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Abstract: There are different types of order relations that are associated with interval analysis for
determining integral inequalities. The purpose of this paper is to connect the inequalities terms to
total order relations, often called (CR)-order. In contrast to classical interval-order relations, total

order relations are quite different and novel in the literature and are calculated as ω =

〈
ωc, ωr

〉
=〈

ω+ω
2 , ω−ω

2

〉
. A major benefit of total order relations is that they produce more efficient results

than other order relations. This study introduces the notion of CR-(h1, h2)-convex function using
total order relations. Center and Radius order relations are a powerful tool for studying inequalities
based on their properties and widespread application. Using this novel notion, we first developed
some variants of Hermite–Hadamard inequality and then constructed Jensen inequality. Based on
the results, this new concept is extremely useful in connection with a variety of inequalities. There
are many new and well-known convex functions unified by this type of convexity. These results will
stimulate further research on inequalities for fractional interval-valued functions and fuzzy interval-
valued functions, as well as the optimization problems associated with them. For the purpose of
verifying our main findings, we provide some nontrivial examples.

Keywords: Jensen inequality; (h1, h2)-convex function; Hermite–Hadamard inequality;
Center-Raius-order relation

MSC: 05A30; 26D10; 26D15

1. Introduction

There are many uncertainty problems in practical life that are disrupted if a specific
number is used to describe them. Therefore, avoiding this kind of error and obtaining
effective results are very important. In 1969, Moore [1] became the first to apply time-
interval analysis to error analysis. This improved calculation accuracy and attracted the
attention of many scholars. The goal of interval analysis is to use interval numbers as
variables instead of numbers for analysis and to use interval operations instead of number
operations to arrive at conclusions. Variables similar to the interval are widely used in
real-life uncertain situations in various practical settings, such as graphics [2], decision
making [3], automatic error analysis [4], etc. A wide range of excellent results have been
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achieved through interval analysis research, and readers are encouraged to consult the
references [5–10].

Mathematicians have a great deal of experience with inequalities, especially those con-
nected to Simpson, Ostrowski, Opial, Bullen, Jensen, and Hermite–Hadamard inequalities.
Convexity and inequality are prominent concepts in many disciplines and applications,
leading many scholars to study and apply generalized convexity to interval-valued func-
tions over the past few decades. The importance of convexity has been recognized for
years in fields such as economics, control theory, optimization theory, etc. A wide range
of mathematical physics problems can be solved using generalized mappings convexity.
Diverse convex mappings and inequalities can also be studied by using differential and
integral equations. The areas in which they have made significant contributions include
decision making, symmetry analysis, finance, electrical engineering, networks, operations
research, numerical analysis, and equilibrium. Utilizing a number of fundamental integral
inequalities, we explore how convexity might be encouraged subjectively. It has been
reported recently that convex functions have been rigorously generalized, see [11–14].
There have recently been studies that extend some of these inequalities to functions with
interval values, see [15–20]. Recently, these inequalities have been applied in several ways,
see [21–24]. As a first step, Breckner introduces the concept of continuity among IVFS ,
see [25]. Using the Hukuhara derivative, Chalco-Cano et al. [26] developed the Ostrowski
inequality while Costa et al. [27] presented Opial-type inequality for IVFS . Generally, the
famous Hermite–Hadamard inequality has the following definition:

ϑ

(
f + g

2

)
≤ 1

g− f

∫ g

f
ϑ(σ)dσ ≤ ϑ( f ) + ϑ(g)

2
. (1)

A great deal of attentionhas been paid to it because of the way in which it defines convex
mappings. In the basic calculus, the first geometry-based interpretation was given by this
inequality. Jensen inequality and Hermite–Hadamard inequality were first developed by
these authors [28], for IVFS . Various interval-based generalizations of these inequalities
are presented here, see [29–32]. Initially, the following authors developed the concept
of (h1, h2)-convex functions and presented the following results [33]. There are various
authors who use the concept of (h1, h2)-convexity to prove the following results for diverse
classes of convexity, see [34–37]. Bai et al. [38] and Afzal et al. [39] use the concept of
(h1, h2)-convexity to prove the following results for Hermite–Hadamard inequality and
Jensen-type inequality. The results presented by various old partial order relationships
such as inclusion relation, pseudo relation, fuzzy order relation, etc., are not much more
accurate than the ones provided by the CR-order relation. The validity of the claim can
be demonstrated by comparing examples in the literature with those derived by using
these old relations. Here are some recent developments using partial order relations for
different types of convexity, see [40–45]. Hence, a CR-order relation is essential for studying
inequalities and convexity which was presented by Bhunia’s [46]. In 2022, several authors
attempted to prove these inequalities using the notion of CR-order relation for different
classes of convexity, see Refs. [47,48]. Shi et al. used cr-h-convex function and prove the
following result [48].

Theorem 1 (See [48]). Consider ϑ : [ f , g] → RI
+. Define h : (0, 1) → R+ and h

(
1
2

)
6= 0. If

ϑ ∈ SX(CR-h, [ f , g], RI
+) and ϑ ∈ IR[ f ,g], then

1

2h
(

1
2

)ϑ

(
f + g

2

)
�CR

1
g− f

∫ g

f
ϑ(σ)dσ �CR [ϑ( f ) + ϑ(g)]

∫ 1

0
h(s)ds. (2)

The set of all CR-h-convex functions over [ f , g] is denoted by SX(CR-h, [ f , g], RI
+).

