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Abstract: In this paper, we concentrate on and investigate the idea of a novel family of modified
p-convex functions. We elaborate on some of this newly proposed idea’s attractive algebraic char-
acteristics to support it. This is used to study some novel integral inequalities in the frame of the
Hermite–Hadamard type. A unique equality is established for differentiable mappings. The Hermite–
Hadamard inequality is extended and estimated in a number of new ways with the help of this
equality to strengthen the findings. Finally, we investigate and explore some applications for some
special functions. We think the approach examined in this work will further pique the interest of
curious researchers.
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1. Introduction

Since more than a century ago, convexity has been the focus of intense investigation,
and it has an amazing history in mathematics. This theory and its generalizations have
significant advantages for the investigation of extremum problems. In addition to its
fascinating and in-depth findings in numerous disciplines of applied and engineering
sciences, this theory is widely accepted and provides a numerical setup and framework
for scientists to analyze a wide range of unrelated problems. The term “convexity” has
attracted a lot of attention and has become a fruitful source of research and ideas. Interested
readers can see the following literature about convex analysis, convex functions, and
their applications [1]; s-convex functions [2]; n-polynomial harmonically s-type convex
functions [3]; convex functions with applications to means [4]; GA-convex functions [5];
p–harmonic exponential type convexity [6]; and generalized exponential-type convex
functions [7].
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The term convexity played a significant and vital role in the generalizations and ex-
tensions of inequalities throughout the past few decades. The theories of inequality and
convexity are strongly related to one another. Information technology, statistics, stochastic
processes, probability, integral operator theory, optimization theory, and numerical inte-
gration all make use of the integral inequalities. Many mathematicians and academics
have focused their considerable efforts and contributions over the past few decades on the
study of inequalities. Interested readers can go through the following articles about differ-
ent type of inequalities, i.e. Hermite–Hadamard integral inequalities [8], Ostrowski type
inequalities [9], weighted Chebysev–Ostrowski type inequalities [10], Ostrowski type inte-
gral inequalities using hypergeometric functions [11], reverse Minkowski’s inequality [12],
reverse Hermite–Hadamard’s inequalities [13], and Minkowski’s inequalities [14].

The primary goal and uniqueness of this article is that it discusses Hermite–Hadamard
inequalities and their refinements for modified p-convex functions using a new identity
with the aid of power mean and Hölder inequalities.

We organized this article in the following manner: we discuss some fundamental
definitions and ideas in Section 2. In Section 3, we elaborate the concept and properties
of the modified p-convex function. For a modified p-convex function, we examine a new
generalization of the Hermite–Hadamard type inequality in Section 4. The Hermite–
Hadamard type inequality is then improved in Section 5 using a modified p-convex.
In Section 6, we investigate some applications involving modified Bessel functions via
modified p-convex. Lastly, in Section 7, a conclusion and future directions of the newly
introduced idea are expressed.

2. Preliminaries

It is advisable to explore and expound on a few definitions, theorems, and notes in
the first part for the sake of thoroughness, quality, and reader interest. This section’s main
goal is to explain and examine certain familiar terms and definitions that we require for
our examination in subsequent sections. The first concepts we discuss are convex function,
Hermite–Hadamard type inequality, h-convex function, s-type convex function, p-convex
function, and m-convex function. A few theorems related to the p-convex function are also
included.

In the year 1905, Jensen [15], for the first time, presented the meaning of a convex
function, which reads as follows:

Definition 1. Assume that X is a convex subset of a real vector space R and D : X → R is a real
valued function. A real valued function D is convex if

D(kb1 + (1− k)b2) ≤ kD(b1) + (1− k)D(b2), (1)

holds ∀ b1, b2 ∈ X, and k ∈ [0, 1].

Theorem 1 ([16]). Assume that X is an interval in R and D : X → R is convex. Then, D is
Lipschitz on any closed interval X.

No one can deny the Hermite–Hadamard inequality’s astonishing and spectacular
significance in literature due to its importance in various fields. Since that time, scholars
have continued to be interested in the aforementioned inequality, and as a result, numerous
generalizations and enhancements have been made. Due to the extensive perception and
uses of this kind of inequality in the scope of pure and applied analysis, it has continued
to be a topic of significant interest. This inequality states that if real-valued function D is
convex for b1, b2 ∈ X, and b1 < b2, then

D
(
b1 + b2

2

)
≤ 1

b2 − b1

∫ b2

b1

D(χ)dχ ≤ D(b1) +D(b2)

2
. (2)
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Interested readers can refer to (see [17–20]).
The term m-convexity was investigated and explored by G. Toader in (see [21]).

Definition 2 (see [21]). A real valued function D : [0, b2]→ R, b2 > 0 is m-convex if

D(kb1 + m(1− k)b2) ≤ kD(b1) + m(1− k)D(b2) (3)

holds ∀ b1, b2 ∈ [0, b2], m ∈ [0, 1], and k ∈ [0, 1].

Definition 3 (see [22]). Assume that X and J are an interval in R, (0, 1) ⊂ J and let h : J→ R be
a non-negative function, h 6= 0. A non-negative function D : X→ R is h-convex if

D(kb1 + (1− k)b2) ≤ h(k)D(b1) + h(1− k)D(b2) (4)

holds for all b1, b2 ∈ X, and k ∈ (0, 1).

Remark 1. Choosing h(k) = k, then the above function collapses to the classical convex function
(see [23,24]).

Definition 4 (see [25]). A function D : X ⊂ (0,+∞)→ R is p-convex if

D
([

kb
p
1 + (1− k)b

p
2

] 1
p
)
≤ kD(b1) + (1− k)D(b2), (5)

∀ b1, b2 ∈ X , k ∈ [0, 1], and p ∈ R\0.

Remark 2. Choosing p = 1, then the above function collapse to ordinary convex function.

