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Abstract

In this work, we have computed and implemented one-body integrals concerning

Gaussian confinement potentials over Gaussian basis functions. Then, we have set an

equivalence between Gaussian and Hooke atoms and we have observed that,

according to singlet and triplet state energies, both systems are equivalent for large

confinement depth for a series of even number of electrons n = 2, 4, 6, 8 and 10.

Unlike with harmonic potentials, Gaussian confinement potentials are dissociative for

small enough depth parameter; this feature is crucial in order to model phenomena

such as ionization. In this case, in addition to corresponding Taylor-series expansions,

the first diagonal and sub-diagonal Padé approximant were also obtained, useful to

compute the upper and lower limits for the dissociation depth. Hence, this method

introduces new advantages compared to others.
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1 | INTRODUCTION

Gaussian potential wells have attracted attention in the scientific community in a wide range of fields. On the one hand, in theoretical condensed

matter field for modeling and gaining further knowledge on Quantum Dots (QDs) in semiconductors (such as GaAs) and confined systems [1–4].

Recent works concerning two and three dimensional quantum dots study properties of these impurities such as Aharonov–Bohm oscillations [5],

decoherence effects [6], thermo-magnetic properties [7–10], interactions with electric and laser fields [11–15], topological dependence on the

stated properties [16, 17], quantum entanglement [18], mathematical modeling [19–21] and even few-electron systems confined in such poten-

tials [22, 23]. On the other hand, Ali-Bodmer potentials for describing α particles interactions in nuclear physics [24] are still employed in nuclear

structure calculations with α clustering [25–27].

In the latter field (in which only one-body equations are considered) the Gaussian shaped interactions are treated as such. However, in the

condensed matter and electronic structure community (where many-body problems arise) these functions are approximated by using harmonic

potentials also known as Hooke atoms. Some of such systems composed by two electrons have closed form solutions [28] which are employed as

benchmarks when testing novel electronic structure methods [29–35]. Besides, there are plenty of works in the literature where high theoretical

level computations have been performed for larger systems [36, 37].

Although harmonic potentials found in Hookean systems are a sensible approximation when describing bound states in QDs and artificial

atoms, there are two main inconveniences. First, by using such potentials, one loses molecular structure since any linear combination of many
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centre harmonic potentials will give rise to a new harmonic potential (the degree two polynomia space is complete). Second, harmonic potentials

have an infinite number of bound states, therefore, processes such as ionization and dissociation cannot be properly modeled.

Minding the gap between one-particle confined in a Gaussian-like potential problems and many-body systems confined in harmonic poten-

tials, in this work we have computed the required one-body integrals for Gaussian potentials using, also, Gaussian basis functions so employed in

quantum chemistry. By doing so, we have set sail in three paths concerning these systems: we have studied deeply confined (high values depth

parameter V0) atomic systems with even number of electrons (n = 2, 4, 6, 8 and 10) by computing their singlet-triplet gap and relating them to

equivalent Hooke atoms studied in previous works. Besides, we have studied dissociation limits for two electron systems in singlet spin state with

Yukawa-like screening interaction.

2 | COMPUTATIONAL METHODS

In this work we have studied systems of even number of electrons (n = 2, 4, 6, 8 and 10) confined within a three dimensional Gaussian potential

and screened electron–electron interactions writing the one-center Hamiltonian as in 1. The two-body (four-center) integrals concerning the

screened Yukawa-like inter-electronic interactions were already computed and implemented for Gaussian basis functions by our group [38] in

GAMESS-US [39]. This time, we have computed and implemented the corresponding one-body integrals for Gaussian confinement potentials

using the same basis set functions as in Section 2.1.

bH¼�1
2

Xn

i
r2

ri
�V0

Xn

i
e�

ω2
2v0

r2i þ
Xn

j> i

e�λrij

rij
ð1Þ

The election of the exponent in the Gaussian confinement function in Hamiltonian 1 is not a fact of chance, indeed. It has been selected so

that for any value of the depth parameter V0, the curvature of the confinement function is kept constant to ½ω 2; by doing so, we have been able

to relate these new calculations to former ones from the literature.