As well, Jensen-type inequality was established using the notion of CR-h-convex functions.
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Theorem 2 (See [48]). Let fi ∈ R+ and ji ∈ [ f , g]. If h is a non-negative super multiplicative
function and ϑ ∈ SX(CR-h, [ f , g], RI

+), then

ϑ

(
1
Fk

k

∑
i=1

fi ji

)
�CR

k

∑
i=1

h
(

fi
Fk

)
ϑ(ji). (3)

Furthermore, it introduces a novel concept of interval (h1, h2)-convex functions based
on CR-orders. In contrast to classical interval-order relations, total order relations are quite
different and novel in the literature and are calculated as: ωc = ω+ω

2 and ωr = ω−ω
2 ,

respectively, where ω = [ω, ω̄]. As an advantage of the present study, we introduce
an entirely new notion of interval valued (h1, h2)-convex functions based on (CR)-order
relations, a very novel notion in the literature. The beauty of this order relation is its ability
to give more precise results when used with interval analysis.

We draw our research inspiration from the strong literature and specific articles, see
Refs. [40,41,46–48], based on the CR-order relation, we introduced the idea of CR-(h1, h2)-
convex functions. By using this new concept, we developed Hermite–Hadamard (H−H)
and Jensen-type inequalities. Furthermore, for the sake of checking the validity of our main
findings, some nontrivial examples are given.

Lastly the article is designed as follows: Some basic background is provided in
Section 2. The main findings are described in the following Sections 3 and 4. Section 5
explores a brief conclusion.

2. Preliminaries

A number of terms in the paper are used without being defined, see Refs. [47–49].
We will benefit greatly from having some basic arithmetic knowledge related to interval
analysis for the rest of the paper.

[ω] = [ω, ω] (ω 5 s 5 ω; s ∈ R),
[Ω] = [Ω, Ω] (Ω 5 s 5 Ω; s ∈ R),

[ω] + [Ω] = [ω, ω] + [Ω, Ω] = [ω + Ω, ω + Ω]

and

σω = σ[ω, ω] =


[σω, σω], (σ > 0);
{0}, (σ = 0);
[σω, σω], (σ < 0),

where σ ∈ R.
Consider R+

I and RI , which represent the positive and bundle of all intervals of R,
respectively. Several algebraic properties of interval arithmetic will now be discussed.

Let ω = [ω, ω̄] ∈ RI , then ωc =
ω+ω

2 and ωr =
ω−ω

2 are the CR form of interval ω. It
further can be expressed as:

ω = 〈ωc, ωr〉 =
〈

ω + ω

2
,

ω−ω

2

〉
.

In order to determinethe radius and center of an interval, we use the following relations:

Definition 1. The CR-order relation for ω = [ω, ω] = 〈ωc, ωr〉, Ω = [Ω, Ω] = 〈Ωc, Ωr〉 ∈ RI
represented as:

ω �CR Ω⇐⇒
{

ωc < Ωc, if ωc 6= Ωc;
ωr ≤ Ωr, if ωc = Ωc.
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Definition 2 (see [48]). Let L : [ f , g] be an IVF such that L = [L,L]. Then L is Riemann
integrable (IR) on [ f , g] if and only if L and L are Riemann integrable on [ f , g], that is,

(IR)
∫ g

f
L(s)ds =

[
(R)

∫ g

f
L(s)ds, (R)

∫ g

f
L(s)ds

]
.

The bundle of all (IR) IVFS on [ f , g] is represented by IR([ f ,g]).

For CR-order relation, Shi et al. [48] verifies that integral hold order.

Theorem 3. LetL,K : [ f , g] be IVFS given byL = [L,L] andK = [K,K]. IfL(s) �CR K(s),
for all s ∈ [ f , g], then ∫ g

f
L(s)ds �CR

∫ g

f
K(s)ds.

We will now provide an illustration to support the aforementioned Theorem.

Example 1. Let L = [s, 2s] and K = [s2, s2 + 2], then for s ∈ [0, 1]

LC =
3s
2

,LR =
s
2

,KC = s2 + 1 and KR = 1.

From Definition 1, we have L(s) �CR K(s) for s ∈ [0, 1] (see Figures 1–3).
Since, ∫ 1

0
[s, 2s]ds =

[
1
2

, 1
]

and ∫ 1

0
[s2, s2 + 2]ds =

[
1
3

,
7
3

]
.

Also, from above Definition 1, we have∫ 1

0
L(s)ds �CR

∫ 1

0
K(s)ds.

0 0.2 0.4 0.6 0.8 1
s

0

0.5

1

1.5

2

2.5

3

va
lu

es

Figure 1. As shown in the above figure, s2 + 2 is shown as a red, 2s is shown as a yellow, s is shown as
blue and s2 as a green line, respectively. A clear indication of the validity of the CR-order relationship
can be seen in the graph.
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0 0.2 0.4 0.6 0.8 1
s

0

0.5

1

1.5

2

2.5

va
lu

es

Figure 2. As shown in the above figure, 2s+ s3

3 is shown as a red, s2 is shown as a yellow, s2

2 is shown
as blue and s3

3 as a green line, respectively. As can be seen from the graph, the Theorem 3 is valid.

