = x+ ε · sign
(
∇xL(x, yc, f)

)
, (2.12)

where sign(·) is the sign function and ε a budget parameter that controls the
`∞ norm of the perturbation. A targeted formulation can be obtained by con-
sidering the loss with respect to the target class yt, L(x, yt, f), and perturbing
x in the opposite direction of the gradients, that is, sign

(
−∇xL(x, yt, f)

)
.

2.3.2.2 Projected Gradient Descent

The drawback of the FGSM is that a single step might not be enough to
change the output class of the model. To solve this limitation, this strategy
has been extended to iteratively perturb the input in the direction of the
gradient:

x′[i+1] = Bx∞,ε
(
x′[i] + α · sign

(
∇xL(x′[i], yc, f)

))
, x′[0] = x (2.13)

where x′[i] represents the adversarial example at the i-th step, α controls the
step size and the projection operator Bx∞,ε ensures that ||x′ − x||∞ ≤ ε. This
attack is known as the Projected Gradient Descent (PGD) [107], which is
regarded as the strongest first-order adversarial attack [107, 174].

2.3.2.3 DeepFool

The DeepFool algorithm [116] consists of perturbing an initial input x towards
the closest decision boundary of the decision space represented by the model.
Due to the intractability of computing these distances in high-dimensional
spaces, a first-order approximation of the decision boundaries is employed, and
the input is iteratively pushed towards the (estimated) closest decision bound-

ary at each step until a wrong prediction is produced. Precisely, being f̂(·)j
the output logit of a classifier f(·) corresponding to the class yj , yc = f(x)

the correct class, f ′j = f̂(x′[i])j − f̂(x′[i])c and w′j = ∇f̂(x′[i])j −∇f̂(x′[i])c, the
following update-rule is employed:

x′[i+1] ← x′[i] +
|f ′l |
||w′l||22

w′l, l = argmin
j 6=c

|f ′j |
||w′j ||2

, (2.14)

2.3 Adversarial Examples 17

in which w′l represents the direction towards the (estimated) closest decision

boundary, corresponding to the class yl, and
|f ′l |
||w′l||2

the step size. The targeted

version of DeepFool can be obtained if, at every iteration i, the sample is
moved in the direction of the target class yt 6=f(x), that is:

x′[i+1] ← x′[i] +
|f ′t |
||w′t||22

w′t. (2.15)

In this case, the process stops when the condition f(x′[i]) = yt is satisfied.

2.3.2.4 Carlini and Wagner Attack

In [25], the problem of generating an adversarial example is formulated as the
following optimization problem, hereinafter referred to as the C&W attack:

minimize ||1
2

(tanh(ω) + 1)− x||22 + τ · L
(

1

2
(tanh(ω) + 1), yt, f

)
. (2.16)

where L is the following loss function:

L(x, yt, f) = max
(
maxj 6=t{f̂(x)j} − f̂(x)t,−µ

)
. (2.17)

The adversarial example is defined as x′ = 1
2 (tanh(ω) + 1), which allows an

unconstrained variable ω to be optimized, while ensuring that each value of
the adversarial input is in a valid range, typically [0, 1]. The parameter µ in
equation (2.17) controls the desired confidence in the incorrect target class
yt, and the constant τ in equation (2.16) balances the trade-off between the
perturbation norm and the confidence in the incorrect class.

3

Extending Adversarial Attacks to Produce
Adversarial Class Probability Distributions

3.1 Introduction

As described in Section 2.3.1, most adversarial example generation methods
can be taxonomized in different groups according to the scope or the objec-
tive of the adversarial attack. However, overall, the literature on adversarial
attacks has mainly focused on “single-instance” scenarios, where the goal is to
minimally manipulate the input at hand, so that the model misclassifies that
instance in particular. Only a few works have considered “multiple-instance”
scenarios, where adversarial attacks are used to achieve malicious goals that
can only be realized by considering multiple inputs (e.g., by generating mul-
tiple attacks).
In [69, 101, 161], adversarial examples are sequentially created and fed to
reinforcement learning models in order to control their behavior in the long
run. More particularly, a sequence of adversarial examples is generated in
[101] to force the model to take a preferred sequence of actions, which can be
used to guide the agent towards a particular state of interest. In [161], the
sequence of attacks attempts to impose an adversarial reward of interest on
the victim policy at test time (i.e., leading the agent’s policy to maximize
the imposed adversarial reward). Similarly, the goal of imposing an adver-
sarial target-policy is pursued in [69]. Other works attempted to sequentially
generate adversarial inputs in order to introduce adversarial concept drifts in
streaming classification scenarios [76, 84, 148], which can lead to a drop in the
performance of the model. A comprehensive taxonomy of adversarial concept
drifts is proposed in [84], where different types of goals are discussed, such as
injecting a sequence of corrupted instances to make the adaptation to a real
concept drift difficult, or injecting a sequence of adversarial instances which
form a coherent concept and which are capable of inducing a concept drift.
In this chapter, we introduce a novel “multiple-instance” adversarial attack
strategy. In particular, we propose a method which provides the adversary
with the ability not only to deceive the model by adding imperceptible per-
turbations to the inputs, but also to control the frequency or proportion with

20 3 Extending Adv. Attacks to Produce Adv. Class Probability Distributions

which each class is predicted by the model, even in scenarios where we can
only introduce very small amounts of distortion to the inputs.
Let us consider a target ML model that implements a classification function
f : X → Y , where X ⊆ Rd represents the d-dimensional input space, and
Y = {y1, . . . , yk} the set of possible output classes. The main objective of
this chapter is to create an attack method Φ that is able to efficiently pro-
duce adversarial examples x′ = Φ(x) not only with the objective of achieving
f(x′) 6= f(x) for every input, but also to accomplish the objective of produc-

ing a specific probability distribution for the classes P̃(Y) = (p̃1, . . . , p̃k) after
multiple attacks, that is:

Px∼P(X) [f(Φ(x))=yi] = p̃i , 1 ≤ i ≤ k, (3.1)

where P(X) represents the probability distribution of the natural inputs.

3.1.1 Applications and Use Cases

The idea of controlling the probability distribution of the classes produced
by the adversarial examples (after sending multiple adversarial inputs to the
model) provides a novel perspective to design such attacks. First, this attack
can be used to produce drifts in the probability distribution of the classes,
commonly referred to as target shift [192], label shift [49, 102] or as prior prob-
ability shift [19, 134, 141] in the literature. Indeed, it has been shown that
such drifts can degrade the performance of the classifiers [102, 141, 168], or
imply ethical issues when such changes cause the predictions of the models to
be biased or unfair [19, 168]. Thus, strategies have been proposed to detect
such changes in the probability distribution of the classes during the predic-
tion phase, and even to correct or “adjust” the decisions of the models to,
accounting for those changes, improve the classification performance of the
model [102, 141, 168].
Secondly, controlling the output probability of the classes might also be of
particular interest for those cases in which the frequency with which each class
is predicted for multiple inputs (i.e., the class distribution) is more relevant
than the individual predictions given for each input. This is, for instance,
the case of the quantification learning paradigm [57, 58, 131]. Representative
examples and domains of this paradigm are opinion mining, sentiment analysis
or collective information retrieval in social networks [48, 53, 112, 187], where
the main focus can be, for instance, on accurately estimating the frequency
of a particular opinion among a population. Other sensitive domains where
the aggregated results of the output class is relevant is epidemiology [82],
for example, to estimate the cause-specific mortality in a population or the
prevalence of a specific disease, which might be crucial to tackle it. Thus, in
all these applications, maliciously changing the ratios with which each class
is predicted for multiple inputs might bring about critical consequences, such
as biased estimations of the population opinion or an incorrect screening of
the prevalence of a disease, leading to an ineffective action plan.

3.2 Producing Specific Class Probability Distributions 21

Finally, whereas, to the best of our knowledge, defensive methods against
such “multiple-instance” adversarial attacks have not been proposed (since
all of them focus on counteracting attacks in the “single-instance” scenario),
recent works have shown that a label-drift might be a clear indicator of ad-
versarial activity [135]. Thus, label-drift detection methods [102, 135] could
be straightforwardly applied as defensive countermeasures in order to detect
that an adversary is sending multiple adversarial attacks to the models [135].
Therefore, from the adversary’s perspective, controlling the frequency with
which each class is predicted allows, for instance, the same probability distri-
bution produced by the target DNN on clean inputs to be replicated, making
the attacks less likely to be detected by label-drift detection mechanisms.

3.1.2 Contribution

For all these reasons, maliciously controlling the probability distribution of the
classes can lead to more ambitious and complex attacks. However, the current
adversarial attacks proposed in the literature are not capable of controlling
such distributions. The main contribution of this chapter is to fill this gap
by introducing a probabilistic framework with which any targeted adversarial
attack can be extended to produce not only a misclassification in a DNN for
the incoming inputs, but also any target probability distribution of the output
classes after multiple attacks. In particular, we propose four different methods
to create the optimal strategies to guide such attacks, and we validate them by
extending a wide range of adversarial attacks for two exemplary ML problems.
The effectiveness of the proposed four strategies is compared under multiple
criteria, such as the similarity of the produced probability distributions and
the target distributions, the percentage of inputs fooled by the attack or the
number of parameters to be optimized for each method.1

The rest of this chapter is organized as follows. Section 3.2 provides a de-
tailed description of the proposed adversarial attack strategy, and specifies a
number of assumptions and key concepts. Section 3.3 introduces four different
approaches to produce a target probability distribution for the output classes.
Section 3.4 describes the experimental setups used to evaluate and compare
the effectiveness of the approaches introduced. This section also includes the
experimental results. Section 3.5 illustrates how our methods can be applied
to produce label-shifts in streaming classification scenarios without alerting
label-shift detection mechanisms. Section 3.6 concludes the chapter.

3.2 Producing Specific Class Probability Distributions

We focus on defining an attack approach in which the application of the attack
for many incoming inputs x, assuming an input data distribution x ∼ P(X),

1 Our code is publicly available at: https://github.com/vadel/ACPD.

https://github.com/vadel/ACPD

22 3 Extending Adv. Attacks to Produce Adv. Class Probability Distributions

can produce not only a misclassification for every x, but also a desired (fixed)

probability distribution of the predicted classes by the target model P̃(Y) =
(p̃1, . . . , p̃k).

3.2.1 Assumptions and Key Concepts

In this section, we specify a number of assumptions and concepts that will be
used to develop our methodology.
First of all, we assume that the clean input x is correctly classified by the
target classifier, and that f(Φ(x) = x′) 6= f(x), in order to ensure that the
attack is actually fooling the model. In addition, being ϕ : Rd × Rd → R
a distortion metric and ε a maximum distortion threshold, we require the
adversarial example to satisfy ϕ(x, x′) ≤ ε, to ensure that x′ is as similar as
possible to x. In the literature, common choices for ϕ are `p norms such as
the `2 or the `∞ norm.
The approach we introduce will use a targeted adversarial attack as a basis,
that is, attacks capable of forcing the model to produce a particular target
class f(x′) = yj . However, setting a maximum distortion supposes that we
may not reach every possible target class by adversarially perturbing an input
sample. For this reason, we consider that yj is a reachable class from x if it
is possible to generate a targeted adversarial example x′, so that ϕ(x, x′)≤ ε
and f(x′) = yj , and it will be denoted as Φ(x)→ yj . We assume that f(x) is
always a reachable class. However, if there are no reachable classes yj 6= f(x),
we will consider that we cannot create any valid adversarial example for x.

3.2.2 Attack Description

The main rationale of the approach we introduce is to guide a targeted adver-
sarial attack method Ψ in order to achieve the global objective of producing
any probability distribution of the output classes P̃(Y), while maintaining a
high fooling rate and minimally distorted inputs. To enable such attacks, our
method consists of generalizing Ψ to be stochastic, so that the target class is
randomly selected, and the probability of transitioning from the class yi to
the class yj depends on the source class yi and the input x at hand.
These probabilities will be represented by a transition matrix T = [ti,j]

k
i,j=1,

where ti,j represents the probability of transitioning from the class yi to the
class yj . In the event that, given an input x of class yi, it is not possible to
reach all the classes without exceeding the distortion limit, the probability
of transitioning to a non-reachable class will be set to zero, and the proba-
bility distribution (ti,1, . . . , ti,k) will be normalized accordingly. Thus, being
Y = {yj | Φ(x)→ yj} the set of reachable classes for one particular input x of
class yi, the probability of selecting yj as the target class is determined by:

t′i,j =

{
ti,j∑

yr∈Y ti,r
if yj ∈ Y

0 otherwise.
(3.2)

3.2 Producing Specific Class Probability Distributions 23

By modeling the decision to move from one class to another in this way,
it is possible to approximate with which probability the model will predict
each class after multiple attacks. Algorithm 1 provides the pseudocode of this
approach.
Note that t′i,i represents the probability of maintaining an input in its own
class yi, and, therefore, these values should be as low as possible in order
to ensure that we maximize the number of inputs that will fool the model.

Algorithm 1 Generating adversarial class probability distributions.

Require: A classification model f , a set of classes Y = {y1, . . . , yk}, a tar-
geted adversarial attack method Ψ , a distortion metric ϕ, a maximum
distortion threshold ε, a transition matrix T , a set of input samples X̂ .

1: for each x ∈ X̂ do
2: reachable[1, . . . , k]← initialize with False.
3: for j ∈ {1, . . . , k} do
4: vj ← use Ψ to generate an adversarial perturbation for x targeting

class yj
5: if f(x+ vj) = yj ∧ ϕ(x, x+ vj) ≤ ε then
6: reachable[j]← True
7: end if
8: end for
9: Y ← {yj ∈ Y | reachable[j] = True}

10: (ti,1, . . . , ti,k)← probability distribution in the row of T corresponding
to the source class yi = f(x).

11: tsum ←
∑
yj∈Y(ti,j)

12: if tsum = 0 then
13: Feed x to the model f .
14: else
15: for j ∈ {1, . . . , k} do
16: if reachable[j] = True then
17: t′i,j ←

ti,j
tsum

18: else
19: t′i,j ← 0
20: end if
21: end for
22: y∗ ← randomly select a class according to the probabilities

(t′i,1, . . . , t
′
i,k).

23: Select the adversarial example with the targeted perturbation v∗ cor-
responding to class y∗:
x′ ← x+ v∗

24: Feed x′ to the model f .
25: end if
26: end for

24 3 Extending Adv. Attacks to Produce Adv. Class Probability Distributions

However, depending on the probability distribution of the classes we want
to produce, a nonzero value for these probabilities may be needed to achieve
such goals, for instance, if we require a high probability for one class but this
class is seldomly reached from inputs belonging to the rest of classes. How to
obtain transition matrices T that comply all the aforementioned conditions
will be discussed in detail in Section 3.3, where four different methods are
proposed.
Finally, we would like to point out that our approach is not subject to any
particular targeted adversarial attack strategy, and, therefore, it is agnostic
with regard to the particularities of the selected strategy (for example, the
amount of information about the model that the adversary can exploit to
generate the attacks). This allows the adversary to select the most appropriate
attack depending on the requirements of the problem or scenario. For instance,
for scenarios where the computation time is a critical aspect or for problems
with a large number of classes, the adversary can opt for adversarial attacks
with low computational cost.2 On the other hand, in less restrictive scenarios,
the adversary can employ more effective attacks, at the expense of higher
computational cost.

3.3 Constructing Optimal Transition Matrices to Guide
Targeted Attacks

In this section we introduce different strategies to construct the optimal tran-
sition matrix T which, used to stochastically decide the class transitions, pro-
duces a target probability distribution P̃(Y) = (p̃1, . . . , p̃k) for the output
classes. Formally, being X a set of inputs sampled from the input data dis-
tribution P(X), and P(Y) = (p1, . . . , pk) the original probability distribution
of the classes assigned by the target classifier, we want to obtain a transition
matrix T that satisfies:

(p1, . . . , pk)

t1,1 t1,2 · · · t1,k
t2,1 t2,2 · · · t2,k

...
...

. . .
...

tk,1 tk,2 · · · tk,k

=(p̃1, . . . , p̃k). (3.3)

We will define the problem of finding such matrices as a linear program,
and, in order to restrict the possible values of T , different strategies will be
introduced.
The main objective is to ensure that T satisfies equation (3.3). Therefore, this
equation is added as a constraint of the linear program. The second objective

2 It is worth pointing out that the process of generating an adversarial example for
each target class is fully parallelizable, since each targeted attack is independent
of the others, making our method applicable in practice even for problems with
a large number of classes.

3.3 Constructing Optimal Transition Matrices to Guide Targeted Attacks 25

is to maximize the expected fooling rate of the attack, that is, to minimize the
probability of keeping the original class predicted by the model unchanged.
This will be achieved by adding the sum of the diagonal of T as a component
of the objective function of the linear program, which will be minimized.
It is important to note that, although multiple optimal solutions may ex-
ist for these problems, it is not expected that all of them will produce the
same approximation to the target probability distribution of the classes P̃ (Y)
when applied in the prediction phase of the classifier (i.e., when our attacks
are put in practice). For instance, if many of the values of T are zero, then
these transitions cannot be carried out, resulting in inaccurate approxima-
tions of P̃ (Y). Similarly, if many of the transitions are not possible in practice
(something that can happen for low distortion budgets or problems in which
targeted attacks can not always be successfully generated), then different tran-
sition matrices could produce very different results. For these reasons, the four
methods that will be introduced in this section will rely on different strategies
to increase the effectiveness of the matrices in the prediction phase. In addi-
tion, they will differ in the amount of information they use from X . While our
first method is almost agnostic, the subsequent three use more informative
approaches.

3.3.1 Method 1: Agnostic Method (AM)

The first method will follow an almost agnostic approach to generate the
transition matrix T , where the only information that will be used is the ini-
tial probability distribution P(Y). Therefore, the results obtained with this
method will be used to compare the gain that the following methods imply,
in which more informed transition matrices will be created.
Thus, this method consists of directly searching for a transition matrix T
that satisfies equation (3.3), while minimizing the sum of the diagonal of T .
To avoid a high number of null ti,j probabilities outside the diagonal of T , an
auxiliary variable matrix L = [li,j]

k
i,j=1 will be introduced, so that li,i = 0 and

0 ≤ li,j ≤ ξ, i 6= j, with ξ ∈ R and ξ � 1/k. Each li,j will be included in the
set of restrictions as a lower bound of ti,j to require a minimum probability,
li,j ≤ ti,j , i 6= j. At the same time, the values in L will be maximized in the
objective function of the linear program.
Taking into account all these basic requirements, the optimal transition matrix
T can be obtained by solving the following linear program:

26 3 Extending Adv. Attacks to Produce Adv. Class Probability Distributions

min z = γ1 ·
k∑
i=1

ti,i − γ2
k∑
i=1

k∑
j=1
j 6=i

li,j

s.t. P(Y) · T = P̃(Y)

k∑
j=1

ti,j = 1 ∀i∈{1, . . . , k}

ti,j ≥ li,j ∀i, j ∈ {1, . . . , k}, i 6= j

0 ≤ ti,j ≤ 1 ∀i, j ∈ {1, . . . , k}
0 ≤ li,j ≤ ξ ∀i, j ∈ {1, . . . , k}.

(3.4)

For the sake of generality, a coefficient γ ∈ R was included for each of the
main terms in the objective function, allowing their importance to be traded
off. This will also be done in the subsequent methods.

3.3.2 Method 2: Upper-Bound Method (UBM)

In the second method, we will extend the linear program introduced in the
AM to include an additional restriction to the values of T in order to capture
more accurate information about the feasible class transitions associated to
the perturbations. In this approach, an auxiliary matrix R = [ri,j]

k
i,j=1 will

be considered, in which ri,j represents the number of samples in X that, with
a ground-truth class yi, can reach the class yj :

ri,j =
∣∣{x∈X | f(x)=yi ∧ Φ(x)→yj}

∣∣. (3.5)

We assume that the ground-truth class of an input is always reachable, and
therefore, ri,i =

∣∣{x ∈ X | f(x) = yi}
∣∣, 1 ≤ i ≤ k. If we divide each ri,j by the

number of inputs of class yi, the value will represent the proportion of samples
in X which, with a ground-truth class yi, can reach the class yj :

r′i,j =
ri,j∣∣{x∈X | f(x)=yi}

∣∣ . (3.6)

Note that we are estimating, by using the set X , the proportion of successful
targeted attacks that it is possible to create for the inputs coming from P(X),
for any pair of source class yi and target class yj . Therefore, to generate a
more informed transition matrix T , we will maintain the following restriction:
ti,j ≤ r′i,j . The aim of this restriction is to avoid assigning transition prob-
abilities so high that, in practice, it will be unlikely to obtain them due to
the distortion threshold, which may imply a loss of effectiveness regarding
the global objective of producing P̃(Y), as the algorithm may not be able to
successfully follow the guidance of T .
However, setting an upper bound to the values of T according to the values of
R may imply increasing the values in the diagonal, decreasing the fooling rate

3.3 Constructing Optimal Transition Matrices to Guide Targeted Attacks 27

expectation. Moreover, those restrictions can be too strict for low distortion
thresholds, making it impossible to find feasible solutions in the linear program
for a large number of cases (see Table 3.1). Thus, to relax these restrictions, we
will consider an auxiliary set of variables 0 ≤ ηi,j ≤ 1, that will act as upper
thresholds for the ti,j values in the matrix T , and which will be minimized in
the objective function. Based on all these facts, we will generate the optimal
transition matrix T by solving the following linear program:

min z = γ1 ·
k∑
i=1

ti,i − γ2 ·
k∑
i=1

k∑
j=1
j 6=i

li,j + γ3 ·
k∑
i=1

k∑
j=1

ηi,j

s.t. P(Y) · T = P̃(Y)

k∑
j=1

ti,j = 1 ∀i∈{1, . . . , k}

ti,j ≥ li,j ∀i, j ∈ {1, . . . , k}, i 6= j

0 ≤ ti,j ≤ 1 ∀i, j ∈ {1, . . . , k}
0 ≤ li,j ≤ ξ ∀i, j ∈ {1, . . . , k}
ti,j ≤ r′i,j + ηi,j ∀i, j ∈ {1, . . . , k}
0 ≤ ηi,j ≤ 1 ∀i, j ∈ {1, . . . , k}.

(3.7)

3.3.3 Method 3: Element-Wise Transformation Method (EWTM)

The main drawback of the strategy used in the UBM is that establishing
bounds for every value of T can significantly limit the space of possible tran-
sition matrices, reducing the range of target probability distributions P̃(Y)
that can be produced. Therefore, a relaxation of those restrictions is required
in order to achieve feasible solutions, which at the same time could, however,
reduce the effectiveness of the approach.
In addition, even if it is estimated, using the set X , that it is not possible to
move more than a certain proportion of cases r′i,j from the class yi to the class
yj , in some cases it can be necessary to assign values higher than r′i,j to ti,j ,
for example, to produce yj with a very high probability. In such cases, even
if reaching the class yj from the class yi is unlikely, we can specify that when
this transition is possible, it should be produced with a high probability.
Therefore, in order to be able to accurately approximate a wider range of
distributions P̃(Y), the EWTM does not impose bound constraints on the
values of T . Apart from that, the row-normalized version of R will be used
in this method, denoted as R̂, which already represents a transition matrix.
In particular, the probability distribution P(Y)R̂ is the one that would be
achieved if the target class of each input x were uniformly selected in the set
of reachable classes for x. As our goal is to produce P̃(Y), we aim to find

an auxiliary matrix Q = [qi,j]
k
i,j=1, so that P(Y)(R̂ �Q) = P̃(Y), where the

28 3 Extending Adv. Attacks to Produce Adv. Class Probability Distributions

operator � represents the Hadamard (element-wise) product. If we denote
T = R̂�Q, we can generate T by solving the following linear program:

min z = γ1 ·
k∑
i=1

r̂i,i · qi,i + γ2 · η

s.t. P(Y) · (R̂�Q) = P̃(Y)

k∑
j=1

r̂i,j · qi,j = 1 ∀i∈{1, . . . , k}

0 ≤ r̂i,j · qi,j ≤ 1 ∀i, j ∈ {1, . . . , k}
0 ≤ qi,j ≤ η ∀i, j ∈ {1, . . . , k}
0 ≤ η

(3.8)

The values in Q will be minimized by including, as a decision variable, an
upper bound η for its values, avoiding excessive transformations of the ma-
trix R̂ which would lead to losing its influence, and, therefore, resembling an
agnostic approach similar to the AM.

3.3.4 Method 4: Chain-Rule Method (CRM)

As explained in Section 3.2.2, even if we specify a probability ti,j for every
possible transition, in practice, an input sample may not be able to reach any
possible class without surpassing the maximum distortion allowed, so we need
to normalize those probabilities to consider only the reachable classes from
that input. However, the two previous methods have not considered this effect
during the optimization process of the transition matrices, which may cause a
reduction in the effectiveness of the resulting matrices when they are applied
during the prediction phase of the model. For this reason, in this method, we
will make use of that information with the aim of achieving a more informed
attack.
To construct the transition matrix T , we start by estimating the probabilities
that an input x of class yi can only reach a particular subset of the classes
S ⊆ Y (i.e., yj ∈S ⇔ Φ(x)→yj). We will denote these probabilities

Px∼P(X)(S|f(x) = yi), (3.9)

or P (S|yi) for simplicity. In order to estimate these values, the set of reachable
classes S will be computed for each x ∈ X , and the frequency of each subset
will be calculated.
The next step is to define the probability that an input x of class f(x) = yi
and with a set of reachable classes S will be moved from yi to the class yj ,
that is,

Px∼P(X)(yj |f(x) = yi,S), (3.10)

3.3 Constructing Optimal Transition Matrices to Guide Targeted Attacks 29

or P (yj |yi,S) for simplicity. These probabilities will be also denoted as V Si,j
when referring to them as variables in the linear program. All these values
will directly define the transition matrix T in the following way:

ti,j =
∑
S⊆Y

P (yj |yi,S)P (S|yi) =
∑
S⊆Y

V Si,jP (S|yi) (3.11)

As we assume that the ground-truth class of an input is always reachable, for
the inputs of class yi, the probabilities corresponding to those sets S in which
yi /∈ S will be zero. That is, P (S|yi) = 0 if yi /∈ S. Similarly, P (yj |yi,S) must
be zero if yj /∈ S.
In order to find the appropriate values for the variables V Si,j , we will solve the
following linear program:

min z =

k∑
i=1

ti,i

s.t. P(Y) · T = P̃(Y)

k∑
j=1

V Si,j = 1 ∀i∈{1, . . . , k} , ∀S⊆Y

0 ≤ V Si,j ≤ 1 ∀i, j∈{1, . . . , k} , ∀S⊆Y
V Si,j = 0 yj /∈ S

(3.12)

The main disadvantage of this method is that it requires a considerably larger
number of decision variables, bounded by O(2kk2), assuming that for k classes
there are 2k possible subsets of reachable classes S, each with an associated
probability P (S|yi), and for each of them another distribution of k probabil-
ities P (yj |yi,S), which are optimized in the linear program.
Due to the high number of possible subsets, in practice, P (S|yi) will be zero
for many of the subsets S. This reduces the number of parameters that can be
tuned, and also, as a consequence, the number of probability distributions that
can be produced. For this reason, to avoid having multiple null values for those
probabilities, in this method we will smooth every probability distribution
P (S|yi) using the Laplace smoothing [109].
In addition, after a preliminary experiment we discovered that, because of the
values of P (S = {yi}|yi), the linear problem was infeasible for many target
probability distributions, especially for low distortion thresholds. This is be-
cause the values ti,i are highly influenced by such probabilities, which, indeed,
are lower thresholds for ti,i. In addition, those probabilities can be consider-
ably higher than those corresponding to the remaining subsets if there is a
sufficiently large proportion of samples that cannot be fooled, especially for
low values of ε. This also translates into a low fooling rate expectation.
To avoid all these consequences, after the Laplace smoothing, we set every
P (S = {yi}|yi) to zero and normalize every distribution P (S|yi) accordingly,

30 3 Extending Adv. Attacks to Produce Adv. Class Probability Distributions

i = 1, . . . , k, even if this can reduce the effectiveness of the method in produc-
ing the target probability distribution, as we are not considering the estimated
proportion of samples that can not be fooled.

3.3.5 Overview of the Attack Strategies

All the strategies introduced in the previous sections can be used to generate
the transition matrices needed to produce adversarial class probability distri-
butions, all of them relying on a different strategy to model the solutions.
Both the UBM and EWTM provide a simple framework that allows the tran-
sition matrices T to be directly optimized. In the UBM, the proportion of
samples r′i,j that can be moved from each class yi to another class yj is esti-
mated, and those values are used as upper bounds for T , assuming that, in
practice, it will be unlikely to move a larger proportion of samples. In the
EWTM, the aim is to transform the transition matrix R̂ in order to meet our
particular requirements, without setting boundaries to the values of T . A pos-
itive point in both methods is the low number of parameters to be optimized,
bounded by O(k2). The CRM, however, requires a considerably larger number
of parameters, bounded by O(2kk2), but provides a more comprehensive and
general approach to generate the transition matrix. In particular, contrarily
to the previous strategies, it allows the particular set of reachable classes for
each instance individually to be taken into account, instead of considering
aggregated information.

3.4 Validating Our Proposals: Setup and Results

In this section, we present the particular task, dataset, model and further
details regarding the experimental setup used to validate our proposals. We
also report the obtained results, in which we measure the effectiveness of the
introduced approaches according to different criteria.

3.4.1 Case of Study: Speech Command Classification

Due to advances in automatic speech recognition technologies based on DL
models, and their deployment in smartphones, voice assistants and industrial
applications, there has been a rapid increase in the study of adversarial at-
tacks and defenses for such models [26, 42, 96, 111, 143, 157], despite being
considerably less studied than computer vision problems. For these reasons,
we have decided to validate our proposal in the task of speech command clas-
sification, an exemplary and representative task in this domain. Nevertheless,
we remark that our methods can be directly applied to any problem or do-
main, as long as it is possible to generate targeted adversarial attacks, and
that this selection is only for illustration purposes.

3.4 Validating Our Proposals: Setup and Results 31

We use the Speech Command Dataset [175], which consists of a set of WAV
audio files of 30 different spoken commands. The duration of all the files is
fixed to 1 second, and the sample-rate is 16kHz in all the samples, so that each
audio waveform is composed of 16000 values, in the range [−215, 215]. We use a
subset of ten classes, following previous publications [8, 39, 56, 100, 175, 183],
so that our results are more comparable with previous works in the literature:
Yes, No, Up, Down, Left, Right, On, Off, Stop, and Go. In order to provide
a more realistic setup, two special classes have also been considered: Silence,
representing that no speech has been detected, and Unknown, representing an
unrecognized spoken command, or one which is different to those mentioned
before. The dataset contains 46.258 samples, accounting for approximately 13
hours of data, and it is split into training (80%), validation (10%) and test
(10%) sets, following the standard partition procedure proposed in [175].
Also following previous publications [8, 39, 56, 100, 175], a CNN will be used
as a classification model, based on the architecture proposed in [142], which
is particularly well-suited for small-footprint keyword recognition tasks. The
test accuracy of the model is 85.52%. The input of the model will be the
Mel-Frequency Cepstral Coefficients (MFCCs) extracted from the raw audio
waveform, which is a standard feature extraction process in speech recognition
[122]. Nevertheless, the adversarial examples will be generated directly in the
audio waveform representation, as done in previous works [8, 26, 39, 132, 181].

3.4.2 Experimental Details

The ultimate goal is to validate that any desired probability distribution P̃(Y)
can be approximated with a low error by guiding a targeted adversarial attack
using Algorithm 1 and a transition matrix T , which has been optimized using
any of the methods introduced in Section 3.3.
To show that any targeted attack strategy can be extended, we will evaluate
our methods using a wide range of attacks, which have been exhaustively
employed in the literature and which rely on different strategies to generate
the adversarial perturbations: DeepFool [116], Fast Gradient Sign Method
[59], Projected Gradient Descent [107] and Carlini & Wagner attack [25]. An
introduction to these algorithms is provided in Section 2.3.2. For the sake of
simplicity, the experimental results presented in this section will be reported
for the DeepFool algorithm3, whereas the results obtained with the other
attack algorithms will be reported in Appendix A.1.
In all the experiments, we will assume a uniform initial probability distribu-
tion P(Y). In Section 3.4.3, the particular case in which P̃(Y) = P(Y) will
be tested, that is, when the aim is to reproduce the original probability dis-
tribution P(Y) obtained by the model (in our case the uniform distribution).
Afterward, in Section 3.4.4, a more general scenario will be tested, in which

3 In order to fit in our specification, we employed a targeted version of DeepFool,
as described in Section 2.3.2.3.

32 3 Extending Adv. Attacks to Produce Adv. Class Probability Distributions

different target probability distributions P̃(Y) will be randomly sampled from
a Dirichlet distribution of k = 12 parameters and αi = 1, 1 ≤ i ≤ 12. A total
of 100 different target probability distributions will be sampled, and our meth-
ods will be tested in each of them. This general case will be used to provide
an exhaustive comparison of the effectiveness of the methods introduced.
To generate the transition matrices T , a set of samples X will be used, com-
posed of 500 samples per class, which makes a total of 6000 input samples.
In particular, X will be used to generate the auxiliary matrix R required in
the UBM and EWTM, as described in equation (3.5), and, for the case of the
CRM, to estimate the probabilities described in equation (3.9). The generated
transition matrices T will be tested using another set of samples X̂ , disjoint
from X , also composed of 500 inputs per class. The proportion of samples that
has been classified as each particular class after the attack is applied to every
input in X̂ will be taken as the empirical probability distribution, and will be
denoted P̂(Y) = (p̂1, . . . , p̂k). Using this collection of data, we will evaluate to

what extent the empirical probability distributions P̂(Y) match P̃(Y). The
similarity between both distributions will be measured using different metrics:
the maximum and mean absolute difference, the Kullback-Leibler divergence
and the Spearman correlation.
To thoroughly evaluate our methods, we randomly sampled a set X̄ of 1000
inputs per class from the training set of the Speech Command Dataset, and
computed a 2-fold cross-validation, using one half of X̄ as X and the other half
as X̂ . Moreover, we launched 50 repetitions of the cross-validation process,
using in every repetition a different random partition of X̄ . An additional
evaluation of our methods considering different sizes for the set X will be
provided in Appendix A.2.
The transition matrices will be generated using the four linear programs de-
scribed in Sections 3.3.1, 3.3.2, 3.3.3 and 3.3.4. The linear programs are solved
using the Python PuLP library 4 and the Coin-or Branch and Cut (CBC)
solver 5. For the AM and the UBM, an upper bound of ξ = 0.01 will be set
for the values in L. For the AM, the UBM and the EWTM, γ1 = γ2 = 1
will be set, as well as γ3 = 10 for the UBM, in order to avoid the relaxation
of the upper-bounds r′i,j .
In addition, the `2 norm of the adversarial perturbation (in the raw audio
waveform representation) will be used as the distortion metric ϕ. The re-
sults will be computed under the following maximum distortion thresholds:
ε ∈ {0.0005, 0.001, 0.0025, 0.005, 0.01, 0.05, 0.1, 0.15}. These values were em-
pirically selected in order to evaluate the behavior of our methods depending
on how restricted the adversary is, ranging from scenarios where only very few
class transitions can be performed (i.e., low values of ε), to scenarios where
the number of possible transitions is high (i.e., high values of ε).