Definition 5 (see [26]). A function D : X→ R is s–type convex, if

D(kb1 + (1− k)b2) ≤ [1− s(1− k)]D(b1) + [1− sk]D(b2), (6)

holds ∀ b1, b2 ∈ X, s ∈ [0, 1] and k ∈ [0, 1].

Theorem 2 (see [16]). Assume that p > 1 and 1
p +

1
q = 1. IfD1 andD2 are real functions defined

on [a, b] and if |D1|p and |D2|q are integrable functions on [a, b], then

∫ b

a
|D1(x)D2(x)|dx ≤

( ∫ b

a
|D1(x)|pdx

) 1
p
( ∫ b

a
|D2(x)|qdx

) 1
q
, (7)

with equality holding if and only if A|D1|p = B|D2|q, almost everywhere, where A and B are
constants.

Theorem 3 (see [27]). Assume that q ≥ 1 and 1
p +

1
q = 1. If D1 and D2 are real functions defined

on [a, b] and if |D1| and |D1||D2|q are integrable functions on [a, b], then

∫ b

a
|D1(x)D2(x)|dx ≤

( ∫ b

a
|D1(x)|dx

)1− 1
q
( ∫ b

a
|D1(x)|dx

∫ b

a
|D2(x)|qdx

) 1
q
. (8)

3. Modified p-Convex Functions and Its Algebraic Properties

Due to the theory of convexity’s numerous applications in applied sciences and
optimization, it has undergone a remarkable development during the past few decades.
Even while convexity has yielded a variety of conclusions, the majority of the problems
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in the real world are nonconvex in nature. Studying nonconvex functions, which are
roughly close to convex functions, is therefore always worthwhile. Convex functions have
received acclaim from numerous well-known mathematicians during the twentieth century,
including Jensen, Hermite, Holder, and Stolz. An unprecedented amount of research was
conducted throughout the 20th century, yielding significant findings in the fields of convex
analysis, geometric functional analysis, and nonlinear programming.
We will provide our basic definition of the modified p-convex function and its correspond-
ing features as the main topic of this section.

Definition 6. A function D : X→ R is said to be modified p-convex if

D

(kb1
p + m(1− k)b2

p
) 1

p

 ≤ (1− (s(1− k)))D(b1) + m(1− sk)D(b2) (9)

holds for all b1, b2 ∈ X, m ∈ [0, 1], s ∈ [0, 1], k ∈ [0, 1], and p ∈ R\0.

Remark 3. (i) Choosing s = m = 1, we obtain Definition 4.
(ii) Choosing p = m = 1 in Definition 6, we obtain Definition 5.
(iii) Choosing p = −1 and m = 1 in Definition 6, then

D
(

b1b2

kb2 + (1− k)b1

)
≤ (1− (s(1− k)))D(b1) + (1− sk)D(b2). (10)

(iv) Choosing p = m = 1 and s = 1 in Definition 6, we obtain Definition 1.
(v) Suppose m = s = 1 and p = −1 in Definition 6, we obtain Definition (2.1) in [28].

These are the amazing advantages of this newly investigated concept; if we choose
the value of p, m, and s, then we attain new extended inequalities and also obtain some
inequalities, which are associated with some previously published results.

Lemma 1. The following inequalities (1− (s(1− k))) ≥ k and m(1− sk) ≥ m(1− k) are held,
if for all m ∈ [0, 1], s ∈ [0, 1], and k ∈ [0, 1].

Proof. The proof is obvious.

Remark 4. Assume that m = 1 in the above Lemma 1, then we attain the following inequalities
(1− (s(1− k))) ≥ k and (1− sk) ≥ (1− k).

Proposition 1. Every p-convex function on a p-convex set, i.e., X ⊂ (0,+∞), is a modified
p-convex function.

Proof. Using the Definition 6, we have

D

(kb1
p + (1− k)b2

p
) 1

p

 ≤ kD(b1) + (1− k)D(b2).

From the Remark 4, since k ≤ (1 − (s(1 − k))) and (1 − k) ≤ m(1 − sk) for all
m ∈ [0, 1], s ∈ [0, 1], and k ∈ [0, 1], we have

D

(kb1
p + (1− k)b2

p
) 1

p

 ≤ (1− (s(1− k)))D(b1) + m(1− sk)D(b2).
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Proposition 2. Every (m, p)-convex function on a p-convex set, i.e., X ⊂ (0,+∞), is a modified
p-convex function.

Proof. Using the Definition 6, we have

D

(kb1
p + m(1− k)b2

p
) 1

p

 ≤ kD(b1) + m(1− k)D(b2).

From the Lemma 1, since k ≤ (1 − (s(1 − k))) and m(1 − k) ≤ m(1 − sk) for all
m ∈ [0, 1], s ∈ [0, 1], and k ∈ [0, 1], we have

D

(kb1
p + m(1− k)b2

p
) 1

p

 ≤ (1− (s(1− k)))D(b1) + m(1− sk)D(b2).

Proposition 3. Every modified p-convex function with the mentioned condition h(k) = (1−
(s(1− k))) is an (h, m)-convex.

Proof. Using the Definition 6, we have

D

(kb1
p + (1− k)b2

p
) 1

p

 ≤ (1− (s(1− k)))D(b1) + m(1− sk)D(b2).

Using the condition h(k) = (1− (s(1− k))), we have

D

(kb1
p + (1− k)b2

p
) 1

p

 ≤ h(k)D(b1) + mh(1− k)D(b2).

Now, we present some examples regarding the newly introduced definition, i.e.,
modified p-convex function.

Example 1. If m = 1, p ∈ (−∞, 0) ∪ [1, ∞), and D(x) = xp is a (m, p)-convex function
∀x > 0 [29]; then, by employing Proposition 2, it is a modified p-convex function.

Example 2. Let p ≥ 1, m = 1, D : (0, ∞) → R, and D(x) = x−p; then, D is a (m, p)-convex
function [29], so by employing Proposition 2, it is a modified p-convex function.

Example 3. Let m = 1, p ≥ 1,D : (0, ∞)→ R, andD(x) = − ln x; then,D is a (m, p)-convex
function [29], so by employing Proposition 2, it is a modified p-convex function.