In preceding works, we have optimized some even-tempered Gaussian basis functions for spherical harmonic potentials with curvature

ω 2 = ½ and even number of electrons (n = 2, 4, 6, 8 and 10) at Complete Active Space Self Consistent Field (CASSCF) and Second Order Multi

Reference Many-body Perturbation (MRMP2) levels of theory using n electrons and 13 orbitals in the active space [40]. As it has been observed

in this previous works concerning Hooke atoms, the most balanced (concerning accuracy and size) basis set was the one obtained for six electron

systems with singlet spin state, namely ETBS-6 S basis. We have used the same basis and method throughout this paper conditioning the expo-

nent of the Gaussian confinement function so that the curvature is kept as in the optimized Hooke system for each individual atom.

2.1 | One-body integrals concerning Gaussian confinements

We need to obtain the one-body integrals for N center external potentials defined as in (2); as it is commonly done in quantum chemistry, if we

expand atomic orbitals as contracted Gaussian primitive functions, the inner integrals to be computed have the form (3).

Vext rð Þ¼�
XN

i¼1
V0,ie

�βi r�R0,ið Þ2 ð2Þ

ð
G1 α1, RA, l1, m1, n1ð ÞG2 α2, RB, l2, m2, n2ð Þe�βi r1�R0,ið Þ2dr1 ð3Þ

We take the next step by applying the Gaussian Product Theorem [41–43] upon the two basis functions G1and G2 so we obtain another

Gaussian namely GP:

GP ¼K
X l1þl2

l¼0

Xm1þm2

m¼0

Xn1þn2

n¼0
flfmfn x1�Xpð Þl y1�Ypð Þm z1�Zpð Þne�γP r1�Rpð Þ2 ð4Þ

For which the characteristic constants and coefficients are defined as:

K¼ exp �α1α2
γP

RA�RBð Þ2
� �
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fl ¼
Xl1
i¼0

Xl2
j¼0

XP�XAð Þl1�i l1
i

� �
XP�XBð Þl2�i l2

j

� �

fl ¼
Xl1
i¼0

Xl2
j¼0

XP�XAð Þl1�i l1
i

� �
XP�XBð Þl2�i l2

j

� �

fn ¼
Xn1
i¼0

Xn2
j¼0

ZP�ZAð Þn1�i n1
i

� �
ZP�ZBð Þn2�i n2

j

� �

As the potential energy function is yet a Gaussian function itself with zero angular momentum, we apply the Gaussian Product Theorem again

upon the potential function and the Gaussian obtained in the previous step GP. Then we obtain a new Gaussian, namely, GQ given as:

GQ ¼K0Xl

l0¼0

Xm
m0¼0

Xn
n0¼0

fl0 fm0 fn0 x1�XQð Þl0 y1�YQð Þm0 z1�ZQð Þn0e�γQ r1�RQ,ið Þ2

where the constants and the coefficients are:

K0 ¼ exp �βiγP
γQ

RP�R0,ið Þ2
� �

,RQ ¼ βiR0,iþ γPRP

γQ
,γQ ¼ βiþ γP

fl ¼
Xl0
i¼0

XQ�X0,ið Þl0�i l
0

i

� �

fm ¼
Xm0

i¼0

YQ�Y0,ið Þm0�i m
0

i

� �

fl ¼
Xl0
i¼0

XQ�X0,ið Þl0�i l
0

i

� �

Now, using the properties of the exponential function and considering the distance squared dependency of the exponent, we can acknowl-

edge the integral (3) is in fact composed by the product of three integrals; one for each spacial variable. It can, therefore, be written as in (5)