0 0.2 0.4 0.6 0.8 1
s

0

0.5

1

1.5

2

va
lu

es

Figure 3. As shown in the above figure, KC = s2 + 1 is shown as a red, LC = 3s
2 is shown as a yellow,

LR = 1 is shown as black and KR = s
2 as a green line, respectively.

Definition 3 (See [37]). Consider h : [0, 1] → R+. Thus, we say ϑ : [ f , g] → R+ is said to be
h-convex function, or that ϑ ∈ SX(h, [ f , g], R+), if for all f1, g1 ∈ [ f , g] and σ ∈ [0, 1], we have

ϑ(σ f1 + (1− σ)g1) ≤ h(σ)ϑ( f1) + h(1− σ)ϑ(g1). (4)

In (4), if “≤” is replaced with “≥”, then it is called h-concave function or ϑ ∈ SV(h, [ f , g], R+).

Definition 4 (See [37]). Define h1, h2 : [0, 1] → R+. Thus, we say ϑ : [ f , g] → R+ is known
as (h1, h2)-convex function, or that ϑ ∈ SX((h1, h2), [ f , g], R+), if for all f1, g1 ∈ [ f , g] and
σ ∈ [0, 1], we have

ϑ(σ f1 + (1− σ)g1) ≤ h1(σ)h2(1− σ)ϑ( f1) + h1(1− σ)h2(σ)ϑ(g1). (5)

In (5), if “≤” is replaced with “≥”, then it is called (h1, h2)-concave function or ϑ ∈ SV((h1, h2),
[ f , g], R+).

Let’s discuss CR-order convexity now
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Definition 5 (See [48]). Consider h : [0, 1] → R+. Thus, we say ϑ = [ϑ, ϑ] : [ f , g] → R+
I is

called CR-h-convex function, or that ϑ ∈ SX(CR-h, [ f , g], R+
I ), if ∀ f1, g1 ∈ [ f , g] and σ ∈ [0, 1],

we have
ϑ(σ f1 + (1− σ)g1) �CR h(σ)ϑ( f1) + h(1− σ)ϑ(g1). (6)

In (6), if “�CR” is replaced with “�CR”, then it is called CR-h-concave function or ϑ ∈ SV(CR-
h, [ f , g], R+

I ).

Definition 6. Define h1, h2 : [0, 1] → R+. Thus, we say ϑ : [ f , g] → R+
I is called CR-(h1, h2)-

convex function, or that ϑ ∈ SX(CR-(h1, h2), [ f , g], R+
I ), if for all f1, g1 ∈ [ f , g] and σ ∈ [0, 1],

we have

ϑ(σ f1 + (1− σ)g1) �CR h1(σ)h2(1− σ)ϑ( f1) + h1(1− σ)h2(σ)ϑ(g1). (7)

In (7), if “�CR” is replaced with “�CR”, then it is called CR-(h1, h2)-concave function or ϑ ∈
SV(CR-(h1, h2), [ f , g], R+

I ).

Remark 1.

(i) If h1 = h2 = 1, Definition 6 becomes a CR-P-function [48];
(ii) If h1(σ) =

1
h1(σ)

, h2 = 1 Definition 6 becomes a CR-GL-convex function [48];

(iii) If h1(σ) = h1(σ), h2 = 1 Definition 6 becomes a CR-h-convex function [48];
(iv) If h1(σ) = σs, h2 = 1 Definition 6 becomes a CR-s-convex function [48].

3. Main Results

Proposition 1. Consider ϑ : [ f , g] → R+
I given by [ϑ, ϑ] = 〈ϑc, ϑr〉. If ϑc and ϑr are (h1, h2)-

convex over [ f , g], then ϑ is called CR-(h1, h2)-convex function over [ f , g].

Proof. Since ϑc and ϑr are (h1, h2)-convex over [ f , g], then for each σ ∈ (0, 1) and for all
f1, g1 ∈ [ f , g], we have

ϑc(σ f1 + (1− σ)g1) ≤ h1(σ)h2(1− σ)ϑc( f1) + h1(1− σ)h2(σ)ϑc(g1),

and
ϑr(σ f1 + (1− σ)g1) ≤ h1(σ)h2(1− σ)ϑr( f1) + h1(1− σ)h2(σ)ϑR(g1).

Now, if

ϑc(σ f1 + (1− σ)g1) 6= h1(σ)h2(1− σ)ϑc( f1) + h1(1− σ)h2(σ)ϑc(g1),

then for each σ ∈ (0, 1) and for all f1, g1 ∈ [ f , g],

ϑc(σ f1 + (1− σ)g1) < h1(σ)h2(1− σ)ϑc( f1) + h1(1− σ)h2(σ)ϑc(g1).

Accordingly,

ϑc(σ f1 + (1− σ)g1) ≤ h1(σ)h2(1− σ)ϑc( f1) + h1(1− σ)h2(σ)ϑc(g1).