Now, we will discuss and prove some of its properties here.

Theorem 4. Assume that D and H are two modified p-convex functions; then, D + H is also a
modified p-convex function.
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Proof. Let D and H be a modified p-convex, s ∈ [0, 1], k ∈ [0, 1], and m ∈ [0, 1]; then,

(D +H)

(kb1
p + m(1− k)b2

p
) 1

p


= D

(kb1
p + m(1− k)b2

p
) 1

p

+H

(kb1
p + m(1− k)b2

p
) 1

p


≤ (1− (s(1− k)))D(b1) + m(1− sk)D(b2)

+ (1− (s(1− k)))D(b1) + m(1− sk)H(b2)

= (1− (s(1− k)))(D(b1) +H(b1)) + m(1− sk)(D(b2) +H(b2))

= (1− (s(1− k)))(D +H)(b1) + m(1− sk)(D +H)(b2),

which completes the proof.

Theorem 5. If D is a modified p-convex function, then for non-negative real number c, cD is a
modified p-convex function.

Proof. Let D be a modified p-convex function, s ∈ [0, 1], k ∈ [0, 1], and m ∈ [0, 1]; then,

(cD)

(kb1
p + m(1− k)b2

p
) 1

p


≤ c
(
(1− (s(1− k)))D(b1) + m(1− sk)D(b2)

)
= (1− (s(1− k)))cD(b1) + m(1− sk)cD(b2)

= (1− (s(1− k)))(cD)(b1) + m(1− sk)(cD)(b2),

which completes the proof.

Theorem 6. Let a function H : X → J be p-convex, and increasing function D : J → R is an
s-type m-convex function. Then, D ◦H : X→ R is a modified p-convex function.

Proof. ∀ b1, b2 ∈ X, s ∈ [0, 1], k ∈ [0, 1], and m ∈ [0, 1], we have

(D ◦H)
((

kb1
p + m(1− k)b2

p) 1
p

)

= D

H

(kb1
p + m(1− k)b2

p
) 1

p


≤ D(kH(b1) + m(1− k)H(b2))

≤ (1− (s(1− k)))D(H(b1)) + m(1− sk)D(H(b2))

= (1− (s(1− k)))(D ◦H)(b1) + m(1− sk)(D ◦H)(b2).

This is the required proof.

Theorem 7. Let Di : [b1, b2]→ R be an arbitrary family of modified p-convex functions, and let
D(b) = supi Di(b). If O = {b ∈ [b1, b2] : D(b) < +∞} 6= ∅, then O is an interval and D is a
modified p-convex function on O.
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Proof. ∀ b1, b2 ∈ O, s ∈ [0, 1], k ∈ [0, 1], and m ∈ [0, 1], then we have

D

(kb1
p + m(1− k)b2

p
) 1

p


= sup

i
Di

(kb1
p + m(1− k)b2

p
) 1

p


≤ (1− (s(1− k))) sup

j
Dj(b1) + m(1− sk) sup

j
Dj(b2)

= (1− (s(1− k)))D(b1) + m(1− sk)D(b2) < +∞,

This shows simultaneously that O is an interval since it contains every point between
any two of its points, and D is a modified p-convex function on O.

4. New Generalization of (H − H) Type Inequality Using Modified
p-Convex Function

Massive generalizations of mathematical inequalities for multiple functions have sig-
nificantly influenced traditional research. Numerous fields, including linear programming,
combinatorics, theory of relativity, optimization theory, quantum theory, number theory,
dynamics, and orthogonal polynomials, are affected by and use integral inequalities. This
issue has received much attention from researchers. The Hermite–Hadamard inequality is
widely used and a popular inequality in the literature pertaining to convexity theory. The
main focus of this part is to derive a new generalization of (H−H) type integral inequality
via a modified p-convex function.

Theorem 8. Let D : [b1, b2]→ R be a modified p-convex function. If D ∈ L1([b1, b2]), then

2
2− s

D
[
b

p
1 + mb

p
2

2

] 1
p

≤ p
mb

p
2 − b

p
1

[∫ mb2

b1

D(x)
x1−p dx + m2

∫ b2

b2
m

D(x)
x1−p dx

]
≤
[
D(b1) + mD(b2) + m

(
D(b1)

m
+ mD(b2)

)](
2− s

2

)
. (11)

Proof. Let

x =
(
kb

p
1 + m(1− k)b

p
2

) 1
p ⇒ xp = kb

p
1 + m(1− k)b

p
2 ,

and

y =

(
(1− k)

b
p
1

m
+ kb

p
2

) 1
p

⇒ yp = (1− k)
b

p
1

m
+ kb

p
2 .

Since D is modified p-convexity, we have

D

[kxp + m(1− k)yp
] 1

p

 ≤ [1− (s(1− k))]D(x) + m[1− (sk)]D(y), (12)

which leads to

D
([

xp + myp

2

] 1
p
)
≤ [1− (

s
2
)]D(x) + m[1− (

s
2
)]D(y)

⇒ D
([

b
p
1 + mb

p
2

2

] 1
p)
≤ [1− (

s
2
)]D(b1) + m[1− (

s
2
)]D(b2)
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Using the change of variables, we obtain

D
([

b
p
1 + b

p
2

2

] 1
p)
≤
[
1− (

s
2
)
]{
D

[kb1
p + m(1− k)b2

p
] 1

p

+ mD

[(1− k)
b1

p

m
+ kb2

p
] 1

p

}.

Integrate the above inequality with respect to k on [0, 1], and we attain

2
2− s

D
[
b

p
1 + mb

p
2

2

] 1
p

≤ p
mb

p
2 − b

p
1

[∫ mb2

b1

D(x)
x1−p dx + m2

∫ b2

b1
m

D(x)
x1−p dx

]
.

Here, we prove the first half of the desired inequality.