I x, y, zð Þ¼KK0I xð ÞI yð ÞI zð Þ ð5Þ
And each integral is given as:

Ii xð Þ¼
X l1þl2

l¼0
fl
X l

l0¼0
fl0
ð∞
�∞

xi�XQð Þl0e�γQ xi�XQð Þ2dxi

Ii yð Þ¼
Xm1þm2

m¼0
fm
Xm

m0¼0
fm0

ð∞
�∞

yi�YQð Þm0e�γQ yi�YQð Þ2dyi

Ii zð Þ¼
Xn1þn2

n¼0
fn
Xn

n0¼0
fn0
ð∞
�∞

zi�ZQð Þn0e�γQ zi�ZQð Þ2dzi

Notice we have exchanged the order of integration and summation and we are allowed to do so as both, the integral and summation, are

totally convergent, the former because we are dealing with functions which live in the Schwartz space and the latter because the summation is

finite. We may also notice that all three integrals are the momenta of a Gaussian distribution for which the general formula is given by Equation (6).

Since the Gaussian distribution is even with respect to reflection plane where the point t1 = TQ in contained, only even order momenta will be dif-

ferent from zero.

ð∞
�∞

ti�TQð Þke�γQ ti�TQð Þ2dti ¼
Γ kþ1

2

� �
γ kþ1ð Þ=2
Q

,k¼0,2,4 ð6Þ
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One last remark concerns the evaluation of the gamma function obtained in Equation (6). As we have mentioned, the moment parameter

k must be even for the integral not to vanish, using a property of the gamma function, we may evaluate it using a product as: i

Γ nþ1
2

� �
¼ ffiffiffi

π
p 1 �3 �5… 2n�1ð Þ

2n ,n�ℕ

Thus, each of the three spatial components of the matrix element containing the ith center are given as simple nested sums and products as in (7).

Ii xð Þ¼
X l1þl2

l¼0
fl
X l,2

l0¼0
fl0

ffiffiffi
π

p

γ kþ1ð Þ=2
Q

Y l0�1,2

l0 0¼1

l00

2
ð7Þ

We have coded these integrals as a subroutine in FORTRAN70 in order to add them to the source file for the one body integral packages in

the open code package GAMESS-US [39].

2.2 | Pseudocode for implementing one-body integrals

In order to implement these one-body integrals in GAMESS-US, we have edited the corresponding source file (namely int1.src). In this file, we

have written the two required functions named GAUSS_INTEGRALS and ONE_DIM_INTEGRALS for which the pseudo-codes are given by Algo-

rithms 1 and 2 respectively.

Once the required functions were incorporated, it was sufficient to call these functions instead of the nuclear attraction integrals every

time one would compute one of such for all the electron-nucleus interactions. Hence, the centers of the Gaussian confinement potentials are

given by the coordinates of the (now) dummy atoms. In addition, GAMESS-US aborts any calculation in which the distance between two

atoms (centres) is smaller than 0.1 Å; in order to account for merging Gaussian potentials, we have deactivated the corresponding distance

checking point.

Algorithm 1 GAUSS_INTEGRALS

Require: α1, α2, l1, m1, n1, l2, m2, n2, RA, RB, V0,i, βi, R0,i

Compute the P and Q centres

Compute the one-dimensional integrals (Ix,Iy,Iz)

Compute the total integral I = V0KP KQ Ix Iy Iz

Return the value of the integral I

Algorithm 2 ONE_DIM_INTEGRALS

Require: αP, αQ, l1, l2, RP, RQ

Set INTX = 0.0

for L = 0:(l1 + l2) do

Compute fl

Set SUMLP = 0.0

if mod(L,2)==0 then for LP =0:L:2 do

Compute sumation terms Slp

Set SUMLP = SUMLP + Slp

end for

end if

Set INX = INTX + fl * SUMLP

end for

Return the value of the integral INTX

4 of 10 TELLERIA-ALLIKA ET AL.
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3 | RESULTS AND DISCUSSION