Otherwise, for each σ ∈ (0, 1) and for all f1, g1 ∈ [ f , g],

ϑr(σ f1 + (1− σ)g1) ≤ h1(σ)h2(1− σ)ϑr( f1) + h1(1− σ)h2(σ)ϑr(g1)

implies

ϑ(σ f1 + (1− σ)g1) �CR h1(σ)h2(1− σ)ϑ( f1) + h1(1− σ)h2(σ)ϑ(g1).

Based on the foregoing and the Definition 6, this can be stated as follows:

ϑ(σ f1 + (1− σ)g1) �CR h1(σ)h2(1− σ)ϑ( f1) + h1(1− σ)h2(σ)ϑ(g1)
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for each σ ∈ (0, 1) and for all f1, g1 ∈ [ f , g]. This completes the proof.

Example 2. Consider [ f , g] = [0, 1], h1(s) = s and h2(s) = 1 for all s ∈ [0, 1]. If ϑ : [ f , g] →
RI

+ is defined as
ϑ(σ) = [−2σ2 + 3, 2σ2 + 4], σ ∈ [0, 1].

Then,

ϑC(σ) =
7
2

, ϑR(σ) = 2σ2 +
1
2

, σ ∈ [0, 1].

It is obvious that ϑC(σ), ϑR(σ) are (h1, h2) convex functions over [0, 1] (see Figure 4). This implies
that from Proposition 1, ϑ is also CR-(h1, h2) convex function on [0, 1].

0 0.2 0.4 0.6 0.8 1
<

1

2

3

4

5

6

#
(<

)

Figure 4. As shown in the example above, ϑ is shown as a red and ϑ as a yellow line, respectively.

Next, we will establish H−H inequality for CR-(h1, h2)-convex function. In what
follows, let H(x, y) = h1(x)h2(y).

Theorem 4. Consider h1, h2 : (0, 1) → R+ and h1

(
1
2

)
h2

(
1
2

)
6= 0. Let ϑ : [ f , g] → RI

+, if

ϑ ∈ SX(CR-(h1, h2), [ f , g], RI
+) and ϑ ∈ IR[f,g], we have

1

2
[

H
(

1
2 , 1

2

)]ϑ

(
f + g

2

)
�CR

1
g− f

∫ g

f
ϑ(σ)dσ �CR [ϑ( f ) + ϑ(g)]

∫ 1

0
H(s, 1− s)ds. (8)

Proof. As ϑ ∈ SX(CR-(h1, h2), [ f , g], RI
+), we have

1[
H
(

1
2 , 1

2

)]ϑ

(
f + g

2

)
�CR ϑ(s f + (1− s)g) + ϑ((1− s) f + sg).

Integrating (change of variables), we have
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1[
H
(

1
2 , 1

2

)]ϑ

(
f + g

2

)
�CR

[∫ 1

0
ϑ(s f + (1− s)g)ds +

∫ 1

0
ϑ((1− s) f + sg)ds

]

=

[∫ 1

0
ϑ(s f + (1− s)g)ds +

∫ 1

0
ϑ((1− s) f + sg)ds ,∫ 1

0
ϑ(s f + (1− s)g)ds +

∫ 1

0
ϑ((1− s) f + sg)ds

]
=

[
2

g− f

∫ g

f
ϑ(σ)dσ,

2
g− f

∫ g

f
ϑ(σ)dσ

]
=

2
g− f

∫ g

f
ϑ(σ)dσ. (9)

By Definition 6, we have

ϑ(s f + (1− s)g) �CR h1(s)h2(1− s)ϑ( f ) + h1(1− s)h2(s)ϑ(g).

Integrating (change of variables), we have∫ 1

0
ϑ(s f + (1− s)g)ds �CR ϑ( f )

∫ 1

0
h1(s)h2(1− s)ds + ϑ(g)

∫ 1

0
h1(1− s)h2(s)ds.

Accordingly,
1

g− f

∫ g

f
ϑ(σ)dσ �CR

[
ϑ( f ) + ϑ(g)

] ∫ 1

0
H(s, 1− s)ds. (10)

Now, unite (9) and (10), we obtain desired outcome

1

2
[

H
(

1
2 , 1

2

)]ϑ

(
t + u

2

)
�CR

1
g− f

∫ g

f
ϑ(σ)dσ �CR [ϑ( f ) + ϑ(g)]

∫ 1

0
H(s, 1− s)ds.

Remark 2.