4 https://github.com/coin-or/pulp
5 http://www.coin-or.org/

https://github.com/coin-or/pulp
http://www.coin-or.org/

3.4 Validating Our Proposals: Setup and Results 33

Finally, our methods will be compared against two baseline methods. With the
first baseline, for each input x, the target class will be selected according to the
probabilities defined in the target distribution P̃(Y). Notice that, following the
introduced methodology, this method can be modeled as a transition matrix T
in which all the rows contain the target distribution P̃ (Y). Thus, this method
will presumably provide a good approximation of the target distribution, but
also fooling rates far from the optimum, as it only focuses on producing the
target distribution, with no particular incentive to maximize the fooling rate.
Hence, we will refer to this baseline as the Maximum Approximation Baseline
(MAB).
On the other hand, the second baseline will also follow the same strategy as
the MAB, with the difference that, in order to maximize the fooling rate of the
attack, the diagonal of T (i.e., the probability of staying in the ground-truth
class) will be set to zero, and each row will be normalized accordingly:

ti,i = 0, 1 ≤ i ≤ k,

ti,j =
p̃j∑k
r=1
r 6=i

p̃r
, 1 ≤ i, j ≤ k, i 6= j. (3.13)

Therefore, this baseline provides a maximum fooling rate, but, presumably,
at the expense of producing worse approximations to P̃(Y) than the MAB.
For this reason, we will refer to this baseline as the Maximum Fooling Rate
Baseline (MFRB).
For the purpose of evaluating the baselines under the same conditions as our
methods, the normalization described in Equation (3.2) will be also employed
before each attack (see Algorithm 1, lines 11-21). In this way, sampling a
target class that is not reachable from the input x at hand is avoided, which
favors the baselines.

3.4.3 Illustrative Case: Reproducing the Initial Probability
Distribution

For illustration purposes, we first report the results obtained for the partic-
ular scenario in which we want to produce the same probability distribution
that the model produces when it is applied on clean samples. Notice that this
distribution is the same as the ground truth distribution of the classes, since
we assume that the model produces a correct classification for the original
samples. Having the ability to reproduce such distributions allows an adver-
sary to deploy attacks that are less likely to be detected in the long run, for
instance, by label-shift detection methods that can warn against the presence
of multiple adversarial attacks against the model [135].6

6 We clarify that this does not imply that each individual attack that is sent to
the model will also be less detectable, as this depends on the underlying targeted
adversarial attack method employed.

34 3 Extending Adv. Attacks to Produce Adv. Class Probability Distributions

To begin with, Figure 3.1 (left) shows the achieved fooling rates for each
method, as well as the maximum fooling rate that can be achieved for every ε
as reference, that is, the percentage of inputs in X̂ for which it is possible to
create a targeted attack capable of fooling the model. These results have been
averaged for the 50 different 2-fold cross-validations. For the sake of simplicity,
and since the MFRB achieves by definition the maximum possible fooling
rate, the results corresponding to that baseline are not included in the figure.
According to the results, the four attack methods maintained fooling rates
very close to the optimal values independently of the distortion threshold,
with the exception of the UBM and the EWTM, in which a loss can be
observed (of approximately 10% and 4%, respectively) for the lowest values of
ε evaluated. It can also be noticed that the lowest fooling rates are achieved
by the MAB, with a loss of approximately 15% for ε ≥ 0.005.

0.0005
0.001

0.0025
0.005 0.01 0.05 0.1 0.15

ε

0

20

40

60

80

100

Fo
ol

in
g

ra
te

 (%
)

Fooling rate percentage
Max. fooling rate
AM
UBM
EWTM
CRM
MAB

0.0005
0.001

0.0025
0.005 0.01 0.05 0.1 0.15

ε

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

D
K
L
(P

(Y
),
P̂(
Y
))

KL divergence
 between P(Y) and P̂(Y)

AM
UBM
EWTM
CRM
MAB
MFRB

Fig. 3.1: Fooling rates (left) and Kullback-Leibler divergence (right) obtained
with each of the proposed methods in 50 2-fold cross-validation trials, for the
particular case in which the target distribution P̃(Y) is the initial (uniform)
probability distribution P(Y). The results corresponding to the MFRB have
been omitted from the left figure, since that method achieves the maximum
fooling rate by definition.

Regarding the effectiveness in reproducing the initial probability distribution,
Figure 3.1 (right) includes the average Kullback-Leibler divergence obtained
for every ε. In order to better assess the similarity between the initial prob-
ability distribution and the ones produced after perturbing the inputs with
our attacks, Figure 3.2 contains a graphical comparison of these distribu-
tions, for one of the folds included in the cross-validation trials, considering
three different maximum distortion thresholds ε. These figures also include
the Kullback-Leibler divergences between both distributions, as a reference to
compare the value of this metric and the similarity between the perturbations.
According to the results, in all the cases the algorithms were able to maintain

3.4 Validating Our Proposals: Setup and Results 35

a probability distribution very close to the original one, the EWTM being
the most accurate, the AM the least accurate, and the remaining approaches
achieving intermediate results.
It is noteworthy that, in this particular case, the obtained approximations of
the target probability distributions are more accurate for the lowest ε values
tried. This is due to the fact that, for low distortion thresholds, the number of
inputs for which the model can be fooled is lower, and therefore, a larger num-
ber of inputs remains correctly classified as their ground-truth class, which
makes the empirical probability distribution P̂(Y) closer to the original. How-
ever, note that the results obtained for high values of ε also represent close
approximations of the target distributions, and at the same time, the model
is fooled for almost all the input samples.

36 3 Extending Adv. Attacks to Produce Adv. Class Probability Distributions

Si
l.

Un
k.

Ye
s No Up

Do
wn Le

ft
Ri

gh
t

On Of
f

St
op Go

Class
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Pr
ob

ab
ilit

y

= 0.0025, DKL((Y), (Y)) = 0.01081
Original class distribution (Y)
Generated class distribution (Y)

Si
l.

Un
k.

Ye
s No Up

Do
wn Le

ft
Ri

gh
t

On Of
f

St
op Go

Class
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Pr
ob

ab
ilit

y

= 0.01, DKL((Y), (Y)) = 0.03650
Original class distribution (Y)
Generated class distribution (Y)

Si
l.

Un
k.

Ye
s No Up

Do
wn Le

ft
Ri

gh
t

On Of
f

St
op Go

Class
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Pr
ob

ab
ilit

y

= 0.1, DKL((Y), (Y)) = 0.07139
Original class distribution (Y)
Generated class distribution (Y)

Si
l.

Un
k.

Ye
s No Up

Do
wn Le

ft
Ri

gh
t

On Of
f

St
op Go

Class
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Pr
ob

ab
ilit

y

= 0.0025, DKL((Y), (Y)) = 0.00257
Original class distribution (Y)
Generated class distribution (Y)

Si
l.

Un
k.

Ye
s No Up

Do
wn Le

ft
Ri

gh
t

On Of
f

St
op Go

Class
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Pr
ob

ab
ilit

y

= 0.01, DKL((Y), (Y)) = 0.00986
Original class distribution (Y)
Generated class distribution (Y)

Si
l.

Un
k.

Ye
s No Up

Do
wn Le

ft
Ri

gh
t

On Of
f

St
op Go

Class
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Pr
ob

ab
ilit

y

= 0.1, DKL((Y), (Y)) = 0.05387
Original class distribution (Y)
Generated class distribution (Y)

Si
l.

Un
k.

Ye
s No Up

Do
wn Le

ft
Ri

gh
t

On Of
f

St
op Go

Class
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Pr
ob

ab
ilit

y

= 0.0025, DKL((Y), (Y)) = 0.00222
Original class distribution (Y)
Generated class distribution (Y)

Si
l.

Un
k.

Ye
s No Up

Do
wn Le

ft
Ri

gh
t

On Of
f

St
op Go

Class
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Pr
ob

ab
ilit

y
= 0.01, DKL((Y), (Y)) = 0.00455

Original class distribution (Y)
Generated class distribution (Y)

Si
l.

Un
k.

Ye
s No Up

Do
wn Le

ft
Ri

gh
t

On Of
f

St
op Go

Class
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Pr
ob

ab
ilit

y

= 0.1, DKL((Y), (Y)) = 0.02469
Original class distribution (Y)
Generated class distribution (Y)

Si
l.

Un
k.

Ye
s No Up

Do
wn Le

ft
Ri

gh
t

On Of
f

St
op Go

Class
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Pr
ob

ab
ilit

y

= 0.0025, DKL((Y), (Y)) = 0.00602
Original class distribution (Y)
Generated class distribution (Y)

Si
l.

Un
k.

Ye
s No Up

Do
wn Le

ft
Ri

gh
t

On Of
f

St
op Go

Class
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Pr
ob

ab
ilit

y

= 0.01, DKL((Y), (Y)) = 0.02314
Original class distribution (Y)
Generated class distribution (Y)

Si
l.

Un
k.

Ye
s No Up

Do
wn Le

ft
Ri

gh
t

On Of
f

St
op Go

Class
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Pr
ob

ab
ilit

y

= 0.1, DKL((Y), (Y)) = 0.04935
Original class distribution (Y)
Generated class distribution (Y)

Fig. 3.2: Comparison between the target distribution (in this case the ini-
tial probability distribution) P(Y) and the produced probability distribution
P̂(Y), for the four different methods introduced: AM (first row), UBM (sec-
ond row), EWTM (third row) and CRM (fourth row). The results are shown
for three different values of ε, and have been computed for one of the folds
of the cross-validation trials. The Kullback-Leibler divergence between both
distributions, DKL(P(Y), P̂(Y)), is also shown above each figure.

3.4.4 Deeper Exploration

In this section, we provide a deeper evaluation of our methods, testing them
against 100 probability distributions, randomly drawn from a Dirichlet distri-
bution, as described in Section 3.4.2.
First, we compute the percentage of cases in which the methods managed
to generate a valid transition matrix, that is, one which satisfies all the re-
strictions of the corresponding linear program. This information is shown in
Table 3.1, for different values of ε. Note that the baselines were not consid-
ered for this analysis, since they do not require solving a linear program. In

3.4 Validating Our Proposals: Setup and Results 37

particular, for each method, the values in Table 3.1 represent the percentage
of cross-validation trials in which a valid transition matrix was found, aver-
aged for the 100 target distributions. If a method failed in any of the folds
of a cross-validation trial, a failure is reported for the whole cross-validation
trial. According to the results, the AM, the UBM and the CRM managed
to create a valid matrix for all the cases tried, independently of the distor-
tion threshold. For the EWTM, although it also achieved a total success for
values of distortion above or equal to 0.0025, the percentage drops to 38.8%
for ε = 0.0005. This is due to the larger number of zeros in the matrices R̂
for such low distortion thresholds, which makes it impossible to find feasible
solutions through an element-wise multiplication with another matrix.
Table 3.1 also includes the success percentages of one variant of the UBM
and two variants of the CRM. Regarding the UBM, without relaxing the up-
per bounds of the transition matrix T , 100% success is achieved for values
of distortion ε > 0.05, but the percentage of cases for which a valid transi-
tion matrix was found drops dramatically for lower values of ε. Regarding the
CRM, without the Laplace smoothing and without fixing the probabilities
P ({yi}|yi) to zero, the method was not able to generate a valid transition ma-
trix for distortions below 0.05, and even in the maximum distortion threshold
tried the method only succeeded in 46.2% of the cases. Applying the Laplace
smoothing (without fixing P ({yi}|yi) = 0), those results improve significantly,
particularly for the highest distortion thresholds tried, succeeding in more
than approximately 80% of the cases for ε ≥ 0.1, and in 70.6% of the cases
for ε = 0.05. These results clearly reflect that those corrections are necessary
to make the linear programs feasible.
Secondly, the average fooling rates obtained by each method is compared in
Table 3.2, for each value of ε. In addition, the table includes, for reference pur-
poses, the maximum fooling rate that can be obtained with a maximum dis-
tortion ε. All the values have been averaged for the 100 target probability dis-
tributions considered in the experiment and for the 50 2-fold cross-validations
carried out for each of them.7 The results demonstrate that, whereas, by con-
struction, the MFRB always achieves the optimum fooling rate, the MAB
achieves the worst results in the majority of the cases, of approximately 15%
below the optimum for ε ≥ 0.005. In contrast, a very high fooling rate is main-
tained in the AM, the UBM (for ε > 0.01) and the CRM, with a negligible
loss with respect to the maximum achievable value. The EWTM, however,
achieved slightly lower fooling rates, of approximately 8% below the maxi-
mum, independently of the distortion threshold. A similar loss is observed for
the UBM when ε ≤ 0.01.
To conclude the analysis, the average similarity between the target distribu-
tions P̃(Y) and the corresponding empirical distributions P̂(Y) is analyzed

7 The cross-validation processes in which a method failed in generating a valid
matrix T for any of the two folds were discarded, and, therefore, the results
might be slightly biased for the EWTM and ε < 0.001.

38 3 Extending Adv. Attacks to Produce Adv. Class Probability Distributions

Maximum distortion amount (ε)

Method 0.0005 0.001 0.0025 0.005 0.01 0.05 0.1 0.15

AM 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
UBM 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
EWTM 38.8 99.9 100.0 100.0 100.0 100.0 100.0 100.0
CRM 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

UBM 1 0.0 0.0 0.0 9.2 67.9 99.9 100.0 100.0
CRM 2 0.0 0.0 0.0 0.0 0.0 14.0 30.3 46.2
CRM 3 10.6 14.0 20.0 25.7 37.5 70.6 79.7 85.3

1 Without relaxing the upper bound restrictions of T using the auxiliary
decision variable η.

2 Without the Laplace smoothing and without fixing the values of
P ({yi}|yi) to zero.

3 Without fixing the values of P ({yi}|yi) to zero.

Table 3.1: Success percentages in generating valid transition matrices for the
different methods introduced.

Maximum distortion amount (ε)

Method 0.0005 0.001 0.0025 0.005 0.01 0.05 0.1 0.15

AM 3.80 11.17 31.58 46.98 62.36 87.29 92.31 94.69
UBM 0.45 2.88 19.06 38.03 57.89 87.05 92.28 94.68
EWTM 1.88 6.87 23.59 38.65 53.60 79.66 85.21 87.84
CRM 3.90 11.29 31.55 46.88 62.23 87.26 92.31 94.70

MAB 2.06 6.55 21.33 33.72 46.87 71.02 76.96 79.64
MFRB 3.93 11.47 32.02 47.44 62.80 87.54 92.48 94.86

Max. FR 3.93 11.47 32.02 47.44 62.80 87.54 92.48 94.86

Table 3.2: Fooling rate (FR) percentages achieved by the different methods
introduced.

in Figure 3.3, independently for the different similarity metrics considered
and for every maximum distortion threshold. First of all, it is clear that the
effectiveness of the methods in reproducing the target distribution increases
with the maximum allowed distortion. Apart from that, it can be seen that
the AM achieves worse results compared to the rest, thereby validating the
hypothesis that the more informed strategies employed in the UBM, EWTM
and CRM are capable of increasing the effectiveness of the attack. Indeed,
analyzing the results obtained with the remaining methods, the maximum
absolute difference between the probabilities of the classes is below 0.09 for

3.4 Validating Our Proposals: Setup and Results 39

ε ≥ 0.05, which reflects a very high similarity. In fact, for the mean absolute
difference, this value decreases to 0.03. The Kullback-Leibler divergence also
shows the same descending trend as the maximum and mean differences. Fi-
nally, the Spearman correlation between both distributions is above 0.80 for
ε ≥ 0.05, which indicates that even if there are differences between the values,
both distributions are highly correlated.
Comparing the overall effectiveness of the methods in approximating the tar-
get distributions, the UBM and the EWTM were the most effective for low
and intermediate distortion thresholds (ε ≤ 0.01), followed by the MAB, while
the CRM and the MFRB achieved intermediate results. For high distortion
thresholds (ε ≥ 0.05), in contrast, the EWTM achieved the best results with a
notable margin with respect to the other methods, which show a more similar
performance.

0.0005
0.001

0.0025
0.005 0.01 0.05 0.1 0.15

ε

0.02

0.03

0.04

0.05

0.06

M
ea

n
ab

s.
di

ffe
re

nc
e

Mean abs. difference
between P̃(Y) and P̂(Y)

AM
UBM
EWTM
CRM
MAB
MFRB

0.0005
0.001

0.0025
0.005 0.01 0.05 0.1 0.15

ε

0.06

0.08

0.10

0.12

0.14

0.16
M

ax
 a

bs
. d

iff
er

en
ce

Max. abs. difference
between P̃(Y) and P̂(Y)

0.0005
0.001

0.0025
0.005 0.01 0.05 0.1 0.15

ε

0.05
0.10
0.15
0.20
0.25
0.30
0.35

D
K
L
(P̃

(Y
),
P̂(
Y
))

KL divergence
 between P̃(Y) and P̂(Y)

0.0005
0.001

0.0025
0.005 0.01 0.05 0.1 0.15

ε

0.2

0.4

0.6

0.8

Co
rre

la
tio

n

Spearman correlation
between P̃(Y) and P̂(Y)

Fig. 3.3: Sensitivity analysis of different similarity metrics between the pro-
duced probability distribution P̂(Y) and the target probability distribution

P̃(Y): mean absolute difference, maximum absolute difference, Kullback-
Leibler divergence and Spearman correlation.

40 3 Extending Adv. Attacks to Produce Adv. Class Probability Distributions

Comparing our methods with the baselines, on the one hand, the MAB
achieves results competitive with the UBM and the EWTM in terms of ap-
proximating the target distribution. Nevertheless, it can be noticed that the
MAB is outperformed by the EWTM in most cases, and even by the UBM
for intermediate values of ε, while it is also outperformed in terms of fool-
ing rate by all the remaining methods, with a considerable margin (as shown
previously in Table 3.2). Hence, the MAB is dominated by our methods in
both factors. On the other hand, whereas the MFRB cannot be outperformed
in terms of fooling rate (since it guarantees the optimal value), it is outper-
formed in terms of the quality of the approximation by our methods. These
results corroborate that the proposed methods are capable of taking advan-
tage of the information about the problem provided in order improve their
joint effectiveness in the two main goals of the attack: closely approximating
the target distribution for the classes while keeping remarkable effectiveness
in the objective of fooling the model for any incoming input sample.
Finally, as an overview of the distortion, Table 3.3 shows the average distor-
tion level introduced by the perturbations, in decibels (dB). Following the
methodology introduced in previous related works on adversarial perturba-
tions in speech signals [26, 123, 165, 178], the distortion has been computed
as

dB(x, v) = max
i

20 · log10 (|vi|)−max
i

20 · log10 (|xi|), (3.14)

x being the clean signal and v the perturbation.8 According to this metric,
the lower the value, the less perceptible the perturbation. Even for the highest
values of ε tried, the mean distortion level is far below -32dB, which is the max-
imum acceptable distortion threshold assumed in related works [26, 123, 165].
To empirically assess the imperceptibility of the adversarial perturbations, a
randomly sampled collection of our adversarial examples can be found in our
webpage 9.

ε 0.0005 0.001 0.0025 0.005 0.01 0.05 0.1 0.15

dB -80.69 -78.21 -72.73 -69.13 -65.60 -58.30 -55.82 -54.61

Table 3.3: Average distortion levels introduced by the adversarial perturba-
tions generated, measured in decibels.

8 Notice that the metric described in Equation (3.14) is used for a post-hoc analysis
and not to optimize the adversarial attacks, for which the `2 norm was used, as
described in Section 3.4.2.

9 https://vadel.github.io/acpd/AudioSamples.html

https://vadel.github.io/acpd/AudioSamples.html

3.4 Validating Our Proposals: Setup and Results 41

3.4.5 General Comparison of the Introduced Approaches

As a general overview of the effectiveness of the introduced strategies, focus-
ing on the UBM, the EWTM and the CRM, the three of them provided an
effective way to find optimal transition matrices, capable of producing the
desired target probability distributions. In addition, and considering that the
effectiveness of the methods depends on multiple factors, there is no one best
method in all the cases. For instance, the EWTM was overall the most effec-
tive one in approximating the desired probability distributions, but achieved
lower fooling rates than the UBM and the CRM, which achieved values close
to the maximum fooling rates.
This can be assessed more clearly in Figure 3.4, in which a graphic comparison
of the effectiveness according to the most relevant factors is provided. For a
clearer visualization, dominated values (i.e., those corresponding to methods
which are outperformed in all factors by at least another method, under the
same distortion threshold) have been displayed in white. Moreover, the non-
dominated values corresponding to the same distortion threshold have been
connected by dashed gray lines. Notice also that some axes are flipped to
represent in all the cases that a value is better if it is closer to the bottom-left
corner. As can be seen, no method is dominated by the others in all the factors
or metrics considered, with the exception of the AM (which is dominated in
all the cases) and the MAB (which is dominated in most of the comparisons
in which the fooling rate and the similarity metrics are traded-off). Thus,
the variety of methods proposed allows us to select the one that best suits
the requirements of the adversary, depending on which factors are the most
relevant or which are to be optimized the most.

42 3 Extending Adv. Attacks to Produce Adv. Class Probability Distributions

0.04 0.02 0.00 0.02 0.04

0.04

0.02

0.00

0.02

0.04

ε= 0.0005 ε= 0.001
AM

ε= 0.0025
UBM

ε= 0.005
EWTM

ε= 0.01
CRM

ε= 0.05
MAB

ε= 0.1
MFRB

ε= 0.15

0.00.20.40.60.81.0
Fooling rate

0.06

0.08

0.10

0.12

0.14

0.16
M

ax
 a

bs
. d

iff
er

en
ce

0.00.20.40.60.81.0
Fooling rate

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Co
rre

la
tio

n

O(k) O(k 2) O(2kk 2)
Number of parameters

0.02

0.03

0.04

0.05

0.06

M
ea

n
ab

s.
di

ffe
re

nc
e

Fig. 3.4: Multifactorial comparison of the effectiveness of the six methods eval-
uated. For a clearer visualization, dominated values (i.e., those corresponding
to methods which are outperformed in all factors by at least another method,
under the same distortion threshold) have been displayed in white, whereas
the non-dominated values corresponding to the same distortion threshold have
been connected by dashed gray lines.

3.5 Counteracting Label-Shift Detection Algorithms in
Data Streaming Scenarios

As discussed in Section 3.1, a change in the probability distribution of the
classes can lead to a change in the predictive performance of the models or
to ethical issues [19, 102, 141, 168]. Therefore, some approaches have been
proposed to detect and correct those shifts. In this section, we show the ef-
fectiveness of our method in producing a label-shift, even when a label-shift
detection method is enforced.
The assumed scenario is as follows. First, we consider a classification model in
its deployment phase, which receives a set of unlabeled instances every time
unit. We also assume that the initial probability distribution of the classes
P(Y) is known. Finally, we consider the presence of a label-shift detector,
which evaluates whether the probability distribution of the classes at the
prediction phase, Q(Y) = (q1, . . . , qk), is different from P(Y). We assume

3.5 Counteracting Label-Shift Detection Algorithms in Data Streaming Scenarios 43

that this evaluation is done periodically, for instance, after receiving a certain
number of new instances. In such a scenario, the goal of our attack will be
to maliciously produce a target probability distribution P̃(Y), different from
P(Y), yet preventing the change from being detected by the label-shift de-
tection mechanism. Otherwise, the detection mechanism can alert the user
about possible attacks [135] or trigger actions such as retraining or replacing
the model. Such actions may force the adversary to recalculate the attack
strategy, interrupt the attack process or cause it to fail.
For illustration purposes, we will employ the Black Box Shift Detection
(BBSD) approach proposed in [102] as the label-shift detector. This method
assumes a realistic scenario in which the probability distribution at predic-
tion time Q(Y) is unknown, since only unlabeled data is observed, which is
a common scenario in practice. To address such scenarios, [102] proposes a
methods-of-moments approach to consistently estimate Q(Y) at prediction
time, based on the predictions of the classification model.10 Once the proba-
bility distribution at prediction time is estimated, the shift detection is for-
mulated as a statistical test under the null hypothesis H0 : Q(Y) = P(Y)
and the alternative hypothesis H1 : Q(Y) 6= P(Y). As in [135], a Pearson’s
Chi-Squared test will be used as the statistical test to quantify the significance
of the label-shift. We will consider that the null-hypothesis is rejected (i.e.,
the BBSD method detects a significant shift) when the p-value is below 10−5.
As the underlying task for our experiments, we will consider a Tweet emotion
classification problem, which is a popular benchmark in text classification
[5, 176], streaming classification [62] and quantification learning scenarios [48,
127], where the probability distribution of the output classes (which might
represent, for instance, the overall opinion of the population with respect
to a given topic) is of paramount relevance [53]. We selected the Emotion
dataset proposed in [145], which contains Tweets categorized in 6 emotions:
sadness, joy, love, anger, fear and surprise. We also selected a pretrained
classifier based on the popular BERT language model [36], fine-tuned for this
dataset.11 The resulting model achieves a 92.65% of accuracy in the test set
of the Emotion dataset.
As the underlying adversarial attack, we selected the method proposed in
[10]. Finally, the Levenshtein Edit Distance [95] between the original and the
adversarial text was selected as the distortion metric, normalized by the length
of the longest text.12 We set a maximum distortion threshold of ε = 0.25.
Since we assume a label-shift detection mechanism, it is important to note that
only those target distributions that are not statistically different from P(Y)
(according to the detection method) can be targeted, to prevent the change

10 We refer the reader to [102] for further details.
11 The model is publicly available at: https://huggingface.co/bhadresh-savani/

bert-base-uncased-emotion.
12 A randomly sampled collection of our adversarial examples can be found in our

webpage: https://vadel.github.io/acpd/TextSamples.html.

https://huggingface.co/bhadresh-savani/bert-base-uncased-emotion
https://huggingface.co/bhadresh-savani/bert-base-uncased-emotion
https://vadel.github.io/acpd/TextSamples.html

44 3 Extending Adv. Attacks to Produce Adv. Class Probability Distributions

from being detected. Thus, if a target distribution P̄(Y) is significantly differ-
ent from P(Y), our best option is to find another distribution which, despite
being as close to P̄ (Y) as possible, will not cause the statistical test to reject
the null hypothesis. For instance, such a trade-off can be straightforwardly
managed by computing the intermediate distribution

P̃(Y) = (1− τ)P(Y) + τ P̄(Y), τ ∈ [0, 1], (3.15)

and finding the maximum value of τ so that P̃(Y) is not significantly different
from P(Y).13

To evaluate the effectiveness of our method, we considered three different
configurations for the source probability distribution P(Y). First, a roughly
uniform distribution will be tested, similarly to the evaluation in the previ-
ous section. Secondly, following a similar approach to [102], we considered
two distributions in which a probability pi is assigned to the i-th class and
the remaining probability mass is distributed uniformly among the remaining
classes. For our experiments, we will set pi = 0.25 and i = {2, 4}, and, follow-
ing the notation of [102], we will refer to these distributions as Tweak-2 and
Tweak-4.
For each P(Y), 1000 random Dirichlet distributions were sampled as the target
distributions. We ensured, using the approach described in Equation (3.15),
that all of the target distributions are not being identified by the label-shift
detector as significantly different from the corresponding source distribution
P(Y).14 In addition, to generate the transition matrices, we sampled 1000
training inputs from the dataset, with a class proportion following P(Y).
The EWTM will be used to optimize the transition matrices in all the cases.
Once the transition matrix is generated, its effectiveness will be evaluated on
a different set X̂ , also composed of 1000 inputs. For the sake of a realistic (and
challenging) evaluation, the BBSD will be evaluated in cumulative batches of
100 inputs, and a success will be considered only if, for none of the batches,
the detector detects significant differences between the empirical distribution
P̂(Y) and P(Y).
The results are shown in Table 3.4. As can be seen, our method succeeded
in 24.8% to 43.4% percent of the cases depending on the configuration of the
source distribution P(Y), which is a reasonably high percentage considering
the presence of a label-shift detection mechanism. Furthermore, in the three
cases a high fooling rate was maintained, of approximately 62%, which sup-
poses a loss of approximately 10% in comparison to the maximum fooling
rate that can be achieved in each case, which is shown in the fourth column.
The fifth column of the table shows the average similarity between P̂(Y) and

P̃(Y) according to the following metrics: the Kullback-Leibler divergence, the
maximum absolute difference and the mean absolute difference. Only those

13 In our experiments, the maximum value of τ was found by means of a binary
search on the range [0, 1].

14 We considered a tolerance of 10−4 + 10−5 during the sampling process.

3.5 Counteracting Label-Shift Detection Algorithms in Data Streaming Scenarios 45

cases for which the label-shift detector did not detect significant changes were
considered. According to the three metrics, our method was capable of closely
approximating the target distributions, achieving, for instance, an average
Kullback-Leibler divergence of approximately 0.04 in the three cases.
Finally, Figure 3.5 (top row) shows three illustrative label-shifts generated in
our experiments, one for each of the source distributions considered (column-
wise). The second row of the figure shows, for each case, the evolution in
the p-value computed by the BBSD label-shift detector during the attack
process, measured for cumulative batches of 100 inputs. For comparison, the
p-value has been computed considering i) the adversarial predictions provided
by the model when it is attacked, and ii) the original predictions, that is,
the ones that would be provided if the model was not attacked. As can be
observed, both the target and empirical probability distribution of the classes
represent an interpretation that can be considerably different from that of the
original distribution. In the first case (left column), in which P(Y) initially
portrays a uniform opinion distribution in the population, the adversarially
generated distribution portrays a predominantly positive opinion. A similar
effect is achieved in the second case (middle column), in which the mode of the
distribution is changed from a negative opinion to a positive opinion. Finally,
in the third case (right column), the probability assigned to the mode of P(Y)
is further increased (by reducing the probability assigned to some of the other
classes), further biasing the distribution in favor of that mode.

P(Y) Success (%) FR (%)
Max.

FR (%)
Similarity

(DKL / Max. / Mean)

Uniform 27.90 60.99 78.30 0.03 / 0.08 / 0.03
Tweak-2 43.40 62.63 77.20 0.05 / 0.10 / 0.04
Tweak-4 24.80 61.87 78.80 0.04 / 0.08 / 0.04

Table 3.4: Attack performance of the EWTM in producing label-shifts in the
presence of the BBSD label-shift detection method. The following information
is provided, column-wise: source distribution P(Y), percentage of cases in
which the label-shift was not detected by the BBSD, average fooling rate
(FR) achieved by the attacks, maximum fooling rate achievable (as reference),
and the average similarity between the produced and the target probability
distributions. The similarity is reported for three different metrics: Kullback-
Leibler divergence (DKL), maximum absolute error and mean absolute error.

46 3 Extending Adv. Attacks to Produce Adv. Class Probability Distributions

Sa
d. Jo
y

Lo
ve

An
ge

r

Fe
ar

Su
rp

.

Class
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ob

ab
ilit

y

DKL((Y), (Y)) = 0.012 FR=60.00%
Original Target Generated

Sa
d. Jo
y

Lo
ve

An
ge

r

Fe
ar

Su
rp

.

Class
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ob

ab
ilit

y

DKL((Y), (Y)) = 0.038 FR=64.10%
Original Target Generated

Sa
d. Jo
y

Lo
ve

An
ge

r

Fe
ar

Su
rp

.

Class
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ob

ab
ilit

y

DKL((Y), (Y)) = 0.025 FR=61.50%
Original Target Generated

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

p-
va

lu
e Predictions:

Original
Adversarial

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

p-
va

lu
e Predictions:

Original
Adversarial

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

p-
va

lu
e Predictions:

Original
Adversarial

Fig. 3.5: Illustrative label-shifts generated for the Tweet Emotion Classifica-
tion task (column-wise). The first row provides a comparison of the source,
target and produced probability distributions. In each case, the achieved fool-
ing rate (FR) and Kullback-Leibler divergence (DKL) between the target and
the generated distributions is shown above the figure. The second row shows,
for each case, the evolution of the p-value computed by the BBSD label-shift
detector during the attack process, evaluated in cumulative batches of 100 in-
puts and in both the correct predictions (i.e., when the model is not attacked)
and the adversarial predictions (i.e., when our method is applied). The dashed
lines mark the detection threshold.