3.1 | Deeply confined one center systems with even number of electrons

We have performed Complete Active Space Self Consistent Filed (CASSCF) and Second Order Multi Reference Many-body Perturbation

(MRMP2) calculations using m = 10, 11, 12 and 13 orbitals in the active space upon systems composed by small even number of electrons n = 2,

4, 6, 8 and 10 confined in a single three-dimensional Gaussian potential well as in Hamiltonian 1. In order to make sure that our new results are

sensible and make a connection with former works on Hook atoms with these numbers of electrons, we have taken 30 values for the Gaussian

depth parameter V0 evenly spaced in the range [�300.0, �10.0] (in au), set the screening parameter λ = 0.0 and the curvature parameter

ω 2 = 1/4. With the aim of gaining a deeper insight of the connection between Gaussian and Hookean systems, we have expanded the Gaussian

potential energy function in a power series as in Equation (8). If we keep the first three terms in this Taylor expansion, we may notice that we

assume an error in potential energy which is proportional to the inverse of the Gaussian potential depth as in Equation (9). If we further assume

that kinetic energy and electron interaction energy do not depend strongly on potential depth (which is a sensible assumption for deep potentials),

the Gaussian system energy EG and the equivalent (in the sense of curvature) Hookean system energy EH are related as in Equation 11 where (n,

ω 2) is the average value of the first anharmonic term and depends on the number of electrons n and the curvature of the equivalent Hookean ω 2.

In other words, the first anharmonic term is treated as a first-order perturbation for the Hooke atom. Even if the number of electrons, the depth

and the curvature are kept constant, we may infer that spin state of the wave-function also plays a role since rather different one-body functions

may take part in building the whole many-body wave functions; therefore, altering the third term average value in Equation (9).

VG ¼�
Xn

i¼1

X∞

k¼0

�ω2

2

� �k
V1�k
0 r2ki

k!
ð8Þ

VG ¼�nV0þω2

2

Xn

i¼1
r2i �

ω4

8V0

X
i¼1n

r4i þO
nω6

V2
0

 !
ð9Þ

Hereby, based on the power series representation for the potential energy function in Equation (8) and considering T and Vee do not heavily

depend on a specific V0 but rather on the curvature of the potential ω 2, we may state that—just considering the first anharmonic term—the

shifted energy of the Gaussian system EG + nV0 depends linearly on the inverse of the Gaussian potential depth 1/V0 and the (shifted) energy

(EG + nV0) cuts the ordinate (where V0 = 0) at the Hookean system energy with curvature ω 2. We have performed several calculations as stated

in the previous paragraph and we have obtained the Hookean energy EH and the first anharmonic term (written for simplicity as g) by linear

regression; all regression estimates are contained in Table 1.

We may observe that Hooke atom energies for singlet and triplet states agree with those obtained in former works at the same level of the-

ory and in the worst case scenario, the Hookean energy has 1 � 10�5au error obtained by error estimation in routine linear regression; thus, the

calculation protocol error is larger than the one from the regression. As far as first anharmonic terms g are considered, they are obtained by taking

the slope of the linear regression which—in the worst case scenario—has an error of 4 � 10�4au. If we take a deeper insight of the g values, we

may immediately notice that, for a given spin state either singlet or triplet, does not dramatically change with the size of the active space while it

is highly dependent on the number of electrons n. Besides the number of electrons, this anharmonic term also depends on the spin state taking

the two-electron system as the most notorious one. From the previously exposed theory this behavior was expected since g represents a sum

over electrons of an averaged value of a quartic potential with respect to a many-body normalized wave-function; therefore, g condenses a lot of

information about the system: the curvature, the number of electrons and the spin state.

