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A B S T R A C T

Integrating outside knowledge for reasoning in visio-linguistic tasks such as visual question answering (VQA)
is an open problem. Given that pretrained language models have been shown to include world knowledge,
we propose to use a unimodal (text-only) train and inference procedure based on automatic off-the-shelf
captioning of images and pretrained language models. More specifically, we verbalize the image contents
and allow language models to better leverage their implicit knowledge to solve knowledge-intensive tasks.
Focusing on a visual question answering task which requires external knowledge (OK-VQA), our contributions
are: (i) a text-only model that outperforms pretrained multimodal (image-text) models of comparable number
of parameters; (ii) confirmation that our text-only method is specially effective for tasks requiring external
knowledge, as it is less effective in standard a VQA task (VQA 2.0); and (iii) our method attains results in
the state-of-the-art when increasing the size of the language model. We also significantly outperform current
multimodal systems, even though augmented with external knowledge. Our qualitative analysis on OK-VQA
reveals that automatic captions often fail to capture relevant information in the images, which seems to be
balanced by the better inference ability of the text-only language models. Our work opens up possibilities to
further improve inference in visio-linguistic tasks.
1. Introduction

Most visio-linguistic tasks are framed in such a way that all the nec-
essary information to solve them is in the images and texts provided in
the dataset. That is the case of visual question-answering (VQA) (Antol
et al., 2015) or visual entailment (Xie, Lai, Doran, & Kadav, 2019).
In addition, some tasks require access to external knowledge in order
to solve them. In this work we dive in Outside Knowledge VQA (OK-
VQA) (Marino, Rastegari, Farhadi, & Mottaghi, 2019), where the image
content is not sufficient to answer the questions. Contrary to self-
contained VQA tasks, which can be solved grounding images and text
alone, these tasks require methods that leverage external knowledge
resources and are able to do inference on that knowledge.

External knowledge useful for OK-VQA can be broadly classified
into two categories, according to Marino, Chen, Parikh, Gupta, and
Rohrbach (2021): (i) symbolic knowledge, which can be represented
using graphs, for example ConceptNet (Speer, Chin, & Havasi, 2017),
and (ii) implicit knowledge, which is encoded in the weights of neu-
ral networks trained in different datasets. Supporting the later case,
transformer-based language models (LM) pretrained in large corpora

∗ Corresponding author.
E-mail addresses: ander.salaberria@ehu.eus (A. Salaberria), gorka.azcune@ehu.eus (G. Azkune), oier.lopezdelacalle@ehu.eus (O. Lopez de Lacalle),

a.soroa@ehu.eus (A. Soroa), e.agirre@ehu.eus (E. Agirre).

like BERT (Devlin, Chang, Lee, & Toutanova, 2019) have been success-
fully used as implicit knowledge bases (Petroni et al., 2019).

In this paper we focus on the use of implicit knowledge in the
form of pretrained LMs. While using LMs is relatively common in
OK-VQA, they are usually integrated into multimodal transformers by
diverse means, so as to integrate the visual and textual inputs of the
task. Given that LMs were originally designed to process textual input
and are extensively trained in textual corpora, we hypothesized that a
system that relies exclusively on text will allow LMs to better leverage
their implicit knowledge. Because OK-VQA is a visio-linguistic task,
we propose to use automatic image captioning as a way to verbalize
the information in the image, where the captions are descriptions of
the images which are used as input to the LMs. Once the captions
are generated, all the inference in our method is done using text-only
models. We are aware that captions do not contain all the information
in an image, and want to check whether the text-only models can
compensate for that initial loss of information. The approach proposed
in this paper, named Caption-based Model or CBM, can be seen in
Fig. 1.
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Fig. 1. Given a question and image, we verbalize the contents of the image and apply
a pretrained language model for inference. We show that current text-only models are
better in generalization and inference than multimodal models for knowledge-based
VQA.

To validate our hypothesis, we present an extensive experimentation
on the OK-VQA dataset. We compare our proposed caption-based model
with the de facto standard of visio-linguistic tasks, i.e. multimodal trans-
formers, which are widely used in VQA tasks to process the questions
(text) and images. We also focus on language models of different sizes,
to see the impact of model capacity on OK-VQA.

The contributions of this research are as follows:

• Captions are more effective than images for OK-VQA when mod-
els of similar size are used as is, and achieve similar results when
both are fine-tuned on additional VQA datasets.

• Increasing the size and the capacity of language models allows
to reach state-of-the-art results, outperforming by a large mar-
gin current multimodal transformers. Furthermore, we observe a
trend of improvement that has not yet stabilized.

• The complex use of in-context-learning as in PICa (Yang et al.,
2022) does not beat fine-tuning our smaller model, that is, our
system based on T5 (Raffel et al., 2020) obtains results compara-
ble to an ensemble of five GPT-3 runs which are 15-times larger
in parameters.

• The larger contribution of captions on OK-VQA with respect to
results on a regular VQA dataset (Goyal, Khot, Summers-Stay,
Batra, & Parikh, 2017) show that text-only systems are specially
effective when external knowledge is needed.