3.6 Conclusions

In this chapter, we have introduced a novel strategy to generate adversarial
attacks capable of producing not only prediction errors in ML models, but also
any desired probability distribution for the classes when the attack is applied
to multiple incoming inputs. This multiple-instance attack paradigm, due to
its capability of coordinating multiple attacks to produce more complex mali-
cious behaviors in the models, exposes threats that cannot be conducted by the
conventional paradigms, broadening the horizon of adversarial attacks. The
proposed attack methodology has been conceived as an extension of targeted
adversarial attacks, in which the target class is stochastically selected under
the guidance of a transition matrix, which is optimized to achieve the desired
goals. We have introduced four different strategies to optimize the transition
matrices, which can be solved by using linear programs. Our approach was
experimentally validated for the spoken command classification task, using
different targeted adversarial attack algorithms as a basis. Furthermore, we
also evaluated the success of our methods in preventing the attacks from
being detected by label-shift detection methods in a streaming classification

3.6 Conclusions 47

scenario. Our results clearly show that the introduced methods are capable of
producing close approximations of the target probability distribution for the
output classes while achieving high fooling rates.

4

When and How to Fool Explainable Models
(and Humans) with Adversarial Examples

4.1 Introduction

As discussed in Chapter 1, DNNs still face several weaknesses that hamper
the development and deployment of these technologies, despite their outstand-
ing and ever-increasing capacity to solve complex AI problems. In addition
to their vulnerability to adversarial examples, another major shortcoming is
their black-box nature, which prevents analyzing and understanding their rea-
soning process, while such a requirement is ever more in demanded in order
to guarantee a reliable and transparent use of AI. To overcome this limita-
tion, different strategies have been proposed in the literature [196], ranging
from post-hoc explanation methods, which try to identify the parts, elements
or concepts in the inputs that most affect the decisions of trained models
[52, 80, 184, 188], to more proactive approaches which pursue a transparent
reasoning by training inherently interpretable models [6, 28, 63, 98, 144, 193].
Interestingly, improving the explainability of the models is also a promising
direction to achieve adversarial robustness, a hypothesis which is supported
by recent works which show that interpretability and robustness are connected
[43, 125, 138, 163, 194]. Furthermore, the study of adversarial attacks against
explainable models has gained interest in recent years, as will be fully re-
viewed in Sections 4.2.2 and 4.2.3. In contrast to common adversarial attacks,
which focus solely on changing the classification of the model [186], attacks
on explainable models need to consider both changes in the classification and
in the explanation supporting that classification. Another key difference when
considering attacks against explainable models is related to their stealthiness.
Generally, the only constraint assumed in order to produce a stealthy attack
is that the changes added to the inputs must be imperceptible to humans.
However, the use of explainable models implies a different scenario, where it
is assumed that a human will observe and analyze not only the input, but also
the model classification and explanation. Therefore, uncontrolled changes in
both factors may cause inconsistencies, alerting the human. For this reason,
the assumption of explainable classification models introduces a new question

50 4 When and How to Fool Expl. Models (and Humans) with Adv. Examples

regarding the definition of adversarial examples: can adversarial examples be
deployed if humans observe not only the input but also the output classification
and/or the corresponding explanation?

4.1.1 Objectives and Contributions

The objective of this chapter is to shed light on this question by extending
the notion of adversarial examples for explainable ML scenarios, in which hu-
mans can not only assess the input sample, but also compare it to the output
of the model and to the explanation. These extended notions of adversarial
examples allow us to exhaustively analyze the possible attacks that can be
produced by means of adversarially changing the model’s classification and
explanation, either jointly or independently (that is, changing the explana-
tion without altering the output class, or vice versa). Our analysis leads to
a comprehensive framework that establishes whether (and how) adversarial
attacks can be generated for explainable models under human supervision.
Moreover, we thoroughly describe the requirements that adversarial examples
should satisfy in order to be able to mislead an explainable model (and even
a human) depending on multiple scenarios or factors which, despite their
relevance, are often overlooked in the literature of adversarial examples for
explainable models, such as the expertise of the user or the objective of the
explanation. Finally, the proposed attack paradigms are also illustrated by ad-
versarial examples generated for two representative image classification tasks,
as well as for two different explanation methods. The outline of this chapter
is summarized in Figure 4.1.

Section 4.3.
Extending
adversarial
examples for
explainable
ML scenarios

Section 4.2.
Related Work

● Regular adversarial attacks

Section 4.4.
Illustration of
context-aware
adversarial
attacks

Large scale visual recognition task

Reliability of
explainable models

Connections

Adversarial
ML

Explainable
ML

Input Output Explanation

Chest X-ray classification task

How to design realistic
attacks depending on the:

O
bs

er
ve

d
fa

ct
or

s

● Adversarial examples in explainable ML scenarios

 Input Explanation Attack

● Attack paradigm
● Type of explanation
● Type of scenario, user and task

 Input Explanation Attack

● Observing the input and the output

Fig. 4.1: Outline of the exploratory research developed in Chapter 4.

4.2 Related Work 51

The aim of all these contributions is to establish a basis for a more rigorous
study of the vulnerabilities of explainable ML in adversarial scenarios. We
believe that these fields will benefit from our work in the following ways.
� Heretofore, studies on adversarial attacks against explainable models have

considered very particular or fragmented scenarios and attack paradigms.
Thus, there is a lack of a unifying perspective in this field that connects all
these works within a general analytical framework and taxonomy, which
is a gap that we fill with this work.

� The framework we propose encompasses not only attack paradigms which
have already been investigated in the literature, but also paradigms that,
to the best of our knowledge, have not yet been studied, paving the way
for new research venues.

� In addition, the role of the human is often overlooked in the study of
attacks against explainable models, despite being a key factor in these
scenarios. In this work, we address this limitation by thoroughly analyzing
the requirements that adversarial examples should satisfy in order to be
able to mislead an explainable model, and even a human, depending on
the attack scenario. This analysis provides a comprehensive road map for
the design of realistic attacks against explainable models.

� Furthermore, the fact that our framework considers a wide range of scenar-
ios that an adversary may face allows us to summarize which paradigms
are realistic or unrealistic in each of them, which is fundamental to en-
sure that attack methods are evaluated with an appropriate setting and
methodology in future works.

� On another note, our work also contributes to raise awareness about the
possible attack types that both models and humans may face in realistic
adversarial scenarios, which is important to promote a more aware and
secure use of ML based technologies, or even the development of more
robust models or explanation methods.

For the above reasons, the aim of this work is to contribute to a more me-
thodical research in this area, delimiting the differences between the possible
attack paradigms, identifying limitations in the current approaches and es-
tablishing more fine-grained and rigorous standards for the development and
evaluation of new attacks or defenses.

4.2 Related Work

This section provides a gentle yet comprehensive introduction to the field of
adversarial attacks against explainable models. To begin with, an overview of
explanation methods in ML is presented in Section 4.2.1. Subsequently, the
reliability of the explanation methods in adversarial scenarios is discussed in
Section 4.2.2. Finally, further connections between explanation methods and
adversarial examples are discussed in Section 4.2.3.

52 4 When and How to Fool Expl. Models (and Humans) with Adv. Examples

4.2.1 Overview of Explanation Methods in ML

In this section, we summarize the explanation methods proposed in the lit-
erature in order to present the terminology and taxonomy that will be used
in the subsequent sections to develop our analytical framework on adversarial
examples in explainable models.

4.2.1.1 Scope, Objective and Impact of the Explanations

The objective of an explanation is to justify the behavior of a model in a way
that is easily understandable to humans. However, different users might be
interested in different aspects of the model, and, therefore, the explanations
can be generated for different scopes or objectives.
Overall, the scope of an explanation can be categorized as local or global [196].
On the one hand, local methods aim to characterize or explain the model’s
prediction for each particular input individually, for example, by identifying
the most relevant parts or features of the input. On the other hand, global
methods attempt to expose the general reasoning process of the model, for
instance, summarizing (e.g., using a more simple but interpretable model)
when a certain class will be predicted, or describing to what extent a particular
input-feature is related to one class. Since in this chapter we address the
vulnerability of explainable models to adversarial examples, we focus on local
methods.
In addition, explanations can be used, even for the same model, for different
purposes. For instance, users querying the model for a credit loan might be
interested in explaining the output obtained for their particular cases only,
whereas a developer might be interested in discovering why that model mis-
classifies certain input samples. At the same time, an analyst can be interested
in whether that model is biased against a social group for unethical reasons.
At a higher level, all these purposes are based on necessities involving ethics,
safety or knowledge acquisition, among others [38]. Based on the purpose of
the explanations and the particular problem, domain or scenario in which they
are required, another relevant factor should be taken into consideration: the
impact of the explanations, which can be defined as the consequence of the
decisions made based on the analysis of the explanation. Healthcare domains
are clear examples in which the consequences of the decisions can be severe.
Despite the relevance of these factors, they are often overlooked when local
explanation methods are designed or evaluated [38, 196]. The same happens
for adversarial attacks in explainable models. We argue that the scope, the
objective and the impact of explanations should be key factors when designing
adversarial attacks against explainable models, since a different attack strat-
egy needs to be adopted in each context to successfully deceive the model
(and the human). This will be discussed in detail in Section 4.3.

4.2 Related Work 53

4.2.1.2 Types of Explanations

Different types of explanations exist depending on how the explanation is
conveyed:
� Feature-based explanations: assign an importance score to each feature in

the input, based on their relevance for the output classification. Common
feature-based explanations (especially in the image domain) are activation
or saliency maps [151], which highlight the most relevant parts of the
input. Despite their extensive use, previous works have identified that
such explanations can be unreliable and misleading [30, 63, 80, 81, 103,
139].

� Example-based explanations: the explanation is based on comparing the
similarity between the input at hand and a set of prototypical inputs that
are representative of the predicted class. Thus, the classification of a given
input sample is justified by the similarity between it and the prototypes
of the predicted class. We will also refer to these types of explanations as
prototype-based explanations in the dissertation, although different forms
of example-based explanation exist, such as the strategy proposed in [83],
where influence functions are employed to estimate the training images
most responsible for a prediction. Recent works have integrated prototype-
based explanations directly in the learning process of DNNs, so that the
classification is based on the similarities between the input and a set of
prototypes [6, 28, 63, 98], achieving a more interpretable reasoning. The
prototypes can represent an entire input describing one class (e.g., a pro-
totypical handwritten digit “1” in digit classification) [98], or represent
image-parts or semantic concepts [6, 28, 63].

� Rule-based explanations: these explanation methods aim to expose the rea-
soning of a model in a simplified or human-understandable set of rules, such
as logic-rules or if-then-else rules, which represent a natural form of ex-
planations for humans [92, 166]. Rule-based explanations are particularly
well-suited when the input contains features which are easily interpretable.

� Counterfactual explanations: although counterfactual explanations [169]
can be considered, in their form, as rule-based explanations, the main dif-
ference of these explanations is their conditional or hypothetical reasoning
nature, as the aim is suggesting the possible changes that should happen in
the input to receive a different (and frequently more positive) output clas-
sification (e.g., “a rejected loan request would be accepted if the subject
had a higher income”).

Some illustrative examples of these four types of explanations are presented
in Figure 4.2. Overall, the most suitable type of explanation depends on the
domain, the scope and the purpose of the explanation, as well as on the
expertise level of the users querying the model. We refer the reader to [196]
and [54] for a more fine-grained overview of explanation methods. These
surveys also provide an exhaustive enumeration of relevant methods in the
literature focused on computing such explanations.

54 4 When and How to Fool Expl. Models (and Humans) with Adv. Examples

COVID-19 (1.000)

(a) Feature-based explanation

Labrador retriever: 0.949
Chesapeake Bay retriever: 0.030
American Staffordshire terrier: 0.006

(b) Example-based explanation

Output: Rejected credit loan
Explanation:
➢ < 1500
➢ and
➢ and = None

< 20

JobIncome Age Country Gender

(c) Rule-based explanation

Output: Rejected credit loan
Explanation: Would be accepted if:
➢ (> 1500 or 25 < < 35)
➢ and (≠ None)

Income Age Country Gender Job

(d) Counterfactual explanation

Fig. 4.2: Illustrative examples of the four main types of explanations in ML.

4.2.2 Reliability of Explanations Under Adversarial Attacks

Some explanation methods in the literature have proven to be unreliable in
adversarial settings. In [7, 37, 51, 88, 195], it is shown that small changes in in-
put samples can produce drastic changes in feature-importance explanations,
while maintaining the output classification. In [51], the proposed attacks are
also evaluated in the example-based explanations proposed in [83], based on
estimating the relevance of each training image for a given prediction by us-
ing influence-functions. In [197], adversarial attacks capable of changing the
explanations while maintaining the outputs are created for self-explainable

4.2 Related Work 55

(prototype-based) classifiers. In [88, 195], it is shown that adversarial exam-
ples can also produce wrong outputs and (feature-importance) explanations
at the same time, or change the output while maintaining the explanations
[195].
In addition, trustworthy explanations can be produced for a biased or an un-
trustworthy model, thus manipulating user trust, as shown in [3, 91]. The
approaches introduced in these works are, however, not based on adversarial
attacks, as they focus on producing a global explanation model that closely
approximates the original (black-box) model but which employs trustworthy
features instead of sensitive or discriminatory features (which are actually
being used by the original model to predict). Similarly, in [152], adversarial
models are generated, capable of producing incorrect or misleading expla-
nations without harming their predictive performance. In [65], a fine-tuning
procedure is proposed to adversarially manipulate models, so that saliency
map based explanations drastically change, becoming ineffective in highlight-
ing the relevant regions, whereas the accuracy of the model is maintained.
Some works have also tried to justify the vulnerability of explanation methods
to adversarial attacks, or the links between them. In [37, 51], the non-smooth
geometry of decision boundaries (of complex models) is blamed, arguing that,
due to these properties, small changes in the inputs imply that the direction
of the gradients (i.e., normal to the decision boundary) can drastically change.
As most explanation methods rely on gradient information, the change in the
gradient direction implies a different explanation. In [88, 195], the vulner-
ability is attributed to a gap between predictions and explanations. It is an
open question whether this hypothesis holds for self-explainable models, which
have been trained jointly to classify accurately and to provide explanations
[6, 28, 63, 98, 144]. Finally, theoretical connections between explanations and
adversarial examples are established in [43, 70].

4.2.3 Further Connections Between Adversarial Examples and
Interpretability

Paradoxically, using explanations to support or justify the prediction of a
model can imply security breaches, as they might reveal sensitive information
[153, 167]. For instance, an adversary can use explanations of how a black-
box model works (e.g., what features are the most relevant in a prediction)
in order to design more effective attacks. Similarly, in this chapter we will
show that justifying the classification of the model with an explanation makes
it possible to generate types of deception using adversarial examples that,
without explanations, it would not be possible to generate (e.g., to convince
an expert that a misclassification of the model is correct).
On another note, recent works have shown that robust (e.g., adversarially
trained) models are more interpretable [43, 138, 163, 194]. In [43], this is jus-
tified by showing that the farther the inputs are with respect to the decision
boundaries, the more aligned the inputs are with their saliency maps, thus,

56 4 When and How to Fool Expl. Models (and Humans) with Adv. Examples

being more interpretable. Furthermore, [125] shows that enhancing the in-
terpretability of a model during the training phase increases its adversarial
robustness. Moreover, explanation methods have inspired particular defensive
strategies against adversarial attacks [68, 74, 105, 137, 160, 172, 182, 191],
and, inversely, adversarial attack methods have been proposed as a tool to
generate or analyze explanations [41, 61, 113, 130].
Finally, the similarities between interpretation methods and adversarial at-
tacks and defenses are analyzed in [104], showing how adversarial methods
can be redefined from an interpretation perspective, and discussing how tech-
niques from one field can bring advances into the other. Our work, however,
addresses a different objective. In contrast to [104], which focuses on high-
lighting the similarities between particular methods from both fields, in this
dissertation we propose a comprehensive framework to study if (and how)
adversarial examples can be generated for explainable models under human
assessment.

4.3 Extending Adversarial Examples for Explainable ML
Scenarios

In this section, we extend the notion of adversarial examples to fit in explain-
able ML contexts. For this purpose, in Section 4.3.1, we start from a basic
definition of adversarial examples, and discuss more comprehensive scenarios
in which the human subjects judge not only the input sample, but also the
decisions of the model. In Section 4.3.2, the human assessment of the expla-
nations is also taken into account. To the best of our knowledge, no prior
work has comprehensively addressed this type of generalization of adversarial
examples.
This extended definition allows us to provide a general framework that iden-
tifies the way in which an adversary should design an adversarial example to
deploy effective attacks even when a human is assessing the prediction process.
The framework introduced also identifies the most effective ways of deploying
attacks depending on factors such as the way in which the explanation is con-
veyed (Section 4.3.2.1) or the type of scenario, user and task (Section 4.3.2.2).
From an adversary perspective, this framework provides a comprehensive road
map for the design of malicious attacks in realistic scenarios involving explain-
able models and a human assessment of the predictions. From the perspective
of a developer or a defender, this road map helps to identify the most crit-
ical requirements that their explainable model should satisfy in order to be
reliable.

4.3 Extending Adversarial Examples for Explainable ML Scenarios 57

4.3.1 Scenarios in Which Human Subjects Are Aware of the
Model Predictions

Regular adversarial examples are based on the assumption that an adversary
can introduce a perturbation into an input sample, so that:
1. The perturbation is not noticeable to humans, and, therefore, the human’s

perception of which class the input belongs to does not change.
2. The class predicted by a ML model changes.

Note that, according to this definition of adversarial examples, the human
criterion is only considered regarding the input sample, without any human
assessment of the model’s output. However, this definition does not guarantee
the stealthiness of the attack in scenarios in which the user observes the output
classification, since the change in the output can be inconsistent, alerting the
human. For these reasons, the following question arises: are regular adversarial
examples useful in practice when the user is aware of the output?
To address this question, we start by discussing four different scenarios, based
on the agreement of the following factors: f(x), the model’s prediction of the
input; h(x), the classification performed by a human subject; and yx, the
ground-truth class of an input x (which will be unknown for both the model
and the human subject in the prediction phase of the model). For clarification,
we assume that a human misclassification (h(x) 6= yx) can occur in scenarios
in which the addressed task is of high complexity, such as medical diagno-
sis [128], or in which the label of an input is ambiguous, such as sentiment
analysis [2, 15]. Although a human misclassification might be uncommon in
simple problems such as object recognition, even in such cases ambiguous or
challenging inputs can be found [155, 162]. Finally, unless specified, we will
assume expert subjects, that is, subjects with knowledge in the task and ca-
pable of providing well-founded classifications.1 According to this framework,
the four possible scenarios are those described in Figure 4.3.
According to the described casuistry, regular adversarial attacks aim to pro-
duce the second scenario (A.0.2, i.e., f(x) 6= h(x) = yx), by imperceptibly per-
turbing a source input xs that satisfies f(xs) = h(xs) = yxs (i.e., the first sce-
nario) so that the model’s output is changed, but without altering the human
perception of the input (which, therefore, implies h(x) = yx = yxs

). However,
assuming that the user is aware of the output, the fulfillment of the attack is
subject to whether human subjects can correct the detected misclassification,
or have control over the implications of that prediction. For example, an ad-
versarial traffic sign will only produce a dramatic consequence in autonomous
cars if the drivers do not take control with sufficient promptness.

1 Different degrees of expertise can be considered for a more comprehensive sce-
nario, such as unskilled subjects, or partially skilled subjects capable of providing
basic judgments about the input (for instance, a subject might not be able to
visually discriminate between different species of reptiles, yet be able to visually
classify an animal as a reptile and not as another animal class).

58 4 When and How to Fool Expl. Models (and Humans) with Adv. Examples

Fig. 4.3: Attack casuistry when the human observes not only the input but
also the output classification of the model.

Regarding the remaining cases, they do not fit in the definition of a regular
adversarial attack since either the input is misclassified by the human sub-
ject (h(x) 6= yx) or the model is not fooled (f(x) = h(x) = yx). Nevertheless,
assuming a more general definition, scenarios involving human misclassifica-
tions could be potentially interesting for an adversary. Similarly to regular
adversarial attacks, which force the second scenario departing from the first
one, an adversary might be interested in forcing the fourth scenario depart-
ing from the third one. Let us take as an example a complex computer-aided
diagnosis task through medical images, in which an expert subject fails in
their diagnosis while the model is correct. In such cases, we can induce a hu-
man error confirmation attack by forcing the model to confirm the (wrong)
medical diagnosis produced by the expert, that is, forcing f(x) = h(x) 6= yx
[21, 45, 55, 75].
Based on the above discussion, we can determine that some types of adver-
sarial attacks can still be effective even when the user is aware of the output.
Nonetheless, paradoxically, it is possible to introduce new types of adversarial
attacks when the output classification is supported by explanations, as we
show in the following section.

4.3.2 Scenarios in Which Human Subjects Are Aware of the
Explanations

The scenarios described in the previous section can be further extended for
the case of explainable models, as the explanations for the predictions come
into play. As a consequence, each of the cases defined above can be subdivided
into new subcases depending on whether the explanations match the output
class or whether humans agree with the explanations of the models. To avoid
an exhaustive enumeration of all the possible scenarios, we focus only on
those that we identify as interesting from an adversary perspective. From this
standpoint, given an explainable model, adversarial examples can be generated

4.3 Extending Adversarial Examples for Explainable ML Scenarios 59

by perturbing a well classified input (for which the corresponding explanation
is also correct and coherent) with the aim of changing i) the output class, ii)
the provided explanation or iii) both at the same time.
To formalize these scenarios, an explanation A(x) will be defined as a set
A(x) = {φ1, φ2, . . . , φn}, where each φi represents a single explanatory unit
which justifies or explains a decision in a human-understandable way. Let us
denote Af (x) as the explanation provided to characterize the decision f(x) of
a model, and Ah(x) as the explanation provided by a human according to their
knowledge or criteria. The disagreement between Af (x) and Ah(x), denoted
as Af (x) 6≈ Ah(x), will be formalized as Af (x) ∩Ah(x) = ∅, that is, as the
lack of common explanatory units in both explanations. The total agreement
between the explanations will be denoted as Af (x) = Ah(x). However, a total
agreement is unlikely due to the high number of possible explanations for
a given classification. In order to relax this definition, we will consider that
there is an agreement between Af (x) and Ah(x), which will be denoted as
Af (x) ≈ Ah(x), when both explanations overlap, that is, Af (x) ≈ Ah(x) ⇔
Af (x)∩Ah(x) 6= ∅. Similarly, we will denote A(x) ∼ y if an explanation A(x)
for the input x is consistent with the reasons that characterize the class y (that
is, if the explanation correctly characterizes or supports the classification of
x as the class y). Formally, A(x) ∼ y ⇔ A(x) ⊆ AY (x), being AY (x) the set
of all explanatory units that justify classifying x as y.
For simplification, unless specified, we assume that given an input x belonging
to the class yx, h(x) = yx and Ah(x) ∼ yx, this is, the human classification of
an input into one class is correct and is based on reasons consistent for that
class. Similarly, we will also assume that, for a clean (unperturbed) input x,
f(x) = yx and Af (x) ∼ yx.
The identified scenarios are as follows:
• A.1: f(x) = yx ∧ Af (x) 6≈ Ah(x). In this case, the model is right but

the explanations are incorrect or differ from those that would be provided
by a human. Adversarial attacks capable of producing such scenarios have
been studied in recent works for post-hoc feature-importance explanations
[7, 37, 51, 88, 195] and for self-explainable prototype-based classifiers [197],
showing that small perturbations in the input can produce a drastic change
in the explanations without changing the output.
• A.1.1: More particularly, we can imagine a scenario in which Af (x) ∼ yx

despite Af (x) 6≈ Ah(x), for instance, if Af (x) points to relevant and
coherent properties to classify the input as yx, but which do not com-
pose a correct or relevant explanation (with respect to the given in-
put) according to a human criterion. From an adversary’s perspective,
changing the explanations without forcing a wrong classification al-
lows confusing recommendations to be introduced. For illustration, a
model can correctly reject a loan request but the decision can be ac-
companied by a wrong yet coherent explanation (e.g., “the applicant
is too young”), preventing the applicant from correcting the actually
relevant deficiencies of the request (e.g., “the applicant’s salary is too

60 4 When and How to Fool Expl. Models (and Humans) with Adv. Examples

low”) [164]. Similarly, a wrong explanation of a medical diagnosis sys-
tem might lead to a wrong treatment or prescription [21, 23, 50, 154].
In addition, biased or discriminative explanations could be produced
with this attack scheme, for instance, attributing a loan rejection to
sensitive features (e.g., gender, race or religion). Such an explanation
could make the models look unreliable or untrustworthy for users. Op-
positely, biases could be hidden by producing trustworthy explanations
to manipulate the trust of the users [3, 91, 152, 171].

• A.2: f(x) 6= yx ∧ Af (x) 6≈ Ah(x). In this case, both the classification and
the explanation provided by the model are incorrect. Adversarial attacks
capable of producing such scenarios have been investigated in recent works
[88, 195]. More particularly, we identify two specific sub-cases as relevant
when a human assesses the entire classification process:
• A.2.1: Af (x) ∼ f(x). In this case, the fact that the provided explanation

is coherent with the (incorrectly) predicted class can increase the confi-
dence of the human in the prediction, being therefore interesting from
an adversary’s perspective. We identify this case as the most direct
extension of adversarial examples for explainable models, as the model
is not only fooled but also supports its own misclassification with the
explanation.

• A.2.2: Af (x) 6∼ f(x) ∧ Af (x) 6∼ yx. This case is similar to the previous
one (A.2.1), with the important difference that the model’s explanation
is now coherent with a class y′ different to f(x) and yx. Thus, we are
in a scenario in which a total mismatch is produced between all the
considered factors. Whereas these attacks are an interesting case of
study, they are also the most challenging to be deployed in practice
without the inconsistencies being noticed.

• A.3: f(x) 6= yx ∧ Af (x) ≈ Ah(x) ∧ Af (x) ∼ yx. In this case, the model’s
classification is wrong but the provided explanations are coherent from a
human perspective with respect to the ground-truth class yx. The agree-
ment in the explanations can increase the confidence in the model, but,
at the same time, the output is not consistent with the explanation. How-
ever, the consistency issue might be solved by finding an input for which
the explanation not only satisfies Af (x) ∼ yx but also Af (x) ∼ f(x), for
instance, by finding an ambiguous explanation that is applicable to both
classes. Such attacks could be employed to convince the user to consider an
incorrect class as correct or justified, or to bias the user’s decision towards
a preferred class (e.g., when there is more than one reasonable output class
for an image).

A summary of these scenarios can be found in Table 4.1.

4.3 Extending Adversarial Examples for Explainable ML Scenarios 61

F
ac

to
rs

O
b
se

rv
ed

b
y

th
e

U
se

r

ID
C

la
ss

ifi
ca

ti
o
n

E
x
p
la

n
a
ti

o
n

A
tt

a
ck

C
a
te

g
o
ry

/
D

es
cr

ip
ti

o
n

R
ep

re
se

n
ta

ti
v
e

E
x
a
m

p
le

s,
T

a
sk

s
o
r

U
se

-c
a
se

s
M

o
d
el

co
rr

ec
t

H
u
m

an
co

rr
ec

t
M

o
d
el

-H
u
m

a
n

ag
re

em
en

t
M

o
d
el

co
h
er

en
t

w
it

h
g
ro

u
n
d
-t

ru
th

M
o
d
el

co
h
er

en
t

w
it

h
it

s
o
u
tp

u
t

M
o
d
el

-H
u
m

a
n

a
g
re

em
en

t

In
p
u
t+

O
u
tp

u
t

(S
ec

.
4.

3.
1)

A
.0

.2
7

3
7

–
–

–
R

eg
u
la

r
a
tt

a
ck

.
F

o
rc

in
g

m
is

cl
a
ss

ifi
ca

ti
o
n
s

in
cr

it
ic

a
l

ta
sk

s
(e

.g
.,

tr
a
ffi

c-
si

g
n

re
co

g
n
it

io
n
,

su
rv

ei
ll
a
n
ce

o
r

fi
n
a
n
ce

fr
a
u
d

d
et

ec
ti

o
n
).

A
.0

.4
7

7
3

–
–

–
H

u
m

a
n

er
ro

r
co

n
fi
rm

a
ti

o
n
.

C
o
n
fi
rm

a
w

ro
n
g

d
ia

g
n
o
si

s
p
ro

d
u
ce

d
b
y

a
n

ex
p

er
t

in
h
ea

lt
h
-c

a
re

d
o
m

a
in

s.

In
p
u
t+

O
u
tp

u
t+

E
x
p
la

n
at

io
n

(S
ec

.
4.

3.
2)

A
.1

3
3

3
*

*
7

In
co

rr
ec

t
ex

p
la

n
a
ti

o
n

(w
h
il
e

k
ee

p
in

g
th

e
co

rr
ec

t
o
u
tp

u
t)

.
R

ed
u
ce

h
u
m

a
n

tr
u
st

in
th

e
m

o
d
el

.

A
.1

.1
3

3
7

In
co

rr
ec

t
a
n
d

co
h
er

en
t

ex
p
la

n
a
ti

o
n
s

(w
h
il
e

ke
ep

-
in

g
th

e
co

rr
ec

t
o
u
tp

u
t)

.

C
o
n
fu

si
n
g

re
co

m
m

en
d
a
ti

o
n
s

in
cr

ed
it

-l
o
a
n

re
q
u
es

t
o
r

m
ed

ic
a
l-

d
ia

g
n
o
si

s
ta

sk
s.

B
ia

se
d

o
r

d
is

cr
im

in
a
ti

ve
ex

p
la

n
a
ti

o
n
s.

H
id

e
in

a
p
p
ro

p
ri

a
te

b
eh

av
io

rs
o
f

th
e

m
o
d
el

.

A
.2

7
3

7
*

*
7

In
co

rr
ec

t
o
u
tp

u
t

a
n
d

ex
p
la

n
a
ti

o
n
.

R
ed

u
ce

h
u
m

a
n

tr
u
st

in
th

e
m

o
d
el

.

A
.2

.1
7

3
7

M
o
d
el

is
w

ro
n
g

b
u
t

su
p
p

o
rt

s
it

s
ow

n
m

is
cl

a
ss

ifi
ca

ti
o
n
.

In
cr

ea
se

co
n
fi
d
en

ce
o
f

th
e

h
u
m

a
n

in
th

e
in

co
rr

ec
t

p
re

d
ic

ti
o
n
.

B
ia

s
th

e
h
u
m

a
n

in
fa

vo
u
r

o
f

a
w

ro
n
g

cl
a
ss

.

A
.2

.2
7

7
7

T
o
ta

l
m

is
m

a
tc

h
b

et
w

ee
n

th
e

in
p
u
t,

th
e

cl
a
ss

ifi
ca

ti
o
n

a
n
d

th
e

ex
p
la

n
a
ti

o
n
.

R
ed

u
ce

h
u
m

a
n

tr
u
st

in
th

e
m

o
d
el

.

A
.3

7
3

7
3

3
3

In
co

rr
ec

t
o
u
tp

u
t

w
h
il
e

ke
ep

in
g

a
co

rr
ec

t
ex

p
la

n
a
ti

o
n
.

A
m

b
ig

u
o
u
s

ex
p
la

n
a
ti

o
n
s

a
p
p
li
ca

b
le

to
m

o
re

th
a
n

o
n
e

cl
a
ss

.
M

is
d
ir

ec
t

th
e

a
tt

en
ti

o
n

o
f

th
e

u
se

r
to

w
a
rd

s
a
n
o
th

er
re

a
so

n
a
b
le

cl
a
ss

.

T
ab

le
4.

1:
O

ve
rv

ie
w

of
th

e
a
tt

a
ck

ca
su

is
tr

y
d

es
cr

ib
ed

in
S

ec
ti

o
n

s
4
.3

.1
a
n

d
4
.3

.2
.

F
o
r

th
e

sa
ke

o
f

si
m

p
li

ci
ty

,
w

e
u

se
th

e
fo

ll
ow

in
g

sy
m

b
ol

s
to

re
p

re
se

n
t

th
e

fo
ll

ow
in

g
te

rm
s:

3
(y

es
),

7
(n

o
),

–
(n

o
t

a
p

p
li

ca
b

le
).

In
th

o
se

p
a
ra

d
ig

m
s

in
w

h
ic

h
su

b
ca

se
s

ar
e

co
n

si
d

er
ed

,
th

e
sy

m
b

o
l

*
is

u
se

d
to

re
p

re
se

n
t

th
e

te
rm

“
n

o
t

sp
ec

ifi
ed

”
(i

.e
.,

th
e

ch
o
ic

e
m

a
d

e
fo

r
th

o
se

fa
ct

o
rs

d
et

er
m

in
es

th
e

at
ta

ck
su

b
ty

p
e)

.

62 4 When and How to Fool Expl. Models (and Humans) with Adv. Examples

4.3.2.1 Attack Design Based on the Type of Explanation

Whereas our framework considers the explanations of the models in their most
general form, the way in which an explanation is conveyed determines how
humans process and interpret the information [38, 196]. This implies that some
attack strategies might be more suitable for some types of explanations than
for others. Moreover, the way in which an adversarial example is generated for
an explainable model will also depend on the type of explanation. For these
reasons, in this section we briefly discuss in which way an adversarial example
should be designed depending on the type of explanation or the particular
type of attack to be produced.
� Feature-based explanations: the highlighted parts or features need to be

coherent with the classification, and correspond to i) human-perceivable,
ii) semantically meaningful and iii) relevant parts. A common criticism
to feature-based explanations such as saliency maps is that they identify
the relevant parts of the inputs, but not how the models are processing
such parts [139]. Thus, an adversarial attack could take advantage of this
limitation. First, a particular region of the input can be highlighted to sup-
port a misclassification of the model and to convince the user (assuming
that the region contributes to predict an incorrect class), which is inter-
esting particularly for targeted adversarial attacks. An attack could also
highlight irrelevant parts to mislead the observer, or generate ambiguous
explanations, by highlighting multiple regions or providing a uniform map,
which are strategies well-suited for untargeted attacks.