For the next half, suppose x =

[kb1
p + m(1− k)b2

p
] 1

p

, and using the Definition 6,

we obtain

p
mb

p
2 − b

p
1

[∫ mb2

b1

D(x)
x1−p dx + m2

∫ b2

b2
m

D(x)
x1−p dx

]

=
∫ 1

0
D

[kb1
p + m(1− k)b2

p
] 1

p

dk+ m
∫ 1

0
D

[(1− k)
b2

p

m
+ kb2

p
] 1

p

dk

≤
∫ 1

0

[
[1− (s(1− k))]D(b1) + m[1− (sk)]D(b2)

]
dk

+
∫ 1

0
m
[
[1− sk]

D(b1)

m
+ m[1− (s(1− k))]D(b2)

]
dk

= D(b1)
∫ 1

0
[1− (s(1− k))]dk+D(b2)

∫ 1

0
[1− sk]dk

+D(b1)
∫ 1

0
[1− sk]dk+ m2D(b2)

∫ 1

0
[1− (s(1− k))]dk

=

[
D(b1) + mD(b2) + m

(
D(b1)

m
+ mD(b2)

)](
2− s

2

)
.

This concludes the proof.

Corollary 1. Assume that p = 1 in the above Theorem 8, then

2
2− s

D
[
b1 + mb2

2

]
≤ 1

mb2 − b1

[∫ mb2

b1

D(x)dx + m2
∫ b2

b2
m

D(x)dx
]

≤
[
D(b1) + mD(b2) + m

(
D(b1)

m
+ mD(b2)

)](
2− s

2

)
. (13)

Corollary 2. Assume that s = 1 in Theorem 8, then

2D
[
b

p
1 + mb

p
2

2

] 1
p

≤ p
mb

p
2 − b

p
1

[∫ mb2

b1

D(x)
x1−p dx + m2

∫ b2

b2
m

D(x)
x1−p dx

]

≤

[
D(b1) + mD(b2) + m

(
D(b1)

m + mD(b2)
)]

2
. (14)
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Corollary 3. Assume that m = 1 in Theorem 8, then

2
2− s

D
[
b

p
1 + b

p
2

2

] 1
p

≤ 2p
b

p
2 − b

p
1

∫ b2

b1

D(x)
x1−p dx ≤ [D(b1) +D(b2)](2− s). (15)

Corollary 4. Assume that s = p = 1 in Theorem 8, then

2D
[
b1 + mb2

2

]
≤ 1

mb2 − b1

[∫ mb2

b1

D(x)dx + m2
∫ b2

b2
m

D(x)dx
]

≤

[
D(b1) + mD(b2) + m

(
D(b1)

m + mD(b2)
)]

2
. (16)

Corollary 5. Assume that m = s = 1 in Theorem 8, then

2D
[
b

p
1 + b

p
2

2

] 1
p

≤ 2p
b2 − b1

∫ b2

b1

D(x)
x1−p dx ≤

(
D(b1) +D(b2)

)
. (17)

Corollary 6. Assume that p = m = 1 in Theorem 8, then

2
2− s

D
[
b1 + b2

2

]
≤ 2

b2 − b1

∫ b2

b1

D(x)dx ≤ [D(b1) +D(b2)](2− s). (18)

Remark 5. Assume that p = s = m = 1 in Theorem 8, then we retrieve inequality (2).

5. Refinements of (H−H) Type Inequality via Modified p-Convex Function

First, we prove a new lemma. On the basis of the new lemma, with the help of
Holder and power mean inequality using newly introduced definition, we obtained some
refinements of the (H−H) inequality. For the comprehensiveness of this section, some
corollaries are presented.

Lemma 2. Let D : X → R be differentiable mapping on X◦ with b1, b2 ∈ X, and b1 < b2. If
D′ ∈ L1[b1, b2], k ∈ [0, 1], and m ∈ [0, 1], then

D(b1) + mD(b2)

2
− p

b
p
2 − b

p
1

∫ mb2

b1

D(x)
x1−p dx

=

(
mb

p
2 − b

p
1

2p

) ∫ 1

0

1− 2k([
kb1

p + m(1− k)b2
p
])1− 1

p
D′
([

kb1
p + m(1− k)b2

p] 1
p

)
dk. (19)

Proof. ∫ 1

0

1− 2k([
kb1

p + m(1− k)b2
p
])1− 1

p
D′
([

kb1
p + m(1− k)b2

p] 1
p

)
dk

=
p(D(b1) + mD(b2))

mb
p
2 − b

p
1

− 2p2

(mb
p
2 − b

p
1 )

2

∫ mb2

b1

D(x)
x1−p dx,

multiplies both sides by mb
p
2−b

p
1

2p , then we obtain the required result.
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Theorem 9. Let D : X → R be a differentiable function on X◦ with b1, b2 ∈ X, and b1 < b2. If
D′ ∈ L1[b1, b2] and |D′|q are modified p-convex on [b1, b2] for q ≥ 1, k ∈ [0, 1], s ∈ [0, 1], and
m ∈ [0, 1], then ∣∣∣∣∣D(b1) + mD(b2)

2
− p

mb
p
2 − b

p
1

∫ mb2

b1

D(x)
x1−p dx

∣∣∣∣∣
≤
(

mb
p
2 − b

p
1

2p

)
(B1)

1− 1
q

[
B2|D′(b1)|q + mB3|D′(b2)|q

] 1
q

, (20)

where

B1 =
∫ 1

0

|1− 2k|[
kb1

p + m(1− k)b2
p
]1− 1

p
dk, B2 =

∫ 1

0

|1− 2k|[1− (s(1− k)][
kb1

p + m(1− k)b2
p
]1− 1

p
dk,

B3 =
∫ 1

0

|1− 2k|[1− (sk)][
kb1

p + m(1− k)b2
p
]1− 1

p
dk.