Our VQA system can be adapted for real life applications that range
from aiding visually-impaired or blind people (Gurari et al., 2018)
to improving current virtual assistants (Tulshan & Dhage, 2018). Our
model is specially beneficial for questions that require world knowl-
edge. Therefore, it could also be used for educational and recreational
purposes.

Our code is available at https://github.com/salanueva/CBM.

2. Related work

We now present a brief introduction of VQA datasets and multi-
modal transformers before discussing different approaches to tackle the
OK-VQA task and the use of generated captions in VQA tasks found in
the literature.
2

2.1. Visual question-answering datasets

There are many VQA datasets in the literature (Antol et al., 2015;
Goyal et al., 2017; Johnson et al., 2017), where, given an image and
a question about the contents of that image, a system has to provide
a textual answer. Some VQA datasets also demand leveraging external
knowledge to infer the answer and, thus, they are known as knowledge-
based VQA tasks. Good examples are KB-VQA (Wang, Wu, Shen, Dick,
& van den Hengel, 2017a), KVQA (Shah, Mishra, Yadati, & Talukdar,
2019), FVQA (Wang, Wu, Shen, Dick, & Van Den Hengel, 2017b) and
OK-VQA (Marino et al., 2019). KVQA requires knowledge about named
entities (e.g. Barack Obama, White House, United Nations) and that
knowledge is already provided as a graph. FVQA annotates questions
by selecting a fact from a fixed knowledge base but its size is relatively
small. KB-VQA is even smaller, presenting template-based questions
whose answers can be obtained reasoning over commonsense resources
or Wikipedia. In contrast, OK-VQA requires knowledge from unspeci-
fied external resources and, although smaller than KVQA in terms of
the number of images and question-answer pairs, it is considerably
bigger than the other knowledge-based VQA datasets. Therefore, we
have chosen OK-VQA for our experiments.

2.2. Multimodal transformers

Currently, these transformers are the most successful systems for
VQA and can be broadly classified into two types: single-stream and
double-stream transformers. A good example of the former is Visual-
BERT (Li, Yatskar, Yin, Hsieh, & Chang, 2019), where the BERT archi-
tecture (Devlin et al., 2019) is used, adding visual features obtained
by an object detector as input and using visio-linguistic pretraining
tasks, such as image-text matching. OSCAR (Li et al., 2020) also fol-
lows a very similar philosophy, adding object tags to the input and
proposing different pretraining strategies. Among double-stream trans-
formers, VilBERT (Lu, Batra, Parikh, & Lee, 2019) and LXMERT (Tan
& Bansal, 2019) use a dedicated transformer for each modality (text
and image) to fuse them with a cross-modal transformer. Their dif-
ferences lie mainly on some architectural choices and pretraining task
selection (Bugliarello, Cotterell, Okazaki, & Elliott, 2020).

2.3. OK-VQA systems

Multimodal transformers have also been used to provide implicit
knowledge from pretraining tasks. For example, VilBERT uses a pre-
trained BERT to encode the questions, so it uses the implicit knowledge
that BERT acquired during its pretraining. Additionally, VilBERT is
further trained on Conceptual Captions (Sharma, Ding, Goodman, &
Soricut, 2018), a large image-caption dataset from where additional
knowledge can be acquired. Those multimodal transformers are the
backbone of most models used for OK-VQA, which also use sym-
bolic knowledge to bring some extra performance. This information is
summarized in Table 1.

ConceptBert (Gardères, Ziaeefard, Abeloos, & Lecue, 2020) was the
first system to use multimodal transformers and symbolic knowledge
for OK-VQA. It is based on a combination of a pretrained BERT to
encode questions, a graph convolutional neural network to encode
triples extracted from the ConceptNet knowledge graph (Speer et al.,
2017) and a multimodal transformer (VilBERT) to jointly represent and
reason over image features and encoded question tokens.

A similar approach was followed by KRISP (Marino et al., 2021),
combining again a multimodal transformer with symbolic knowledge.
In this case, the multimodal transformer, MMBERT, is based on Vi-
sualBert (Li et al., 2019) and initialized with the weights of a pre-
trained BERT. Additionally, authors built a knowledge graph fusing
DBPedia (Auer et al., 2007), ConceptNet (Speer et al., 2017), Visu-
alGenome (Krishna et al., 2017) and hasPart KB (Bhakthavatsalam,
Richardson, Tandon, & Clark, 2020). They used different image feature
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Table 1
Summary of OK-VQA systems. See text for references.

System Implicit Knowledge Symbolic Knowledge Is multimodal?

ConceptBERT VilBERT ConceptNet Yes
KRISP BERT ConceptNet, DBPediahasPart KB, Visual Genome Yes
MAVEx VilBERT ConceptNet, Google ImagesWikipedia Yes
RVL LXMERT ConceptNet, Wikidata Yes

PICa GPT-3 None No
CBM (ours) BERT, T5 None No
encoders and the question tokens to obtain a subset of the full graph
relevant to the target question and image. Finally, using a graph
convolutional neural network, they combined the symbolic and implicit
knowledge to predict the final answer.