� Prototype-based explanations: in this case, for the human to accept the
given explanation, the key features of the closest prototypes should i) be
perceptually identifiable in the given input, and, ideally, ii) contain fea-
tures correlated with the output class. The contrary should happen for the
farthest prototypes, that is, their key features should not be present in the
input nor be correlated with the output class (or, ideally, be opposite). In
order to achieve these objectives, the more general the prototypes (e.g., if
they represent semantic concepts or parts of inputs rather than completely
describing an output class), the higher the chances of producing explana-
tions that could lead to a wrong classification while being coherent with a
human perception, such as ambiguous explanations.

� Rule-based explanations can be fooled by targeting explanations which are
aligned with the output of the model (e.g., the explanation justifies the
prediction or at least mimics the behavior of the model), but which employ
reliable, trustworthy or neutral features [3, 91]. For instance, a model for
criminal-recidivism prediction could provide a negative assessment based
on unethical reasons, whereas the explanation is taken as ethical [3, 91].

� Counterfactual explanations: in this case, the objective of an adversarial
attack could be forcing a particular counterfactual explanation, suggesting
changes on irrelevant features (thus preventing correcting the deficiencies

4.3 Extending Adversarial Examples for Explainable ML Scenarios 63

which are actually relevant), or forcing biased or discriminatory explana-
tions in detriment to the fairness of the model.

4.3.2.2 Attack Design Based on the Scenario, User and Task

To conclude our framework, we describe the main characteristics or desiderata
that an adversarial attack should satisfy in different scenarios in order to be
successful. We build on the idea that common tasks, problems or applications
share common categories, and that explanations or interpretation needs are
different in each of them [38]. Thus, adversarial attacks (or, oppositely, the
defensive countermeasures) should also be designed differently for each type
of scenario, focusing on the most relevant or crucial factor in each case.
The considered scenarios, summarized in Figure 4.4, comprise different de-
grees of expertise of the human in supervision of the classification process and
different purposes of the explanation. It is important to note that a particular
problem or task could belong to more than one scenario. Moreover, we empha-
size that some of the scenarios involve factors which are difficult to quantify
in a formal way (e.g., the expertise of a user). Nevertheless, we believe that it
is necessary to consider such detailed scenarios in order to rigorously discuss
which type of adversarial examples can be realizable in practice. In what fol-
lows, we describe each scenario and identify the requirements that adversarial
attacks should satisfy in order to pose a realistic threat in each of them. This
information will be summarized in Table 4.2.
S1 Scenario: The first scenario comprises tasks in which the implications
of the decisions made by the model cannot be controlled by the user, or cases
in which there is no time for human supervision of the predictions. Despite
the relevance of some tasks that fall into this category, such as autonomous
driving [46] or massive content filtering [86, 108], humans cannot thoroughly
evaluate each possible prediction. For this reason, explanations are not of

Fig. 4.4: Critical scenarios to be considered in the study adversarial attacks
against explainable models.

64 4 When and How to Fool Expl. Models (and Humans) with Adv. Examples

Scenario Representative Examples Applicable Attacks

S1: Impossibility of
correcting the output
or controlling the
implications of the
decision in time.

Fast decision making
scenarios (e.g., au-
tonomous cars) or
automatized processes
(e.g., massive online
content filtering).

• Any adversarial attack capable of
producing a change in the output
class (as the explanations are not
of practical use in these cases).

S2: Model debugging,
development,
validation, etc.

Applicable to any task. • A.2.1, A.3 (justify misclassifica-
tions of the model).
• A.1.1 (mask inappropriate be-
haviors, e.g., hiding biases by
producing trustworthy outputs or
explanations).
• A.2 (produce wrong outputs
and explanations jointly).

S3: Decisions of the
models are more im-
perative than experts’
judgments.

Risk of criminal
recidivism or credit
risk management.

S4: User with no
expertise.

Scenarios in which the
decision criteria are
secret, hidden, or
unknown (e.g., banking
or financial scenarios,
malware classification
problems, etc.).

• Any adversarial attack scheme
(able to change the classification,
the explanation or both at the
same time), taking advantage of the
user’s inexperience.

S5: User with medium
expertise (the model
is expected to clarify
or support the user’s
decisions).

Challenging scenarios
(e.g., complex medical
diagnosis) or unfore-
seeable scenarios (e.g.,
macroeconomic predic-
tions, risk of criminal
recidivism, etc.).

• A.1.1, A.2.1, A.3.
• The explanation needs to be
consistent with the input patterns
and/or consistent with the output
class.

S6: User with partial
expertise (i.e., expert
in some factors but
clueless in others).

Hierarchical classification
(e.g., large scale visual
recognition).

• A.1.1, A.2.1, A.3.
• The output and the explanation
should be consistent with the factors
which are familiar to the user (either
regarding input features or the output
class).

S7: User with high
expertise.

Tasks in which the inputs
can be ambiguous (e.g.,
NLP tasks such as senti-
ment analysis or multiple
object detection in the
image domain).

• A.1.1, A.3 (attacks involving
generating ambiguous explanations).

S8: Explanations even
more relevant than the
classification itself.

Predictive maintenance,
medical diagnosis or
credit/loan approval
(e.g., with a wrong
explanation users can-
not modify or correct
the deficiencies).

• A.1, A.2.1 (e.g., maintain the output
but produce totally or partially wrong
explanations, or produce unethical
explanations).

Table 4.2: Possible scenarios in which explainable models can be deployed,
and a guideline on how adversarial attacks should be designed in each case in
order to pose a realistic threat.

4.3 Extending Adversarial Examples for Explainable ML Scenarios 65

practical use in such cases, so the main (or only) goal of an adversary is to
produce an incorrect output.
S2 Scenario: Interpretability or explainability can be desirable properties
for ML models (including those developed for the S1 scenario) in order to
debug or validate them [1, 11, 38, 136]. For instance, a model developer
might want to explain the decisions of a self-driving car (even if the end-user
will not receive explanations when the model is put into practice) to assess
why it has provided an incorrect output, to validate its reasoning process or
to gain knowledge about what the model has learned [46, 121, 136]. In such
cases, an adversary could: justify a misclassification of the model (A.2.1, A.3),
hide an inappropriate behavior when the model predicts correctly but for the
wrong reasons (A.1.1), or produce wrong outputs and explanations at the
same time (A.2).
S3 Scenario: The same attack strategies applicable to the S2 scenario can be
applied in scenarios in which the models’ decisions are taken as more relevant
or imperative than the experts’ judgments. Although this scenario resembles
S1, the main difference is that, in this case, explanations can be useful or
relevant even when the model is deployed or employed by the end-user, and,
therefore, the attack should also take the explanations into consideration in-
stead of considering only the output class.
S4 Scenario: Regarding the expertise level of the user querying the model,
the case of no expertise is the simplest one from the perspective of the ad-
versary, as any attack scheme can be produced without arousing suspicions,
taking advantage of the user inexperience. For the same reason, models de-
ployed in such scenarios should also be the ones with more security measures
against adversarial attacks.
S5 Scenario: If the user’s expertise is medium, the model might be expected
to clarify or support the user’s decisions. Thus, the explanation should be
sufficiently consistent with the main semantic features in the input (e.g., the
user might not be able to diagnose a medical image, but can identify the
relevant spots depending on what is being diagnosed, such as darker spots in
skin-cancer diagnosis [4]), and/or be sufficiently consistent with the output
class (A.1.1, A.2.1, A.3).
S6 Scenario: Similarly to the S5 scenario, if the user has a partial expertise,
that is, if the user is an expert in some factors but clueless in others,2 then the
adversary needs to ensure that the output and the explanations are coherent
only with the factors or features that are familiar to the user (A.1.1, A.2.1,
A.3).
S7 Scenario: A user with high expertise, by definition, will realize that a
model is producing a wrong output or explanation. However, it can be pos-
sible to mislead the model and convince the human of a wrong prediction

2 This could happen in hierarchical classification tasks or large scale visual recog-
nition tasks, as a fine-grained distinction of certain classes might be challenging,
whereas the remaining classes are easily classified [35, 63, 124, 140, 150].

66 4 When and How to Fool Expl. Models (and Humans) with Adv. Examples

by means of ambiguity (A.1.1, A.3). For instance, in an image classification
task, two objects can appear at the same time, making it possible to produce
a wrong class with a reasonable explanation, for example, by selectively focus-
ing the attention of the explanation on one of the objects or by highlighting
the secondary object as the most relevant one [155]. In addition, in problems
in which the inputs are inherently ambiguous, such as natural language pro-
cessing tasks, different but reasonable explanations can be produced for the
same input [2, 15].
S8 Scenario: Finally, in some cases the explanations might be more critical,
necessary or challenging than the output itself. Some representative tasks are
predictive maintenance [147] (e.g., it might be more interesting to know why a
certain system will fail than just knowing that it will fail) or medical diagnosis
[154] (e.g., discovering why a model has diagnosed a patient as being at high
risk for a particular disease might be the main priority to prevent the disease
or provide a better treatment). For these reasons, a change in the explanation
is critical for such models, which makes them particularly sensitive to the
attacks described in A.1, or those described in A.2.1, if the misclassification
of the model is difficult to notice by the user.

4.4 Illustration of Context-Aware Adversarial Attacks

In this section, we generate different types of adversarial examples to illustrate
the main attack paradigms described in Section 4.3, in terms of both the type
of misclassification that wants to be produced (as described in Section 4.3.2)
and the “scenario” in which the attack is created (as described in Section
4.3.2.2). To this end, we will consider two representative image classification
tasks, assuming an explainable ML scenario. In addition, we will consider two
explanation methods, namely feature-based explanations and prototype-based
explanations, to illustrate the effect of the attacks in both cases. Our code is
publicly available at: https://github.com/vadel/AE4XAI.
We remark that the aim of this section is to provide illustrative examples of
the attack paradigms described in the proposed framework, and that the focus
will be on exemplifying the design of the attacks (i.e., the requirements that
they should satisfy in order to pose a legit threat against explainable models)
rather than on the methods that could be used to implement them or in their
performance. A summary of the illustrated scenarios and the corresponding
details is provided in Table 4.3. As can be seen in the table, our illustrations
cover all the main attack paradigms and scenarios considered in the framework
developed in the previous section.

4.4.1 Selected Tasks, Datasets and Models

We will focus on two image classification tasks to generate the adversarial
examples:

https://github.com/vadel/AE4XAI

4.4 Illustration of Context-Aware Adversarial Attacks 67

� Medical image classification: the selected task consists of chest X-ray
(CXR) classification, in which the aim is to identify, given an X-ray image,
one of the following diseases: Covid-19, (non-Covid) pneumonia or none
(“normal”). We used a pretrained Covid-Net model [173], trained on the
COVIDx dataset [173], which achieves an accuracy of 92.6%.3

� Large scale visual recognition: the aim of this task is to classify real or
natural images across a wide range of classes. We selected the ImageNet
dataset, which contains images from 1000 different classes such as ani-
mals or ordinary objects, and a pre-trained ResNet-50 DNN as a classifier,
which achieves a Top-1 accuracy of 74.9%.4 Both the ImageNet and the
ResNet-50 architecture have been widely employed for the study of image
classification, as well as in the more particular field of interpretable ML
[124, 146, 195].

These two use-cases allow us to illustrate the different scenarios described in
Section 4.3.2.2. First, the medical image classification represents a challeng-
ing task that requires a high expertise in order to correctly classify inputs or
to provide well-funded explanations of the decisions. As discussed, in such a
scenario, an adversary has more room to generate adversarial examples that
produce incorrect model responses (both in terms of classification and expla-
nation) which, at the same time, may be coherent or acceptable according to
a human criterion (particularly for non-expert users). Moreover, the explana-
tions can be critical in this task, as the reason for determining a diagnosis is
of high relevance, being therefore representative of the S8 scenario described
in Section 4.3.2.2.
Secondly, users with a high expertise can be assumed in the large scale visual
recognition task, as the ImageNet dataset contains images containing famil-
iar objects or animals which will be easily recognizable for humans. Thus, a
human observing the input as well as the output of the classification should
easily detect inconsistencies in the prediction of the model (i.e., whether or
not it is correct). However, at the same time, some images might be ambigu-
ous or challenging to classify even for humans (e.g., fine-grained dog breed
classification [78, 124]) which therefore can be representative of medium or
partial expertise, as the user might be able to effectively discriminate certain
classes (e.g., differentiating dogs from other animal species) but not others
(e.g., two similar dog breeds). In such cases, the user might expect the pre-
diction of the model or the corresponding explanation to clarify the correct
class of the input.

3 The selected pretrained model (COVIDNet-CXR Small) is accessible at https:

//github.com/lindawangg/COVID-Net/blob/master/docs/models.md.
4 More information about the pretrained model used can be found at https://

keras.io/api/applications/resnet/.

https://github.com/lindawangg/COVID-Net/blob/master/docs/models.md
https://github.com/lindawangg/COVID-Net/blob/master/docs/models.md
https://keras.io/api/applications/resnet/
https://keras.io/api/applications/resnet/

68 4 When and How to Fool Expl. Models (and Humans) with Adv. Examples

Task
Type of

Explanation
Possible
Scenario

Wrong
class

Wrong
explanation

Attack
description

Figure

X-ray
(Sec. 4.4.4)

Feature-based
(saliency map)

S2, S3,
S4/S5/S6,

S8

7 7
No attack

(i.e., original input)
4.5-(a)

3
3

(conflicting)

Regular attack
(i.e., without control-
ling the explanation)

4.5-(b)

3
7

(non-conflicting)
A.3 4.5-(c)

7 3
A.1.1

(confusing
recommendation)

4.5-(d)

3

3
Af (x) ∼ f(x)

(non-informative
but consistent, i.e.,

supports prediction)

A.2.1 4.5-(e)

3

3
Af (x) 6∼ f(x)
Af (x) 6∼ yx

(non-informative
and inconsistent)

A.2.2 4.5-(f)

Large-
Scale
Visual
Recog.
(Sec. 4.4.5)

Feature-based
(saliency map)

S2,
S5/S6

7 7
No attack

(i.e., original input)
4.6-(a)

3 7 A.3
4.6-(b),
4.6-(c),
4.6-(d)

S2, S7

7 7
No attack

(i.e., original input)
4.7-(a)

7 7

No attack
(the output is further
biased in favour of the
correct class, avoiding

ambiguities)

4.7-(b)

3 3 A.2.1 4.7-(c)
3 7 A.3 4.7-(d)

Prototype-based
explanation
(3 nearest

training inputs)

S2,
S5/S6

3

7
Af (x) ∼ yx
Af (x) ∼ f(x)
(ambiguous)

A.3
4.8-(a),
4.8-(b)

Table 4.3: Summary of the illustrative attacks shown in Sections 4.4.4 and
4.4.5. Notice that each attack paradigm and scenario is exemplified at least
once. Note also that for the large scale visual recognition task different scenar-
ios can be considered depending on the characteristics or the challengingness
of the input.

4.4 Illustration of Context-Aware Adversarial Attacks 69

4.4.2 Explanation Methods

We will consider two representative explanation methods in order to illustrate
an explainable ML scenario:

Feature-based explanation The Grad-CAM method [146] will be used to
generate saliency-map explanations. The rationale of this method is to employ
the activation maps computed by the model in the last convolutional layer to
produce the explanations. Given a CNN f and an input x, the Grad-CAM
saliency-map S is defined as:

S = ReLU

(
M∑
m

αm,c · Cm
)
, (4.1)

where Cm, m = 1, . . . ,M , represents the (two-dimensional) m-th activation
map (for the input x) at the last convolutional layer of f , and αm,c ∈ R
represents the importance of the m-th map in the prediction of the class
of interest yc (typically f(x), i.e., the class predicted by the model). The
importance αm,c of each activation map is estimated as the average global
pooling of the gradient of the output score (corresponding to the class yc)
with respect to Cm, which will be denoted as Gm,c = ∇Cmf(x)c:

αm,c =
∑
i

∑
j

Gm,ci,j , (4.2)

where Gm,ci,j denotes the value at the i-the row and j-th column. The ReLU
non-linearity in (4.1) is applied to remove negative values, maintaining only
the features with a positive influence on yc.

Example-based explanation We will also consider an example-based ex-
planation in which the np training images (which can be considered prototypes
representing classes) that are closest to the input which has been classified are
provided [124]. The proximity between the inputs will be measured as the Eu-
clidean distance of the dl-dimensional latent representation rf (x) : Rd → Rdl
learned by the model f in the last layer, that is, the (flattened) activations of
the last convolutional layer of the model. This representation captures com-
plex semantic features of the inputs, thus providing a more appropriate rep-
resentation space for meaningfully comparing input samples according to the
features learned by the model. Let Xc

train represent the set of training inputs
belonging to the class of interest yc (e.g., the class predicted by the model).
Given a model f and an input x, the explanation will be a set P ⊆ Xc

train,
with |P | = np, that satisfies:

||rf (x̂)− rf (x)||2 > ||rf (xp)− rf (x)||2, ∀x̂ ∈ Xc
train−P, ∀xp∈P. (4.3)

Note that the two selected methods allow, by definition, explanations to be
computed for any class of interest yc. However, we will consider as the main

70 4 When and How to Fool Expl. Models (and Humans) with Adv. Examples

explanation the one corresponding to the predicted class f(x). Finally, we as-
sume that the explanation methods and their parameters are fixed and known
to the adversary. Since the focus of our experimentation is illustrative and not
performance-based, analyzing the sensitivity of the explanation methods to
hyperparameters [14, 37] will be out of the scope of this section.

4.4.3 Attack Method

We will assume a targeted attack for our experiments, in which the aim will
be to create, given an input x, an adversarial example x′ such that:

f(x′) = yt, (4.4)

Af (x′) = ξt, (4.5)

||x− x′|| ≤ ε, (4.6)

where yt represents a target class, ξt a target explanation and ε the maxi-
mum distortion norm. For the case of saliency-map explanations, ξt will be
a predefined saliency-map St. For the case of prototype-based classification,
ξt will be the set Pt of np training inputs (with the value of np fixed before-
hand by the explanation method) selected by the adversary to be produced
as explanations (that is, the training inputs of class yt that are closer to x
should be those in the set Pt). We do not specify any particular order for the
np target-prototypes in Pt, that is, we assume that the relevance of each of
the np prototypes in the explanation is the same.
We will use a targeted Projected Gradient Descent (PGD) attack [107] to
generate the adversarial examples. A detailed description of this attack can
be found in Section 2.3.2.2. In order to produce attacks capable of changing
both the classification and the explanation, we will consider a generalized loss
function

L(x, yt, ξt, τ, f) = (1− τ) · Lpred(x, yt, f) + τ · Lexpl(x, ξt, f), (4.7)

where Lpred(x, yt, f) represents the classification error with respect to the tar-
get class yt, Lexpl(x, ξt, f) represents the explanation error with respect to the
target explanation ξt and τ ∈ [0, 1] balances the trade-off between both func-
tions. A close approach can be consulted in [195]. In our experiments, we used
the cross-entropy loss as Lpred. For the case of saliency-map explanations, we
instantiated Lexpl as the Euclidean distance between the model’s explanation
g(x, f)=S and the target saliency map St (specified by the adversary):

Lexpl(x, St, f) = ||g(x, f)− St||2. (4.8)

For the case of prototype-based explanations, Lexpl will be the average Eu-
clidean distance between the latent representation of the (adversarial) input
and the latent representation of the np prototypes selected by the adversary
as the target explanation Pt:

Lexpl(x, Pt, f) =
1

np

∑
xp∈Pt

||rf (x)− rf (xp)||2. (4.9)

4.4 Illustration of Context-Aware Adversarial Attacks 71

4.4.4 Illustrative Attacks in the X-ray Classification Task

Figure 4.5 illustrates the results obtained for different adversarial examples
generated against the COVID-Net model. The left part of each sub-figure
shows the input sample, the model’s classification of the input and the con-
fidence score of the prediction, whereas the right part shows the saliency-
maps generated with the Grad-CAM explanation (darker-red parts represent
a higher relevance). Figure 4.5-(a) shows the original (i.e., unperturbed) input
sample, which is correctly classified as its ground-truth class “COVID-19”.5

Figure 4.5-(b) shows an adversarial example generated using a regular PGD
attack (considering only changing the output class, i.e., L = Lpred), target-
ing the class “normal”. Notice that the main parts of the explanation have
changed to the central part and to the rightmost part of the image, high-
lighting mainly irrelevant zones. Therefore, such an explanation might not
be taken as consistent. Contrarily, Figure 4.5-(c) shows an adversarial exam-
ple generated using the loss function described in (4.7), targeting the class
“normal” and the original saliency-map (i.e., the one obtained for the orig-
inal input image), illustrating the attack paradigm A.3 described in Section
4.3.2. We clarify that using a regular adversarial attack might not necessar-
ily imply a change in the explanation (or imply that the explanation, even
if changed, will necessarily highlight irrelevant zones). Nevertheless, this ex-
ample allows us to illustrate the need to control the explanation in order to
create adversarial examples that are capable of convincing the human that the
model’s (mis)classifications and the corresponding explanations are coherent
or consistent, as discussed in Section 4.3.
Figure 4.5-(d) illustrates the attack paradigm A.1.1 described in Section 4.3.2,
in which the original class is maintained whereas a change in the explanation
is produced, in this case, selectively highlighting some regions of the image.
Here, we generated the attack setting the target map as the right-half side
of the original saliency-map, and setting the left-part values as zero. Such an
attack strategy can be extremely concerning for those scenarios in which the
explanation is of high relevance, as a misleading adversarial explanation might
lead to an incorrect diagnosis, prescription or treatment.
Figure 4.5-(e) illustrates the attack paradigm A.2.1. Notice that both the
output class and the explanation are changed. Moreover, the target map set
in this case represents a roughly uniform map over the most relevant parts of
the image (in this case the two lungs). Therefore, the provided explanation
can be taken as coherent, as the main parts of the image are taken into
consideration for the prediction. The fact that the predicted class is “normal”
also increases the coherence of the explanation, since it can be interpreted
from it that the most critical areas are correct (i.e., that there is no evidence

5 Disclaimer: the authors acknowledge no expertise in CXR classification, and, as
the dataset does not contain a ground-truth saliency-map explanation, it will be
assumed for illustration purposes that the explanation achieved for the original
input is coherent and correct.

72 4 When and How to Fool Expl. Models (and Humans) with Adv. Examples

COVID-19 (1.000)

(a)

normal (1.000)

(b)

normal (0.984)

(c)

COVID-19 (1.000)

(d)

normal (0.941)

(e)

normal (0.958)

(f)

Fig. 4.5: Different types of adversarial attacks for the X-ray medical image
diagnosis task. The left part of each image shows the input image as well
as the class assigned by the model (jointly with the confidence score in the
[0, 1] range), whereas the right part shows the explanation provided by the
Grad-CAM method. (a) Original image. (b) Regular adversarial attack (PGD)
targeting the class “normal” (i.e., the possible changes that the adversarial
perturbation may produce in the explanation are not controlled by the attack).
(c) Attack producing the wrong classification “normal” while maintaining the
original explanation. (d) Attack maintaining the correct classification while
changing the explanation in order to selectively highlight some parts (the right
part) but omitting others (in this case, the left part). (e) Attack producing the
wrong class “normal” and a wrong explanation which uniformly highlights the
relevant parts of the image. (f) Attack producing the wrong class “normal” and
a uniform explanation outside the main parts of the image (i.e., highlighting
only irrelevant and incorrect parts).

4.4 Illustration of Context-Aware Adversarial Attacks 73

in those areas of a possible disease). Indeed, the same explanation would have
a different effect if the prediction had represented a disease (e.g., if the original
class had been maintained in this case). This is because a uniform explanation
would not provide a precise justification of why the disease is predicted, thus
hampering a proper diagnosis, but, at the same time, is coherent with the
input features (because the most relevant parts are highlighted), contributing
to the user’s acceptance that the model prediction is correct. Contrarily, in
Figure 4.5-(f) the target map is the opposite: roughly all the relevant parts
are considered as not relevant, whereas the remaining regions are considered
as relevant, illustrating a case in which the explanation is completely wrong.
Since the prediction is also incorrect, and is not supported by the explanation,
a total mismatch is produced between all the considered factors, exemplifying
the attack paradigm A.2.2.

4.4.5 Illustrative Attacks in the Large Scale Visual Recognition
Task

In this section, we illustrate different types of adversarial examples generated
taking advantage of class ambiguity. First, in Figure 4.6, the similarity between
different classes is used to generate adversarial examples capable of producing
a misclassification that could be considered as coherent or reasonable even
for humans. These examples illustrate the attack paradigm A.3 described in
Section 4.3. In particular, each attack is generated by setting a target class for
which the inputs belonging to that class contain very similar features to those
inputs belonging to the source class. Figure 4.6-(a) shows the original input
sample used to create the adversarial examples, the top-3 predictions of the
model and the corresponding Grad-CAM explanation. Figures 4.6-(b), 4.6-(c)
and 4.6-(d) show the adversarial examples targeting the classes, “Kuvasz”,
“White wolf” and “Labrador Retriever”, respectively. These classes represent
different dog breeds with very similar features, as is shown in Figures 4.6-(e),
4.6-(f), 4.6-(g) and 4.6-(h), in which the prototypes (for each of the classes)
that are closer to the original input image are shown. In all the cases, the
saliency map targeted in the attack is the one obtained for the original input
(i.e., we maintain the original explanation while changing the classification).
In Figure 4.7, a different type of ambiguity will be considered to generate the
adversarial examples: the appearance of multiple concepts or classes in the
image. In such cases, adversarial examples can be employed to change the
focus of the classification to one of the objects of interest. The explanation
is, therefore, a key factor in order to further support the model decision in
classifying the input as the class of interest selected by the adversary. The
input in Figure 4.7-(a) contains two classes that could be equally relevant:
“Curly-coated retriever” dog breed (ground-truth class) and “suit”. In Figures
4.7-(b) and 4.7-(c), adversarial examples are generated in order to “untie” this
ambiguity, maximizing the confidence of one of the classes (“Curly-coated
retriever” and “suit”, respectively) and changing the explanation to highlight

74 4 When and How to Fool Expl. Models (and Humans) with Adv. Examples

Great Pyrenees: 0.774
Irish wolfhound: 0.050
kuvasz: 0.049

(a) Original input

kuvasz: 0.981
standard poodle: 0.012
komondor: 0.004

(b) Target class: Kuvasz

white wolf: 0.956
Samoyed: 0.021
ice bear: 0.006

(c) White wolf

Labrador retriever: 0.974
pug: 0.006
golden retriever: 0.003

(d) Labrador Retriever

(e) Closest “Great Pyrenees” inputs (f) Closest “Kuvasz” inputs

(g) Closest “White wolf” inputs (h) Closest “Labrador Retriever” inputs

Fig. 4.6: Adversarial examples generated for the ImageNet dataset classifica-
tion task taking advantage of class ambiguity. The adversarial examples are
generated from the input in (a)-left, which belongs to the source class “Great
Pyrenees”, targeting different classes that are characterized by features sim-
ilar to those of the source class: (b) “Kuvasz”, (c) “White wolf”, and (d)
“Labrador Retriever”. Each adversarial example is created ensuring that the
saliency-map explanation of the original input, shown in (a)-right, is main-
tained. (e)-(h) show, for each of the four classes considered (source class + 3
target classes), the np = 3 prototypes closest to the original input, in order
to assess their similarity.

4.4 Illustration of Context-Aware Adversarial Attacks 75

curly-coated retriever: 0.289
Irish water spaniel: 0.220
Chesapeake Bay retriever: 0.075

(a) Original input

curly-coated retriever: 0.964
Newfoundland: 0.023
flat-coated retriever: 0.006

(b) Target class: “Curly-coated retriever”

suit: 0.959
Windsor tie: 0.018
Kerry blue terrier: 0.007

(c) Target class: “Suit”

Irish water spaniel: 0.972
Sussex spaniel: 0.010
standard poodle: 0.006

(d) Target class: “Irish water spaniel”

(e) “Curly-coated retriever” (f) “Irish water spaniel”

Fig. 4.7: Adversarial examples generated for the ImageNet dataset classifica-
tion task, taking advantage of the class ambiguity introduced by the appear-
ance of multiple concepts in the image. (a) Original input. (b) Input perturbed
in order to maximize confidence in the original class without altering the en-
hanced region in the explanation. (c) Adversarial example targeting the class
“Suit” and a target saliency-map highlighting the region in which this class
appears. (d) Adversarial example targeting the class “Irish water spaniel” and
a target saliency-map highlighting the region in which the ground-truth class
(“Curly-coated retriever”) appears. (e) & (f) The 3 training images belonging
to the class “Curly-coated retriever” and “Irish water spaniel”, respectively,
which are closest to the original input.
-

76 4 When and How to Fool Expl. Models (and Humans) with Adv. Examples

the selected parts (paradigm A.2.1).6 As can be seen, the adversarial examples
effectively focus the prediction on one of the classes, which can therefore bias
the human interpretation of the result, accepting the prioritized output class
as the dominant one. Whereas this type of attacks are limited to the objects
appearing in the image, different types of ambiguity can be considered at the
same time to produce misclassifications that may be taken as “correct” for
humans, as shown in Figure 4.7-(d), in which the focus is not only placed
on the dog, but also an incorrect class is produced (“Irish water spaniel”)
taking advantage of the ambiguity of the class similarity (paradigm A.3). This
ambiguity is, indeed, also reflected in the output confidence scores provided
by the model when the original input is classified, shown above the left part
of Figure 4.7-(a), as both classes achieved a similar score. In order to assess
the similarity between these two classes, figures 4.7-(e) and 4.7-(f) show the
3 prototypes belonging to each of the two classes that are the closest to the
original image, in which it can be seen that both breeds contain very similar
features.
Finally, in Figure 4.8, we provide an illustrative example of an attack de-
signed to fool a model whose decisions are explained using a prototype-based
explanation. As discussed in Section 4.3.2.1, an adversary can take advan-
tage of prototype-based explanations to support certain misclassifications, for
instance, producing an incorrect output class and minimizing the distance
with prototypes which, apart from containing features representative of the
source class, are representative of the target class as well. Figure 4.8-(a) shows
a well-classified image (left) and an adversarial example targeting the class
“Doberman”. The adversarial perturbation has been optimized in order to re-
duce the distance (in the latent representation) between the input and the 3
training images (belonging to the target class) shown in Figure 4.8-(b). As can
be seen, these training images not only contain features representative of the
target class (“Doberman”), but also additional features that resemble those
in the original input sample (indeed, a similar dog is present in the selected
training images), exemplifying the attack paradigm A.3. Figure 4.8-(c) shows
the prototypes belonging to the source class that are the closest to the original
image, and 4.8-(d) those prototypes closest to the original image yet belonging
to the target class. Note that both Figures 4.8-(b) and 4.8-(d) contain pro-
totypes belonging to the target class, however, those which are adversarially
produced appear considerably more coherent due to their ambiguity (in the
sense that they contain prototypical features of both the source and target
class).

6 In this case, the target saliency maps have been generated using an image-
segmentation model (Mask R-CNN with Inception Resnet v2), which has
been used to segment the two desired parts. The pretrained model is ac-
cessible at https://tfhub.dev/tensorflow/mask_rcnn/inception_resnet_v2_

1024x1024/1. Note that, in Figure 4.7-(b), both the classification and the expla-
nation are preserved, thus no attack is carried out.

https://tfhub.dev/tensorflow/mask_rcnn/inception_resnet_v2_1024x1024/1
https://tfhub.dev/tensorflow/mask_rcnn/inception_resnet_v2_1024x1024/1

4.5 Conclusions 77

Labrador retriever: 0.949
Chesapeake Bay retriever: 0.030
American Staffordshire terrier: 0.006

Doberman: 0.528
Chesapeake Bay retriever: 0.066
redbone: 0.047

(a) (b)

(c) (d)

Fig. 4.8: Adversarial example for the large scale visual recognition task, as-
suming a prototype-based explanation. (a) Original input belonging to the
class “Labrador Retriever” (left) and adversarial example targetting the class
“Doberman” (right). (b) Prototype-based explanation of the adversarial ex-
ample and the class “Doberman” (that is, the 3 training images belonging
to the class “Doberman” that are closest to the adversarial example). (c)
Prototype-based explanation of the original input and the ground-truth class.
(d) Prototype-based explanation of the original input and the target class
“Doberman”.

4.5 Conclusions

In this chapter, we have introduced a comprehensive framework to rigorously
study the possibilities and limitations of adversarial examples in explainable
ML scenarios, in which the input, the predictions of the models and the ex-
planations are assessed by humans. First, we have extended the notion of
adversarial examples in order to fit in such scenarios, which has allowed us to
examine different adversarial attack paradigms. Furthermore, we thoroughly
analyze how adversarial attacks should be designed in order to mislead ex-
plainable models (and humans) depending on a wide range of factors such as
the type of task addressed, the expertise of the users querying the model, as
well as the type, scope or impact of the explanation methods used to justify
the decisions of the models. Furthermore, the introduced attack paradigms
have been illustrated using two representative image classification tasks and
two different explanation methods based on feature-attribution explanations
and example-based explanations. Overall, the proposed framework provides a
comprehensive road map for the design of malicious attacks in realistic sce-

78 4 When and How to Fool Expl. Models (and Humans) with Adv. Examples

narios involving explainable models and a human supervision, contributing to
a more rigorous study of adversarial examples in the field of explainable ML.