In the worst case scenario, the one for CASSCF(8,10)(S)/ETBS-6 S calculations, the regression correlation parameter was R 2 = 0.9623. How-

ever, this is a pretty odd case and the average value for this statistic is R 2 = 0.9991. It can also be seen that even the Hooke atom energy is com-

parable to the ones obtained by other methods, the anharmonic contribution g is quite different even if we compare it to the one obtained by

including dynamical correlation effects via perturbation methods at the same theory level. We have also observed that as soon as the active space

size is augmented, the correlation parameter gets rapidly closer to 1 approaching perfect linear dependency.

3.2 | Loosely confined two electron systems with screened Coulomb interaction

Based on the fact that two electron systems with singlet spin state have at least one occupied bound state, we have been wondering at which

point of Gaussian potential depth the whole systems dissociates (EG [V d] = 0). On top of this, we have also considered electron–electron interac-

tion to be screened and in what measure it affects the loosely bound system's stability. Hence, we have modeled these systems using

TELLERIA-ALLIKA ET AL. 5 of 10
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Hamiltonians as in Equation (10) where the confinement Gaussian potential has been defined as in the previous section and the electronic Cou-

lomb interaction is replaced by a Yukawa-like potential with exponent λ > 0. We have taken 10 values for λ parameter in the evenly separated

range [0.10, 1.00] and 20 values for V0 also in a evenly separated range [�1.50, �0.50] at MRMP2(2,13)/ETBS-6 S level of theory for singlet

states; the results for these calculations can be found in Figure 1.

Points with positive energies (above the gray line) in this plot are somehow meaningless since positive energies belong to dissociated systems

(scattering states); nevertheless, energies are positive and real since the basis function themselves create the Dirichlet boundaries. At a first

glimpse, one shall observe that the dissociation limit depth is smaller as λ is larger (therefore, electron–electron interaction is weaker).

Let us try to make sense of the obtained results. As in the previous section, we have expanded our Gaussian systems energy now taking an

additional term as in Equation (11) where the anharmonic contributions g1 and g2 are generally taken as positive despite the fact the sign is alter-

nating in the original Taylor-like series. Now, we shall obtain EH, g1 and g2 from data using linear regression (omitting all EG >0 data) via small

squares minimisation; from the residues, we may notice that they follow an expected cubic polynomial trend due to the fact that we have trimmed

the Taylor-like series at that order.

H¼�1
2

X2

i¼1
r2

i �V0

X2

i¼1
e�

ω2
2V0

r2i þe�λr12

r12
ð10Þ

EGþ2V0 ¼ EHþ g1
V0

þ g2
V2
0

þO
ω8

V2
0

 !
;g1 ¼

ω4

8
⟨
X2

i¼1
r4i ⟩;g2 ¼

ω6

36
⟨
X2

i¼1
r6i ⟩ ð11Þ

Once we have obtained the coefficients we can solve the Equation (11) for EG as in Equation (12) where we still have a Taylor-like series.

Now, we can exploit an interesting property of the energy function: in the Taylor-like series signs are alternating, therefore it is a Stiljies function.

That means if we obtain the main Padé sequence (i.e., the sequence containing the diagonal and lower diagonal Padé approximants PNN V�1
0

� �
and

PNNþ1 V�1
0

� �
, respectively), we shall obtain physically relevant values such as the dissociation limit of the system. Since we only have obtained the

first three coefficients of the Taylor-like series, the highest order main Padé sequence we shall obtain is the one composed by the diagonal

approximant P11 V�1
0

� �
and the subdiagonal approximant P12 V�1

0

� �
given in Equations (13) and (14), respectively. It is known that the sequence

TABLE 1 Hookean energy EH (au) and g (au2) terms obtained by linear regression using data obtained by CASSCF(n,m)/ETBS-6Sand MRMP2
(n,m)/ETBS-6 S calculations