(i) If h1(s) = h2(s) = 1, Theorem 4 incorporates output for CR-P-function:

1
2

ϑ

(
f + g

2

)
�CR

1
g− f

∫ g

f
ϑ(σ)dσ �CR [ϑ( f ) + ϑ(g)];

(ii) If h1(s) = 1
h(s) and h2(s) = 1, Theorem 4 incorporates output for CR-h-GL-function:

h
(

1
2

)
2

ϑ

(
f + g

2

)
�CR

1
g− f

∫ g

f
ϑ(σ)dσ �CR

∫ 1

0

ds
h(s)

;

(iii) If h1(s) = h(s) and h2(s) = 1, Theorem 4 incorporates output for CR-h-convex function:

1

2h
(

1
2

)ϑ

(
f + g

2

)
�CR

1
g− f

∫ g

f
ϑ(σ)dσ �CR

∫ 1

0
h(s)ds;

(iv) If h1(s) = 1
h1(s)

and h2(s) = 1
h2(s)

, Theorem 4 incorporates output for CR-(h1, h2)-convex
function:

1

2
[

H
(

1
2 , 1

2

)]ϑ

(
f + g

2

)
�CR

1
g− f

∫ g

f
ϑ(σ)dσ �CR

∫ 1

0
H(s, 1− s)ds.
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Example 3. Looking back at Example 2, one has

1

2
[

H
(

1
2 , 1

2

)]ϑ

(
f + g

2

)
= ϑ

(
1
2

)
=

[
5
2

,
9
2

]
,

1
g− f

∫ g

f
ϑ(σ)dσ =

[∫ 1

0
(−2σ2 + 3)dσ,

∫ 1

0
(2σ2 + 4)dσ

]
=

[
7
3

,
14
3

]
,

[ϑ( f ) + ϑ(g)]
∫ 1

0
H(s, 1− s)ds = [2, 5].

So, we have [
5
2

,
9
2

]
�CR

[
7
3

,
14
3

]
�CR [2, 5].

This verify the above theorem.

Theorem 5. Define h1, h2 : (0, 1) → R+ and h1

(
1
2

)
h2

(
1
2

)
6= 0. Let ϑ : [ f , g] → RI

+, if

ϑ ∈ SX(CR-(h1, h2), [ f , g], RI
+) and ϑ ∈ IR[f,g], we have

1

4
[

H
(

1
2 , 1

2

)]2 ϑ

(
f + g

2

)
�CR 41 �CR

1
g− f

∫ g

f
ϑ(σ)dσ �CR 42

�CR

{
[ϑ( f ) + ϑ(g)]

[
1
2
+ H

(
1
2

,
1
2

)]} ∫ 1

0
H(s, 1− s)ds,

where

41 =
1

4H
(

1
2 , 1

2

)[ϑ

(
3 f + g

4

)
+ ϑ

(
3g + f

4

)]
and

42 =

[
ϑ

(
f + g

2

)
+

ϑ( f ) + ϑ(g)
2

] ∫ 1

0
H(s, 1− s)ds.

Proof. Take
[

f , f+g
2

]
, we have

ϑ

(
3 f + g

4

)
�CR H

(
1
2

,
1
2

)
ϑ

(
s f + (1− s)

f + g
2

)
+ H

(
1
2

,
1
2

)
ϑ

(
(1− s) f + s

f + g
2

)
.

Integrating (change of variables), we have

ϑ

(
3 f + g

2

)
�CR H

(
1
2

,
1
2

)[∫ 1

0
ϑ

(
s f + (1− s)

f + g
2

)
ds +

∫ 1

0
ϑ

(
s

f + g
2

+ (1− s)g
)

ds
]

= H
(

1
2

,
1
2

)[
2

g− f

∫ f+g
2

f
ϑ(σ)dσ +

2
g− f

∫ f+g
2

f
ϑ(σ)dσ

]
(11)

= H
(

1
2

,
1
2

)[
4

g− f

∫ f+g
2

f
ϑ(σ)dσ

]
.

Accordingly,
1

4H
(

1
2 , 1

2

)ϑ

(
3 f + g

2

)
�CR

1
g− f

∫ f+g
2

f
ϑ(σ)dσ. (12)
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Now, consider
[

f+g
2 , g

]
, one has

1

4H
(

1
2 , 1

2

)ϑ

(
3g + f

2

)
�CR

1
g− f

∫ g

f+g
2

ϑ(σ)dσ. (13)

Adding Equations (12) and (13), we have

41 =
1

4H
(

1
2 , 1

2

)[ϑ

(
3 f + g

4

)
+ ϑ

(
3g + f

4

)]
�CR

[
1

g− f

∫ g

f
ϑ(σ)dσ

]
.

Now, we have

1

4
[

H
(

1
2 , 1

2

)]2 ϑ

(
f + g

2

)

=
1

4
[

H
(

1
2 , 1

2

)]2 ϑ

(
1
2

(
3 f + g

4

)
+

1
2

(
3g + f

4

))

�CR
1

4
[

H
(

1
2 , 1

2

)]2

[
H
(

1
2

,
1
2

)
ϑ

(
3 f + g

4

)
+ H

(
1
2

,
1
2

)
ϑ

(
3g + f

4

)]

=
1

4H
(

1
2 , 1

2

)[ϑ

(
3 f + g

4

)
+ ϑ

(
3g + f

4

)]
= 41

�CR
1

4H
(

1
2 , 1

2

){H
(

1
2

,
1
2

)[
ϑ( f ) + ϑ

(
f + g

2

)]
+ H

(
1
2

,
1
2

)[
ϑ(g) + ϑ

(
f + g

2

)]}

=
1
2

[
ϑ( f ) + ϑ(g)

2
+ ϑ

(
f + g

2

)]
�CR

[
ϑ( f ) + ϑ(g)

2
+ ϑ

(
f + g

2

)] ∫ 1

0
H(s, 1− s)ds = 42

�CR

[
ϑ( f ) + ϑ(g)

2
+ H

(
1
2

,
1
2

)
ϑ( f ) + H

(
1
2

,
1
2

)
ϑ(g)

] ∫ 1

0
H(s, 1− s)ds

�CR

[
ϑ( f ) + ϑ(g)

2
+ H

(
1
2

,
1
2

)
[ϑ( f ) + ϑ(g)]

] ∫ 1

0
H(s, 1− s)ds

�CR

{
[ϑ( f ) + ϑ(g)]

[
1
2
+ H

(
1
2

,
1
2

)]} ∫ 1

0
H(s, 1− s)ds.

This completes the proof.