5

Analysis of Dominant Classes in Universal
Adversarial Perturbations

5.1 Introduction

As described in Section 2.3, universal adversarial perturbations [114] are
input-agnostic perturbations capable of fooling a DNN while remaining imper-
ceptible for humans. These perturbations are generally created as untargeted
attacks, so that no preference over the (incorrect) output class is assumed
[79, 114, 118, 165]. However, previous work [16, 32, 66, 114] has reported a
phenomenon regarding the effect of universal perturbations in the attacked
model: the preference of the perturbation to change the class of the inputs
into a particular dominant class, without this being specified or imposed in
the generation of the perturbation. Thus, some classes (or class regions in the
decision space) act as attractors under the effect of universal perturbations.
In this chapter, we carry out, for the first time, an in-depth study of this
phenomenon with the aim of sheding light on the (still misunderstood) vul-
nerability of DNNs to universal perturbations. The main contributions of this
chapter are summarized as follows:
� First, we propose a number of hypotheses to explain and characterize the

existence of dominant classes linked to universal adversarial perturbations,
and revisit previous hypotheses and open questions in the related work.

� We experimentally test the proposed hypotheses using a speech command
classification task in the audio domain as a testbed. To the best of our
knowledge, this is the first work in which the analysis of dominant classes is
studied for the audio domain. Apart from providing evidence of the validity
of the proposed hypotheses, our results reveal interesting properties of the
DNN sensitivity to novel types of perturbations, such as perturbations
optimized to prevent the main dominant classes.

� Overall, our study exposes the connection between the dominant classes
and the sensitivity of the model to i) patterns in the data distribution that
the model recognizes as each class with high confidence, and ii) to vulnera-
ble directions in the decision space learned by the model. Our findings also

80 5 Analysis of Dominant Classes in Universal Adversarial Perturbations

suggest novel approaches to generate universal perturbations, opening the
venue for future research on more effective attacks and defenses.

� Finally, we highlight a number of differences between the image domain
and the audio domain regarding the analysis of adversarial examples, con-
tributing to a more general understanding of adversarial ML.

5.2 Related Work

Universal adversarial perturbations for DNNs were introduced in [114] for
image classification tasks. The goal of such perturbations is to fool a DNN
for “most” natural inputs when they are applied to them, and, at the same
time, to be imperceptible for humans. Formally, following the notation used in
[115], a perturbation v is said to be (ε, δ)-universal if the following conditions
are satisfied:

||v||2 ≤ ε, (5.1)

Px∼P(X) [f(x+ v) 6= f(x)] ≥ 1− δ, (5.2)

being P(X) the distribution of natural inputs in the d-dimensional input
space Rd, and f(x) the output class assigned to an input x by a classifier
f :Rd→{y1, . . . , yk}. Thus, universal perturbations generalize individual (i.e.,
input dependent) adversarial perturbations [59, 90, 107, 116, 158], which are
optimized to fool a DNN for one particular input of interest.
In the seminal work of Moosavi-Dezfooli et al. [114], an iterative procedure
is proposed to generate the universal perturbations. This procedure accumu-
lates input dependent perturbations [116] generated for a set of inputs, and
projects the universal perturbation after every update in order to bound its
norm. Subsequent works have proposed alternative approaches to generate
universal adversarial perturbations, such as training generative networks to
learn a distribution of universal adversarial perturbations (which, therefore,
can be used to sample universal perturbations) [64, 119, 129], or data-free
approaches capable of generating universal perturbations without any access
to the data used to train the target models [117, 118, 120, 190]. Other works
pursue more particular objectives, such as generating targeted universal per-
turbations which change the classification of the model to one predefined label
[60, 129, 190], or perturbations that only fool the model for inputs of one par-
ticular class [189]. Finally, although image classification tasks have been the
main focus of study, universal perturbations have also been reported for tasks
such as image segmentation [110, 117], speaker recognition [97], speech recog-
nition [123, 165] or text classification [16, 170].
The discovery of such attacks for state-of-the-art DNNs has led to a deeper
study of their properties. In [114], the vulnerability of DNNs to universal per-
turbations is empirically studied in the image domain, which is attributed in
part to the geometry of the decision boundaries learned by the DNNs. In par-
ticular, it is shown that, in the vicinity of natural inputs, perturbations normal

5.2 Related Work 81

to the decision boundaries are correlated, in the sense that they approximately
span a low dimensional subspace (in comparison to the dimensionality of the
input space). Thus, being

vx = argmin
v
||v||2 s.t. f(x) 6= f(x+ v) (5.3)

the minimal perturbation capable of changing the output of an input x (hence
normal to the decision boundary at x+ vx), it is possible to find a subspace
XS ⊂ X, with dim(XS)� dim(X), so that vx ∈ XS for x ∼ P(X). The exis-
tence of such a subspace implies that even random perturbations (with small
norms) sampled from XS are likely to cause a misclassification for a large
number of inputs [114]. This hypothesis is further developed in [115], also for
the image domain, where the vulnerability of classifiers to universal perturba-
tions is formalized, under the assumption of locally linear decision boundaries
in the vicinity of natural inputs. An illustration of a linear approximation of
the decision boundary is shown in Figure 5.1 (left).

Fig. 5.1: Illustration of the decision boundary approximations introduced in
[115]. The left image illustrates the locally linear (flat) decision boundary
model, and the middle figure the locally curved decision boundary model.
The solid curve corresponds to the actual boundary, and the dashed lines to
the approximations. Note that in both cases the approximations are estimated
at x + vx, being x an input sample and vx a vector normal to the decision
boundary (see Equation 5.3). The right images compare a positively curved
boundary (bottom) with a negatively curved boundary (top) along vx. Two
dashed arrows have been included as reference in both images, to highlight
that positively curved boundaries require smaller norms to be surpassed.

However, the assumption of locally linear decision boundaries becomes insuf-
ficient to comprehensively formalize the vulnerability of DNNs to universal
perturbations. Indeed, there is a crucial connection between that vulnerabil-
ity and the curvature of the decision boundaries [115]: there exist common
perturbation directions (i.e., span a low-dimensional subspace) in the input
space for which, starting from natural inputs, the decision boundaries are pos-
itively curved along these directions. See Figure 5.1 (right) for a comparison
between a positively curved boundary and a negatively curved boundary. The
positive curvature of the decision boundaries implies small upper bounds for

82 5 Analysis of Dominant Classes in Universal Adversarial Perturbations

the amount of perturbation required to surpass the decision boundaries, as
depicted in Figure 5.1 (right). Thus, those positive curvatures increase the vul-
nerability of DNNs, as smaller perturbations are required to fool the model.
At the same time, the fact that those directions are also common for multiple
inputs implies the existence of small input-agnostic adversarial perturbations.
In a further analysis developed in [73], it is shown that the directions in the
input space for which the decision boundaries are highly curved are indeed
associated by the DNN with class identities (the further we move in one of
such directions, the higher - or lower- the confidence of the model in one par-
ticular class is). Moreover, it is shown that the class features associated to
such directions are, indeed, the most relevant ones as far as the classifica-
tion performance of the model is concerned, what links the accuracy of DNNs
with their vulnerability to adversarial attacks. A feature-perspective is also
employed in [190] to justify the vulnerability of the models to universal pertur-
bations, experimentally showing that universal perturbations contain features
which predominate over the features of natural images. Thus, in the presence
of universal perturbations, natural images act like noise, despite being visually
predominant.
The aforementioned theoretical frameworks focus, in particular, on the vul-
nerability to universal perturbations. In this chapter, we focus instead on
one particular property of universal perturbations: the existence of dominant
classes that are significantly more frequently predicted for the perturbed (and
misclassified) inputs. This phenomenon was first reported in [114] for image
classification tasks. Subsequent works have also reported the existence of dom-
inant classes in image classification tasks [32, 66], and in text classification
tasks [16]. Here, we show that this happens also for other domains, such as
speech command classification tasks in the audio domain. Although it is hy-
pothesized in [114] that a possible explanation for the dominant classes is
that they occupy a larger region in the decision space, it is left as an open
research question. In the following sections, we tackle this research question
and test multiple hypotheses in the search for a deeper understanding of this
phenomenon.
Outside the particular field of universal perturbations, multiple theoretical
frameworks have been proposed for the explanation of adversarial examples.
Whereas most of them focus on the properties of the DNNs [59, 156, 158, 159],
other alternative explanations have also been proposed. In this dissertation,
special attention is paid to the one introduced in [72], in which adversarial
examples are explained in terms of the robustness of the features in the data.
In particular, it it shown that datasets contain non-robust features which,
although being highly discriminative (i.e., that the data is well described by
these features), are uncorrelated with the ground-truth classes when they are
perturbed by small (adversarial) perturbations. Thus, when a classifier learns
to rely on such non-robust features to accurately classify the data, it becomes
vulnerable to adversarial perturbations. The small robustness of such features
to small perturbations also implies their lack of meaning for humans, which

5.3 Proposed Framework 83

explains the imperceptibility of the attacks. In a similar vein, we hypothesize
(Section 5.5.2) that the higher sensitivity of the model to certain features
might explain the existence of dominant classes.

5.3 Proposed Framework

Let us consider a classifier f : X → Y , with X ⊆ Rd and Y = {y1, . . . , yk},
trained to classify inputs x ∈ X coming from an input data distribution
x ∼ P(X) among one of the k possible classes in Y . To formally describe
dominant classes, let us denote pvj the probability of misclassifying an input
as the class yj when a universal perturbation v is added to the inputs:

pvj = Px∼P(X)
f(x)6=yj

[f(x+ v) = yj] . (5.4)

Similarly, let tvi,j represent the probability that, departing from an input of
ground-truth yi, the model incorrectly predicts the class yj for the perturbed
inputs:

tvi,j = Px∼P(X)
f(x)=yi

[f(x+ v) = yj]. (5.5)

In practice, if the distribution P(X) is unknown, these probabilities can be
estimated using a finite set of input samples X .

Definition 1. ya is an attractor class for another class yi (i 6= a), under a

perturbation v, which will be denoted as yi
v−→ ya, if at least the α > 1

k−1
proportion of the inputs corresponding to the class yi are predicted as ya when
they are perturbed with v, that is:

tvi,a ≥ α. (5.6)

Notice that the threshold 1
k−1 represents the proportion that would be

achieved if the inputs were evenly distributed among the k− 1 possible incor-
rect classes.

Definition 2. yb is a dominant class for the universal perturbation v if at
least the β > 1

k−1 proportion of the inputs are wrongly classified as yb when
they are perturbed with v, that is:

pvb ≥ β. (5.7)

Alternatively, yb can be defined also in terms of the number of classes that it
attracts. Let Y vb = {yi ∈ Y | yi

v−→ yb} represent the set of classes attracted by
yb with the perturbation v, and |Y vb | the cardinality of the set Y vb . Precisely,
yb is dominant if it is an attractor class for at least the ζ > 1

k−1 proportion
of the remaining classes:

|Y vb |
k − 1

≥ ζ. (5.8)

84 5 Analysis of Dominant Classes in Universal Adversarial Perturbations

The choice of the parameters α, β and ζ can determine the existence of multi-
ple attractor and dominant classes. In this dissertation, we assume α, β, ζ ≥ 1

3
since we are interested in those classes which are incorrectly predicted for a
significant proportion of inputs, or which attract a significant proportion of
other classes.
To study the relationship between universal perturbations and dominant
classes, we use the speech command classification problem described in Section
3.4.1 as a testbed. To complement the information on the employed classi-
fier, its architecture and feature extraction process will be further detailed
below, as this information will be relevant for the following sections. Firstly,
following previous publications [8, 39, 56, 100, 175], the model is based on the
architecture proposed in [142], which is composed of two convolutional lay-
ers with ReLU activations, a fully connected layer and a final softmax layer.
The normalized audio waveforms (in the time-domain) from the input space
R16000, which take values in the range [−1, 1], are first converted into spec-
trograms by dividing the audios into frames of 20ms, with a stride of 10ms,
and applying the real-valued fast Fourier transform (retrieving 512 compo-
nents) for each frame. As the frequency spectrum of a real signal is Hermitian
symmetric, only the first 257 components are retained. The dimension of the
resulting spectrogram is 99 × 257. Finally, the MFCCs [122] are extracted
from the spectrogram, in the space R99×40, before being sent to the network.
It is worth pointing out that the adversarial perturbations that are generated
for this model are optimized in an end-to-end fashion, directly in the audio
waveform representation of the signal.
In addition, to generate the universal perturbations, we selected the UAP-HC
algorithm introduced in [165]. This algorithm, which is a reformulation for
the audio domain of the one proposed in [114], consists of iteratively accu-
mulating individual untargeted adversarial perturbations, generated using the
DeepFool algorithm. The pseudocodes for both the UAP-HC and DeepFool
algorithms can be found in Algorithm 2 and Algorithm 3, respectively. These
algorithms have been generalized to (optionally) prevent them from reaching
certain adversarial classes. This generalization will be further described and
motivated in Section 5.4.
Finally, we highlight that the rationale of the DeepFool algorithm relies on a
geometric approach. In particular, as discussed in Section 2.3.2.3 a first-order
approximation of the decision boundaries is used to move the input towards
the estimated closest boundary, being, therefore, an untargeted attack. Thus,
the optimization process of the UAP-HC algorithm is not biased towards any
particular class, although, in practice, different universal perturbations lead
in most of the cases to the same dominant classes.

5.3 Proposed Framework 85

Algorithm 2 UAP-HC [165]

Require: A classification model f , a set of input samples X , a projection
operator Bp,ε, a fooling rate threshold δ, a maximum number of iterations
Imax, a set of restricted classes YR ⊂ Y

Output: A universal perturbation v
1: v ← initialize with zeros
2: FR← 0 . Fooling rate.
3: iter ← 0 . Iteration number.
4: while FR < 1− δ ∧ iter < Imax do
5: X ← randomly shuffle X
6: for x(i) ∈ X do
7: . Check that x(i) is not already fooled by v:
8: if f(x(i) + v) = f(x(i)) then
9: 4v ← DeepFool(x(i) + v, f , YR)

10: v′ ← Bp,ε(v +4v) . Project (v +4v) in the `p ball of radius ε
and centered at 0.

11: FR′ ← Px∈X [f(x) 6= f(x+ v′)]
12: . Update v only if adding 4v increases the FR and if the current

class is not in YR:
13: if FR < FR′ ∧ f(x(i) + v +4v) /∈ YR then
14: v ← v′

15: FR← FR′

16: end if
17: end if
18: end for
19: iter ← iter + 1
20: end while

86 5 Analysis of Dominant Classes in Universal Adversarial Perturbations

Algorithm 3 DeepFool [116]

Require: An input sample x of class yi, a classifier f , a set of restricted
classes YR ⊂ Y .

Output: An individual perturbation r.
1: x′ ← x
2: r ← initialize with zeros
3: Y ′ ← Y − (YR ∪ {yi})
4: while f(x′) = yi do
5: for yj ∈ Y ′ do

6: f ′j ← f̂(x′)j − f̂(x′)i

7: w′j ← ∇f̂(x′)j −∇f̂(x′)i
8: end for
9: l← argminj∈Y ′

|f ′j |
||w′j ||

10: r ← r +
|f ′l |
||w′l||

2
2
w′l

11: x′ ← x+ r
12: end while

5.4 Dominant Classes in Speech Command Classification 87

5.4 Dominant Classes in Speech Command Classification

In this section, we generate different universal adversarial perturbations for
the speech command classification task specified in Section 5.3, in order to
investigate whether in this domain dominant classes are also produced.
We start by generating 10 different universal perturbations using the UAP-HC
algorithm, without restricting any class (YR = ∅). We set ε = 0.1 as thresh-
old for the perturbation `2 norm, and restricted the UAP-HC algorithm to a
maximum of five iterations. To generate the perturbations, we used a train-
ing set of 100 inputs per class, which makes a total of 1200 inputs. Once the
perturbations are generated, their effectiveness will be measured in a test set,
containing samples that were not used during the generation of the perturba-
tions. The initial accuracy of the model in this set is 85.52%.1

According to the results, the algorithm led to universal perturbations with
left and unknown as dominant classes for almost all the experiments. This
can be seen in Figure 5.2 (top), which shows the frequency with which each
class is wrongly predicted when the perturbation is applied to the audios
in the test set. We only considered those inputs that were initially correctly
classified by the model, but misclassified when the perturbation is applied.
The frequencies are shown individually for the ten universal perturbations,
with each row corresponding to one perturbation. As can be seen, both left
and unknown arise as dominant classes in 9 of the 10 experiments, sometimes
even at the same time.
It is important to highlight that dominant classes arise without being imposed
in the universal perturbation crafting procedure. For this reason, an interest-
ing property to study is whether dominant classes remain dominant even if
we explicitly avoid them during the optimization process (see Algorithms 2
and 3). To shed light on this question, we start by preventing the algorithm
from considering those directions that point to the decision boundaries of
the class left. The results obtained for ten new perturbations generated with
this restriction are shown in Figure 5.2 (bottom left). As can be seen, the
most frequent adversarial class is now unknown for 9 of the 10 perturbations
created.
We went another step further and repeated the experiment, this time, however,
restricting the boundaries corresponding to both left and unknown classes.
The results are shown in Figure 5.2 (bottom right). In this case, the two
restricted classes were no longer dominant classes, but different dominant
classes were obtained, precisely, up, right and go. It is also worth emphasizing
that, although dominant classes were obtained in all the experiments, they
were different depending on which other classes were restricted. For instance,
whereas the class up rarely appeared as dominant without restrictions, it is
the most frequent dominant class when both left and unknown classes are
restricted.
1 The number of samples per class in the test set and the accuracy of the model in

each class is reported in Table B.1.

88 5 Analysis of Dominant Classes in Universal Adversarial Perturbations

S
il
.

U
n
k
.

Y
e
s

N
o

U
p

D
o
w

n
L
e
ft

R
ig

h
t

O
n

O
ff

S
to

p
G

o

Predicted class

10

9

8

7

6

5

4

3

2

1

E
x
p
e
ri

m
e
n
t

0 1 0 0 3 1 94 0 0 0 0 0

0 3 0 0 2 0 93 0 0 0 0 0

0 91 0 1 1 0 6 0 0 0 0 0

0 0 0 1 92 1 3 0 0 0 0 2

0 78 0 0 2 0 17 0 0 0 1 1

0 5 0 0 4 0 90 0 0 0 0 0

0 38 0 0 1 1 59 1 0 0 0 0

0 10 0 0 2 0 87 0 0 0 0 0

0 50 0 1 3 0 45 0 0 0 0 0

0 7 0 0 1 0 91 0 0 0 0 0

Restricted classes: None

0

20

40

60

80

100

F
re

q
u
e
n
c
y
 (

%
)

S
il
.

U
n
k
.

Y
e
s

N
o

U
p

D
o
w

n
L
e
ft

R
ig

h
t

O
n

O
ff

S
to

p
G

o

Predicted class

10

9

8

7

6

5

4

3

2

1

E
x
p
e
ri

m
e
n
t

0 0 0 1 88 0 7 0 0 0 1 3

0 97 0 0 1 0 1 0 0 0 0 0

0 93 0 1 1 0 4 0 0 0 0 0

0 92 0 0 1 1 5 0 0 0 0 1

0 89 0 0 2 0 7 0 0 0 0 0

0 85 0 0 2 0 12 0 0 0 0 0

0 95 0 0 1 0 3 0 0 0 0 0

0 91 0 0 3 0 6 0 0 0 0 0

0 69 0 2 8 0 20 0 0 0 0 0

0 94 0 0 1 0 4 0 0 0 0 0

Restricted classes: {Left}

0

20

40

60

80

100

F
re

q
u
e
n
c
y
 (

%
)

S
il
.

U
n
k
.

Y
e
s

N
o

U
p

D
o
w

n
L
e
ft

R
ig

h
t

O
n

O
ff

S
to

p
G

o

Predicted class

10

9

8

7

6

5

4

3

2

1

E
x
p
e
ri

m
e
n
t

0 1 0 1 88 1 8 0 0 0 0 1

0 0 0 1 91 1 4 0 0 0 0 1

0 0 0 2 89 0 7 0 0 0 0 0

0 0 0 1 2 0 0 0 0 0 0 95

0 10 0 0 4 1 6 77 0 0 0 2

0 0 0 1 88 0 8 0 0 0 0 2

0 13 0 0 1 1 5 79 0 0 0 1

0 1 0 1 85 0 10 0 0 0 0 2

0 1 0 1 83 0 13 0 0 0 0 1

0 1 0 1 88 1 8 0 0 0 0 1

Restricted classes: {Left, Unk.}

0

20

40

60

80

100

F
re

q
u
e
n
c
y
 (

%
)

Fig. 5.2: Overview of the frequency with which each class was assigned to
the inputs misclassified as a consequence of universal perturbations. The fre-
quencies have been computed individually (row-wise) for the 10 perturbations
generated in each of the following configurations of the UAP-HC algorithm:
default algorithm (top), restricting the algorithm to follow the class left (bot-
tom left) and restricting the algorithm to follow the classes left and unknown
(bottom right).

Regarding the effectiveness of the attacks, the fooling rate of every perturba-
tion (i.e., the percentage of inputs that are misclassified when the perturbation
is applied) is shown in Figure 5.3, for each class independently.2 The fooling
rates have been computed considering the inputs that were initially correctly
classified. As can be seen, the effectiveness of each perturbation is higher in
some classes than in others, achieving up to ≈69% in some cases. The fooling
rates corresponding to the dominant classes, which have been highlighted in
the figure, are practically zero for most of the perturbations, which reveals

2 The average effectiveness of each perturbation can be consulted in Table B.2.

5.4 Dominant Classes in Speech Command Classification 89

S
il
.

U
n
k
.

Y
e
s

N
o

U
p

D
o
w

n
L
e
ft

R
ig

h
t

O
n

O
ff

S
to

p
G

o

10

9

8

7

6

5

4

3

2

1

E
x
p
e
ri

m
e
n
t

18 46 59 67 56 44 0 50 58 66 39 64

11 15 42 55 27 43 2 34 60 45 35 62

18 37 59 61 44 41 0 43 54 59 29 59

15 26 48 65 50 43 4 26 46 49 38 60

12 42 55 57 40 36 0 40 50 58 29 53

11 2 30 63 30 41 1 14 49 41 28 59

17 50 18 44 0 27 29 23 49 67 33 50

11 1 26 59 36 49 13 32 52 39 35 63

15 46 58 62 48 36 0 46 41 61 34 57

16 52 57 62 45 36 0 46 50 62 31 59

Restricted classes: None

0

10

20

30

40

50

60

70

F
o
o
li
n
g
 R

a
te

 (
%

)

S
il
.

U
n
k
.

Y
e
s

N
o

U
p

D
o
w

n
L
e
ft

R
ig

h
t

O
n

O
ff

S
to

p
G

o

10

9

8

7

6

5

4

3

2

1

E
x
p
e
ri

m
e
n
t

11 0 30 64 40 51 13 41 58 41 41 68

8 5 34 47 17 48 4 33 51 45 33 63

16 0 35 56 32 52 16 34 56 47 37 61

14 0 34 61 49 49 22 30 46 38 45 62

10 1 37 60 32 45 4 18 52 46 36 62

11 1 24 62 30 43 7 21 48 37 29 59

13 1 27 61 41 40 12 28 51 43 40 62

11 0 26 59 37 49 15 32 50 38 35 64

12 0 29 66 46 43 28 40 48 39 35 65

16 51 36 54 0 38 28 30 57 68 31 50

Restricted classes: {Left}

0

10

20

30

40

50

60

70

F
o
o
li
n
g
 R

a
te

 (
%

)

S
il
.

U
n
k
.

Y
e
s

N
o

U
p

D
o
w

n
L
e
ft

R
ig

h
t

O
n

O
ff

S
to

p
G

o

10

9

8

7

6

5

4

3

2

1

E
x
p
e
ri

m
e
n
t

13 41 34 49 0 31 23 27 45 66 38 55

13 43 35 51 0 26 12 28 58 67 39 55

16 43 42 53 0 44 21 31 54 68 42 50

16 35 37 63 49 32 34 0 31 41 35 54

11 42 37 46 0 34 24 30 52 67 35 49

12 36 33 54 32 26 25 0 41 44 20 46

14 49 12 66 46 52 35 24 42 45 21 0

12 44 23 38 0 23 21 25 45 66 36 54

11 44 32 44 0 26 32 27 51 66 36 51

17 45 28 52 0 30 22 25 53 69 43 54

Restricted classes: {Left, Unk.}

0

10

20

30

40

50

60

70

F
o
o
li
n
g
 R

a
te

 (
%

)

Fig. 5.3: Fooling rate percentage, computed individually for each class, of the
10 perturbations generated in each of the following configurations of the UAP-
HC algorithm: default algorithm (top), restricting the algorithm to follow the
class left (bottom left) and restricting the algorithm to follow the classes left
and unknown (bottom right). In the three figures, the results corresponding
to the dominant classes (for each experiment) have been highlighted using
bold text.

that the perturbation does not change the prediction of the model for those
inputs.
For more informative results, the mean and maximum fooling rate of all the
perturbations are shown in Table 5.1. To avoid biases, these aggregated fooling
rates have been computed in three different ways: i) considering all the inputs,
ii) without considering the inputs corresponding to the dominant classes, and
iii) without considering the dominant classes and the class silence. The reason
for not considering the inputs belonging to the dominant classes is because the
perturbation reinforces the confidence on those classes, and, as a consequence,
there are practically no misclassifications in those inputs. On the contrary, the
results for the class silence are clearly lower than for the rest of the classes,
which biases the results. Comparing the average effectiveness of the universal

90 5 Analysis of Dominant Classes in Universal Adversarial Perturbations

Restricted
classes in
UAP-HC

Fooling Rate

Considering all
the classes

w/o considering
dominant classes

w/o considering
dominant & Silence

Mean Max. Mean Max. Mean Max.

None 37.94 46.34 41.68 50.84 44.97 54.76
{Left} 34.90 37.73 37.39 40.60 40.32 43.71
{Left, Unk.} 33.75 37.49 37.08 41.36 39.90 44.37

Table 5.1: Effectiveness of the UAP-HC algorithm in a set of test samples,
not seen during the generation of the perturbations.

perturbations, we can notice that the average fooling rate achieved by the
perturbations decreases when the dominant classes are restricted in the UAP-
HC algorithm. We confirmed using the Wilcoxon signed-rank test [177] (with
a significance level of 0.05) that, in comparison to the results obtained when
no class is restricted (i.e., YR = ∅), the decrease is significant when the set
of classes YR = {Left} or YR = {Left, Unknown} is restricted. According
to the same test, the differences observed between the cases in which the sets
of restricted classes are YR = {Left} and YR = {Left, Unknown} were not
statistically significant.
Overall, these results confirm the existence of dominant classes in audio tasks,
and reveal a number of properties that, to the best of our knowledge, have
not been reported before in related works. First, we have shown that it is
possible to prevent one class from being dominant during the optimization
of the universal perturbation. However, doing so leads to different dominant
classes. Moreover, the fact that the effectiveness of the universal perturbations
decreases when the most frequent dominant classes are restricted might sug-
gest that some classes are more dominant than others. All these findings and
properties will serve as a basis to further study the cause of this phenomenon
in the following sections.

5.5 Hypotheses About the Existence of Dominant
Classes

In this section, we propose a number of hypotheses to explain and characterize
the relationship between universal adversarial perturbations and dominant
classes. The proposed hypotheses are also experimentally tested using the
framework described in Section 5.3.

5.5 Hypotheses About the Existence of Dominant Classes 91

5.5.1 Dominant Classes Occupy a Larger Region in the Input
Space

In [114], the existence of dominant classes is attributed to a larger region of
such classes in the image space. Nevertheless, due to the high dimensionality
of the input spaces in current ML problems, exploring the volume that each
decision region occupies in the whole input space is intractable in practice.
Even so, to test this hypothesis, we randomly sampled and classified 1,000,000
inputs from the input space. The values of the inputs were sampled uniformly
at random in the range [−1, 1]. We found that all the samples were classified
as the class silence, which is not a dominant class in our experiments, as shown
in Section 5.4 (see Figure 5.2). Therefore, our results suggest that there is not
necessarily a connection between the volume occupied by the decision regions
of different classes and the frequency with which inputs perturbed by universal
perturbations reach the regions corresponding to the dominant classes.

5.5.2 Class Properties of Universal Perturbations

Universal perturbations are capable of changing the output class of a large
number of inputs, and the majority of the misclassified inputs are moved
unintentionally towards a dominant class. In this section, we show that the
perturbation itself is predicted by the model as the dominant class with high
confidence.
In fact, we noticed that the following three factors are positively correlated
during the generation process of a universal perturbation v: the fooling rate
(F1), the percentage of inputs misclassified as the dominant class yb (F2), and
the confidence with which the model considers that the perturbation belongs
to the dominant class (F3):3

F1(v) = Px∈X [f(x) 6= f(x+ v)] , (5.9)

F2(v) = Px∈X [f(x+ v) = yb] , (5.10)

F3(v) = f(v)b, (5.11)

where X is a set of inputs and f(·)b represents the output confidence of the
classifier f corresponding to the class yb. An example of the evolution of these
factors during the optimization process of a universal perturbation, using the
UAP-HC algorithm, is shown in Figure 5.4. These results correspond to the
first experiment of Section 5.4, for the case in which no class was restricted. In
particular, the left figure shows the evolution of the frequency with which each
class is (wrongly) predicted for the misclassified inputs, and the right figure
shows the output confidences of the model when the universal perturbation

3 For those perturbations in which there are two dominant classes at the same time,
the class f(v) has been considered as the dominant (i.e., the class assigned to the
perturbation by the model).

92 5 Analysis of Dominant Classes in Universal Adversarial Perturbations

1 100 200 300 400 500

Step

0

20

40

60

80

100

%

Frequency of each adversarial class
Left Unk. Up No FR

1 100 200 300 400 500

Step

0.0

0.2

0.4

0.6

0.8

1.0

C
o
n
fi
d
e
n
c
e

Prediction of the universal perturbation
Left Sil. Up Unk. FR

Fig. 5.4: Evolution of three different factors during the optimization process
of a universal perturbation using the UAP-HC algorithm: the frequency with
which the inputs are classified as the dominant class (left), the confidence of
the model in the dominant class when the perturbation is predicted (right),
and the evolution of the fooling rate (FR), which is shown in both plots
as a reference. These results have been computed on the training set, and
correspond to the first experiment reported in Section 5.4, for the case in
which no class was restricted. For the sake of clarity, only the information of
the four most relevant classes are plotted in each plot.

is classified. The fooling rate of the perturbation has been included in both
figures as a reference, represented by a dashed line.
More generally, for the 10 different universal perturbations generated in Sec-
tion 5.4 (without restricting any class), the average Pearson correlation coef-
ficient between F1 and F3 during the first iteration of Algorithm 2 is 0.79.
Similarly, the average correlation between F1 and F2 is 0.87, and the average
correlation between F2 and F3 is 0.91. These results confirm that the three
factors are being maximized jointly during the optimization process of the
universal perturbation, even if such behavior is not specified by the model.
Motivated by this finding, we studied whether any perturbation v that is
classified by the model as one particular class with high confidence is capable
of producing the same effect as a universal perturbation, that is, to force the
misclassification of a large number of inputs by pushing them to the class f(v).
For this purpose, we defined the following optimization problem, in which the
objective is to find a perturbation v, with a constrained norm, that maximizes
the confidence of the model in one particular class yt, f(v)t, that is:

max
v

f(v)t s.t. ||v||2 ≤ ε. (5.12)

We launched 100 trials for each possible target class, starting from random
perturbations.4 We used a gradient descent approach to optimize the pertur-

4 The initial perturbations were randomly sampled from the input space R16000,
where each value was sampled uniformly at random in the range [−10−3, 10−3].

5.5 Hypotheses About the Existence of Dominant Classes 93

bation, restricting the search to 100 gradient descent iterations, and setting a
threshold of ε = 0.1 for the perturbation norm.
The mean and maximum fooling rates obtained with the generated perturba-
tions are shown in Table 5.2, computed independently for each target class.
The fooling rate for each class individually is shown in Figure 5.5 (left). As
can be seen in Table 5.2, for the classes left and unknown, both the most
frequent dominant classes associated to the universal perturbations generated
using the UAP-HC algorithm (see Figure 5.2), a significantly higher effec-
tiveness is achieved than for the rest of classes. We confirmed this using the
Wilcoxon signed-rank statistical test [177], under a significance level of 0.05.
Apart from that, with independence of the target class, the majority of the
samples fooled by these perturbations were classified as the target class. This
is shown in Figure 5.5 (right), in which the average frequency with which each
class is predicted under the effect of the perturbations is computed, indepen-
dently for each target class.
These results reveal that a perturbation which is optimized only to maximize
the confidence of a model into one class can behave as a universal perturbation,
and, more relevantly, that their effectiveness is maximized when the target
class is a dominant class. Based on these findings, we can hypothesize that
the model is more sensitive to some class features than to others, and that,
ultimately, the sensitivity degree to each class feature is what determines the
dominant classes. In other words, a class yj will have a greater dominance the
more sensitive the model is to the patterns in the data distribution that are
associated to yj (by the model itself).5

5.5.3 Singular Value Decomposition

In [114], the existence of universal perturbations for image classification DNNs
is attributed, in part, to the presence of similar patterns in the geometry of de-
cision boundaries around different points of the decision space. In particular,
as described in Section 5.2, perturbations normal to the decision boundaries in
the vicinity of natural inputs approximately span a very low-dimensional sub-
space, revealing that similar perturbations are capable of changing the output
class of different input samples. This was assessed experimentally for state-
of-the-art DNNs, by computing the Singular Value Decomposition (SVD) of
a matrix A collecting normalized individual untargeted perturbations gen-
erated using the DeepFool algorithm. The SVD provides a set of singular
vectors

{
s(1), s(2), . . . , s(r)

}
, which represent a basis for the subspace spanned

5 These results are consistent with previous explanations proposed for the vulner-
ability of universal adversarial perturbations. For instance, these results could be
related to the non-robust data-feature framework introduced in [72], to the pre-
dominance of the features of universal perturbations over the features of natural
inputs [190], or to the link between the class-identity associations of the model
and the most vulnerable directions in the input space studied in [73] (see Section
5.2 for more details).

94 5 Analysis of Dominant Classes in Universal Adversarial Perturbations

S
il
.