Some recent approaches, named MAVEx (Wu, Lu, Sabharwal, &
Mottaghi, 2022) and RVL (Shevchenko, Teney, Dick, & van den Hen-
gel, 2021) showed different ways to combine implicit and symbolic
knowledge. MAVEx used a pretrained VilBERT to generate various
candidate answers which were later reranked using answer-specific
knowledge retrieval. Authors used both textual and visual knowledge
resources, including images searched using Google, sentences from
Wikipedia articles, and concepts from ConceptNet. On the other hand,
RVL trained the two-stream multimodal transformer LXMERT (Tan &
Bansal, 2019) with an auxiliary objective that aligned its representa-
tions with knowledge graph embeddings retrieved from ConceptNet
and Wikidata.

These models (Gardères et al., 2020; Marino et al., 2021;
Shevchenko et al., 2021; Wu et al., 2022) make use of different
symbolic knowledge sources and apply different methods to use them.
Nevertheless, we have noticed that the improvement obtained by
adding symbolic knowledge is minor in these models. The only one
that obtains a significant improvement is MAVEx (Wu et al., 2022).
However, due to its design, the model is limited to give an answer
from a set of answer candidates generated by only accessing to implicit
knowledge. This shows the dependency of current systems on the
encoded knowledge found in multimodal transformers. So, in this work
we focus on the use of implicit knowledge (as opposed to explicitly
encoded knowledge) which we exploit by first verbalizing images and
then feeding these captions to a pretrained LM.

2.4. Captions for VQA

Integrating annotated captions, or other types of text related to the
image, in multimodal systems benefit several multimodal challenges.
Examples range from fake news detection (Kumari & Ekbal, 2021) to
image classification tasks such as flower (Bae, Park, Lee, Lee, & Lim,
2020) and crisis (Ahmad, Jindal, N.S., Ekbal, & Bhattachharyya, 2022)
classification. However, regarding the use of automatically generated
captions for VQA, to the best of our knowledge, Mucko (Zhu et al.,
2020) and PICa (Yang et al., 2022) are the only systems that explore
this idea.

Mucko uses dense captions (Johnson, Karpathy, & Fei-Fei, 2016) to
query a knowledge graph to extract relevant information to answer the
question. The reported results on OK-VQA are well below the state-
of-the-art. Dense captions describe different regions of an image using
short sentences. Our method differs in the use of a single caption which
is the input to the LM, and does not require neither knowledge graphs
nor the use of OCR systems that have recently been integrated in some
other VQA models (Sharma & Singh Jalal, 2022; Singh et al., 2019).

On the other hand, PICa takes advantage of the implicit knowledge
found in GPT-3 (Brown et al., 2020) via prompt-engineering. Instead
of supervised fine-tuning, PICa adapts to the task with a few in-context
examples during inference time using both captions and object tags
to describe the image, defining the current state-of-the-art with an
3

ensemble of GPT-3’s and clever selection of those examples. However,
GPT-3 is only accessible via OpenAI’s paid API and it has limited
functionalities.

Summary. Out of several VQA datasets that demand external
knowledge, we select OK-VQA for our experiments. An analysis on
current OK-VQA systems shows a common trend: symbolic knowledge
does not contribute too much to the performance of the systems,
which mainly rely on the performance of the backbone transformer,
i.e. the implicit knowledge. Therefore, we define a text-only train and
inference method in order to take advantage of the implicit knowledge
of LMs. For that purpose, we use textual captions generated by an image
captioning system combined with the question as the input for these
pretrained LMs.

3. Implemented models

In this section we describe the implemented models. We use Py-
torch (Paszke et al., 2019), Pytorch Lightning and the Transformers
library (Wolf et al., 2020) for all the implementation work.

3.1. Caption-based model (CBM)

Our caption-based model, denoted by CBM, is divided in two steps:
(i) a caption generation system that generates a short description of a
given image and (ii) a language model that takes this caption and a
question in order to answer it.

We use OSCAR (Li et al., 2020) to generate captions from images,
a transformer encoder that produces state-of-the-art results on several
multimodal tasks including image captioning. As it is common in mul-
timodal transformers, OSCAR uses a pretrained object detector called
FasterRCNN (Ren, He, Girshick, & Sun, 2015) to obtain region fea-
tures from images and their respective labels. Both features and labels
alongside manually annotated captions are then fed to the transformer
during pretraining, following the work of Anderson et al. (2018). The
performance on image-captioning of both base and large models is
similar, so we use OSCAR-base as our image-captioning system for all
of our experiments.

During OSCAR’s fine-tuning step on image captioning, some of OK-
VQA’s test split images and gold captions are used. In order to ensure
fairness and avoid any contamination in our experiments, we fine-
tune a pretrained OSCAR model on image-captioning removing these
instances from its training process.

For the second step, we explore two different language models:
BERT, to perform comparative experiments with current multimodal
transformers, and the T5 family, to explore the performance of LMs of
increasing size.