Example 4. Looking back at Example 3, one has

1

4
[

H( 1
2 , 1

2 )
]2 ϑ

(
f + g

2

)
= ϑ

(
1
2

)
=

[
5
2

,
9
2

]
,

41 =
1
2

[
ϑ

(
1
4

)
+ ϑ

(
3
4

)]
=

[
19
8

,
37
8

]
,

42 =

[
ϑ(0) + ϑ(1)

2
+ ϑ

(
1
2

)] ∫ 1

0
H(s, 1− s)ds,

=
1
2

(
[2, 5] +

[
5
2

,
9
2

])
=

[
9
4

,
19
4

]
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and {
[ϑ( f ) + ϑ(g)]

[
1
2
+ H

(
1
2

,
1
2

)]} ∫ 1

0
H(s, 1− s)ds = [2, 5].

As a result, we have[
5
2

,
9
2

]
�CR

[
19
8

,
37
8

]
�CR

[
7
3

,
14
3

]
�CR

[
9
4

,
19
4

]
�CR [2, 5].

This verifies Theorem 5.

Theorem 6. Let ϑ, ϕ : [ f , g] → RI
+ and h1, h2 : (0, 1) → R+ such that h1, h2 6= 0. If

ϑ ∈ SX(CR-(h1, h2), [ f , g], RI
+), ϕ ∈ SX(CR-(h1, h2), [ f , g], RI

+) and ϑ, ϕ ∈ IR[f,g], then

1
g− f

∫ g

f
ϑ(σ)ϕ(σ)dσ �CR M( f , g)

∫ 1

0
H2(s, 1− s)ds

+ N( f , g)
∫ 1

0
H(s, s)H(1− s, 1− s)ds,

where
M( f , g) = ϑ( f )ϕ( f ) + ϑ(g)ϕ(g)

and
N( f , g) = ϑ( f )ϕ(g) + ϑ(g)ϕ( f ).

Proof. Consider ϑ ∈ SX(CR-(h1, h2), [ f , g], RI
+) and ϕ ∈ SX(CR-(h1, h2), [ f , g], RI

+),
then

ϑ( f s + (1− s)g) �CR h1(s)h2(1− s)ϑ( f ) + h1(1− s)h2(s)ϑ(g)

and
ϕ( f s + (1− s)g) �CR h1(s)h2(1− s)ϕ( f ) + h1(1− s)h2(s)ϕ(g).

Then, we obtain

ϑ( f s + (1− s)g)ϕ( f s + (1− s)g)

�CR H2(s, 1− s)ϑ( f )ϕ( f ) + H2(1− s, s)[ϑ( f )ϕ(g) + ϑ(g)ϕ( f )]
+ H(s, s)H(1− s, 1− s)ϑ(g)ϕ(g).

Integrating (change of variables), we have∫ 1

0
ϑ( f s + (1− s)g)ϕ( f s + (1− s)g)ds

=

[∫ 1

0
ϑ( f s + (1− s)g)ϕ( f s + (1− s)g)ds,

∫ 1

0
ϑ( f s + (1− s)g)ϕ( f s + (1− s)g)ds

]
=

[
1

g− f

∫ g

f
ϑ(σ)ϕ(σ)dσ,

1
g− f

∫ g

f
ϑ(σ)ϕ(σ)dσ

]
=

1
g− f

∫ g

f
ϑ(σ)ϕ(σ)dσ

�CR

∫ 1

0
[ϑ( f )ϕ( f ) + ϑ(g)ϕ(g)]H2(s, 1− s)ds

+
∫ 1

0
[ϑ( f )ϕ(g) + ϑ(g)ϕ( f )]H(s, s)H(1− s, 1− s)ds.
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As a result of this,

1
g− f

∫ g

f
ϑ(σ)ϕ(σ)dσ �CR M( f , g)

∫ 1

0
H2(s, 1− s)ds

+ N( f , g)
∫ 1

0
H(s, s)H(1− s, 1− s)ds.

This completes the proof.

Example 5. Let [ f , g] = [1, 2], h1(s) = s and h2(s) = 1, for all s ∈ (0, 1). If ϑ, ϕ : [ f , g]→ RI
+

are defined as
ϑ(σ) = [−σ2 + 2, σ2 + 3] and ϕ(σ) = [−σ + 1, σ + 2].