U
n
k
.

Y
e
s

N
o

U
p

D
o
w

n
L
e
ft

R
ig

h
t

O
n

O
ff

S
to

p
G

o

Class for which the FR is computed

Go

Stop

Off

On

Right

Left

Down

Up

No

Yes

Unk.

Sil.

T
a
rg

e
t

c
la

s
s

0 26 11 25 38 11 19 9 17 23 7 34

10 0 18 45 31 43 25 37 54 29 23 55

11 29 0 35 21 13 35 11 11 14 7 25

11 32 15 0 34 46 28 10 20 14 7 72

15 33 11 37 0 16 27 14 36 56 26 51

12 46 14 54 22 0 16 9 35 20 10 50

14 44 43 48 48 26 0 40 28 42 21 46

11 51 14 36 30 11 40 0 34 20 10 32

12 39 7 32 37 21 13 19 0 30 7 27

11 29 10 23 56 13 21 14 42 0 9 33

11 43 13 33 58 23 22 7 26 36 0 40

15 39 11 69 35 38 16 10 23 22 9 0
0

10

20

30

40

50

60

70

80

F
o
o
li
n
g
 R

a
te

 (
%

)

S
il
.

U
n
k
.

Y
e
s

N
o

U
p

D
o
w

n
L
e
ft

R
ig

h
t

O
n

O
ff

S
to

p
G

o

Predicted class

Go

Stop

Off

On

Right

Left

Down

Up

No

Yes

Unk.

Sil.

T
a
rg

e
t

c
la

s
s

0 1 0 0 2 0 2 1 0 0 1 92

0 1 0 1 1 1 2 2 0 0 92 1

0 1 0 2 0 1 2 1 0 92 0 1

0 1 0 1 1 2 3 1 88 0 1 3

0 0 0 1 2 1 1 92 0 1 1 2

0 1 0 1 1 0 96 0 0 0 0 0

0 0 0 1 4 87 4 2 0 1 1 0

0 1 0 1 93 1 2 1 0 0 0 0

0 1 0 93 1 0 1 1 0 2 0 0

0 2 83 1 4 1 1 2 0 2 1 2

0 95 0 1 2 0 1 0 0 0 0 0

84 1 0 3 3 1 3 2 0 1 1 2

Distribution of the wrong classifications

0

20

40

60

80

100

F
re

q
u
e
n
c
y
 (

%
)

Fig. 5.5: Overview of the effectiveness of the perturbations found by solving
the optimization problem defined in (5.12). In both figures, the results are
reported independently for each target class (row-wise), and are averaged for
the 100 trials generated for each target class. Left: average fooling rate (FR)
obtained by the 100 perturbations found for each target class, computed for
each class individually. Right: Average frequency with which each class is
wrongly assigned to the fooled inputs by the model.
-

Target
class

Fooling Rate

Considering all
the classes

w/o considering
dominant classes

w/o considering
dominant & Silence

Mean Max. Mean Max. Mean Max.

Sil. 17.85 21.71 19.77 24.05 19.77 24.05
Unk. 30.31 33.88 32.40 36.21 35.00 39.14
Yes 16.91 20.40 18.67 22.52 19.59 23.89
No 23.46 25.82 25.28 27.84 26.91 29.74
Up 25.53 28.19 28.16 31.10 29.79 32.97
Down 22.56 24.68 24.45 26.75 25.95 28.28
Left 32.57 37.25 35.73 40.87 38.37 44.22
Right 23.25 27.28 25.38 29.78 27.07 31.88
On 19.50 22.43 21.25 24.45 22.40 25.94
Off 21.56 24.46 23.39 26.54 24.83 28.48
Stop 25.07 27.21 27.61 29.97 29.64 32.32
Go 22.99 25.66 24.84 27.72 26.03 29.24

Table 5.2: Effectiveness of the perturbations generated using Equation (5.12),
averaged for the 100 perturbations generated for each target class.

5.5 Hypotheses About the Existence of Dominant Classes 95

by the adversarial perturbations in A. Each s(i) is related to a singular value
σ(i), which indicates the importance or contribution of that singular vector. As
shown in [114], considering that the singular values are arranged in decreasing
order σ(1) ≥ σ(2) ≥ · · · ≥ σ(r), the decay of the singular values was consid-
erably faster in comparison to the decay obtained from the SVD of random
perturbations (sampled from the unit sphere). This implies that the subspace
spanned just by the first d′ � d singular vectors (i.e., those corresponding to
the highest singular values) contained vectors normal to the decision bound-
aries in the vicinity of natural samples. Indeed, random perturbations sampled
from such a subspace were capable of achieving a fooling rate of nearly 38%
on unseen inputs, whereas random perturbations (of the same norm) in the
input space only achieved a fooling rate of approximately 10% [114].
In this section, we take this approach as a framework to study the existence
of dominant classes. First, we will replicate the previous experiment to assess
whether, in the audio domain, it is also possible to find a low-dimensional sub-
space of the input space collecting vectors normal to the decision boundaries
of DNNs. The existence of such a subspace would allow us to test a number
of hypotheses, for example, whether the directions in such subspaces mainly
point towards the decision boundaries corresponding to the dominant classes.
This would explain why most of the inputs are (incorrectly) classified as the
dominant class when they are adversarially perturbed.
Nevertheless, due to the input transformation process required to convert the
raw audio signal into the MFCC representation (see Section 5.3), the results
might differ depending on the data representation in which the analysis is
done. For this reason, we need to assess first which audio representation is
the most informative one in our case. Thus, we computed the SVD for a
set of individual perturbations and different sets of random perturbations,
under the three main representations for audio signals: raw audio waveform,
spectrogram and MFCC coefficients.

5.5.3.1 Analysis of the SVD of Audio Perturbations

Let us consider a set of n natural input samples X =
{
x(1), . . . , x(n)

}
. The

individual perturbations were generated using the DeepFool algorithm, in the
raw audio waveform representation:

V =
{
v(i) | v(i) = DeepFool

(
x(i)
)
, i = 1, . . . , n

}
. (5.13)

The perturbations that these raw waveforms produce in both the spectrogram

and MFCC representations are computed as v
(i)
g = g

(
x(i) + v(i)

)
− g
(
x(i)
)
,

being g the input transform function, which maps the raw audio waveforms
into either a spectrogram or the MFCC features:

96 5 Analysis of Dominant Classes in Universal Adversarial Perturbations

VSPEC =
{
v(i)spec | v(i)spec = gSPEC

(
x(i) + v(i)

)
− gSPEC

(
x(i)
)
, i = 1, . . . , n

}
,

(5.14)

VMFCC =
{
v
(i)
mfcc | v

(i)
mfcc = gMFCC

(
x(i) + v(i)

)
− gMFCC

(
x(i)
)
, i = 1, . . . , n

}
.

(5.15)

The random perturbations were sampled uniformly at random from the raw
input space:

R =
{
r(i) | r(i) is sampled u.a.r. from [−1, 1]16000, i = 1, . . . , n

}
. (5.16)

As in the case of adversarial perturbations, the corresponding perturbations
in the frequency-domain representation are computed as:

RSPEC =
{
r(i)spec | r(i)spec = gSPEC

(
x(i) + r(i)

)
− gSPEC

(
x(i)
)
, i = 1, . . . , n

}
,

(5.17)

RMFCC =
{
r
(i)
mfcc | r

(i)
mfcc = gMFCC

(
x(i) + r(i)

)
− gMFCC

(
x(i)
)
, i = 1, . . . , n

}
.

(5.18)

In this case, the random perturbations were scaled to have a fixed `2 norm of
0.1 before being applied to the inputs in Equations (5.17) and (5.18).
Finally, for a more representative analysis, we considered two additional sets
of random perturbations, sampled uniformly at random from the space of
spectrograms and the space of MFCC coefficients:

RSPEC =
{
r(i) | r(i) is sampled u.a.r. from [−1, 1]99×257, i = 1, . . . , n

}
,

(5.19)

RMFCC =
{
r(i) | r(i) is sampled u.a.r. from [−1, 1]99×40, i = 1, . . . , n

}
.

(5.20)

All the perturbations described in Equations (5.13)-(5.20) were normalized be-
fore computing the SVD. It is worth highlighting the key difference between
the random perturbations defined in (5.17) and (5.18) and those defined in
(5.19) and (5.20). The former represent the changes that randomly perturb-
ing a raw signal produces on the spectrogram (or MFCC) space. In contrast,
the random perturbations in (5.19) and (5.20) are directly generated in the
spectrogram space or in the MFCC space, respectively. In other words, the
perturbations considered in (5.19) and (5.20) are analogous to those in (5.13),
but in the spaces corresponding to the spectrograms or to the MFCC coef-
ficients instead of the space of raw audio waveforms. Considering all these
types of perturbations and representations is important to better study which
of them are the most informative ones in the audio domain, and to ensure
that our subsequent analyses will be carried out using the most appropriate
representation.

5.5 Hypotheses About the Existence of Dominant Classes 97

Figure 5.6 compares the decay of the singular values (sorted in decreasing
order), for all the sets of perturbations considered in Equations (5.13)-(5.20).
The results corresponding to the raw waveform, spectrogram and MFCC rep-
resentations are shown in the first, second and third row of the figure, respec-
tively. Whereas the left column shows the singular values obtained with the
SVD for each data representation, in the right column the decays are char-
acterized by fitting exponential curves (depicted as dashed lines) with the
following form:6

y = ρ · e−xλ + ω , ρ, λ, ω ∈ R. (5.21)

A higher value of the decay factor λ represents a faster decay, as is illustrated
in Figure 5.7, which shows the behavior of the exponential curves for different
values of the decay factor λ. As can be seen in the figure, for low values of λ
(e.g., λ ≤ 1) the obtained curves are close to a constant or linear decay (i.e.,
y = 1−x), whereas for λ > 1 the values decay much faster (i.e., exponentially).
Regarding the results in the raw waveform representation (i.e., V and R), the
decay of the singular values is mainly linear for both individual and random
perturbations, which can be assessed by their decay factor λ (see Figure 5.6),
since in both cases λ < 1 is obtained. This means that, in both cases, there is
not a set of singular vectors that is considerably more informative than the
rest, and, as a consequence, a large set of vectors would be needed to provide
an approximate basis for the perturbations. Thus, the perturbations do not
show meaningful correlations in this representation. The same conclusion can
be drawn from the perturbations sampled uniformly at random in the space
of spectrograms (RSPEC) and in the space of MFCC coefficients (RMFCC).
However, considering the perturbations in the frequency domain produced by
the raw waveform perturbations, either random or adversarial (i.e., VSPEC,
RSPEC, VMFCC and RMFCC), the singular values decay exponentially, achiev-
ing decay factors which are at least of one order of magnitude greater than
for the previous cases. For instance, in the MFCC representation (i.e., VMFCC

and RMFCC), the values obtained are λ = 1
0.131 and λ = 1

0.001 , respectively.
These results indicate, first, that even if the perturbations are generated in
the raw audio waveform representation, it is necessary to go to the frequency-
domain to observe informative patterns. This might be a fundamental differ-
ence between the image domain and the audio domain, as most of the analyses
done in the former can be done directly in the raw image space. Secondly, the
effect of audio perturbations in the frequency-domain can be characterized
by just a small (in comparison to the dimensionality of the corresponding
spaces) number of singular vectors. For instance, for the MFCC representa-
tion, the most relevant information is captured in less than the ∼150 first
singular vectors (that is, those corresponding to the highest singular values).
The fact that this happens for both random or adversarial perturbations could
imply, however, that the captured correlations are uninformative about the

6 Note that the singular values have been scaled in the range [0, 1] before fitting
the exponential curves, for a more uniform comparison.

98 5 Analysis of Dominant Classes in Universal Adversarial Perturbations

0 500 1000 1500 2000
Index

0.6

0.8

1.0

1.2

1.4

1.6

Si
ng

ul
ar
 v
al
ue

s

Decay of singular values (Audio Signal)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

Sc
al
ed

 si
ng

ul
ar
 v
al
ue

s

Decay of singular values (Audio Signal)

y=1.37 ⋅ e−x/1.150−0.51

y=3.80 ⋅ e−x/3.844−2.87

0 500 1000 1500 2000
Index

0

1

2

3

4

5

6

Si
ng

ul
ar
 v
al
ue

s

Decay of singular values (Spectrogram)
SPEC
SPEC

ℜSPEC

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

Sc
al
ed

 i
ng

ul
ar
 v
al
ue

Decay of ingular value (Spectrogram)
SPEC
y=0.26 ⋅ e−x/0.318+0.02
SPEC
y=0.49 ⋅ e−x/0.516−0.03
ℜSPEC
y=4.77 ⋅ e−x/4.941−3.84

0 500 1000 1500 2000
Index

0
2
4
6
8

10
12
14

Si
ng

ul
ar
 v
al
ue

s

Decay of singular values (MFCC)
MFCC
MFCC

ℜMFCC

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

Sc
al
ed
 si
ng

 l
ar
 v
al
 e
s

Decay of sing lar val es (MFCCs)
MFCC
y=0.48 ⋅ e−x/0.131+0.04
MFCC
y=0.86 ⋅ e−x/0.001+0.01
ℜMFCC
y=2.19 ⋅ e−x/1.921−1.26

Fig. 5.6: Left column: singular values obtained in the SVD of individual adver-
sarial perturbations and random perturbations, computed in three feature rep-
resentations: raw audio waveforms (top), spectrograms (center) and MFCCs
(bottom). Right column: characterization of the decay of the singular values
by fitting an exponential curve (the values in both axes have been scaled in
the range [0,1]).

5.5 Hypotheses About the Existence of Dominant Classes 99

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

y= e−xλ
λ

0.25
1.0
2.5

y=1-x (linear)

5.0
10.0
100.0

Fig. 5.7: Illustration of an exponential decay y = ρe−xλ+ω for different values
of the decay factor λ. For a more uniform comparison, the values ρ = 1 and
ω = 0 were used in all the cases, and the curves were normalized in the range
[0, 1].

geometry of the decision boundaries around natural inputs, or, alternatively,
about the vulnerability of the network to adversarial attacks. Nevertheless, in
the reminder of this section we show that the SVD of individual adversarial
perturbations not only provides a representative basis for input-agnostic per-
turbations, but also that this basis is strongly connected with the dominant
classes. For the previous reasons, the rest of the analysis will focus on the
MFCC feature space.
We start evaluating the fooling rate of randomly sampled perturbations in the
subspace spanned by the first N = {10, 50, 100, 200, 500} singular vectors, for
the cases in which the SVD is computed for individual perturbations (VMFCC)
and random perturbations (RMFCC). Given a value of N , the sampled pertur-
bations will be produced as a linear combination of the first N singular vectors
s(1), . . . , s(N) (computed for either VMFCC or RMFCC). All the sampled per-
turbations were normalized, and the fooling rate was evaluated for different
scaling factors under the `2 norm, in the range [−200, 200]. Note that, given
a unit vector v, for any scalar c ∈ R, ||v · c||2 = |c|. For reference, the median
`2 norm of the perturbations (in the MFCC) produced by the 10 universal
attacks generated in Section 5.4, measured in the test set, is approximately
100.
Figure 5.8 shows, for each value ofN , the average fooling rates obtained for 100
trials (i.e., 100 random perturbations). The fooling rates have been computed
in the test set. The results clearly show that, when the SVD is computed
for individual perturbations (VMFCC), the fooling rates are remarkably higher
than for the case of random perturbations (RMFCC), even for norms close to
zero. For instance, taking as reference the results corresponding to an `2 norm

100 5 Analysis of Dominant Classes in Universal Adversarial Perturbations

of 100, the average fooling rate is approximately 48% for the case of individual
perturbations, when N ≤ 100. For the case of random perturbations, in the
same conditions, the average fooling rate is only 17%.
However, the fooling rate corresponding to individual perturbations consider-
ably decreases when a large number of singular vectors are considered. Indeed,
for N ≥ 200, the fooling rates get closer to those obtained for random per-
turbations. For instance, when N = 500, the average fooling rate (with an `2
norm of 100) is approximately 18%. This reveals that, whereas the singular
vectors corresponding to the highest singular values are capturing directions
normal to the decision boundaries around natural inputs (being, therefore,
effective in fooling the model for a large number of inputs), the remaining
singular vectors do not provide additional or relevant information.

−2
00

−1
80

−1
60

−1
40

−1
20

−1
00 −8
0

−6
0

−4
0

−2
0 0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Scale factor (L2 norm)

0

20

40

60

80

100

Fo
ol
in
g
Ra

te
 (%

)

Individual perturbation
N=10
N=50
N=100
N=200
N=500

−2
00

−1
80

−1
60

−1
40

−1
20

−1
00 −8
0

−6
0

−4
0

−2
0 0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Scale fac or (L2 norm)

0

20

40

60

80

100

Fo
ol

in
g

Ra
 e

 (%
)

Random per urba ions
N=10
N=50
N=100
N=200
N=500

−2
00

−1
80

−1
60

−1
40

−1
20

−1
00 −8
0

−6
0

−4
0

−2
0 0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Scale fact r (L2 n rm)

0

20

40

60

80

100

F
 l
in
g
Ra

te
 (%

)

N=100
SVD:
Indiv. Perts
Rand. Perts

−2
00

−1
80

−1
60

−1
40

−1
20

−1
00 −8
0

−6
0

−4
0

−2
0 0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Scale factor (L2 orm)

0

20

40

60

80

100

Fo
ol
i
g
Ra

te
 (%

)

N=500
SVD:
I di%. Perts
Ra d. Perts

Fig. 5.8: Fooling rate produced by random perturbations sampled from the
subspace spanned by the first N singular vectors. The results are averaged for
100 random perturbations. Each perturbation v was normalized and multi-
plied by different scale factors c ∈ R (horizontal axis), so that ||v||2 = |c|. The
SVD is computed for individual perturbations (top left) and for random per-
turbations (top right), in the MFCC feature space. The bottom row shows a
direct comparison between the average effectiveness of individual and random
perturbations for N = 100 (bottom left) and N = 500 (bottom right).

5.5 Hypotheses About the Existence of Dominant Classes 101

5.5.3.2 Connection With Dominant Classes

In the previous section, we have shown that, also for speech command classifi-
cation models, it is possible to find a low dimensional subspace XS containing
(input-agnostic) vectors normal to the decision boundaries in the vicinity of
natural inputs. Therefore, a reasonable hypothesis is that dominant classes
can be explained in terms of the geometric similarity of the decision bound-
aries in regions surrounding natural inputs, information that is captured by
the basis of XS , that is, by the singular vectors obtained from the SVD of
individual perturbations.
The first hypothesis is that the first singular vectors are also normal to decision
boundaries corresponding to the dominant classes. To validate this hypothe-
sis, we first computed the fooling rate that each singular vector can achieve
individually. This is shown in Figure 5.9 (top left), in which the fooling rate of
the first 250 singular vectors is reported for different `2 norms. For reference,
the results corresponding to a norm of 100 are also shown independently in
the bottom-left part of the figure. The results clearly show that the first sin-
gular vectors are capable of fooling the model for a considerable number of
test inputs, particularly for the first 50 vectors (approximately), for which an
average fooling rate of 56.3% is achieved. These fooling rates are also remark-
ably higher than the ones obtained when the SVD is computed for random
perturbations, which are also shown in Figure 5.9 (right column). Indeed,
the average fooling rate obtained in the latter case (considering the first 50
vectors) is 18.7%, which represents a difference of 37.6%.
To continue with the analysis, we computed the frequency with which each
class is (wrongly) predicted, considering only the inputs that were misclassified
when the singular vectors were used as perturbations. The aim of this analysis
is to assess if there exists a direct connection with the dominant classes. The
results are shown in Figure 5.10, considering the first 100 singular vectors,
scaled to have an Euclidean norm of 100. As can be seen, considering the
singular vectors with the highest fooling rate (those corresponding to the
vectors approximately in the range [1,50]), the most frequent wrong classes
are unknown and left. Indeed, for 84% of the singular vectors in [1,50], the
sum of the frequency corresponding to those two classes exceeds 50%, that is,
at least 50% of the misclassified inputs are classified as left or as unknown.
Moreover, for 62% of the singular vectors, the total frequency corresponding
to those two classes exceeds 80%. Therefore, we now know that the singular
vectors (with a high fooling rate) not only point towards decision boundaries
in the close vicinity of natural inputs, but also that those decision boundaries
correspond mainly to the dominant classes.
We repeated the experiment using the singular vectors obtained when the
SVD is computed for random perturbations. The results are shown in Figure
5.11. In this case, it is evident that the results are more uniform along all the
singular vectors, particularly for those singular vectors with a higher fooling
rate (precisely, those in the range [1,50], as shown in Figure 5.9). For reference,

102 5 Analysis of Dominant Classes in Universal Adversarial Perturbations

-2
00

-1
80

-1
60

-1
40

-1
20

-1
00 -8
0

-6
0

-4
0

-2
0 0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Scale factor

1

25

50

75

100

125

150

175

200

225

250

Si
ng

ul
ar

 V
ec

to
r

Individual perturbations

0

20

40

60

80

100

Fo
ol

in
g

Ra
te

 (%
)

-2
00

-1
80

-1
60

-1
40

-1
20

-1
00 -8
0

-6
0

-4
0

-2
0 0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Scale factor

1

25

50

75

100

125

150

175

200

225

250

Si
ng

ul
ar

 V
ec

to
r

Random perturbations

0

20

40

60

80

100

Fo
ol

in
g

Ra
te

 (%
)

1 50 100 150 200 250
Singular vector

0

20

40

60

80

100

Fo
ol
in
g
ra
te
 (%

)

Scale factor: 100

1 50 100 150 200 250
Singular vector

0

20

40

60

80

100
Fo

ol
in
g
ra
te
 (%

)
Scale factor: 100

Fig. 5.9: Fooling rate percentage achieved when the inputs are perturbed with
the first singular vectors computed for individual perturbations (left column)
and for random perturbations (right column), in the MFCC feature space.

in this case, only for 32% of the singular vectors in the range [1,50] the total
frequency corresponding to unknown or left exceeds 50%, and only for 2% of
the singular vectors the total frequency exceeds 70%.
Overall, the SVD of individual perturbations has shown that the obtained sin-
gular vectors are input-agnostic perturbations directions for which the model
is highly vulnerable: even when the inputs are slightly pushed in those di-
rections, they surpass the decision boundary of the model. This reveals that
the geometry of the decision boundary has patterns that are repeated in the
vicinity of multiple natural inputs. Apart from that, we have shown that such
adversarial directions mainly point towards the decision boundaries corre-
sponding to the dominant classes. Therefore, it can be concluded that the
universal perturbation optimization algorithms implicitly exploit the shared
geometric patterns of decision boundaries to increase the effectiveness of the

5.5 Hypotheses About the Existence of Dominant Classes 103

perturbations, leading to the same dominant classes in the majority of the
cases.

0 20 40 60 80 100%

1

50

100

Si
ng

ul
ar
 v
ec

to
r

Scale factor: 100
Unk. Left Others

0 20 40 60 80 100%

1

50

100

Si
ng

ul
ar
 v
ec

to
r

Scale factor: -100
Unk. Left Others

Fig. 5.10: Frequency with which each class is assigned to the misclassified
inputs under the effect of singular vectors (computed for individual pertur-
bations, see Equation (5.15)). The (unit) singular vectors have been scaled
using two different scale factors: 100 (left) and −100 (right). For the sake of
clarity, the frequencies are shown individually for the classes unknown and
left, while the total frequency corresponding to the rest of classes has been
grouped (others).

104 5 Analysis of Dominant Classes in Universal Adversarial Perturbations

0 20 40 60 80 100%

1

50

100

Si
ng

ul
ar
 v
ec

to
r

Scale factor: 100
Unk. Left Others

0 20 40 60 80 100%

1

50

100

Si
ng

ul
ar
 v
ec

to
r

Scale factor: -100
Unk. Left Others

Fig. 5.11: Frequency with which each class is assigned to the misclassified
inputs under the effect of singular vectors (computed for random pertur-
bations, see Equation (5.18)). The (unit) singular vectors have been scaled
using two different scale factors: 100 (left) and −100 (right). For the sake of
clarity, the frequencies are shown individually for the classes unknown and
left, while the total frequency corresponding to the rest of classes has been
grouped (others).

5.6 Conclusions

In this chapter, we have proposed and experimentally validated a number of
hypotheses to justify the intriguing phenomenon of why universal adversarial
perturbations for DNNs are capable of sending the majority of inputs towards
the same wrong class (i.e., dominant classes), even if such behaviour is not
specified during the optimization of the perturbations. These hypotheses were
studied in the audio domain, using a speech command classification task as
a testbed. To the best of our knowledge, previous work has examined this
effect only in the image domain, proposing open explanations that we revisit.
The results obtained from our analysis revealed multiple interesting facts re-
garding the vulnerability of DNNs to adversarial perturbations. On the one

5.6 Conclusions 105

hand, we have shown that universal perturbations can be created just by op-
timizing a perturbation to be recognized by the model as one particular class
with high confidence. This establishes a new perspective to create universal
perturbations, while explains that a class is dominant if it contains patterns
in the data distribution for which the model has a higher sensitivity. On the
other hand, we demonstrated that the geometry of the decision boundaries of
audio DNNs contains similar patterns in the vicinity of natural inputs, and
that the most vulnerable directions in the decision space point to the regions
corresponding to the dominant classes. Finally, our work highlights a number
of differences between the image domain and the audio domain, which con-
tribute to a better and more general understanding of the field of adversarial
examples in DL.

6

Conclusions and Future Work

This chapter summarizes the main contributions drawn from this thesis dis-
sertation. In addition, a number of general directions for further research are
discussed.

6.1 Contributions

DNNs are currently the core of a wide range of technologies applied in criti-
cal tasks, and effectiveness and robustness are therefore two fundamental re-
quirements for these models. However, DNNs can be easily deceived by inputs
perturbed imperceptibly for humans, known as adversarial examples, which
imply a security breach that can be maliciously exploited by an adversary.
Given that these vulnerabilities directly affect the integrity and reliability of
multiple systems which are, progressively, being deployed in real-world appli-
cations, it is crucial to determine the scope of these vulnerabilities and how
an adversary could exploit them for illegitimate purposes, in order to make a
more responsible, aware and secure use of those systems.
For these reasons, this dissertation has been devoted to explore novel adver-
sarial attack paradigms and vulnerabilities in DNNs. As a result, throughout
this dissertation we have introduced new attack paradigms that are beyond
the capabilities of methods currently available in the literature, as they are
capable of achieving more general, complex or ambitious objectives. At the
same time, based on these extended capabilities, our thesis has revealed new
security gaps in use cases and scenarios where the consequences of adversarial
attacks had not been investigated before. Our work has also shed light on
properties of these models that make them more vulnerable to adversarial
attacks, indirectly exposing more effective ways to exploit such vulnerabili-
ties, but, at the same time, contributing to a better understanding of these
intriguing phenomena.
A more detailed overview of the particular contributions derived from this
dissertation is provided as follows.

108 6 Conclusions and Future Work

In Chapter 3, a novel multiple-instance adversarial attack paradigm has been
proposed, capable of coordinating multiple adversarial examples to achieve
goals that cannot be realized by launching individual attacks isolatedly. In
essence, the introduced paradigm focuses on achieving the following two ob-
jectives jointly: i) produce a misclassification for any incoming input, and ii)
control the probability or frequency with which the model will predict each of
the classes after multiple attacks. This novel attack paradigm enables multiple
adversarial goals. On the one hand, it can be employed to carry out a large
number of adversarial attacks without altering the probability distribution of
the output classes P(Y), what could be an indicator of a recurring attack
against the model, ensuring, therefore, a more stealthy way to fool the model
for several inputs. On the other hand, the introduced paradigm also allows
the adversary to maliciously modify P(Y), enabling new attack types in do-
mains in which the application of adversarial examples is still considerably
understudied, such as scenarios in which the aggregated predictions for mul-
tiple inputs are highly relevant (e.g., opinion mining or collective information
retrieval) and scenarios susceptible to face concept drifts (e.g., streaming clas-
sification problems). The proposed attack paradigm is accomplished by means
of a probabilistic policy capable of carefully coordinating adversarial attacks
in order to achieve the aforementioned two objectives in the long run. More
specifically, four different methods have been introduced to determine these
policies, which rely on different strategies to determine the solutions. These
methods have been validated in different problems and scenarios and com-
pared based on several criteria. Our experimental evaluation has shown that
the introduced approaches are capable of successfully achieving the aforemen-
tioned objectives, even in highly constrained scenarios where the adversary
can only introduce very small amounts of distortion to the inputs.
In Chapter 4, a study has been conducted to explore the possibilities and lim-
its of adversarial attacks in scenarios where explainable models are employed,
whose predictions and explanations are supervised by humans. First, we have
proposed a more general notion of adversarial examples, in order to fit in
such scenarios. Based on this generalized notion, we have developed a com-
prehensive framework to study whether and how adversarial examples can be
generated for explainable models under human assessment, introducing and
illustrating novel attack paradigms. In particular, the proposed framework
considers a wide range of relevant yet often ignored factors such as the type
of problem, the user expertise or the objective of the explanations, in order
to identify the attack strategies that should be adopted in each scenario to
successfully deceive the model, and even the human querying the model. Inter-
estingly, the research conducted demonstrates that, despite the restriction of
assuming a human supervising the predictions and the corresponding explana-
tions, which compromises the stealthiness of the attack, the use of adversarial
attacks remains a realistic threat in multiple scenarios. For all these reasons,
we consider that these contributions lay a foundation for a more rigorous and
realistic study of adversarial examples in the field of explainable ML.

6.2 Future Work 109

Finally, Chapter 5 addressed the vulnerability of DNNs to universal (i.e.,
input-agnostic) adversarial perturbations. More particularly, this chapter has
been devoted to study the phenomenon of dominant classes in universal per-
turbations, that is, the preference of the perturbation to change the class of
the inputs into a particular set of (dominant) classes, even if the perturbations
are crafted in an untargeted fashion, that is, without any a priori imposition
regarding the incorrect class to be produced. In order to shed light on this in-
triguing phenomenon, we have proposed and experimentally validated several
hypotheses. This research has exposed the connection between the dominant
classes and the sensitivity of the model to two different factors: i) to patterns
in the input data distribution that the model recognizes as each class with
high confidence, and ii) to vulnerable directions in the decision space learned
by the model. Furthermore, this analysis has revealed interesting properties
of the DNN sensitivity to novel types of perturbations, such as perturbations
optimized to prevent the main dominant classes, hence providing a deeper
understanding of this phenomenon. These findings have also suggested novel
approaches to craft input-agnostic perturbations, opening the venue for future
research on more effective and efficient attacks.

6.2 Future Work

The following sections summarize several future research lines derived from
this dissertation.

6.2.1 Extending the Introduced Attacks

To begin with, we devise possible extensions or modifications to the introduced
attacks. Firstly, we plan to extend the multi-instance attack approach intro-
duced in Chapter 3 in order to address more challenging scenarios, such as
highly imbalanced classification problems or scenarios where the source prob-
ability distribution of the classes changes over time, which is often the case in
practice. In addition, the introduced methods can be further extended to gen-
erate attacks with more particular characteristics or behaviors. For instance,
an adversary might be interested in approximating a target probability dis-
tribution of the classes while fooling the model the least possible times, which
can be achieved by maximizing the values in the diagonal of the transition
matrices employed by the proposed attack policy (see Section 3.2.2). Similarly,
by including simple restrictions in the linear programs used to optimize those
transition matrices, the adversary can choose to fool the model more often
for inputs of some classes than for others, decide not to fool inputs of some
classes, or specify beforehand other kinds of transition patterns. Furthermore,
these methods could also be extended to generate adversarial class probabil-
ity distributions using a single universal perturbation. In this way, a single
perturbation may not only cause the misclassification of every input, but also

110 6 Conclusions and Future Work

produce a desired probability distribution for the output classes when applied
to a large number of inputs.
Secondly, regarding the attacks against explainable models introduced in
Chapter 4, an interesting research line could be developing a general and unify-
ing offensive method capable of addressing all the attack paradigms described
in our framework, that is, an approach capable of automatically generating
adversarial examples which satisfy the most important requirements depend-
ing on the scenario, explanation method or attack paradigm that wants to be
produced. Finally, the properties exposed in Chapter 5 regarding the vulnera-
bility of DNNs to adversarial attacks can be used, for instance, to create more
effective universal adversarial perturbations. Indeed, as shown in Section 5.4,
the existence of dominant classes reduces the effectiveness of universal per-
turbations, since the fooling rate in the inputs of those classes is practically
zero. Therefore, preventing the appearance of dominant classes during the
generation of the perturbation could lead to more effective attacks. We plan
to develop these hypotheses in future research.

6.2.2 Further Studies in the Properties of DNNs

Whereas the analytical frameworks proposed in Chapter 5 have shown to be
effective in revealing the connections between dominant classes and universal
perturbations, there are a number of properties and open lines that could be
further investigated in order to achieve a deeper understanding of the behavior
of universal perturbations. First, focusing on the framework proposed in Sec-
tion 5.5.2, an interesting future line of research could be trying to identify the
data-features that the model recognizes as each class with high confidence, for
instance, following the methodologies proposed in recent related works [72].
Similarly, the analysis of the geometry of the decision space carried out in
Section 5.5.3 could be further extended by considering the curvature of the
decision boundaries, which has proven to be highly informative for the analysis
of universal perturbations [73, 115]. Moreover, it could be interesting trying
to unify the data-feature perspective used in Section 5.5.2 and the one used in
Section 5.5.3, relying on the geometry of the decision boundaries of the DNN.
Finally, a deeper understanding of the decision spaces of DNNs is necessary to
comprehensively explain why decision boundaries contain large geometric cor-
relations around natural inputs, as well as many other fundamental questions
regarding the learning process of DNNs.