3.1.1. CBMBERT
In this first approach, we use a pretrained BERT-base transformer

encoder (Devlin et al., 2019) as our language model. We feed sequences
of tokenized captions and questions 𝑇 (0) = {𝐭(0)𝑖 |𝑖 = 1,… , 𝑛𝑡} to BERT,
and take the output of the [𝐶𝐿𝑆] or first token of the sequence 𝐭(𝑛𝑙)1 ,
where 𝑛𝑡 is the number of tokens in the sequence and 𝑛𝑙 is the number
of transformer layers (see Fig. 2(a)).

In order to fine-tune the language model for VQA tasks, we add a
classification head to the [𝐶𝐿𝑆] embedding. Although VQA (Antol

et al., 2015; Goyal et al., 2017) and OK-VQA (Marino et al., 2019) were
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Fig. 2. Detailed view of our proposed CBM models.
defined with open-ended answers, recent models (Marino et al., 2021;
Zhang et al., 2021) cast these tasks as classification problems, building
a fixed vocabulary of answers from the training dataset. Following this
trend, our classification head is a multilayer perceptron (MLP) with one
hidden layer after 𝐭(𝑛𝑙 )1 . We define our MLP in Eq. (1).

𝐡 = LayerNorm(GELU(𝐖ℎ𝐭
(𝑛𝑙 )
1 + 𝐛ℎ))

�̂� = Sof tmax(𝐖�̂�𝐡 + 𝐛�̂�)
(1)

We use a GELU activation function as well as layer normaliza-
tion (Ba, Kiros, & Hinton, 2016). The trainable parameters are 𝐖ℎ ∈
R𝑑ℎ×𝑑ℎ , 𝐛ℎ ∈ R𝑑ℎ , 𝐖�̂� ∈ R𝑑ℎ×𝑛𝑙𝑎𝑏𝑒𝑙 and 𝐛�̂� ∈ R𝑛𝑙𝑎𝑏𝑒𝑙 , where 𝑛𝑙𝑎𝑏𝑒𝑙 equals
to the number of labels on a given classification task and 𝑑ℎ equals to
768.

3.1.2. CBMT5
In our second approach, we use pretrained T5 encoder–decoder

transformers (Raffel et al., 2020), as they are the state-of-the-art models
for text-only question-answering tasks and are available in different
sizes, ranging from 60M parameters to 11B. Following CBMBERT, we
also feed sequences of tokenized captions and questions 𝑇 (0) = {𝐭(0)𝑖 |𝑖 =
1,… , 𝑛𝑡} to the T5 model. Nevertheless, in this case we add text prefixes
before each sentence, such as ’caption:’ and ’question:’. This is mainly
done to mimic the input prompts used during the pretraining process
of the T5 model, helping the language model to better leverage what
it has learnt before. Differently from BERT, T5 is a generative LM, so
instead of classifying an answer, T5 produces it in an open-ended text
generation manner. Thus we do not use any classifier head for this
approach (see Fig. 2(b)).

3.2. Multimodal transformer (MMBERT)

We compare our CBMBERT model with the multimodal transformer-
based MMBERT (Marino et al., 2021), a variant of BERT that uses
the question text and image region features as input. While BERT is
designed to only process textual inputs, MMBERT adapts its embedding
layer in order to be able to process features from images.

We use a FasterRCNN with a ResNeXt-152 (Xie, Girshick, Dollár,
Tu, & He, 2017) as its backbone to extract a total of 𝑛𝑣 region features
𝐕 = {𝐯1,… , 𝐯𝑛𝑣} per image. Each of these 𝐯𝑖 ∈ R𝑑𝑣 features represents
an object that appears in the image, where 𝑑 equals to 2048. 𝐕
4

𝑣

lacks the positional information between objects, which can be solved
concatenating the corresponding bounding box coordinates to each
feature. Upon some initial experiments, we concluded that this extra
information does not improve performance in any of VQA 2.0 and
OK-VQA. We use MMF Multimodal Framework (Singh et al., 2020) to
extract the image region features that are fed into MMBERT.

In order to allow for easier comparison between our CBM and
MMBERT we use the output representation for [𝐶𝐿𝑆] to feed into the
classification multilayer perceptron (see ). Note that this is slightly
different from the original MMBERT (Marino et al., 2021), which uses
the average of all token representations in the last transformer layer.

3.3. Question-only baseline (QBERT)

In order to assess the contribution of captions, we also trained a
model which only had the question in the input, without any informa-
tion about the image or caption, denoted as QBERT. This model can be
seen as an ablation of CBMBERT.

3.4. Loss function

Contrary to previous works in VQA, we do not use binary cross-
entropy loss for our classification models, as initial experiments showed
that cross-entropy loss with soft labels (SCE) converges faster with
similar results. SCE loss is defined in Eq. (2), where 𝐲 is the ground truth
vector with probabilities proportional to the VQA evaluation metric
(Eq. (3)) assigned to each class.