So, we have

1
g− f

∫ g

f
ϑ(σ)ϕ(σ)dσ =

[
5
12

,
227
12

]
,

M( f , g)
∫ 1

0
H2(s, 1− s)ds = M(1, 2)

∫ 1

0
s2ds =

[
−8
3

,
40
3

]
and

N( f , g)
∫ 1

0
H(s, s)H(1− s, 1− s)ds = N(1, 2)

∫ 1

0
s(1− s)ds =

[
−10

6
,

29
6

]
.

Consequently, [
5
12

,
227
12

]
�CR

[
−8
3

,
40
3

]
+

[
−10

6
,

29
6

]
=

[
−13

3
,

109
6

]
.

Therefore, the theorem above holds.

Theorem 7. Let ϕ, ϑ : [ f , g] → RI
+ and h1, h2 : (0, 1) → R+ such that h1, h2 6= 0. If

ϑ ∈ SX(CR-(h1, h2), [ f , g], RI
+), ϕ ∈ SX(CR-(h1, h2), [ f , g], RI

+) and ϑ, ϕ ∈ IR[f,g], then

1

2
[

H
(

1
2 , 1

2

)]2 ϑ

(
f + g

2

)
ϕ

(
f + g

2

)
�CR

1
g− f

∫ g

f
ϑ(σ)ϕ(σ)dσ

+ M( f , g)
∫ 1

0
H(s, s)H(1− s, 1− s)ds + N( f , g)

∫ 1

0
H2(s, 1− s)ds.

Proof. Since ϑ ∈ SX(CR-(h1, h2), [ f , g], RI
+) and ϕ ∈ SX(CR-(h1, h2), [ f , g], RI

+), one has

ϑ

(
f + g

2

)
�CR H

(
1
2

,
1
2

)
ϑ( f s + (1− s)g) + H

(
1
2

,
1
2

)
ϑ( f (1− s) + sg)

and

ϕ

(
f + g

2

)
�CR H

(
1
2

,
1
2

)
ϕ( f s + (1− s)g) + H

(
1
2

,
1
2

)
ϕ( f (1− s) + sg).
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Then, we have

ϑ

(
f + g

2

)
ϕ

(
f + g

2

)
�CR

[
H
(

1
2

,
1
2

)]2

[ϑ( f s + (1− s)g)ϕ( f s + (1− s)g) + ϑ( f (1− s) + sg)ϕ( f (1− s) + sg)]

+

[
H
(

1
2

,
1
2

)]2

[ϑ( f s + (1− s)g)ϕ( f (1− s) + sg) + ϑ( f (1− s) + sg)ϕ( f s + (1− s)g)]

�CR

[
H
(

1
2

,
1
2

)]2

[ϑ( f s + (1− s)g)ϕ( f s + (1− s)g) + ϑ( f (1− s) + sg)ϕ( f (1− s) + sg)]

+

[
H
(

1
2

,
1
2

)]2

[H(s, 1− s)ϑ( f ) + H(1− s, s)ϑ(g))(H(1− s, s)ϕ( f ) + H(s, 1− s)ϕ(g))

+ (H(1− s, s)ϕ( f ) + H(s, 1− s)ϕ(g))(H(s, 1− s)ϕ( f ) + H(1− s, s)ϕ(g))]

�CR

[
H
(

1
2

,
1
2

)]2

[ϑ( f s + (1− s)g)ϕ( f s + (1− s)g) + ϑ( f (1− s) + sg)ϕ( f (1− s) + sg)]

+

[
H
(

1
2

,
1
2

)]2[
(2H(s, s)H(1− s, 1− s))M( f , g) +

(
H2(s, 1− s) + H2(1− s, s)

)
N( f , g)

]
Integrating (change of variables), we have∫ 1

0
ϑ

(
f + g

2

)
ϕ

(
f + g

2

)
ds =

[∫ 1

0
ϑ

(
f + g

2

)
ϕ

(
f + g

2

)
ds,
∫ 1

0
ϑ

(
f + g

2

)
ϕ

(
f + g

2

)
ds
]

�CR 2
[

H
(

1
2

,
1
2

)]2[ 1
g− f

∫ g

f
ϑ(σ)ϕ(σ)dσ

]
+ 2
[

H
(

1
2

,
1
2

)]2[
M( f , g)

∫ 1

0
H(s, s)H(1− s, 1− s)ds

+N( f , g)
∫ 1

0
H2(s, 1− s)ds

]
.

Divide both sides by 1
2[H( 1

2 , 1
2 )]

2 above equation, we get

1

2
[

H
(

1
2 , 1

2

)]2 ϑ

(
f + g

2

)
ϕ

(
f + g

2

)
�CR

1
g− f

∫ g

f
ϑ(σ)ϕ(σ)dσ

+ M( f , g)
∫ 1

0
H(s, s)H(1− s, 1− s)ds + N( f , g)

∫ 1

0
H2(s, 1− s)ds.

Therefore, the proof is completed.