S CAS S MRMP2 T CAS ETRMP2
M

n m EH g EH g EH g EH g

2 10 2.001718 0.3214578 2.000553 0.3214138 2.36111 0.4615673 2.359877 0.4623589

11 2.001569 0.3220647 2.000541 0.3214695 2.359966 0.4629399 2.359749 0.4629238

12 2.001353 0.3219344 2.000521 0.3214604 2.359883 0.4629516 2.359746 0.4629451

13 2.001233 0.3221784 2.000509 0.3214931 2.35988 0.4629387 2.359746 0.4629558

4 10 6.41014 1.330105 6.391462 1.331209 6.369164 1.314156 6.353142 1.31538

11 6.405534 1.329927 6.391097 1.331188 6.365399 1.315223 6.352794 1.315585

12 6.401805 1.332317 6.390674 1.331675 6.361329 1.316371 6.352395 1.315823

13 6.398952 1.331355 6.390306 1.331604 6.360014 1.305258 6.352244 1.314446

6 10 12.13421 2.784703 12.08499 2.786157 12.09482 2.767391 12.04846 2.768882

11 12.12679 2.788366 12.0844 2.786919 12.08947 2.763241 12.04783 2.768251

12 12.12125 2.788358 12.08397 2.786566 12.08349 2.770115 12.04719 2.768935

13 12.11545 2.783258 12.08333 2.786984 12.07844 2.771766 12.04666 2.769276

8 10 19.07563 3.931056 19.00154 4.625022 19.36024 4.555748 19.27003 4.672289

11 19.07066 4.728791 19.00104 4.728537 19.35476 4.703725 19.2721 4.905097

12 19.06393 4.689791 19.00023 4.703367 19.34488 4.823247 19.27197 5.007794

13 19.05414 4.735014 18.99894 4.729663 19.33712 4.901288 19.27023 4.921244

10 10 27.83390 7.339055 27.69036 7.533762 27.80165 7.224892 27.66912 7.522172

11 27.81091 7.453328 27.68948 7.638288 27.78357 7.424963 27.66788 7.547430

12 27.78987 7.5806211 27.69389 7.5958861 27.76885 7.5651956 27.66660 7.5712475

6 of 10 TELLERIA-ALLIKA ET AL.
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P11 V�1
0

� �
will converge to the right energy from bellow while P12 V�1

0

� �
will converge from above. For obtaining the dissociation limit, we take these

Padé approximants solve them for V0 obtaining the lower and upper limit of the dissociation depths V d� and V d+ respectively in terms of the

physical quantities EH, g1 and g2 for a given screening parameter λ. All obtained results are condensed in Table 2.

EG
V0

¼�2þEH
V0

þ g1
V2
0

þ g2
V3
0

þO
ω8

V4
0

 !
ð12Þ

P11 V�1
0

� �¼�2g1þEH�2EHV0

g1�EHV0
ð13Þ

P12 V�1
0

� �¼ 4g1þ2EHð ÞV2
0� 4g2þ4g1EHð ÞV0

� E2Hþ2g1
� �

V2
0þ g1þ2g2þEHð ÞV0þ g2EH�g21

� � ð14Þ

If we focus our attention upon a given λ value and study a given estimated physical property, we shall notice that including dynamic correla-

tion effects via perturbation methods does not quite make a big difference with respect to the same quantity obtained by regular CASSCF

method.

F IGURE 1 Energies for Gaussian confinement with two electrons in singlet spin state for several screening parameter λ values

TABLE 2 Hooke atom energy (EH), first anharmonic terms (g1, g2) and bound dissociation limits obtained for several screening parameter
values for two-electron systems with singlet spin state at CASSCF(2,13)/ETBS-6 S and MRMP2(2,13)/ETBS-6 S levels