𝑆𝐶𝐸 (𝐲, �̂�) = −𝐲 ⋅ log �̂� (2)

Regarding CBMT5, we fine-tune this generative model via teacher
forcing using cross-entropy loss. Therefore, the model learns to map
each input sequence with its respective target sequence. However,
training the model using the teacher forcing paradigm causes a dis-
crepancy with the human annotations, as each question in OK-VQA
has multiple valid answers. We fix this by randomly choosing a target
sequence on each epoch. Initial experiments also showed that randomly
choosing an answer from all annotated answers is slightly detrimental,
as some answers are not spelled correctly, are empty strings or do
not make sense as an answer. Therefore, during training we exclude
answers that do not obtain a full score in the VQA score, that is, we
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Fig. 3. Some examples of VQA 2.0 and OK-VQA datasets for the same images. VQA questions are about image contents, while OK-VQA questions require outside knowledge.
choose answers that are annotated by at least two annotators on a given
question.1

4. Datasets

This section describes the two datasets that we experiment on,
providing several details and examples on each one.

The main dataset for our experiments is OK-VQA (Marino et al.,
2019), since it allows us evaluating the usage of the implicit knowledge
of LMs in a multimodal task. But we also run experiments on the VQA
2.0 dataset (Goyal et al., 2017) with a double motivation: (i) to use it
as additional pretraining before applying the model to OK-VQA; (ii) to
analyze the performance differences among models on a knowledge-
based VQA dataset and a standard VQA dataset. Examples of both
datasets can be found in Fig. 3.

4.1. VQA 2.0

This dataset contains open-ended questions about images where
questions focus mainly on identifying objects in the image and their
attributes, detecting relations between them, as well as counting those
objects. The dataset is composed of 204 K images taken from the COCO
dataset (Lin et al., 2014) and 1.1M questions, each question having
10 (possibly repeated) annotations as accepted answers. Following the
classification setting of VQA tasks, which is currently the dominant
paradigm, VQA 2.0 has 3129 different possible answers, extracted from
the most frequent answers of the training split.

VQA 2.0 is divided in three splits named train, dev and test. Some
of the images from the development split of VQA 2.0 are reused in OK-
VQA’s test split. So, in order to avoid any contamination, we do not use
the VQA 2.0 dev set for any training or hyper-parameter tuning.

Antol et al. (2015) proposed a standard evaluation metric for VQA
tasks where a system answer is considered totally correct if it appears
at least three times in the ten ground-truth annotations. Considering
that a given answer appears 𝑥 times in a question’s annotations, this
accuracy metric is defined in Eq. (3).

acc = min
(𝑥
3
, 1
)

(3)

4.2. OK-VQA

The OK-VQA dataset is built upon 14,031 images from the COCO
dataset and 14,055 crowd-sourced questions. Each question has ten
annotated answers (possibly repeated), and the evaluation metric is the
same as in VQA 2.0 (Eq. (3)). As a knowledge-based VQA dataset, OK-
VQA requires outside knowledge to answer the questions. However, this

1 If a question does not have answers that fulfill this rule, the question
is discarded from training, which amounts to a total of 112 instances in the
OK-VQA’s training split.
5

outside knowledge is neither provided nor identified, i.e. there is not a
list of available knowledge sources for this task, making the task more
challenging.

There are two versions of this dataset, depending on how the stem-
ming of the answers provided by the crowd-sourcers is handled. The
stemming used in OK-VQA v1.0 results in some ‘‘non-word’’ answers
(such as ‘‘poni tail’’ instead of ‘‘pony tail’’). OK-VQA v1.1 applied a
different stemming algorithm, resulting in a more coherent answer
vocabulary. We use OK-VQA v1.1 through our experiments.

5. Experiments and results

This section provides details about our experimental settings, shows
results of the models defined in Section 3 and compares them with the
state-of-the-art.

5.1. Experimental settings

We use the same hyperparameters as Marino et al. (2021) for fine-
tuning CBMBERT, MMBERT and QBERT models both in VQA 2.0 and
OK-VQA tasks. We train our models for 88 K steps using AdamW
optimizer (Loshchilov & Hutter, 2017). Our batch size is of 56 with
a maximum learning rate of 5 ⋅ 10−5 following a cosine schedule with a
linear warmup of 2K steps.

Regarding CBMT5, there are 5 different T5 models that vary on size.
They range from 60M to 11B parameters and we show the performance
of all five models on OK-VQA. To do so, we have chosen to keep the
same hyperparameters as before with the following changes:

• As models of different sizes need different amounts of training
steps in order to converge, we propose the following methodol-
ogy. We use 20% of the training instances to define a validation
split, train the models using the remaining 80% for 20K steps.
Then, we decide the final number of steps by taking the step
with the best VQA score in the validation split. This process is
done three times using the same validation split. After that, we
compute the average number of steps of all three runs as our final
number of training steps.

• As the number of training steps varies among different model
sizes, we have decided to use a fixed learning rate of 5 ⋅ 10−5

during the fine-tuning process. Hence, we do not use any learning-
rate scheduler that depends on warmup steps or total number of
training steps.