6.2.3 Defensive Approaches

As stated before, the study of novel types of adversarial attacks contributes
to raising awareness of new security breaches and vulnerabilities in current
DNNs. Thus, a natural follow-up to this work is the development of defenses
against the introduced attacks. Regarding this goal, we find two major gaps
in the literature on defensive methods. First, most of the existing adversarial

6.2 Future Work 111

attack detection methods rely on analyzing, separately, whether each input is
an adversarial example or not. Thus, research on methods based on assessing
the risk that the model is under attack by means of analyzing multiple inputs
or its long-run behavior is very limited. Nevertheless, such methods could
allow a more robust, informed and comprehensive defensive diagnosis to be
carried out, as they could provide an additional security layer or enable the
detection of multiple-instance attacks against the model, such as those intro-
duced in Chapter 3. We plan to investigate the possibility of developing such
defenses in the future. Apart from that, conceiving strategies to improve the
reliability and robustness of explanation methods continues to be an urgent
line of research, as still limited research has been conducted on the adver-
sarial robustness of different explanation methods such as prototype-based
approaches. Thus, a deeper analysis of the vulnerability of current explana-
tion methods is an important step in order to increase the reliability and
trustworthiness of explainable models in practice.
Above all, as new forms of adversarial attacks are introduced, it is essential
to revisit what notions of robustness are appropriate for the different types of
threats or scenario, in a similar way to what was done in this thesis regarding
offensive notions. We consider this important to rigorously determine which
the most appropriate or effective defensive measures given a particular use
case are, and, in the absence of general defenses capable of defending DNNs
against any adversarial example, to provide security measures more tailored
to the use case at hand.

7

Publications

7.1 Main Research Line

The research work carried out during this thesis has produced the following
publications and submissions:

7.1.1 Referred Journals

� Vadillo, J., Santana, R., and Lozano, J. A. (2020). Extending Adversarial
Attacks to Produce Adversarial Class Probability Distributions. Journal
of Machine Learning Research. Submitted (Second Review Round).

� Vadillo, J., Santana, R., and Lozano, J. A. (2021). When and How
to Fool Explainable Models (and Humans) with Adversarial Examples.
WIREs Data Mining and Knowledge Discovery. Submitted (Second Re-
view Round).

� Vadillo, J., Santana, R., and Lozano, J. A. (2022). Analysis of Dominant
Classes in Universal Adversarial Perturbations. Knowledge-Based Systems,
236:107719. Elsevier. DOI: 10.1016/j.knosys.2021.107719.

7.1.2 Awards

� 1st Award to the Best Thesis Project. Doctoral Consortium, XIX Confer-
ence of the Spanish Association for Artificial Intelligence. 2021.

7.2 Other Developed Work

Apart from the publications listed in the previous section, throughout these
years, other research works have been developed in the field of adversarial ex-
amples, specifically, on the study of audio universal perturbations and decision
boundaries. Although these works have not been included in this dissertation
so as not to overextend its scope, the corresponding publications are listed
below:

https://doi.org/10.1016/j.knosys.2021.107719

114 7 Publications

7.2.1 Referred Journals

� Vadillo, J., and Santana, R. (2022). On the Human Evaluation of Univer-
sal Audio Adversarial Perturbations. Computers & Security, 112:102495.
Elsevier. DOI: 10.1016/j.cose.2021.102495.

7.2.2 Conference Communications

� Vadillo, J., Santana, R., Lozano, J. A. (2020). Exploring Gaps in Deep-
Fool in Search of More Effective Adversarial Perturbations. In Machine
Learning, Optimization, and Data Science (LOD), volume 12566 of Lec-
ture Notes in Computer Science, pages 215-227. Springer, Cham. DOI:
10.1007/978-3-030-64580-9 18.

� Vadillo, J., Santana, R. (2022). Universal Adversarial Examples in Speech
Command Classification. In Proceedings of the XIX Conference of the
Spanish Association for Artificial Intelligence (CAEPIA), pages 642-647.

� Garciarena, U., Vadillo, J., Mendiburu, A., Santana, R. (2022). Adver-
sarial Perturbations for Evolutionary Optimization. In Machine Learning,
Optimization, and Data Science (LOD), volume 13164 of Lecture Notes
in Computer Science, pages 408-422. Springer, Cham. DOI: 10.1007/978-
3-030-95470-3 31.

7.2.3 Awards

� 3rd Best Paper Award, Universal Adversarial Examples in Speech Com-
mand Classification. XIX Conference of the Spanish Association for Arti-
ficial Intelligence. 2021.

https://doi.org/10.1016/j.cose.2021.102495
https://doi.org/10.1007/978-3-030-64580-9_18
https://doi.org/10.1007/978-3-030-95470-3_31
https://doi.org/10.1007/978-3-030-95470-3_31

References

[1] Adadi, A. and Berrada, M. (2018). Peeking Inside the Black-Box: A Survey
on Explainable Artificial Intelligence (XAI). IEEE Access, 6:52138–52160.

[2] Agirre, E. and Edmonds, P. (2006). Word Sense Disambiguation: Algo-
rithms and Applications, volume 33 of Text, Speech and Language Technol-
ogy.

[3] Aivodji, U., Arai, H., Fortineau, O., Gambs, S., Hara, S., and Tapp, A.
(2019). Fairwashing: The Risk of Rationalization. In Proceedings of the
36th International Conference on Machine Learning (ICML), volume 97 of
Proceedings of Machine Learning Research, pages 161–170.

[4] Al-masni, M. A., Al-antari, M. A., Choi, M.-T., Han, S.-M., and Kim,
T.-S. (2018). Skin Lesion Segmentation in Dermoscopy Images via Deep
Full Resolution Convolutional Networks. Computer Methods and Programs
in Biomedicine, 162:221–231.

[5] Alshahrani, A., Ghaffari, M., Amirizirtol, K., and Liu, X. (2021). Opti-
mism/Pessimism Prediction of Twitter Messages and Users Using BERT
with Soft Label Assignment. In 2021 International Joint Conference on
Neural Networks (IJCNN), pages 1–8.

[6] Alvarez-Melis, D. and Jaakkola, T. (2018a). Towards Robust Interpretabil-
ity with Self-Explaining Neural Networks. In Advances in Neural Informa-
tion Processing Systems, volume 31, pages 7775–7784.

[7] Alvarez-Melis, D. and Jaakkola, T. S. (2018b). On the Robustness of
Interpretability Methods. In Proceedings of the 2018 ICML Workshop on
Human Interpretability in Machine Learning (WHI 2018), pages 66–71.

[8] Alzantot, M., Balaji, B., and Srivastava, M. (2018a). Did you hear
that? Adversarial Examples Against Automatic Speech Recognition. arXiv
preprint arXiv:1801.00554.

[9] Alzantot, M., Sharma, Y., Chakraborty, S., Zhang, H., Hsieh, C.-J., and
Srivastava, M. B. (2019). GenAttack: Practical Black-Box Attacks with
Gradient-Free Optimization. In Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO), GECCO ’19, pages 1111–1119.

116 References

[10] Alzantot, M., Sharma, Y., Elgohary, A., Ho, B.-J., Srivastava, M., and
Chang, K.-W. (2018b). Generating Natural Language Adversarial Exam-
ples. In Proceedings of the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2890–2896.

[11] Anders, C. J., Weber, L., Neumann, D., Samek, W., Müller, K.-R., and
Lapuschkin, S. (2022). Finding and Removing Clever Hans: Using Expla-
nation Methods to Debug and Improve Deep Models. Information Fusion,
77:261–295.

[12] Bai, S., Li, Y., Zhou, Y., Li, Q., and Torr, P. H. (2021). Adversarial
Metric Attack and Defense for Person Re-Identification. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 43(6):2119–2126.

[13] Ballet, V., Renard, X., Aigrain, J., Laugel, T., Frossard, P., and De-
tyniecki, M. (2019). Imperceptible Adversarial Attacks on Tabular Data.
In NeurIPS 2019 Workshop on Robust AI in Financial Services: Data, Fair-
ness, Explainability, Trustworthiness, and Privacy (Robust AI in FS).

[14] Bansal, N., Agarwal, C., and Nguyen, A. (2020). SAM: The Sensitiv-
ity of Attribution Methods to Hyperparameters. In Proceedings of the
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 8670–8680.

[15] Beck, C., Booth, H., El-Assady, M., and Butt, M. (2020). Representation
Problems in Linguistic Annotations: Ambiguity, Variation, Uncertainty, Er-
ror and Bias. In Proceedings of the 14th Linguistic Annotation Workshop,
pages 60–73.

[16] Behjati, M., Moosavi-Dezfooli, S.-M., Baghshah, M. S., and Frossard, P.
(2019). Universal Adversarial Attacks on Text Classifiers. In Proceedings of
the 2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 7345–7349.

[17] Belinkov, Y. and Bisk, Y. (2018). Synthetic and Natural Noise Both
Break Neural Machine Translation. In International Conference on Learn-
ing Representations (ICLR).

[18] Biggio, B., Corona, I., Maiorca, D., Nelson, B., Šrndić, N., Laskov, P., Gi-
acinto, G., and Roli, F. (2013). Evasion Attacks against Machine Learning
at Test Time. In Machine Learning and Knowledge Discovery in Databases,
Lecture Notes in Computer Science, pages 387–402.

[19] Biswas, A. and Mukherjee, S. (2021). Ensuring Fairness under Prior
Probability Shifts. In Proceedings of the 2021 AAAI/ACM Conference on
AI, Ethics, and Society, AIES ’21, pages 414–424.

[20] Borkar, J. and Chen, P.-Y. (2021). Simple Transparent Adversarial Ex-
amples. In ICLR 2021 Workshop on Security and Safety in Machine Learn-
ing Systems.

[21] Bortsova, G., González-Gonzalo, C., Wetstein, S. C., Dubost, F., Katra-
mados, I., Hogeweg, L., Liefers, B., van Ginneken, B., Pluim, J. P. W., Veta,
M., Sánchez, C. I., and de Bruijne, M. (2021). Adversarial Attack Vulner-
ability of Medical Image Analysis Systems: Unexplored Factors. Medical
Image Analysis, 73:102141.

References 117

[22] Brendel, W., Rauber, J., and Bethge, M. (2018). Decision-Based Ad-
versarial Attacks: Reliable Attacks Against Black-Box Machine Learning
Models. In International Conference on Learning Representations (ICLR).

[23] Bussone, A., Stumpf, S., and O’Sullivan, D. (2015). The Role of Ex-
planations on Trust and Reliance in Clinical Decision Support Systems. In
Proceedings of the 2015 International Conference on Healthcare Informatics
(ICHI), pages 160–169.

[24] Carlini, N., Mishra, P., Vaidya, T., Zhang, Y., Sherr, M., Shields, C.,
Wagner, D., and Zhou, W. (2016). Hidden Voice Commands. In Proceedings
of the 25th USENIX Security Symposium (USENIX Security 16), pages
513–530.

[25] Carlini, N. and Wagner, D. (2017). Towards Evaluating the Robustness of
Neural Networks. In Proceedings of the 2017 IEEE Symposium on Security
and Privacy (SP), pages 39–57.

[26] Carlini, N. and Wagner, D. (2018). Audio Adversarial Examples: Tar-
geted Attacks on Speech-to-Text. In 2018 IEEE Security and Privacy Work-
shops (SPW), pages 1–7.

[27] Cartella, F., Anunciação, O., Funabiki, Y., Yamaguchi, D., Akishita, T.,
and Elshocht, O. (2021). Adversarial Attacks for Tabular Data: Application
to Fraud Detection and Imbalanced Data. In Proceedings of the 2021 AAAI
Workshop on Artificial Intelligence Safety (SafeAI).

[28] Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C., and Su, J. K. (2019).
This Looks Like That: Deep Learning for Interpretable Image Recognition.
In Advances in Neural Information Processing Systems, volume 32, pages
8930–8941.

[29] Chen, P.-Y., Zhang, H., Sharma, Y., Yi, J., and Hsieh, C.-J. (2017).
ZOO: Zeroth Order Optimization Based Black-Box Attacks to Deep Neural
Networks without Training Substitute Models. In Proceedings of the 10th
ACM Workshop on Artificial Intelligence and Security (AISec), pages 15–
26.

[30] Chen, Z., Bei, Y., and Rudin, C. (2020). Concept Whitening for Inter-
pretable Image Recognition. Nature Machine Intelligence, 2(12):772–782.

[31] Cheng, M., Yi, J., Chen, P.-Y., Zhang, H., and Hsieh, C.-J. (2020).
Seq2Sick: Evaluating the Robustness of Sequence-to-Sequence Models with
Adversarial Examples. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(04):3601–3608.

[32] Co, K. T., Muñoz-González, L., Kanthan, L., Glocker, B., and Lupu, E. C.
(2020). Universal Adversarial Perturbations to Understand Robustness of
Texture vs. Shape-biased Training. arXiv preprint arXiv:1911.10364.

[33] Cybenko, G. (1989). Approximation by Superpositions of a Sigmoidal
Function. Mathematics of Control, Signals and Systems, 2(4):303–314.

[34] Deng, E., Qin, Z., Li, M., Ding, Y., and Qin, Z. (2021). Attacking the
Dialogue System at Smart Home. In Proceedings of the International Con-
ference on Collaborative Computing: Networking, Applications and Work-

118 References

sharing, Lecture Notes of the Institute for Computer Sciences, Social Infor-
matics and Telecommunications Engineering, pages 148–158.

[35] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009).
ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 248–255.

[36] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 4171–4186.

[37] Dombrowski, A.-K., Alber, M., Anders, C., Ackermann, M., Müller, K.-
R., and Kessel, P. (2019). Explanations Can Be Manipulated and Geometry
Is to Blame. In Advances in Neural Information Processing Systems, vol-
ume 32, pages 13589–13600.

[38] Doshi-Velez, F. and Kim, B. (2018). Considerations for Evaluation and
Generalization in Interpretable Machine Learning. In Explainable and Inter-
pretable Models in Computer Vision and Machine Learning, The Springer
Series on Challenges in Machine Learning, pages 3–17.

[39] Du, T., Ji, S., Li, J., Gu, Q., Wang, T., and Beyah, R. (2020). SirenAt-
tack: Generating Adversarial Audio for End-to-End Acoustic Systems. In
Proceedings of the 15th ACM Asia Conference on Computer and Commu-
nications Security, ASIA CCS ’20, pages 357–369.

[40] Ebrahimi, J., Lowd, D., and Dou, D. (2018). On Adversarial Examples
for Character-Level Neural Machine Translation. In Proceedings of the 27th
International Conference on Computational Linguistics (COLING), pages
653–663.

[41] Elliott, A., Law, S., and Russell, C. (2021). Explaining Classifiers Us-
ing Adversarial Perturbations on the Perceptual Ball. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 10693–10702.

[42] Esmaeilpour, M., Cardinal, P., and Koerich, A. L. (2021). Cyclic Defense
GAN Against Speech Adversarial Attacks. IEEE Signal Processing Letters,
28:1769–1773.

[43] Etmann, C., Lunz, S., Maass, P., and Schoenlieb, C. (2019). On the Con-
nection Between Adversarial Robustness and Saliency Map Interpretability.
In Proceedings of the 36th International Conference on Machine Learning
(ICML), volume 97 of Proceedings of Machine Learning Research, pages
1823–1832.

[44] Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C.,
Prakash, A., Kohno, T., and Song, D. (2018). Robust Physical-World At-
tacks on Deep Learning Visual Classification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
1625–1634.

References 119

[45] Finlayson, S. G., Bowers, J. D., Ito, J., Zittrain, J. L., Beam, A. L., and
Kohane, I. S. (2019). Adversarial Attacks on Medical Machine Learning.
Science, 363(6433):1287–1289.

[46] Fujiyoshi, H., Hirakawa, T., and Yamashita, T. (2019). Deep Learning-
Based Image Recognition for Autonomous Driving. IATSS Research,
43(4):244–252.

[47] Fursov, I., Morozov, M., Kaploukhaya, N., Kovtun, E., Rivera-Castro,
R., Gusev, G., Babaev, D., Kireev, I., Zaytsev, A., and Burnaev, E. (2021).
Adversarial Attacks on Deep Models for Financial Transaction Records. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery
& Data Mining, KDD ’21, pages 2868–2878.

[48] Gao, W. and Sebastiani, F. (2016). From Classification to Quantification
in Tweet Sentiment Analysis. Social Network Analysis and Mining, 6(1):19.

[49] Garg, S., Wu, Y., Balakrishnan, S., and Lipton, Z. C. (2020). A Uni-
fied View of Label Shift Estimation. In Advances in Neural Information
Processing Systems, volume 33, pages 3290–3300.

[50] Ghassemi, M., Oakden-Rayner, L., and Beam, A. L. (2021). The False
Hope of Current Approaches to Explainable Artificial Intelligence in Health
Care. The Lancet Digital Health, 3(11):e745–e750.

[51] Ghorbani, A., Abid, A., and Zou, J. (2019a). Interpretation of Neural
Networks Is Fragile. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 3681–3688.

[52] Ghorbani, A., Wexler, J., Zou, J. Y., and Kim, B. (2019b). Towards Au-
tomatic Concept-based Explanations. In Advances in Neural Information
Processing Systems, volume 32, pages 9277–9286.

[53] Giachanou, A. and Crestani, F. (2016). Like It or Not: A Survey of Twit-
ter Sentiment Analysis Methods. ACM Computing Surveys, 49(2):28.1–
28.41.

[54] Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M., and Kagal,
L. (2018). Explaining Explanations: An Overview of Interpretability of
Machine Learning. In 2018 IEEE International Conference on Data Science
and Advanced Analytics (DSAA), pages 80–89.

[55] Goddard, K., Roudsari, A., and Wyatt, J. C. (2012). Automation Bias: A
Systematic Review of Frequency, Effect Mediators, and Mitigators. Journal
of the American Medical Informatics Association, 19(1):121–127.

[56] Gong, Y., Li, B., Poellabauer, C., and Shi, Y. (2019). Real-Time Adver-
sarial Attacks. In Proceedings of the 28th International Joint Conference
on Artificial Intelligence (IJCAI-19), pages 4672–4680.

[57] González, P., Castaño, A., Chawla, N. V., and Coz, J. J. D. (2017a). A
Review on Quantification Learning. ACM Computing Surveys, 50(5):1–40.

[58] González, P., Dı́ez, J., Chawla, N., and del Coz, J. J. (2017b). Why
Is Quantification an Interesting Learning Problem? Progress in Artificial
Intelligence, 6(1):53–58.

120 References

[59] Goodfellow, I., Shlens, J., and Szegedy, C. (2015). Explaining and Har-
nessing Adversarial Examples. In International Conference on Learning
Representations (ICLR), pages 1–11.

[60] Gupta, T., Sinha, A., Kumari, N., Singh, M., and Krishnamurthy, B.
(2019). A Method for Computing Class-wise Universal Adversarial Pertur-
bations. arXiv preprint arXiv:1912.00466.

[61] Haffar, R., Jebreel, N. M., Domingo-Ferrer, J., and Sánchez, D. (2021).
Explaining Image Misclassification in Deep Learning via Adversarial Ex-
amples. In Proceedings of the International Conference on Modeling Deci-
sions for Artificial Intelligence (MDAI), Lecture Notes in Computer Sci-
ence, pages 323–334.

[62] Hasan, M., Rundensteiner, E., and Agu, E. (2019). Automatic Emo-
tion Detection in Text Streams by Analyzing Twitter Data. International
Journal of Data Science and Analytics, 7(1):35–51.

[63] Hase, P., Chen, C., Li, O., and Rudin, C. (2019). Interpretable Im-
age Recognition with Hierarchical Prototypes. In Proceedings of the AAAI
Conference on Human Computation and Crowdsourcing, volume 7, pages
32–40.

[64] Hayes, J. and Danezis, G. (2018). Learning Universal Adversarial Per-
turbations with Generative Models. In 2018 IEEE Security and Privacy
Workshops (SPW), pages 43–49.

[65] Heo, J., Joo, S., and Moon, T. (2019). Fooling Neural Network Inter-
pretations via Adversarial Model Manipulation. In Advances in Neural
Information Processing Systems, volume 32, pages 2925–2936.

[66] Hirano, H., Minagi, A., and Takemoto, K. (2021). Universal Adversarial
Attacks on Deep Neural Networks for Medical Image Classification. BMC
Medical Imaging, 21(1):1–13.

[67] Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer Feedfor-
ward Networks Are Universal Approximators. Neural Networks, 2(5):359–
366.

[68] Hossam, M., Le, T., Zhao, H., and Phung, D. (2021). Explain2Attack:
Text Adversarial Attacks via Cross-Domain Interpretability. In Proceedings
of the 25th International Conference on Pattern Recognition (ICPR), pages
8922–8928.

[69] Hussenot, L., Geist, M., and Pietquin, O. (2020). CopyCAT: Taking
Control of Neural Policies with Constant Attacks. In Proceedings of the 19th
International Conference on Autonomous Agents and MultiAgent Systems,
AAMAS ’20, pages 548–556.

[70] Ignatiev, A., Narodytska, N., and Marques-Silva, J. (2019). On Relating
Explanations and Adversarial Examples. In Advances in Neural Informa-
tion Processing Systems, volume 32, pages 15883–15893.

[71] Ilyas, A., Engstrom, L., Athalye, A., and Lin, J. (2018). Black-Box Adver-
sarial Attacks with Limited Queries and Information. In Proceedings of the
35th International Conference on Machine Learning (ICML), volume 80,
pages 2137–2146.

References 121

[72] Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B., and Madry,
A. (2019). Adversarial Examples Are Not Bugs, They Are Features. In
Advances in Neural Information Processing Systems 32, pages 125–136.

[73] Jetley, S., Lord, N., and Torr, P. (2018). With Friends Like These, Who
Needs Adversaries? In Advances in Neural Information Processing Systems
31, pages 10749–10759.

[74] Jiang, W., Wen, X., Zhan, J., Wang, X., and Song, Z. (2022).
Interpretability-Guided Defense Against Backdoor Attacks to Deep Neu-
ral Networks. IEE E Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 41(8):2611–2624.

[75] Johnson, S. L. J. (2019). AI, Machine Learning, and Ethics in Health
Care. Journal of Legal Medicine, 39(4):427–441.

[76] Kantchelian, A., Afroz, S., Huang, L., Islam, A. C., Miller, B., Tschantz,
M. C., Greenstadt, R., Joseph, A. D., and Tygar, J. D. (2013). Approaches
to Adversarial Drift. In Proceedings of the 2013 ACM Workshop on Artifi-
cial Intelligence and Security, AISec ’13, pages 99–110.

[77] Kaviani, S., Han, K. J., and Sohn, I. (2022). Adversarial Attacks and
Defenses on AI in Medical Imaging Informatics: A Survey. Expert Systems
with Applications, 198:116815.

[78] Khosla, A., Jayadevaprakash, N., Yao, B., and Li, F.-F. (2011). Novel
Dataset for Fine-Grained Image Categorization: Stanford Dogs. In CVPR
Workshop on Fine-Grained Visual Categorization (FGVC).

[79] Khrulkov, V. and Oseledets, I. (2018). Art of Singular Vectors and Uni-
versal Adversarial Perturbations. In Proceedings of the 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages
8562–8570.

[80] Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J., Viegas, F., and
Sayres, R. (2018). Interpretability Beyond Feature Attribution: Quantita-
tive Testing with Concept Activation Vectors (TCAV). In Proceedings of
the 35th International Conference on Machine Learning (ICML), volume 80
of Proceedings of Machine Learning Research, pages 2668–2677.

[81] Kindermans, P.-J., Hooker, S., Adebayo, J., Alber, M., Schütt, K. T.,
Dähne, S., Erhan, D., and Kim, B. (2019). The (Un)reliability of Saliency
Methods. In Explainable AI: Interpreting, Explaining and Visualizing Deep
Learning, volume 11700 of Lecture Notes in Computer Science, pages 267–
280.

[82] King, G. and Lu, Y. (2008). Verbal Autopsy Methods with Multiple
Causes of Death. Statistical Science, 23(1):78–91.

[83] Koh, P. W. and Liang, P. (2017). Understanding Black-Box Predictions
via Influence Functions. In Proceedings of the 34th International Confer-
ence on Machine Learning (ICML), volume 70 of Proceedings of Machine
Learning Research, pages 1885–1894.

[84] Korycki, L. and Krawczyk, B. (2020). Adversarial Concept Drift De-
tection under Poisoning Attacks for Robust Data Stream Mining. arXiv
preprint arXiv:2009.09497.

122 References

[85] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet Classi-
fication with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems, volume 25, pages 1097–1105.

[86] Kuchipudi, B., Nannapaneni, R. T., and Liao, Q. (2020). Adversarial
Machine Learning for Spam Filters. In Proceedings of the 15th International
Conference on Availability, Reliability and Security, ARES ’20, pages 1–6.

[87] Kumar, N., Vimal, S., Kayathwal, K., and Dhama, G. (2021). Evolu-
tionary Adversarial Attacks on Payment Systems. In Proceedings of the
20th IEEE International Conference on Machine Learning and Applica-
tions (ICMLA), pages 813–818.

[88] Kuppa, A. and Le-Khac, N.-A. (2020). Black Box Attacks on Explainable
Artificial Intelligence(XAI) Methods in Cyber Security. In 2020 Interna-
tional Joint Conference on Neural Networks (IJCNN), pages 1–8.

[89] Kurakin, A., Goodfellow, I., and Bengio, S. (2016). Adversarial Examples
in the Physical World. In Workshop of the 2017 International Conference
on Learning Representations (ICLR).

[90] Kurakin, A., Goodfellow, I. J., and Bengio, S. (2017). Adversarial Ma-
chine Learning at Scale. In International Conference on Learning Repre-
sentations (ICLR), pages 1–17.

[91] Lakkaraju, H. and Bastani, O. (2020). “How do I fool you?”: Manipu-
lating User Trust via Misleading Black Box Explanations. In Proceedings
of the AAAI/ACM Conference on AI, Ethics, and Society, AIES ’20, pages
79–85.

[92] Lakkaraju, H., Kamar, E., Caruana, R., and Leskovec, J. (2019). Faithful
and Customizable Explanations of Black Box Models. In Proceedings of the
AAAI/ACM Conference on AI, Ethics, and Society, AIES ’19, pages 131–
138.

[93] LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard,
W., and Jackel, L. (1989). Handwritten Digit Recognition with a Back-
Propagation Network. In Advances in Neural Information Processing Sys-
tems, volume 2, pages 396–404.

[94] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-
Based Learning Applied to Document Recognition. Proceedings of the
IEEE, 86(11):2278–2324.

[95] Levenshtein, V. I. (1966). Binary Codes Capable of Correcting Deletions,
Insertions, and Reversals. Soviet Physics Doklady, 10(8):707–710.

[96] Li, J., Qu, S., Li, X., Szurley, J., Kolter, J. Z., and Metze, F. (2019). Ad-
versarial Music: Real world Audio Adversary against Wake-word Detection
System. In Advances in Neural Information Processing Systems, volume 32,
pages 11931–11941.

[97] Li, J., Zhang, X., Jia, C., Xu, J., Zhang, L., Wang, Y., Ma, S., and Gao,
W. (2020a). Universal Adversarial Perturbations Generative Network For
Speaker Recognition. In 2020 IEEE International Conference on Multime-
dia and Expo (ICME), pages 1–6.

References 123

[98] Li, O., Liu, H., Chen, C., and Rudin, C. (2018). Deep Learning for Case-
Based Reasoning Through Prototypes: A Neural Network That Explains Its
Predictions. Proceedings of the AAAI Conference on Artificial Intelligence,
32(1):3530–3537.

[99] Li, Z., Liu, F., Yang, W., Peng, S., and Zhou, J. (2021). A Survey
of Convolutional Neural Networks: Analysis, Applications, and Prospects.
IEEE Transactions on Neural Networks and Learning Systems, pages 1–21.

[100] Li, Z., Wu, Y., Liu, J., Chen, Y., and Yuan, B. (2020b). AdvPulse:
Universal, Synchronization-free, and Targeted Audio Adversarial Attacks
via Subsecond Perturbations. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’20, pages
1121–1134.

[101] Lin, Y.-C., Hong, Z.-W., Liao, Y.-H., Shih, M.-L., Liu, M.-Y., and Sun,
M. (2017). Tactics of Adversarial Attack on Deep Reinforcement Learn-
ing Agents. In Proceedings of the 26th International Joint Conference on
Artificial Intelligence (IJCAI), IJCAI’17, pages 3756–3762.

[102] Lipton, Z., Wang, Y.-X., and Smola, A. (2018). Detecting and Correct-
ing for Label Shift with Black Box Predictors. In Proceedings of the 35th
International Conference on Machine Learning (ICML), pages 3122–3130.

[103] Lipton, Z. C. (2018). The Mythos of Model Interpretability: In Machine
Learning, the Concept of Interpretability Is Both Important and Slippery.
Queue, 16(3):31–57.

[104] Liu, N., Du, M., Guo, R., Liu, H., and Hu, X. (2021). Adversarial
Attacks and Defenses: An Interpretation Perspective. ACM SIGKDD Ex-
plorations Newsletter, 23(1):86–99.

[105] Liu, N., Yang, H., and Hu, X. (2018). Adversarial Detection with Model
Interpretation. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD ’18, pages 1803–
1811.

[106] Liu, Y., Chen, X., Liu, C., and Song, D. (2017). Delving into Transfer-
able Adversarial Examples and Black-Box Attacks. In International Con-
ference on Learning Representations (ICLR).

[107] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. (2018).
Towards Deep Learning Models Resistant to Adversarial Attacks. In Inter-
national Conference on Learning Representations (ICLR).

[108] Mahdavifar, S. and Ghorbani, A. A. (2019). Application of Deep Learn-
ing to Cybersecurity: A Survey. Neurocomputing, 347:149–176.

[109] Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to
Information Retrieval. Cambridge University Press.

[110] Metzen, J. H., Kumar, M. C., Brox, T., and Fischer, V. (2017). Universal
Adversarial Perturbations Against Semantic Image Segmentation. In 2017
IEEE International Conference on Computer Vision (ICCV), pages 2774–
2783.

[111] Michel Koerich, K., Esmailpour, M., Abdoli, S., Britto, A. d. S., and
Koerich, A. L. (2020). Cross-Representation Transferability of Adversarial

124 References

Attacks: From Spectrograms to Audio Waveforms. In 2020 International
Joint Conference on Neural Networks (IJCNN), pages 1–7.

[112] Milli, L., Monreale, A., Rossetti, G., Pedreschi, D., Giannotti, F., and
Sebastiani, F. (2015). Quantification in Social Networks. In 2015 IEEE In-
ternational Conference on Data Science and Advanced Analytics (DSAA),
pages 1–10.

[113] Moore, J., Hammerla, N., and Watkins, C. (2019). Explaining Deep
Learning Models with Constrained Adversarial Examples. In PRICAI 2019:
Trends in Artificial Intelligence, Lecture Notes in Computer Science, pages
43–56.

[114] Moosavi-Dezfooli, S.-M., Fawzi, A., Fawzi, O., and Frossard, P. (2017).
Universal Adversarial Perturbations. In Proceedings of the 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 86–94.

[115] Moosavi-Dezfooli, S.-M., Fawzi, A., Fawzi, O., Frossard, P., and Soatto,
S. (2018). Robustness of Classifiers to Universal Perturbations: A Geomet-
ric Perspective. In International Conference on Learning Representations
(ICLR).

[116] Moosavi-Dezfooli, S.-M., Fawzi, A., and Frossard, P. (2016). DeepFool:
A Simple and Accurate Method to Fool Deep Neural Networks. In Pro-
ceedings of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2574–2582.

[117] Mopuri, K. R., Ganeshan, A., and Babu, R. V. (2019). General-
izable Data-Free Objective for Crafting Universal Adversarial Perturba-
tions. IEEE Transactions on Pattern Analysis and Machine Intelligence,
41(10):2452–2465.

[118] Mopuri, K. R., Garg, U., and Babu, R. V. (2017). Fast Feature Fool:
A Data Independent Approach to Universal Adversarial Perturbations. In
Proceedings of the 2017 British Machine Vision Conference (BMVC), pages
30.1–30.12.

[119] Mopuri, K. R., Ojha, U., Garg, U., and Babu, R. V. (2018a). NAG:
Network for Adversary Generation. In Proceedings of the 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 742–751.

[120] Mopuri, K. R., Uppala, P. K., and Babu, R. V. (2018b). Ask, Acquire,
and Attack: Data-Free UAP Generation Using Class Impressions. In Pro-
ceedings of the European Conference on Computer Vision (ECCV), Lecture
Notes in Computer Science, pages 20–35.

[121] Mori, K., Fukui, H., Murase, T., Hirakawa, T., Yamashita, T., and Fu-
jiyoshi, H. (2019). Visual Explanation by Attention Branch Network for
End-to-End Learning-based Self-Driving. In Proceedings of the 2019 IEEE
Intelligent Vehicles Symposium (IV), pages 1577–1582.

[122] Muda, L., Begam, M., and Elamvazuthi, I. (2010). Voice Recognition Al-
gorithms using Mel Frequency Cepstral Coefficient (MFCC) and Dynamic
Time Warping (DTW) Techniques. Journal of Computing, 2(3):138–143.

References 125

[123] Neekhara, P., Hussain, S., Pandey, P., Dubnov, S., McAuley, J., and
Koushanfar, F. (2019). Universal Adversarial Perturbations for Speech
Recognition Systems. In Interspeech, pages 481–485.

[124] Nguyen, G., Kim, D., and Nguyen, A. (2021). The Effectiveness of Fea-
ture Attribution Methods and Its Correlation With Automatic Evaluation
Scores. In Advances in Neural Information Processing Systems, volume 34,
pages 26422–26436.

[125] Noack, A., Ahern, I., Dou, D., and Li, B. (2021). An Empirical Study on
the Relation Between Network Interpretability and Adversarial Robustness.
SN Computer Science, 2(1).