Proof. Employing Lemma 2 and property of modulus, we have∣∣∣∣∣D(b1) + mD(b2)

2
− p

mb
p
2 − b

p
1

∫ mb2

b1

D(x)
x1−p dx

∣∣∣∣∣
≤
(

mb
p
2 − b

p
1

2p

) ∫ 1

0

∣∣∣∣ 1− 2k([
kb1

p + m(1− k)b2
p
])1− 1

p

∣∣∣∣∣∣∣∣D′
[kb1

p + m(1− k)b2
p
] 1

p

∣∣∣∣dk

Using power mean inequality, we have∣∣∣∣∣D(b1) + mD(b2)

2
− p

mb
p
2 − b

p
1

∫ mb2

b1

D(x)
x1−p dx

∣∣∣∣∣
≤
(

mb
p
2 − b

p
1

2p

)( ∫ 1

0

|1− 2k|[
kb1

p + m(1− k)b2
p
]1− 1

p
dk
)1− 1

q

×
( ∫ 1

0

|1− 2k|[
kb1

p + m(1− k)b2
p
]1− 1

p

∣∣∣∣D′
[kb1

p + m(1− k)b2
p
] 1

p

∣∣∣∣qdk
) 1

q

Using modified p-convexity of |D′|q, we have∣∣∣∣∣D(b1) + mD(b2)

2
− p

mb
p
2 − b

p
1

∫ mb2

b1

D(x)
x1−p dx

∣∣∣∣∣
≤
(

mb
p
2 − b

p
1

2p

)( ∫ 1

0

|1− 2k|[
kb1

p + m(1− k)b2
p
]1− 1

p
dk
)1− 1

q
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×
[ ∫ 1

0

|1− 2k|[
kb1

p + m(1− k)b2
p
]1− 1

p

{
[1− (s(1− k))]|D(b1)|q + m[1− (sk)]|D(b2)|q

}
dk

] 1
q

=

(
mb

p
2 − b

p
1

2p

)( ∫ 1

0

|1− 2k|[
kb1

p + m(1− k)b2
p
]1− 1

p
dk
)1− 1

q

×
[ ∫ 1

0

|1− 2k|[1− (s(1− k))][
kb1

p + m(1− k)b2
p
]1− 1

p
|D′(b1)|qdk+

∫ 1

0

m|1− 2k|[1− (sk)][
kb1

p + m(1− k)b2
p
]1− 1

p
|D′(b2)|qdk

] 1
q

=

(
mb

p
2 − b

p
1

2p

)
(B1)

1− 1
q

[
B2|D′(b1)|q + mB3|D′(b2)|q

] 1
q

.

This is the required proof.

Corollary 7. Choosing m = 1 in the above Theorem 9, we have∣∣∣∣∣D(b1) +D(b2)

2
− p

b
p
2 − b

p
1

∫ b2

b1

D(x)
x1−p dx

∣∣∣∣∣
≤
(
b

p
2 − b

p
1

2p

)
(B4)

1− 1
q

[
B5|D′(b1)|q + B6|D′(b2)|q

] 1
q

,

where

B4 =
∫ 1

0

|1− 2k|[
kb1

p + (1− k)b2
p
]1− 1

p
dk, B5 =

∫ 1

0

|1− 2k|[1− (s(1− k)][
kb1

p + (1− k)b2
p
]1− 1

p
dk,

B6 =
∫ 1

0

|1− 2k|[1− (sk)][
kb1

p + (1− k)b2
p
]1− 1

p
dk.

Corollary 8. If we put s = 1 in Theorem 9, then∣∣∣∣∣D(b1) + mD(b2)

2
− p

mb
p
2 − b

p
1

∫ mb2

b1

D(x)
x1−p dx

∣∣∣∣∣
≤
(

mb
p
2 − b

p
1

2p

)
(B7)

1− 1
q

[
B8|D′(b1)|q + mB9|D′(b2)|q

] 1
q

,

where

B7 =
∫ 1

0

|1− 2k|[
kb1

p + m(1− k)b2
p
]1− 1

p
dk, B8 =

∫ 1

0

|1− 2k|k[
kb1

p + m(1− k)b2
p
]1− 1

p
dk,

B9 =
∫ 1

0

|1− 2k|[1− k][
kb1

p + m(1− k)b2
p
]1− 1

p
dk.
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Corollary 9. If we put s = m = 1 in Theorem 9, then∣∣∣∣∣D(b1) +D(b2)

2
− p

b
p
2 − b

p
1

∫ b2

b1

D(x)
x1−p dx

∣∣∣∣∣
≤
(
b

p
2 − b

p
1

2p

)
(B10)

1− 1
q

[
B11|D′(b1)|q + B12|D′(b2)|q

] 1
q

,

where

B10 =
∫ 1

0

|1− 2k|[
kb1

p + (1− k)b2
p
]1− 1

p
dk, B11 =

∫ 1

0

|1− 2k|k[
kb1

p + (1− k)b2
p
]1− 1

p
dk,

B12 =
∫ 1

0

|1− 2k|[1− k][
kb1

p + (1− k)b2
p
]1− 1

p
dk.

Theorem 10. Let D : X → R be a differentiable function on X◦ with b1, b2 ∈ X, and b1 < b2. If
D′ ∈ L1[b1, b2] and |D′|q are modified p-convex on [b1, b2] for q > 1, 1

l +
1
q = 1, k ∈ [0, 1],

s ∈ [0, 1], and m ∈ [0, 1], then∣∣∣∣∣D(b1) + mD(b2)

2
− p

mb
p
2 − b

p
1

∫ mb2

b1

D(x)
x1−p dx

∣∣∣∣∣
≤
(

mb
p
2 − b

p
1

2p

)(
1

1 + l

) 1
l
[
C1|D′(b1)|q + mC2|D′(b2)|q

] 1
q

, (21)

where

C1 =
∫ 1

0

[1− (s(1− k))][
kb1

p + m(1− k)b2
p
]q
(

1− 1
p

) dk

and

C2 =
∫ 1

0

[1− (sk)][
kb1

p + m(1− k)b2
p
]q
(

1− 1
p

) dk.