All experiments regarding classification models have been run in
a single GPU with 12 GB of vRAM and their runtimes are at most
of 12 h. Regarding the much larger CBMT5 we used up to 4 NVIDIA
A100 GPUs (each with 80 GB of vRAM), changing both hardware and
hyper-parameters to keep the same effective batch size across model
sizes, and used DeepSpeed’s ZeRO Stage 2 optimization algorithm with
CPU offload (Rajbhandari, Rasley, Ruwase, & He, 2020) when fine-
tuning the biggest model. However, their runtimes are at most of 4 h,
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Table 2
Performance on OK-VQA for three classification models (respectively, question only,
image-based and caption-based) without and with additional pretraining on VQA 2.0.
Mean VQA score and standard deviation across 3 different runs.
Model Score + VQA pretraining Parameters

QBERT 21.2 ±0.2 23.0 ±0.2 112M
MMBERT 29.6 ±0.6 35.7 ±0.3 114M
CBMBERT (ours) 𝟑𝟐.𝟓 ±0.4 𝟑𝟔.𝟎 ±0.4 112M

Fig. 4. Correlation between the size of CBMT5 models and their performance. The
horizontal axis is in logarithmic scale.

as less training steps are needed for CBMT5, compared to the rest of our
models.

In order to get consistent results we make each experiment three
times and provide the mean VQA score and standard deviation in all of
our results.

5.2. Results for images vs. captions

Table 2 shows the results for the three models presented in Sec-
tion 3, which share the same architecture, size and initial parameters.
We show the results for the models fine-tuned on OK-VQA, as well as
the same models which have been previously fine-tuned on VQA 2.0.

We observe that the sole use of questions (QBERT) offers poor
performance compared to the other two systems, achieving up to 13
points less accuracy. This shows that having any representation of the
image (captions or image region features) is key to answer questions
correctly. This is further justified comparing the improvement that VQA
pretraining entails, as QBERT improves less than 2 points, whereas the
other two improve their accuracy between 4–6 points.

Contribution of captions. When we compare the performance of
CBMBERT and MMBERT, we see that, when there is no visio-linguistic
pretraining involved, CBMBERT performs better in OK-VQA. However,
when we pretrain these models in a similar multimodal task like
VQA 2.0, their accuracy increases by 4–6 points and both obtain
similar performance. As OK-VQA’s training is comparatively smaller
(9K instances vs. VQA’s 410K instances), we hypothesize that training
MMBERT on OK-VQA is not enough to adapt the model to the new input
modality. However, as CBMBERT uses only text, the fine-tuning with
such small training is more effective.

5.3. T5 and larger models

As T5 has been pre-trained on several question answering tasks, we
directly fine-tune it on OK-VQA alone.

In Table 3 we show the results of five differently sized CBMT5
models on OK-VQA. Note that our T5-Base model obtains results com-
parable to our BERT-base model pre-trained on VQA 2.0. This was
6
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Table 3
Performance on OK-VQA of our generative CBMT5 models.
Model Score Parameters

CBMT5-Small 29.2 ±0.2 60M
CBMT5-Base 36.1 ±0.5 220M
CBMT5-Large 40.8 ±0.4 770M
CBMT5-3B 44.0 ±0.7 3B
CBMT5-11B 𝟒𝟕.𝟗 ±0.2 11B

expected, as both models have been pre-trained with question answer-
ing datasets and both have comparable model sizes, T5-base being
composed of two BERT-base encoder and decoder.

The results in Table 3 are plotted in Fig. 4, showing that the
size of our models is logarithmically proportional to its score, which
follows the scaling laws mentioned in Kaplan et al. (2020). This trend
is followed even by our biggest model and does not seem to slow
down yet. These results show the importance of the model’s capacity
in the results. All models have been pretrained with the same corpus
and downstream tasks, but the difference in size helps bigger models
to better leverage the information learnt from that corpus in order
to incorporate the external knowledge needed to solve OK-VQA. Our
largest model performs much better than the multimodal model.

In fact, it is not clear whether larger multimodal models could
match our largest text-only caption based model. We cannot currently
test this hypothesis, as, to the best of our knowledge, there are no
publicly available multimodal transformers with comparable numbers
or parameters. Still, we hypothesize that in the case of knowledge-
intensive datasets such as OK-VQA, current multimodal transform-
ers (Li et al., 2019; Lu et al., 2019; Tan & Bansal, 2019) will underper-
form our system, as the only textual data fed to these models during
their pretraining is mostly composed by captions or small descriptions
attached to images. This means that these models only see a limited
vocabulary from a limited corpus, compared to the rich, diverse and
much larger corpora used to build models such as T5.

5.4. Comparison with the state of the art

In Table 4, we show the results of various state-of-the-art models in
three groups: (i) classification models based on multimodal transform-
ers, which additionally include the usage of symbolic knowledge; (ii)
GPT-3 based generative models that use in-context learning; (iii) our
caption-based models.