EH g1 g2 V d� V d+

λ CASSCF MRMP2 CASSCF MRMP2 CASSCF MRMP2 CASSCF MRMP2 CASSCF MRMP2

0.1 1.9379 1.9372 �0.3839 �0.3839 0.0163 0.0164 0.731 0.730 0.771 0.770

0.2 1.8719 1.8712 �0.3829 �0.3830 0.0200 0.0201 0.689 0.688 0.731 0.731

0.3 1.8204 1.8197 �0.3802 �0.3803 0.0232 0.0233 0.657 0.657 0.701 0.701

0.4 1.7770 1.7753 �0.3712 �0.3691 0.0232 0.0220 0.635 0.634 0.680 0.680

0.5 1.7397 1.7394 �0.3578 �0.3587 0.0203 0.0208 0.618 0.617 0.664 0.663

0.6 1.7143 1.7135 �0.3568 �0.3569 0.0233 0.0234 0.603 0.603 0.649 0.648

0.7 1.6902 1.6890 �0.3487 �0.3482 0.0223 0.0222 0.593 0.592 0.639 0.638

0.8 1.6702 1.6686 �0.3418 �0.3406 0.0215 0.0211 0.584 0.584 0.630 0.630

0.9 1.6532 1.6514 �0.3354 �0.3339 0.0206 0.0201 0.578 0.577 0.624 0.624

1.0 1.6376 1.6369 �0.3280 �0.3281 0.0192 0.0192 0.573 0.572 0.619 0.618

Note: All values are given in atomic units.
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Now, as far as EH is concerned, this energy is smaller as λ increases which is to be expected for Hooke atoms [40]. In contrast to the stated

former results, in this very work, we obtained a Hooke two electron singlet atom energy for λ = 0.2, 0.4, 0.8 and 1.0 to be EH = 1.8459, 1.7502,

1.6881, 1.6458 and 1.6159 au, respectively, at CASSCF/ETBS-6 S while in Table 2 the obtained energies are in average 0.025 au higher in energy.

As we have discussed in the previous section, accurate Hooke energies are obtained for deep potentials, nevertheless, in this section we have

been dealing with loosely confined systems. Therefore, on the basis of this approximation, we may state that our estimations are rather reason-

able and both regimes have pretty unique features.

As for the anharmonic terms, g1 we may obverse it also gets smaller as λ increases. We may hypothesize that as electron-electron interaction

gets weaker, correlation effects are also turned off and electrons are more likely found in the center of the potential well, thus this first

anharmonic term becomes smaller. On the other hand, the second anharmonic term g2 gets a maximum for λ = 0.6 and then decreases.

Finally, the lower and upper bounds for the limit ionization potentials have in the worst-case scenario a 0.046 au amplitude as we may

observe that we have predicted their behavior in terms of physical constants by setting the corresponding Padé approximants 18 and 19 to zero

and solving for V0. We shall see that these limit potentials are shallower and asymptotic to a limit value at which only one-body interactions are

relevant. Thus, we get an obvious conclusion, as electron–electron interaction is turned off the potentials does not need to do so much "work" to

confine the interacting particles and shallower potentials are still able to confine them. We may find a visual summary in Figure 2.

4 | CONCLUDING REMARKS

In this work, we have computed and implemented the required one-body integrals for quantum particles confined in Gaussian potential wells for

which the center of the basis function and the center of the potentials do not need to coincide. Such implementation has been interfaced to elec-

tronic structure software GAMESS-US so that we can make use of its quantum chemical computation machinery to study systems of electrons con-

fined in dissociative potentials. Firstly, we have performed computations on deeply confined systems (large V0 parameter) with controlled width

parameter such that the curvature of the potential at the minimum point was ω 2 = 0.25. Since previous results on harmonic potentials have been

well established for n = 2, 4, 6, 8 and 10 electrons, by means of Taylor series we have shown our calculations are compatible with the former ones.

Finally, we have studied dissociative systems composed by two electrons in which the conventional Coulomb operator was substituted by

Yukawa potentials. In this case, we have not only obtained the corresponding Taylor-series expansion but also the first diagonal and sub-diagonal

Padé approximant which were useful to compute the upper and lower limits for the dissociation depth for several screening parameters λ.
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