Proof. Employing Lemma 2, Hölder’s inequality and modified p-convexity of |D′|q, we
have ∣∣∣∣∣D(b1) + mD(b2)

2
− p

mb
p
2 − b

p
1

∫ mb2

b1

D(x)
x1−p dx

∣∣∣∣∣
≤
(

mb
p
2 − b

p
1

2p

)( ∫ 1

0
|1− 2k|ldk

) 1
l

×
( ∫ 1

0

1[
kb1

p + m(1− k)b2
p
]q(1− 1

p )

∣∣∣∣D′
[kb1

p + m(1− k)b2
p
] 1

p

∣∣∣∣qdk
) 1

q
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≤
(

mb
p
2 − b

p
1

2p

)(
1

1 + l

) 1
l

×
( ∫ 1

0

[1− (s(1− k))]|D(b1)|q + m[1− (sk)]|D(b2)|q[
kb1

p + m(1− k)b2
p
]q
(

1− 1
p

) dk
) 1

q

=

(
mb

p
2 − b

p
1

2p

)(
1

1 + l

) 1
l
×
[
C1|D′(b1)|q + mC2|D′(b2)|q

] 1
q

.

This is the required proof.

Corollary 10. Choosing m = 1 in the above Theorem 10, we have∣∣∣∣∣D(b1) +D(b2)

2
− p

b
p
2 − b

p
1

∫ b2

b1

D(x)
x1−p dx

∣∣∣∣∣
≤
(
b

p
2 − b

p
1

2p

)(
1

1 + l

) 1
l
[
C3|D′(b1)|q + C4|D′(b2)|q

] 1
q

,

where

C3 =
∫ 1

0

[1− (s(1− k))][
kb1

p + (1− k)b2
p
]q
(

1− 1
p

) dk

and

C4 =
∫ 1

0

[1− (sk)][
kb1

p + (1− k)b2
p
]q
(

1− 1
p

) dk.

Corollary 11. If we put s = 1 in Theorem 10, then∣∣∣∣∣D(b1) + mD(b2)

2
− p

mb
p
2 − b

p
1

∫ mb2

b1

D(x)
x1−p dx

∣∣∣∣∣
≤
(

mb
p
2 − b

p
1

2p

)(
1

1 + l

) 1
l
[
C5|D′(b1)|q + mC6|D′(b2)|q

] 1
q

,

where

C5 =
∫ 1

0

k[
kb1

p + m(1− k)b2
p
]q
(

1− 1
p

) dk

and

C6 =
∫ 1

0

1− k[
kb1

p + m(1− k)b2
p
]q
(

1− 1
p

) dk.

Corollary 12. Choosing s = m = 1 in the above Theorem 10, then∣∣∣∣∣D(b1) +D(b2)

2
− p

b
p
2 − b

p
1

∫ b2

b1

D(x)
x1−p dx

∣∣∣∣∣
≤
(
b

p
2 − b

p
1

2p

)(
1

1 + l

) 1
l
[
C7|D′(b1)|q + C8|D′(b2)|q

] 1
q

,
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where

C7 =
∫ 1

0

k[
kb1

p + (1− k)b2
p
]q
(

1− 1
p

) dk

and

C8 =
∫ 1

0

1− k[
kb1

p + (1− k)b2
p
]q
(

1− 1
p

) dk.

Theorem 11. Let D : X → R be differentiable mapping on X◦ with b1, b2 ∈ X, and b1 < b2. If
D′ ∈ L1[b1, b2] and |D′| are modified p-convex on [b1, b2], k ∈ [0, 1], s ∈ [0, 1], and m ∈ [0, 1],
then ∣∣∣∣∣D(b1) + mD(b2)

2
− p

mb
p
2 − b

p
1

∫ mb2

b1

D(x)
x1−p dx

∣∣∣∣∣
≤
(

mb
p
2 − b

p
1

2p

)
×
(
E1|D′(b1)|q + mE2|D′(b2)|q

)
, (22)

where

E1 =
∫ 1

0

|1− 2k|[1− (s(1− k))][
kb1

p + m(1− k)b2
p
]1− 1

p
dk,

E2 =
∫ 1

0

|1− 2k|[1− (sk)][
kb1

p + m(1− k)b2
p
]1− 1

p
dk.

Proof. Employing Lemma 2 and modified p-convexity of |D′|q, we have∣∣∣∣∣D(b1) + mD(b2)

2
− p

mb
p
2 − b

p
1

∫ mb2

b1

D(x)
x1−p dx

∣∣∣∣∣
≤
(

mb
p
2 − b

p
1

2p

) ∫ 1

0

∣∣∣∣ 1− 2k([
kb1

p + m(1− k)b2
p
])1− 1

p

∣∣∣∣∣∣∣∣D′
[kb1

p + m(1− k)b2
p
] 1

p

∣∣∣∣dk

≤
(

mb
p
2 − b

p
1

2p

) ∫ 1

0

∣∣∣∣ 1− 2k([
kb1

p + m(1− k)b2
p
])1− 1

p

∣∣∣∣
×
[
[1− (s(1− k))]|D′(b1)|+ m[1− (sκ)]|D′(b2)|

]
dk

=

(
mb

p
2 − b

p
1

2p

)[
|D′(b1)|

∫ 1

0

|1− 2k|[1− (s(1− k))][
kb1

p + m(1− k)b2
p
]1− 1

p
dk

+ m|D′(b2)|
∫ 1

0

|1− 2k|[1− (sk)][
kb1

p + m(1− k)b2
p
]1− 1

p
dk
]

=

(
mb

p
2 − b

p
1

2p

)(
E1|D′(b1)|+ mE2|D′(b2)|

)
.