The state-of-the-art classification models like KRISP (Marino et al.,
2021), MAVEx (Wu et al., 2022) and RVL (Shevchenko et al., 2021)
show similar results on the implicit-only versions of their models,
even though they are based on different multimodal transformers and
pretraining tasks. Note that RVL has a contamination issue as images
from OK-VQA’s test split were used to train their multimodal trans-
former. We also observe that using symbolic knowledge improves the
results around 2 points, the exception being MAVEx, which combines
knowledge found in ConceptNet (Speer et al., 2017), Wikipedia and
Google Images.2

PICa (Yang et al., 2022) takes advantage of GPT-3 (Brown et al.,
2020) to define a new state-of-the-art in a generative manner using in-
context learning. Its base results (PICa-Base) already surpass the ones
seen before without any need of symbolic knowledge. An ensemble
of 5 GPT-3 models and a clever selection of annotated examples from
the training data to build the input prompt further improves its results
(PICa-Full). Table 4 reports two results for each PICa model: the results
using automatically generated captions alone (like us), and the results

2 This result is obtained with an ensemble of 3 MAVEx models that
hare the same multimodal transformer. A unique MAVEx model achieves an
ccuracy of 40.3%.
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Table 4
Comparison to the state-of-the-art on OK-VQA. +sym. stands for systems additionally using symbolic
knowledge, and +tags for the additional use of object tags. Results of models marked with * are in OK-VQA
v1.0 and † specifies contaminated results (see main text).
Model Score Parameters

ConceptBERT (Gardères et al., 2020) * 31.4 (+sym. 33.7) 348M
MAVEx (Wu et al., 2022) 35.2 (+sym. 41.4) 353M
KRISP (Marino et al., 2021) 37.1 (+sym. 38.9) 116M
RVL (Shevchenko et al., 2021) *† 37.3 (+sym. 39.0) 208M

PICa-Base (Yang et al., 2022) 42.0 (+tags 43.3) 175B
PICa-Full (Yang et al., 2022) (Ensemble) 46.9 (+tags 48.0) 175B

CBMBERT (ours) 36.0 112M
CBMT5-11B (ours) 47.9 11B
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Table 5
Performance on the dev split of VQA 2.0 of the multimodal
model MMBERT and two text-only models: PICa-Full and
CBMBERT.
Model Score

MMBERT 65.8

PICa-Full 56.1
CBMBERT (ours) 59.6

when also using object tags automatically obtained from the image,
which slightly improve the results.

Our CBMBERT system performs on par with the multimodal trans-
formers, which is remarkable, since we do not use directly any visual
features in our models and only use the caption. Note that all those sys-
tems have models of comparable size. When scaling up our generative
models, we see that CBMT5-11B outperforms current multimodal models
by a large margin and is on par with the results obtained by PICa-Full.
Indeed, CBMT5-11B achieves slightly better results than the PICa version
which uses captions alone, even if our model is 15 times smaller.

6. Analysis

In this section we perform additional experiments. We first contrast
the results on OK-VQA with those obtained in VQA 2.0, discussing the
reasons for the different performance. We then combine our text only
model with its counterpart multimodal model to analyze if they are
complementary. Afterwards, we compare the performance of CBMBERT
with manually annotated captions or the ones generated by OSCAR (Li
et al., 2020). Finally, we present some qualitative analysis.

6.1. Results on VQA 2.0

Even though both unimodal and multimodal methods perform sim-
ilarly in OK-VQA, we observed a different trend in VQA 2.0. Table 5
shows that CBMBERT obtains 59.6, while MMBERT achieves 6 points
more. We think this is due to the information loss when converting
an image into a caption, as relevant information that is needed to
answer the question can be lost. This is specially important for VQA 2.0,
where the questions refer directly to image contents, spatial relations
and object attributes (see Fig. 3). A similar behavior can be observed
for PICa (Yang et al., 2022). Interestingly, PICa also uses object tags
to minimize the information loss when verbalizing the image, but it
does not perform as well as our system. Even with 1000 times less
parameters, our CBMBERT outperforms PICa, showing the importance
of fine-tuning in contrast to in-context-learning, specially when large
training data is available, as in VQA 2.0.

The difference between VQA and OK-VQA performances suggests
that captions contain enough information to effectively use the implicit
knowledge of language models for knowledge-intensive multimodal
tasks like OK-VQA. However, it seems that in datasets where the answer
can be found in the image, multimodal models are preferable.
7
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Table 6
Performance on OK-VQA for early and late fusion models.
Model Score + VQA pretraining

Early Fusion 32.5 ±0.4 38.2 ±0.8
Late Fusion 34.0 ±0.4 𝟑𝟖.𝟔 ±0.2

6.2. Combining visual information and captions

Given the different nature of the inputs, we wanted to check
whether CBMBERT and MMBERT are complementary. Our hypothesis is
that the former can take advantage of the implicit knowledge acquired
by the language model, whereas the latter has access to more fine-
grained information found in image regions. Therefore, we define two
different approaches to check how they complement each other.

Early fusion. For each question we feed both caption and image
eatures alongside the question to the language model. This system can
e seen as a MMBERT which processes a multimodal input composed
y a question (text), a caption (text) and image region features. We
nitialize the weights of this model with the weights of the base
anguage model (BERT-base) and fine-tune it on the target train data.
Late fusion. We train CBMBERT () and MMBERT (Section 3.2) sepa-

ately, each of them with their corresponding inputs, and combine their
utputs in inference time to obtain the final answer. The combination
s done by multiplying output probabilities of both models for each
lass and taking the answer with the highest value. We show their
erformance in Table 6.