Example 6. Looking back at Example 5, we have

1

2
[

H
(

1
2 , 1

2

)]2 ϑ

(
f + g

2

)
ϕ

(
f + g

2

)
=

1
2

ϑ

(
3
2

)
ϕ

(
3
2

)
=

[
−21
16

,
147
16

]
,

1
g− f

∫ g

f
ϑ(σ)ϕ(σ)dσ =

[
5

12
,

227
12

]
,

M( f , g)
∫ 1

0
H(s, s)H(1− s, 1− s)ds = M(1, 2)

∫ 1

0
s(1− s)ds =

[
−8
6

,
40
6

]
and

N( f , g)
∫ 1

0
H2(s, 1− s)ds = N(1, 2)

∫ 1

0
s2ds =

[
−10

3
,

29
3

]
.
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It follows that[
−21
16

,
147
16

]
�CR

[
5

12
,

227
12

]
+

[
−8
6

,
40
6

]
+

[
−10

3
,

29
3

]
=

[
−17

4
,

141
4

]
.

Therefore, the theorem above holds.

4. Jensen Type Inequality for CR-(h1, h2)-Convex Mapping

Following that, we will prove a Jensen-type inequality for the CR-(h1, h2)-convex function.

Theorem 8. Let fi ∈ R+ and ji ∈ [ f , g]. If h1, h2 are super multiplicative non-negative functions
and ϑ ∈ SX(CR-(h1, h2), [ f , g], RI

+). Then

ϑ

(
1
Fk

k

∑
i=1

fi ji

)
�CR

k

∑
i=1

H
(

fi
Fk

,
Fk−1

Fk

)
ϑ(ji), (14)

where Fk = ∑k
i=1 fi.

Proof. If k = 2, then (14) holds. Suppose that (14) is also valid for k− 1, then

ϑ

(
1
Fk

k

∑
i=1

fi ji

)
= ϑ

(
fk
Fk

vk +
k−1

∑
i=1

fi
Fk

ji

)

�CR h1

(
fk
Fk

)
h2

(
Fk−1

Fk

)
ϑ(jk) + h1

(
Fk−1

Fk

)
h2

(
fk
Fk

)
ϑ

(
k−1

∑
i=1

fi
Fk

ji

)

�CR h1

(
fk
Fk

)
h2

(
Fk−1

Fk

)
ϑ(jk) + h1

(
Fk−1

Fk

)
h2

(
fk
Fk

)k−1

∑
i=1

[
H
(

fi
Fk

,
Fk−2
Fk−1

)
ϑ(ji)

]

�CR h1

(
fk
Fk

)
h2

(
Fk−1

Fk

)
ϑ(jk) +

k−1

∑
i=1

H
(

fi
Fk

,
Fk−2
Fk−1

)
ϑ(ji)

�CR

k

∑
i=1

H
(

fi
Fk

,
Fk−1

Fk

)
ϑ(ji).

It follows from Mathematical induction that the conclusion is correct.

Remark 3.

(i) If h1(s) = h2(s) = 1, Theorem 8 incorporates output for CR- P-function:

ϑ

(
1
Fk

k

∑
i=1

fi ji

)
�CR

k

∑
i=1

ϑ(ji);

(ii) If h1(s) = 1
h1(s)

and h2(s) = 1
h2(s)

, Theorem 8 incorporates output for CR-(h1, h2)-GL
function:

ϑ

(
1
Fk

k

∑
i=1

fi ji

)
�CR

k

∑
i=1

 ϑ(ji)

H
(

fi
Fk

, Fk−1
Fk

)
;

(iii) If h1(s) = s and h2(s) = 1, Theorem 8 incorporates output for CR-convex function:

ϑ

(
1
Fk

k

∑
i=1

fi ji

)
�CR

k

∑
i=1

fi
Fk

ϑ(ji);
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(iv) If h1(s) = h(s) and h2(s) = 1, Theorem 8 incorporates output for CR-h-convex function:

ϑ

(
1
Fk

k

∑
i=1

fi ji

)
�CR

k

∑
i=1

h
(

fi
Fk

)
ϑ(ji);

(v) If h1(s) = 1
h(s) and h2(s) = 1, Theorem 8 incorporates output for CR-h-GL-function:

ϑ

(
1
Fk

k

∑
i=1

fi ji

)
�CR

k

∑
i=1

 ϑ(ji)

h
(

fi
Fk

)
;

(vi) If h1(s) = 1
(s)s and h2(s) = 1, Theorem 8 incorporates output for CR-s-convex function:

σ

(
1
Fk

k

∑
i=1

fi ji

)
�CR

k

∑
i=1

(
fi
Fk

)s
ϑ(ji).

5. Conclusions

In the present study, we developed the concept of (h1, h2)-Convex functions pertaining
to CR-order relation for IVFS . This new concept allows us to achieve much more precise
results than other partial order relations since the interval difference between endpoints
is much smaller in examples based on this new concept. Generalizations can be drawn
from the recent findings described in [39,47,48]. Furthermore, some nontrivial examples
are provided to test the validity of our main findings. Considering the widespread use
of integral operators in engineering and other applied sciences, such as different types of
mathematical modeling, and the fact that different integral operators are appropriate for
various practical problems, our study of interval integral operator-type integral inequalities
will expand their potential applications in practice. It might be interesting to determine
equivalent inequalities for different types of convexity in the future. This concept is
expected to be useful to other researchers in a variety of scientific fields.
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