This is the required proof.
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Corollary 13. Suppose m = 1 in Theorem 11, then∣∣∣∣∣D(b1) +D(b2)

2
− p

b
p
2 − b

p
1

∫ b2

b1

D(x)
x1−p dx

∣∣∣∣∣ ≤
(
b

p
2 − b

p
1

2p

)(
E3|D′(b1)|q + E4|D′(b2)|q

)
,

where

E3 =
∫ 1

0

|1− 2k|[1− (s(1− k))][
kb1

p + (1− k)b2
p
]1− 1

p
dk,

E4 =
∫ 1

0

|1− 2k|[1− (sk)][
kb1

p + (1− k)b2
p
]1− 1

p
dk.

Corollary 14. If we put s = 1 in Theorem 11, then∣∣∣∣∣D(b1) + mD(b2)

2
− p

mb
p
2 − b

p
1

∫ mb2

b1

D(x)
x1−p dx

∣∣∣∣∣
≤
(

mb
p
2 − b

p
1

2p

)(
E5|D′(b1)|q + mE6|D′(b2)|q

)
,

where

E5 =
∫ 1

0

|1− 2k|k[
kb1

p + m(1− k)b2
p
]1− 1

p
dk,

E6 =
∫ 1

0

|1− 2k|[1− k][
kb1

p + m(1− k)b2
p
]1− 1

p
dk.

Corollary 15. Suppose s = m = 1 in Theorem 11, then∣∣∣∣∣D(b1) +D(b2)

2
− p

b
p
2 − b

p
1

∫ b2

b1

D(x)
x1−p dx

∣∣∣∣∣
≤
(
b

p
2 − b

p
1

2p

)(
E7|D′(b1)|q + E8|D′(b2)|q

)
,

where

E7 =
∫ 1

0

|1− 2k|k[
kb1

p + (1− k)b2
p
]1− 1

p
dk,

E8 =
∫ 1

0

|1− 2k|[1− k][
kb1

p + (1− k)b2
p
]1− 1

p
dk.

6. Application for Some Special Functions

This section involves some applications to the estimations of some special functions,
namely, modified Bessel functions. These functions can be found in transmission line
studies, non-uniform beams, and the statistical treatment of relativistic gas in statistical
mechanics. In order to find the applications of these special functions regarding the newly
introduced idea, first, we remember the following remark, which is proved and discussed
by İşcan (see [29], p. 142).

Remark 6. Let I ⊂ (0, ∞) be a real interval, p ∈ R \ {0} and D : I → R be a function, then
(i) If p ≤ 1 and D is a convex and non-decreasing function, then D is p-convex.
(ii) If p ≥ 1 and D is a convex and non-increasing function, then D is p-convex.
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MODIFIED BESSEL FUNCTIONS:
First of all, one thing to have in mind, throughout such types of applications, MBF

represents a modified Bessel function.
Recall that the series representation of the first kind of MBF is represented by Iρ(b)

(see [30], p. 77) and is given by

Iρ(b) = ∑
n≥0

( b2 )
ρ+2n

n!Γ(ρ + n + 1)
, ∀b ∈ R, (23)

while the second kind of MBF is represented by Kρ(b) (see [30], p.78) and is given by

Kρ(b) =
π

2
I−ρ(b) + Iρ(b)

sin ρπ
. (24)

For this, we assume that Iρ : R→ [1, ∞), which is defined by

Iρ(b) = 2ρΓ(ρ + 1)b−ρ Iρ(b). (25)

Proposition 4. For ρ > −1 and 0 < b1 < b2, then∣∣∣∣∣Iρ(b1) + mIρ(b2)

2
− p

mb
p
2 − b

p
1

∫ mb2

b1

Iρ(b)

b1−p db

∣∣∣∣∣ ≤
(

mb
p
2 − b

p
1

4p(ρ + 1)

)
(B1)

1− 1
q (26)

×
[
b

q
1B2|Iρ+1(b1)|q + mb

q
2B3|Iρ+1(b2)|q

] 1
q

.

In particular, (ρ = − 1
2 ), then we obtain the following inequality∣∣∣∣∣cosh(b1) + m cosh(b2)

2
− p

mb
p
2 − b

p
1

∫ mb2

b1

cosh(b)
b1−p db

∣∣∣∣∣ ≤
(

mb
p
2 − b

p
1

2p

)
(B1)

1− 1
q (27)

×
[
B2
∣∣sinh(b1)

∣∣q + mB3
∣∣sinh(b2)

∣∣q] 1
q

,

where B1, B2, and B3 are defined in Theorem 9.

Proof. Applying inequality (20) to the mapping D(b) = Iρ(b), b > 0 and I ′ρ(b) =
b

2(p+1)Iρ+1(b), but Agarwal proved in (see [31]) that I ′ρ(b) is convex on [0, ∞) since the
power series only has positive coefficients. It is obvious that if we fix the value of ρ > −1
throughout the interval b ∈ (0, ∞), then I ′ρ(b) is positive and non-decreasing. So, this

implies that I ′ρ(b) is convex and non-decreasing. Further, this implies that |I ′ρ(b)|q is
convex and non-decreasing. If p ≤ 1, then by using Remark 6(i), it is a p-convex. Finally,
according to Proposition 1, it is a modified p-convex function. So, we deduce the inequality
(26). Now, we have used the fact that I− 1

2
(b) = cosh(b) and I 1

2
(b) = sinh(b)

b ; then, the
inequality (26) reduces to the inequality (27).

Proposition 5. For ρ > −1 and 0 < b1 < b2, then∣∣∣∣∣Iρ(b1) + mIρ(b2)

2
− p

mb
p
2 − b

p
1

∫ mb2

b1

Iρ(b)

b1−p db

∣∣∣∣∣ ≤
(

mb
p
2 − b

p
1

4p(ρ + 1)

)(
1

l + 1

) 1
l

(28)

×
[
b

q
1C1|Iρ+1(b1)|q + mb

q
2C2|Iρ+1(b2)|q

] 1
q

.
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In particular, choosing ρ = − 1
2 ), then we obtain the following inequality,∣∣∣∣∣cosh(b1) + m cosh(b2)

2
− p

mb
p
2 − b

p
1

∫ mb2

b1

cosh(b)
b1−p db

∣∣∣∣∣ ≤
(

mb
p
2 − b

p
1

2p

)(
1

l + 1

) 1
l

(29)

×
[
C1

∣∣∣∣sinh(b1)
∣∣q + mC2

∣∣sinh(b2)
∣∣q] 1

q

is true, where C1 and C2 are defined in Theorem 10.