These fusion models improve the performance of both CBMBERT and
MBERT by 2–3 points in almost all cases. The only case where there is

o improvement comparing to CBMBERT is in the early fusion without
QA pretraining. This may be caused again by the small training split of
K-VQA, causing difficulties to learn how to ground textual and visual
odalities. However, this is solved when VQA pretraining is added to

he model, increasing vastly the amount of data seen by the models and
howing similar performance on both early and late fusion models.

Additionally, we also observed the complementarity of both modal-
ties in the VQA dataset. Early fusion obtains 67.8% and late fusion
7.7% in the dev split of VQA 2.0, improving the performance of
MBERT by 2 points. The results validate our hypothesis, showing that

mage region features and captions are complementary in this setting.

.3. Ground truth captions

In order to measure the effects of the image captioning system to
ur proposed CBM model, we check the gap of performance between
he use of generated captions and gold captions. As OK-VQA is built
pon images from the COCO dataset (Lin et al., 2014), each image
as five different annotated captions. We use these captions and fine-
une CBMBERT on OK-VQA without VQA pretraining following the same
xperimental settings. We repeat this experiment three times, as it is
one through the entire work. On each run we select a different set

f captions, that is, for each image we just choose one gold caption
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Fig. 5. Examples of OK-VQA questions where only one between CBMBERT and MMBERT
answers correctly according to the ground truth (GT). We also show answers given by CBMT5-11B

for further comparisons. C refers to captions generated by OSCAR. Correct answer in green, incorrect in red.
randomly and use it during the entire training process. As we also have
several captions in all of OK-VQA’s test split, we test each fine-tuned
model three times following the same caption selection process.

Table 2 already shows that we achieve an accuracy and standard
deviation of 32.5± 0.4 using generated captions on OK-VQA’s test split.
However, when we use gold captions we get an average accuracy of
32.3 ± 0.3 in all of our runs. In both cases we obtain similar results,
showing that captions generated by OSCAR contain enough information
for CBMBERT to perform comparably on this specific task.

6.4. Qualitative analysis on OK-VQA

Both CBMBERT and its multimodal counterpart perform similarly
(see Table 2), but in 38.7% of the test examples their output differs
and only one of them is correct. Fig. 5 shows some OK-VQA test
examples together where the outputs of CBMBERT and MMBERT with
VQA pretraining differ. We also add answers from CBMT5-11B for further
comparisons.

Starting with the top-left example, CBMBERT can infer that elephants
are native to Africa whereas MMBERT does not. In fact, the generated
caption includes the information that the animal found in the image is
an elephant, performing the first step needed to answer the question.
This way, the LM can focus on using its implicit knowledge in order
to answer correctly. CBMT5 generates ‘forest’ as an answer. Although
the answer may be considered as valid to us, the answer is not within
the list of ground truth answers, making it incorrect. The other two
examples in the top row behave similarly. The caption facilitates the
grounding between the question and the image. Whenever a question
8

refers to the image (‘‘this fruit’’ and ‘‘these items’’), if the caption
already mentions these objects (‘‘bananas’’ and ‘‘traffic light’’, respec-
tively), the LM seems to better leverage its implicit knowledge and
reasoning capabilities to answer the question. The top-right example is
interesting in this regard. While the image shows red traffic lights, the
question asks about the effects of green lights. This may trick MMBERT
into answering the effect that red lights produce, not the green ones.

The bottom row of Fig. 5 shows two examples where the caption
does not give enough information to infer the answer for CBMs. In the
first case CBMs cannot decide whether the meat is steamed, fried or
grilled by only examining the caption. Nevertheless, MMBERT does have
access to visual cues of the image, where we can see that the meat is
grilled. This also happens in the second example, as the caption does
not specify any ingredient of the beverage while we can see fruits in
the image. The rightmost example illustrates an example where the
caption does support the inference, but where our BERT based CBM
gets it wrong. With the given caption, ‘‘this game’’ refers to baseball.
However, CBMBERT is unable to infer that three strikes are enough for
a strikeout whereas both CBMT5-11B and MMBERT manage to give the
correct answer.

All in all, these examples support our hypothesis that visual features
and captions are complementary. They also show that our system has
some advantages regarding the interpretability of the system, specially
in the cases our method is wrong. In some cases like the two leftmost
examples in the bottom row, the object or feature needed to answer
the question is missing from the caption. In other cases, the required
information is in the caption, but the inference is erroneous.
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7. Conclusions

In this paper we present a VQA system which describes images with
a caption to then work only with textual data. We show that such
a system performs surprisingly well in OK-VQA, where the questions
cannot be answered with the image alone, requiring access to external
knowledge. Our analysis indicates that the loss of information when
summarizing the image into a caption is compensated by the better
inference ability of text-only pretrained language models. We also show
the importance of a language model’s capacity when leveraging the
implicit knowledge found in it, achieving state-of-the-art results, out-
performing current multimodal models by a large margin and matching
a 15-times larger ensemble model. Compared to multimodal models,
orders of magnitude bigger text-only LMs are available, which we show
to be an advantage for knowledge-intensive tasks. In the future we
would like to explore whether richer descriptions of images might
improve results further, and whether large text-only language models
can still benefit from incorporating symbolic knowledge graphs.
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