[126] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z. B., and
Swami, A. (2017). Practical Black-Box Attacks against Machine Learning.
In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, ASIA CCS ’17, pages 506–519.

[127] Pérez-Gállego, P., Quevedo, J. R., and del Coz, J. J. (2017). Using En-
sembles for Problems With Characterizable Changes in Data Distribution:
A Case Study on Quantification. Information Fusion, 34:87–100.

[128] Pillai, R., Oza, P., and Sharma, P. (2019). Review of Machine Learn-
ing Techniques in Health Care. In Proceedings of the 2019 International
Conference on Recent Innovations in Computing (ICRIC), Lecture Notes
in Electrical Engineering, pages 103–111.

[129] Poursaeed, O., Katsman, I., Gao, B., and Belongie, S. (2018). Gen-
erative Adversarial Perturbations. In Proceedings of the 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages
4422–4431.

[130] Praher, V., Prinz, K., Flexer, A., and Widmer, G. (2021). On the Verac-
ity of Local, Model-Agnostic Explanations in Audio Classification: Targeted
Investigations With Adversarial Examples. In Proceedings of the 22nd In-
ternational Society for Music Information Retrieval Conference (ISMIR),
pages 531–538.

[131] Qi, L., Khaleel, M., Tavanapong, W., Sukul, A., and Peterson, D. (2021).
A Framework for Deep Quantification Learning. In Machine Learning and
Knowledge Discovery in Databases, Lecture Notes in Computer Science,
pages 232–248.

[132] Qin, Y., Carlini, N., Cottrell, G., Goodfellow, I., and Raffel, C. (2019).
Imperceptible, Robust, and Targeted Adversarial Examples for Automatic
Speech Recognition. In Proceedings of the 36th International Conference
on Machine Learning (ICML), pages 5231–5240.

[133] Qiu, H., Custode, L. L., and Iacca, G. (2021). Black-Box Adversar-
ial Attacks using Evolution Strategies. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion (GECCO), GECCO ’21,
pages 1827–1833.

[134] Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A., and Lawrence,
N. D. (2009). When Training and Test Sets Are Different: Characterizing
Learning Transfer. In Dataset Shift in Machine Learning, pages 3–28.

126 References

[135] Rabanser, S., Günnemann, S., and Lipton, Z. (2019). Failing Loudly:
An Empirical Study of Methods for Detecting Dataset Shift. In Advances
in Neural Information Processing Systems, volume 32, pages 1396–1408.

[136] Ras, G., van Gerven, M., and Haselager, P. (2018). Explanation Methods
in Deep Learning: Users, Values, Concerns and Challenges. In Explainable
and Interpretable Models in Computer Vision and Machine Learning, The
Springer Series on Challenges in Machine Learning, pages 19–36.

[137] Renard, X., Laugel, T., Lesot, M.-J., Marsala, C., and Detyniecki,
M. (2019). Detecting Potential Local Adversarial Examples for Human-
Interpretable Defense. In Proceedings of the 2018 ECML PKDD Workshop
on Recent Advances in Adversarial Machine Learning, Lecture Notes in
Computer Science, pages 41–47.

[138] Ros, A. S. and Doshi-Velez, F. (2018). Improving the Adversarial Ro-
bustness and Interpretability of Deep Neural Networks by Regularizing
Their Input Gradients. Proceedings of the AAAI Conference on Artificial
Intelligence, 32(1):1660–1669.

[139] Rudin, C. (2019). Stop Explaining Black Box Machine Learning Models
for High Stakes Decisions and Use Interpretable Models Instead. Nature
Machine Intelligence, 1(5):206–215.

[140] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,
Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-
Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. Inter-
national Journal of Computer Vision, 115(3):211–252.

[141] Saerens, M., Latinne, P., and Decaestecker, C. (2002). Adjusting the
Outputs of a Classifier to New a Priori Probabilities: A Simple Procedure.
Neural Computation, 14(1):21–41.

[142] Sainath, T. N. and Parada, C. (2015). Convolutional Neural Networks
for Small-Footprint Keyword Spotting. In Interspeech, pages 1478–1482.

[143] Sallo, R. A., Esmaeilpour, M., and Cardinal, P. (2021). Adversarially
Training for Audio Classifiers. In Proceedings of the 25th International
Conference on Pattern Recognition (ICPR), pages 9569–9576.

[144] Saralajew, S., Holdijk, L., Rees, M., Asan, E., and Villmann, T. (2019).
Classification-by-Components: Probabilistic Modeling of Reasoning over a
Set of Components. In Advances in Neural Information Processing Systems,
volume 32, pages 2792–2803.

[145] Saravia, E., Liu, H.-C. T., Huang, Y.-H., Wu, J., and Chen, Y.-S. (2018).
CARER: Contextualized Affect Representations for Emotion Recognition.
In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pages 3687–3697.

[146] Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and
Batra, D. (2017). Grad-CAM: Visual Explanations from Deep Networks
via Gradient-Based Localization. In Proceedings of the 2017 IEEE Inter-
national Conference on Computer Vision (ICCV), pages 618–626.

References 127

[147] Serradilla, O., Zugasti, E., Rodriguez, J., and Zurutuza, U. (2022). Deep
Learning Models for Predictive Maintenance: A Survey, Comparison, Chal-
lenges and Prospects. Applied Intelligence, 52(10):10934–10964.

[148] Sethi, T. S. and Kantardzic, M. (2018). Handling Adversarial Concept
Drift in Streaming Data. Expert Systems with Applications, 97:18–40.

[149] Sharif, M., Bhagavatula, S., Bauer, L., and Reiter, M. K. (2016). Ac-
cessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face
Recognition. In Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS), CCS ’16, pages 1528–1540.

[150] Silla, C. N. and Freitas, A. A. (2011). A Survey of Hierarchical Classifi-
cation Across Different Application Domains. Data Mining and Knowledge
Discovery, 22(1):31–72.

[151] Simonyan, K., Vedaldi, A., and Zisserman, A. (2014). Deep Inside Con-
volutional Networks: Visualising Image Classification Models and Saliency
Maps. In Workshop of the 2014 International Conference on Learning Rep-
resentations (ICLR).

[152] Slack, D., Hilgard, S., Jia, E., Singh, S., and Lakkaraju, H. (2020).
Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation
Methods. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and
Society, pages 180–186.

[153] Sokol, K. and Flach, P. (2019). Counterfactual Explanations of Ma-
chine Learning Predictions: Opportunities and Challenges for AI Safety. In
Proceedings of the 2019 AAAI Workshop on Artificial Intelligence Safety
(SafeAI), pages 95–99.

[154] Stiglic, G., Kocbek, P., Fijacko, N., Zitnik, M., Verbert, K., and Cilar,
L. (2020). Interpretability of Machine Learning-Based Prediction Models in
Healthcare. WIREs Data Mining and Knowledge Discovery, 10(5):e1379.

[155] Stock, P. and Cisse, M. (2018). ConvNets and ImageNet Beyond Accu-
racy: Understanding Mistakes and Uncovering Biases. In Computer Vision
– ECCV 2018, volume 11210 of Lecture Notes in Computer Science (LNCS),
pages 504–519.

[156] Stutz, D., Hein, M., and Schiele, B. (2019). Disentangling Adversarial
Robustness and Generalization. In Proceedings of the 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages
6969–6980.

[157] Subramanian, V., Pankajakshan, A., Benetos, E., Xu, N., McDonald, S.,
and Sandler, M. (2020). A Study on the Transferability of Adversarial At-
tacks in Sound Event Classification. In Proceedings of the 2020 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 301–305.

[158] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Good-
fellow, I., and Fergus, R. (2014). Intriguing Properties of Neural Networks.
In International Conference on Learning Representations (ICLR).

[159] Tanay, T. and Griffin, L. (2016). A Boundary Tilting Perspective on the
Phenomenon of Adversarial Examples. arXiv preprint arXiv:1608.07690.

128 References

[160] Tao, G., Ma, S., Liu, Y., and Zhang, X. (2018). Attacks Meet Inter-
pretability: Attribute-Steered Detection of Adversarial Samples. In Ad-
vances in Neural Information Processing Systems, volume 31, pages 7717–
7728.

[161] Tretschk, E., Oh, S. J., and Fritz, M. (2018). Sequential Attacks on
Agents for Long-Term Adversarial Goals. arXiv preprint arXiv:1805.12487.

[162] Tsipras, D., Santurkar, S., Engstrom, L., Ilyas, A., and Madry, A.
(2020). From ImageNet to Image Classification: Contextualizing Progress
on Benchmarks. In Proceedings of the 37th International Conference on
Machine Learning (ICML), volume 119 of Proceedings of Machine Learn-
ing Research, pages 9625–9635.

[163] Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., and Madry, A.
(2019). Robustness May Be at Odds with Accuracy. In International Con-
ference on Learning Representations (ICLR).

[164] Ustun, B., Spangher, A., and Liu, Y. (2019). Actionable Recourse in
Linear Classification. In Proceedings of the Conference on Fairness, Ac-
countability, and Transparency, FAT* ’19, pages 10–19.

[165] Vadillo, J. and Santana, R. (2021). Universal Adversarial Examples in
Speech Command Classification. In Proceedings of the XIX Conference of
the Spanish Association for Artificial Intelligence (CAEPIA), pages 642–
647.

[166] van der Waa, J., Nieuwburg, E., Cremers, A., and Neerincx, M. (2021).
Evaluating XAI: A Comparison of Rule-Based and Example-Based Expla-
nations. Artificial Intelligence, 291:103404.

[167] Viganò, L. and Magazzeni, D. (2020). Explainable Security. In Pro-
ceedings of the 2020 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW), pages 293–300.

[168] Vucetic, S. and Obradovic, Z. (2001). Classification on Data with Biased
Class Distribution. In Machine Learning: ECML 2001, Lecture Notes in
Computer Science, pages 527–538.

[169] Wachter, S., Mittelstadt, B., and Russell, C. (2017). Counterfactual
Explanations Without Opening the Black Box: Automated Decisions and
the GDPR. Harvard Journal of Law & Technology, 31(2):842–887.

[170] Wallace, E., Feng, S., Kandpal, N., Gardner, M., and Singh, S. (2019).
Universal Adversarial Triggers for Attacking and Analyzing NLP. In Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 2153–2162.

[171] Wang, J., Tuyls, J., Wallace, E., and Singh, S. (2020a). Gradient-Based
Analysis of NLP Models is Manipulable. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages 247–258.

[172] Wang, J., Wu, Y., Li, M., Lin, X., Wu, J., and Li, C. (2020b). Inter-
pretability is a Kind of Safety: An Interpreter-Based Ensemble for Adver-
sary Defense. In Proceedings of the 26th ACM SIGKDD International Con-

References 129

ference on Knowledge Discovery & Data Mining (KDD), KDD ’20, pages
15–24.

[173] Wang, L., Lin, Z. Q., and Wong, A. (2020c). COVID-Net: A Tailored
Deep Convolutional Neural Network Design for Detection of COVID-19
Cases From Chest X-Ray Images. Scientific Reports, 10(1):19549.

[174] Wang, Y., Ma, X., Bailey, J., Yi, J., Zhou, B., and Gu, Q. (2019). On
the Convergence and Robustness of Adversarial Training. In Proceedings
of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 6586–6595.

[175] Warden, P. (2018). Speech Commands: A Dataset for Limited-
Vocabulary Speech Recognition. arXiv preprint arXiv:1804.03209.

[176] Wasserblat, M., Pereg, O., and Izsak, P. (2020). Exploring the Bound-
aries of Low-Resource BERT Distillation. In Proceedings of SustaiNLP:
Workshop on Simple and Efficient Natural Language Processing, pages 35–
40.

[177] Wilcoxon, F. (1945). Individual Comparisons by Ranking Methods.
Biometrics Bulletin, 1(6):80–83.

[178] Xie, Y., Shi, C., Li, Z., Liu, J., Chen, Y., and Yuan, B. (2020). Real-
Time, Universal, and Robust Adversarial Attacks Against Speaker Recog-
nition Systems. In Proceedings of the 2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 1738–1742.

[179] Xu, K., Zhang, G., Liu, S., Fan, Q., Sun, M., Chen, H., Chen, P.-Y.,
Wang, Y., and Lin, X. (2020). Adversarial T-Shirt! Evading Person Detec-
tors in a Physical World. In Proceedings of the 2020 European Conference
on Computer Vision (ECCV), Lecture Notes in Computer Science, pages
665–681.

[180] Xue, M., Yuan, C., Wang, J., Liu, W., and Nicopolitidis, P. (2020).
DPAEG: A Dependency Parse-Based Adversarial Examples Generation
Method for Intelligent Q&A Robots. Security and Communication Net-
works, 2020.

[181] Yakura, H. and Sakuma, J. (2019). Robust Audio Adversarial Exam-
ple for a Physical Attack. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence (IJCAI), pages 5334–5341.

[182] Yang, P., Chen, J., Hsieh, C.-J., Wang, J.-L., and Jordan, M. (2020).
ML-LOO: Detecting Adversarial Examples with Feature Attribution. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 34(04):6639–
6647.

[183] Yang, Z., Li, B., Chen, P.-Y., and Song, D. (2019). Characterizing
Audio Adversarial Examples Using Temporal Dependency. In International
Conference on Learning Representations (ICLR).

[184] Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., and Lipson, H. (2015).
Understanding Neural Networks Through Deep Visualization. In ICML
2015 Deep Learning Workshop.

[185] Yuan, X., Chen, Y., Zhao, Y., Long, Y., Liu, X., Chen, K., Zhang,
S., Huang, H., Wang, X., and Gunter, C. A. (2018). CommanderSong:

130 References

A Systematic Approach for Practical Adversarial Voice Recognition. In
Proceedings of the 27th USENIX Security Symposium (USENIX Security
18), pages 49–64.

[186] Yuan, X., He, P., Zhu, Q., and Li, X. (2019). Adversarial Examples:
Attacks and Defenses for Deep Learning. IEEE Transactions on Neural
Networks and Learning Systems, 30(9):2805–2824.

[187] Zarrad, A., Alsmadi, I., and Aljaloud, A. (2019). A Near Real-Time
Approach for Sentiment Analysis Approach Using Arabic Tweets. Journal
of Computers, 14(10):596–614.

[188] Zeiler, M. D. and Fergus, R. (2014). Visualizing and Understanding
Convolutional Networks. In Computer Vision – ECCV 2014, volume 8689
of Lecture Notes in Computer Science (LNCS), pages 818–833.

[189] Zhang, C., Benz, P., Imtiaz, T., and Kweon, I.-S. (2020a). CD-UAP:
Class Discriminative Universal Adversarial Perturbation. Proceedings of the
AAAI Conference on Artificial Intelligence, 34(04):6754–6761.

[190] Zhang, C., Benz, P., Imtiaz, T., and Kweon, I. S. (2020b). Understand-
ing Adversarial Examples From the Mutual Influence of Images and Pertur-
bations. In Proceedings of the 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 14509–14518.

[191] Zhang, C., Ye, Z., Wang, Y., and Yang, Z. (2018a). Detecting Adver-
sarial Perturbations with Saliency. In Proceedings of the IEEE 3rd Interna-
tional Conference on Signal and Image Processing (ICSIP), pages 271–275.

[192] Zhang, K., Schölkopf, B., Muandet, K., and Wang, Z. (2013). Domain
Adaptation under Target and Conditional Shift. In Proceedings of the 30th
International Conference on Machine Learning (ICML), volume 28 of Pro-
ceedings of Machine Learning Research, pages 819–827.

[193] Zhang, Q., Wu, Y. N., and Zhu, S.-C. (2018b). Interpretable Convolu-
tional Neural Networks. In Proceedings of the 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 8827–8836.

[194] Zhang, T. and Zhu, Z. (2019). Interpreting Adversarially Trained Con-
volutional Neural Networks. In Proceedings of the 36th International Con-
ference on Machine Learning (ICML), volume 97 of Proceedings of Machine
Learning Research, pages 7502–7511.

[195] Zhang, X., Wang, N., Shen, H., Ji, S., Luo, X., and Wang, T. (2020c).
Interpretable Deep Learning under Fire. In Proceedings of the 29th USENIX
Security Symposium (USENIX Security 20), pages 1659–1676.

[196] Zhang, Y., Tiňo, P., Leonardis, A., and Tang, K. (2021). A Survey on
Neural Network Interpretability. IEEE Transactions on Emerging Topics
in Computational Intelligence, 5(5):726–742.

[197] Zheng, H., Fernandes, E., and Prakash, A. (2019). Analyzing the Inter-
pretability Robustness of Self-Explaining Models. In ICML 2019 Security
and Privacy of Machine Learning Workshop.

[198] Zheng, Y., Lu, Y., and Velipasalar, S. (2020). An Effective Adversarial
Attack on Person Re-Identification in Video Surveillance via Dispersion
Reduction. IEEE Access, 8:183891–183902.

References 131

[199] Zhou, W., Hou, X., Chen, Y., Tang, M., Huang, X., Gan, X., and Yang,
Y. (2018). Transferable Adversarial Perturbations. In Proceedings of the
European Conference on Computer Vision (ECCV), volume 11218, pages
452–467.

132 References

Appendices

133

A

Annex for Chapter 3

A.1 Results with Different Adversarial Attacks

In this section, we show that the methods proposed in Chapter 3 can be ap-
plied to a wide range of targeted attacks. For that purpose, the experimenta-
tion described in Section 3.4.4 is repeated, employing the following adversarial
attacks: C&W, FGSM and PGD.
As detailed in Section 2.3.2, the selected adversarial attacks employ different
strategies to generate the adversarial perturbations and to restrict the amount
of perturbation. In the DeepFool algorithm, the perturbation is constructed
in a greedy fashion, and the norm of the perturbation is not subject to any
constraint. In the case of the FGSM, the parameter ε determines the `∞
norm of the perturbation beforehand. Similarly, the maximum `∞ norm of the
perturbation is explicitly specified beforehand in the PGD method. Finally,
in the C&W attack, the norm of the perturbation is modeled as a term to be
minimized in the optimization problem. Therefore, the selected attacks will be
used to illustrate the effectiveness and validity of our approaches for different
underlying adversarial attack strategies.
The experimental details and parameters used for each attack are specified
as follows. First, both the DeepFool and PGD algorithms were restricted to
a maximum of 30 iterations. For the C&W attack, the parameter µ is set to
0 and a binary search is used to tune the parameter τ for every input (see
Equations (2.16) and (2.17) for more details). This attack was restricted to a
maximum of 1000 optimization steps.
The results are shown in Figure A.1, A.2 and A.3, respectively. The following
performance metrics are shown for each attack: in the first row, fooling rate
(left), mean absolute difference (center) and maximum absolute difference
(right), and, in the second row, success percentage (left), Kullback-Leibler
divergence (center) and Spearman correlation (right). The results are shown
for different values of ε, which have been selected to cover a representative
range of fooling rate for each attack. To be consistent with the `p norm used

136 A Annex for Chapter 3

to generate the perturbations in the FGSM and PGD methods, the `∞ norm
has been limited for these attacks instead of the `2 norm.
Independently of the underlying adversarial attack employed, the results are
comparable to those reported in Section 3.4.4. Comparing the overall effec-
tiveness obtained with each method, in all the cases the EWTM achieved the
best results in approximating the target distributions, the AM the worst re-
sults, and the UBM and the CRM intermediate results. On the other hand,
the EWTM achieved lower fooling rates in comparison to the other methods,
which achieved values close to the optimal fooling rate. Nonetheless, more
general conclusions can also be drawn by analyzing the results according to
different factors, such as the reach of the underlying attack, that is, the num-
ber of samples that can be moved from one class to another without exceeding
the norm restrictions. To better assess this factor, Figure A.4 shows, for each
attack, the frequency of each class transition in the set of samples X̄ consid-
ered in our experiments.1 These results have been computed for the maximum
value of ε considered for each attack.
As can be seen, the greater the reach to the incorrect classes and the more
regular this reach is among the possible pairs of source-target classes (which
occurs for both C&W and PGD attacks), the greater the similarity between
the performance of the four methods. Moreover, even the AM achieved a high
effectiveness in such scenarios, although in all the cases the remaining methods
achieved a superior performance. In contrast, when the reach is considerably
more irregular and sparse, as occurs for the FGSM, the differences between
these methods is more pronounced. These results corroborate the finding that
the strategies employed in the UBM, the EWTM and the CRM are capable
of taking advantage of the information about the problem to better approxi-
mate the target distributions, especially in the more challenging scenarios in
which few class transitions can be produced. Moreover, for the FGSM attack,
the UBM achieved the best results in approximating the target distributions,
being the method that best adapted to the challenging scenario imposed by
the low reach of that attack, yet at the expense of obtaining lower fooling
rates. Finally, the success percentage of the CRM slightly decreased when the
FGSM was employed, which might reveal that this method is not completely
effective when the reach is very sparse, although the success percentage was
above 96% in all the cases.

1 It is important to note that the attack strategies and restrictions considered have
been selected to illustrate the effectiveness of our approaches in different scenarios,
precisely, when the capabilities of the underlying adversarial attack is limited
according to different factors, such as the maximum distortion allowed or the
number of steps (that is, sacrificing effectiveness for efficiency). Therefore, these
results should be taken as a comparison of the four methods introduced in Chapter
3 (Section 3.3), rather than an exhaustive or representative comparison between
the effectiveness of the adversarial attacks, as the restrictions or parameters set to
each attack are not necessarily comparable or equivalent (for example, increasing
the number of iterations for DeepFool would increase its reach).

A.1 Results with Different Adversarial Attacks 137

Overall, these results corroborate the conclusions reported in Chapter 3, and
show the validity of our approaches to effectively guide a wide range of ad-
versarial attacks.

0.01 0.05 0.1 0.15
ε

0

20

40

60

80

100
Fo

ol
in

g
ra

te
 (%

)
Fooling rate percentage

Max. fooling rate
AM
UBM
EWTM
CRM

0.01 0.05 0.1 0.15
ε

0.01

0.02

0.03

0.04

0.05

0.06

M
ea

n
ab

s.
di

ffe
re

nc
e

Mean abs. difference
between P̃(Y) and P̂(Y)

0.01 0.05 0.1 0.15
ε

0.04
0.06
0.08
0.10
0.12
0.14
0.16

M
ax

 a
bs

. d
iff

er
en

ce

Max. abs. difference
between P̃(Y) and P̂(Y)

0.01 0.05 0.1 0.15
ε

0

25

50

75

100

Su
cc

es
s p

er
ce

nt
ag

e

Success percentage

0.01 0.05 0.1 0.15
ε

0.05
0.10
0.15
0.20
0.25
0.30
0.35

D
K
L
(P̃

(Y
),
P̂(
Y
))

KL divergence
 between P̃(Y) and P̂(Y)

0.01 0.05 0.1 0.15
ε

0.2

0.4

0.6

0.8

Co
rre

la
tio

n

Spearman correlation
between P̃(Y) and P̂(Y)

Fig. A.1: Performance of the proposed methods using the Carlini & Wagner
adversarial attack.

138 A Annex for Chapter 3

5e-05
0.0001

0.0005
0.001

0.002
0.005 0.01 0.02

ε

0

20

40

60

80

100

Fo
ol

in
g

ra
te

 (%
)

Fooling rate percentage
Max. fooling rate
AM
UBM
EWTM
CRM

5e-05
0.0001

0.0005
0.001

0.002
0.005 0.01 0.02

ε

0.030

0.035

0.040

0.045

0.050

0.055

0.060

M
ea

n
ab

s.
di

ffe
re

nc
e

Mean abs. difference
between P̃(Y) and P̂(Y)

5e-05
0.0001

0.0005
0.001

0.002
0.005 0.01 0.02

ε

0.11
0.12
0.13
0.14
0.15
0.16
0.17

M
ax

 a
bs

. d
iff

er
en

ce

Max. abs. difference
between P̃(Y) and P̂(Y)

5e-05
0.0001

0.0005
0.001

0.002
0.0050.010.02

ε

85

90

95

100

Su
cc

es
s p

er
ce

nt
ag

e

Success percentage

5e-05
0.0001

0.0005
0.001

0.002
0.005 0.01 0.02

ε

0.15

0.20

0.25

0.30

0.35

0.40

D
K
L
(P̃

(Y
),
P̂(
Y
))

KL divergence
 between P̃(Y) and P̂(Y)

5e-05
0.0001

0.0005
0.001

0.002
0.005 0.01 0.02

ε

0.2

0.4

0.6

0.8

Co
rre

la
tio

n

Spearman correlation
between P̃(Y) and P̂(Y)

Fig. A.2: Performance of the proposed methods using the Fast Gradient Sign
Method.

A.1 Results with Different Adversarial Attacks 139

5e-05
0.0001

0.0005
0.001

0.002
0.005

ε

0

20

40

60

80

100

Fo
ol

in
g

ra
te

 (%
)

Fooling rate percentage

Max. fooling rate
AM
UBM
EWTM
CRM

5e-05
0.0001

0.0005
0.001

0.002
0.005

ε

0.01

0.02

0.03

0.04

0.05

M
ea

n
ab

s.
di

ffe
re

nc
e

Mean abs. difference
between P̃(Y) and P̂(Y)

5e-05
0.0001

0.0005
0.001

0.002
0.005

ε

0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

M
ax

 a
bs

. d
iff

er
en

ce

Max. abs. difference
between P̃(Y) and P̂(Y)

5e-05
0.0001

0.0005
0.001

0.002
0.005

ε

85

90

95

100

Su
cc

es
s p

er
ce

nt
ag

e

Success percentage

5e-05
0.0001

0.0005
0.001

0.002
0.005

ε

0.00
0.05
0.10
0.15
0.20
0.25
0.30

D
K
L
(P̃

(Y
),
P̂(
Y
))

KL divergence
 between P̃(Y) and P̂(Y)

5e-05
0.0001

0.0005
0.001

0.002
0.005

ε

0.5

0.6

0.7

0.8

0.9

1.0

Co
rre

la
tio

n

Spearman correlation
between P̃(Y) and P̂(Y)

Fig. A.3: Performance of the proposed methods using the Projected Gradient
Descent attack.

140 A Annex for Chapter 3

sil
.

un
k. ye
s no up

do
wn le

ft
rig

ht on of
f

st
op go

Target class

go
stop

off
on

right
left

down
up
no

yes
unk.

sil.

Gr
ou

nd
-tr

ut
h

cla
ss

DF, ε= 0.15

sil
.

un
k. ye
s no up

do
wn le

ft
rig

ht on of
f

st
op go

Target class

CW, ε= 0.15

sil
.

un
k. ye
s no up

do
wn le

ft
rig

ht on of
f

st
op go

Target class

FGSM, ε= 0.02

sil
.

un
k. ye
s no up

do
wn le

ft
rig

ht on of
f

st
op go

Target class

PGD, ε= 0.005

0

200

400

600

800

1000

Nu
m

be
r o

f s
am

pl
es

Fig. A.4: R matrices (see Equation 3.5) obtained with different attack strate-
gies: DeepFool (DF), Carlini & Wagner attack (C&W), Fast Gradient Sign
Method (FGSM), and Projected Gradient Descent (PGD). These results have
been computed using the maximum value of ε evaluated in the experiments
for each attack.

A.2 Reducing the Size of the Set X 141

A.2 Reducing the Size of the Set X

In this section, we analyze the effect of reducing the number of samples per
class N (i.e., the total number of samples is 12 · N , which is the size of
the set X) that are used to generate the transition matrices on the effec-
tiveness of the methods introduced in Section 3.3. For this purpose, we re-
peated the experiments described in Section 3.4.4 using different values for
N : {1, 10, 50, 100, 500}. As the set X̄ used in the k-fold cross-validation to
validate our methods is composed of 1000 samples per class, the number of
folds will be determined by k = 1000

N . The cross-validation was repeated 50
times when N = 500, 10 times when N = 100, 5 times when N = 50 and a
single time when N = 10 and N = 1. Finally, the results will be computed
using a maximum distortion threshold of ε = 0.01, and the analysis will focus
on the DeepFool algorithm and on the AM, the UBM and the EWTM.
Regarding the percentage of success in finding feasible solutions to the linear
programs, both the AM and the UBM maintained a success rate of 100% for
all the values of N tried. For the EWTM, a success rate of 100% was obtained
when N ≥ 50, 84.6% when N = 10 and 0.8% when N = 1, which shows that
this method is not capable of producing valid transition matrices when a low
number of samples per class is available.2

Regarding the effectiveness of the methods in approximating the target distri-
butions, the following performance metrics are shown in Figure A.5, indepen-
dently for each method: fooling rate (top left), maximum absolute difference
(top right), Kullback-Leibler divergence (bottom left) and Spearman correla-
tion (bottom right). In every figure, for each value of N , the average result
obtained for the different cross-validations is shown, as well as the average
standard deviation obtained for each target distribution along all the folds
evaluated, which is depicted by vertical bars. Only the cases in which a suc-
cess rate of 100% is achieved by the methods are shown, thus ommiting the
results corresponding to the EWTM when N ≤ 10. According to the results,
although the effectiveness decreases when N is highly reduced (e.g., N ≤ 10),
a high effectiveness is maintained even when the number of samples per class
is reduced to N = 50. These results show that a considerably small number of
inputs per class can be used to efficiently generate our attacks, and, also, that
our attacks are effective (in the prediction phase) even when they are applied
to a number of samples considerably larger than the number of elements used
to optimize the attacks.3

2 As a single k-fold cross-validation is performed for N = 10 and N = 1, the success
percentage has been computed as the number of folds in which a valid transition
matrix is obtained, and this value has been averaged for the 100 target probability
distributions considered.

3 The loss in the effectiveness when N is reduced might also depend on the regu-
larity with which inputs belonging to the same class can be sent to the remaining
classes, and, therefore, the loss could be higher in those problems in which there
exists a low regularity.

142 A Annex for Chapter 3

1 10 50 100 500
Number of samples per class in X

0.30
0.35
0.40
0.45
0.50
0.55
0.60

FR
 (%

)

Fooling rate

AM
UBM
EWTM

1 10 50 100 500
Number of samples per class in X

0.09

0.10

0.11

0.12

0.13

M
ax

 a
bs

. d
iff

er
en

ce

Max abs. difference between P̃(Y) and P̂(Y)

1 10 50 100 500
Number of samples per class in X

0.12
0.14
0.16
0.18
0.20
0.22
0.24

D
K
L
(P̃

(Y
),
P̂(
Y
))

KL divergence between P̃(Y) and P̂(Y)

1 10 50 100 500
Number of samples per class in X

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

Co
rre

la
tio

n

Spearman correlation between P̃(Y) and P̂(Y)

Fig. A.5: Effectiveness of the introduced methods for different numbers
of samples per class (N) used to generate the transition matrices: N =
{1, 10, 50, 100, 500}. The results are shown for the AM, the UBM and the
EWTM, considering the following metrics: Fooling rate (top-left), maximum
absolute difference (top-right), Kullback-Leibler divergence (bottom-left) and
Spearman correlation (bottom-right). In each figure, for each value of N , the
standard deviation has been included, represented using vertical bars.

B

Annex for Chapter 5

This annex includes complementary information to the experimental analysis
carried out in Section 5.4. Firstly, the accuracy of the employed classification
model on the test set of the Speech Command Dataset is shown in Table B.1,
evaluated for the entire set as well as for each class independently. This table
also includes the number of samples per class in the test set.

Class Accuracy Samples

Silence 99.51 408
Unknown 66.42 408
Yes 94.03 419
No 74.57 405
Up 92.00 425
Down 80.79 406
Left 89.81 412
Right 88.64 396
On 87.12 396
Off 81.59 402
Stop 93.67 411
Go 77.36 402

Average 85.52 -

Table B.1: Initial accuracy percentage of the DNN on the test set of the Speech
Command Dataset.

144 B Annex for Chapter 5

Secondly, as a complement to Figure 5.3 and Table 5.1, Table B.2 shows the
effectiveness of each universal adversarial perturbation generated in Section
5.4, using Algorithm 2.

Experiment
Restricted class

None {Left} {Left,Unk.}
1 46.34 37.73 33.88
2 35.29 31.56 34.24
3 41.25 36.35 37.49
4 38.47 37.42 34.91
5 38.35 32.86 34.31
6 30.13 30.30 29.84
7 32.52 34.55 32.88
8 33.98 34.29 30.94
9 41.08 37.14 33.86
10 41.94 36.80 35.15

Mean 37.94 34.90 33.75
Mean1 41.68 37.39 37.08
Mean2 44.97 40.32 39.90

1 Without considering dominant classes.
2 Without considering dominant classes and Si-

lence.

Table B.2: Fooling rate percentage of the universal adversarial perturbations
generated using Algorithm 2. The results are computed for a set of test sam-
ples, which were not seen during the generation of the universal perturbations.

	Symbols
	Introduction
	Objectives
	Outlook of the Dissertation

	Background
	Machine Learning
	Deep Neural Networks
	Adversarial Examples

	Extending Adversarial Attacks to Produce Adversarial Class Probability Distributions
	Introduction
	Producing Specific Class Probability Distributions
	Constructing Optimal Transition Matrices to Guide Targeted Attacks
	Validating Our Proposals: Setup and Results
	Counteracting Label-Shift Detection Algorithms in Data Streaming Scenarios
	Conclusions

	When and How to Fool Explainable Models (and Humans) with Adversarial Examples
	Introduction
	Related Work
	Extending Adversarial Examples for Explainable ML Scenarios
	Illustration of Context-Aware Adversarial Attacks
	Conclusions

	Analysis of Dominant Classes in Universal Adversarial Perturbations
	Introduction
	Related Work
	Proposed Framework
	Dominant Classes in Speech Command Classification
	Hypotheses About the Existence of Dominant Classes
	Conclusions

	Conclusions and Future Work
	Contributions
	Future Work

	Publications
	Main Research Line
	Other Developed Work

	References
	Appendices
	Annex for Chapter 3
	Results with Different Adversarial Attacks
	Reducing the Size of the Set X

	Annex for Chapter 5