Proof. Applying inequality (21) to the mapping D(b) = Iρ(b), b > 0, and I ′ρ(b) =
b

2(p+1)Iρ+1(b), we deduce the inequality (28). Now, we have used the fact that I− 1
2
(b) =

cosh(b) and I 1
2
(b) = sinh(b)

b , then the inequality (28) reduces to the inequality (29).

7. Conclusions

Convexity is important and crucial in many branches of pure and applied sciences.
For a novel class of convexity known as the modified p-convex function, we proposed new
assessments of the (H−H) type inequality. We also reviewed and investigated some of its
algebraic properties. We demonstrated that our novel class of modified p-convex functions
are far larger than known function classes such as convex and harmonically convex. We
have enhanced the Hermite–Hadamard inequality for functions whose first derivative in
absolute form at a given power is a modified p-convex. Our recent findings are expected to
have applications in convex theory, quantum calculus, special functions, and post-quantum
calculus. They may also serve as catalysts for further research in a variety of unrelated pure
and applied fields.

Author Contributions: Resources, P.O.M. and M.D.L.S.; conceptualisation, H.M.S., M.T. and M.D.L.S.;
data curation, M.D.L.S. and H.A.; formal analysis, H.M.S., M.T. and E.A.-S.; funding acquisition,
M.D.L.S.; investigation, H.M.S., M.T., P.O.M., M.T., E.A.-S. and M.D.L.S.; methodology, M.T. and
H.A.; project administration, M.T.; software, P.O.M., H.A. and E.A.-S.; supervision, M.T. and E.A.-S.;
validation, P.O.M. and H.A. ; visualization, M.T.; writing—original draft, M.T. and P.O.M.; writing—
review and editing, H.M.S. and E.A.-S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are grateful to the Basque Government for its support through
Grants IT1555-22 and KK-2022/00090 and to MCIN/AEI 269.10.13039/501100011033 for Grant
PID2021-1235430B-C21/C22.

Conflicts of Interest: There are no conflict among the authors.

References
1. Niculescu, C.P.; Persson, L.E. Convex Functions and Their Applications; Springer: New York, NY, USA, 2006.
2. Özdemir, M.E.; Yildiz, C.; Akdemir, A.O.; Set, E. On some inequalities for s–convex functions and applications. J. Inequal. Appl.

2013, 333, 2–11. [CrossRef]
3. Butt, S.I.; Rashid, S.; Tariq, M.; Wang, X.H. Novel refinements via n-polynomial harmonically s-type convex functions and

Applications in special functions J. Funct. Spaces. 2021, 2021, 1–17. [CrossRef]
4. Xi, B.Y.; Qi, F. Some integral inequalities of Hermite–Hadamard type for convex functions with applications to means. J. Funct.

Spaces Appl. 2012, 2012, 980438. [CrossRef]
5. Zhang, X.M.; Chu, Y.M.; Zhang, X.Y. The Hermite–Hadamard type inequality of GA–convex functions and its applications. J.

Inequal. Appl. 2010, 2010 , 50756. [CrossRef]
6. Tariq, M. New Hermite–Hadamard type inequalities via p–harmonic exponential type convexity and applications. U. J. Math.

Appl. 2021, 4, 59–69.
7. Sahoo, S.K.; Tariq, M.; Ahmad, H.; Nasir, J.; Aydi, H.; Mukheimer, A. New Ostrowski-type fractional integral inequalities via

generalized exponential-type convex functions and applications. Symmetry 2021, 13, 1429. [CrossRef]

http://doi.org/10.1186/1029-242X-2013-333
http://dx.doi.org/10.1155/2021/6615948
http://dx.doi.org/10.1155/2012/980438
http://dx.doi.org/10.1155/2010/507560
http://dx.doi.org/10.3390/sym13081429


Axioms 2023, 12, 162 18 of 18

8. Omotoyinbo, O.; Mogbodemu, A. Some new Hermite–Hadamard integral inequalities for convex functions. Int. J. Sci. Innovation
Tech. 2014, 1, 1–12.

9. Tariq, M.; Nasir, J.; Sahoo, S.K.; Mallah, A.A. A note on some Ostrowski type inequalities via generalized exponentially convex
function. J. Math. Anal. Model. 2021, 2, 1–15. [CrossRef]

10. Rafiq, A.; Mir, N.A.; Ahmad, F. Weighted Chebysev–Ostrowski type inequalities. Appl. Math. Mech. 2017, 28, 901–906. [CrossRef]
11. Tariq, M.; Sahoo, S.K.; Nasir, J.; Awan, S.K. Some Ostrowski type integral inequalities using Hypergeometric Functions. J. Frac.

Calc. Nonlinear Sys. 2021, 2, 24–41. [CrossRef]
12. Aljaaidia, T.A.; Pachpatte, D. New generalization of reverse Minkowski’s inequality for fractional integral. Adv. Theory. Nonlinear

Anal. Appl. 2021, 1, 72–81.
13. Aljaaidia, T.A.; Pachpatte, D. Reverse Hermite-Hadamard’s inequalities using D-fractional integral. Eng. Appl. Sci. Lett. 2020,

2020 , 1–10. [CrossRef]
14. Aljaaidi, T.A.; Pachpatte, D.B.; Shatanawi, W.; Abdo, M.S.; Abodayeh, K. Generalized proportional fractional integral functional

bounds in Minkowski’s inequalities. Adv. Differ. Equ. 2021, 419, 1–17. [CrossRef]
15. Jensen, J.L.W.V. Sur les fonctions convexes et les inegalites entre les valeurs moyennes. Acta Math. 1905, 30, 175–193. [CrossRef]
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