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Abstract: We investigate cylindrical and spherical solitons in electron-ion (EI) plasma that contains
hot (cold) electrons with stationary ions. The magneto-hydrodynamic equations are solved with
the aid of the reductive perturbation (RP) technique, leading to the modified Korteweg–De Vries
(mKdV) equation for the non-linear behaviour of the solitary waves in EI plasma. By employing the
reduced differential transform method (RDTM), an approximate solution of the mKdV is obtained
for solitary waves. Phase plane analysis reveals that these excitations exhibit periodic oscillations.
The phase plane and periodic behaviour of the obtained model are studied. It is observed that the
amplitude and width of the electron acoustic waves (EAWs) are affected by a slight change in the
cold to hot electron temperature ratio (σc) and the number density of the cold to hot electron ratio (α).
The effect of the streaming speed u(0) and superthermality index κe are investigated. This study is
important for understanding the symmetric properties of cylindrical and spherical plasma, relying
on the bifurcation analysis, impacted by the streaming effect in the EI plasma.

Keywords: plasma; electrons acoustic (EA) waves; governing equations and model; non-linear waves
analysis; reduced differential transform method; phase plane analysis

1. Introduction

The oscillation of cold electrons in an ionic field excites low-frequency electron-acoustic
(EA) waves, and this is the most interesting area of research in plasma physics [1–4].
The frequency of the EA mode is much higher as compared to the ion plasma frequency,
and therefore, propagations of EA waves do not impact the ions that provide a stationary
background. The EA potentials have received a lot of attention due to their importance
in both space and laboratory contexts. Contrary to Langmuir waves, the features of
EA modes may have a spectrum that only extends approximately to the cold electron
plasma frequency (ωpc = (4πe2nc0/me)

1
2 ), where nc0 is the equilibrium number density of

electrons, e is the electron charge, and me is the mass of electrons. The coherent electrostatic
disturbances in space plasma are known as the EA mode [5–8]. It has also been confirmed
that low-frequency excitations at electric timescales constitute linear EA waves [9,10].
Many researchers have elaborated the propagations characteristic of linear/nonlinear
EA waves in diverse plasma [11]. Mace et al. [12] have reported that hot ions in an
unmagnetized EI plasma involve refractive EA excitation. Similarly, it has been pointed
out that the dynamics of cold electrons in super thermal plasma lead to positive polarity
electrostatic perturbations [13]. Interestingly, the propagation of electrostatic as well as
electromagnetic pulses is significantly altered in non-planar plasma. It has been noticed
that cylindrical/spherical plasma deforms its solitary potential with the appearance of a
long tail during propagation [14,15].

The most practical approach to studying nonlinear PDEs is to employ a reduction
perturbation method. This method gives the linear approximation at the first order, which
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is often the slowly varying envelope approximation of the considered system, described as
weakly nonlinear [16–18]. On the other hand, the Lie group method is an effective method
for studying conservation laws, performing Lie symmetry analysis, and finding exact
solutions to nonlinear partial differential equations. In some recent findings, the symmetric
analysis of spherical and cylindrical KdV has been discussed in detail [19,20]. For our
purpose, we have applied a standard reductive perturbation technique and obtained the
Korteweg–De Vries (KdV) equation, which admits the excitation of phase-shaped solitons.
Moreover, using the reduced differential transform method (RDTM), we have obtained
time-dependent solutions to the KdV equation. The numerical analysis reveals that the
phase portrait of an EA soliton favours a complicated pattern of super-nonlinear waves
(SNWs). It has been shown that cylindrical/spherical plasma modifies the wave profile.
Moreover, the non-planar solitary excitations develop a flat tail upon propagation [21].

Here, a non-planar modified KdV is derived for electron-positron ion plasma using
the reductive perturbation technique. Numerical analyses revealed that the amplitudes
and width of the ion-acoustic waves decrease with increasing positron concentration. It
was also found that the ion-acoustic solitary waves in cylindrical and spherical geometries
in e-p-i plasma are destructively influenced by positrons and adiabatically heated ions.
Further, we are interested in performing a phase plane analysis of the cylindrical and
spherical KdV for superthermal plasma. Several researchers have used the classic reductive
perturbation method to investigate small but finite amplitude planar waves in various
plasmas in a one-dimensional case (see, for example, [22,23]). Due to the dispersive and
nonlinear nature of the governing equations, the KdV or modified KdV equations for the
lowest-order component in the perturbation expansion can be characterised as solitons in
the long-wave limit.

The differential transform method (DTM) was proposed by Zhou in 1986 to ad-
dress problems related to electrical circuits and a dynamical system considered in plasma
physics [24]. The suggested method is extremely effective and strong in terms of obtaining
both exact and approximative solutions to many problems in technology, finance, and engi-
neering. The differential transform method is a Taylor series-based numerical method that
produces an exact polynomial solution to a given problem. The well-known high-order
Taylor series approach only necessitates symbolic computation. The reduced differential
transform method (RDTM) is a more sophisticated technique [25–27]. It reduces numerical
computation because it does not require any discretization, linearization, or insignificant
perturbations. Further, the reduced differential transform approach has been widely used
by numerous scholars [28,29]. Numerous works indicate that RDTM’s solution process
is much easier to understand compared to the Homotopy perturbation technique (HPM),
differential transform method (DTM), the variational iteration method (VIM), and the
Adomian decomposition method (ADM) [30,31]. On the other hand, computational ef-
forts have been reduced while assuring rapid convergence and excellent precision in the
numerical solution.

The paper is structured as follows: In Section 2, the fluid model equations for magne-
toplasma containing cold (hot) electrons and stationary ions are presented. A reductive
perturbation technique is used and a modified KdV called the cylindrical/spherical KdV
equation is derived in Section 3. In Section 4, using the RDT scheme, a time-dependent
solution for the mKdV equation is obtained. The conservative quantities for the modified
Korteweg–De Vries (mKdV) equation are derived in Section 5. For super-nonlinear waves,
a phase portrait analysis for the EA excitation is given in Section 6. The numerical results
are elaborated in Section 7, while a brief summary is given in Section 8.

2. Governing Equations

We investigate electrons-ions (EI) plasma constituted of hot (cold) electrons and sta-
tionary ions. A constant magnetic field B = B0r̂ in the direction of propagation of the EA
wave is assumed. The electrons are assumed to have a constant shear flow u(0), whereas
the hot electrons follow the kappa distribution function. At equilibrium, ns0 = ni0, where
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ns is the unaltered density of the jth species (j = e, electrons, and i ions, respectively).
The nonlinear dynamics of EI waves can be governed by hydrodynamic (MHD) equations

∂nc

∂t
+∇(ncuc) = 0, (1)

menc

(
∂uc

∂t
+ uc · ∇uc

)
= enc

(
E +

uc

c
× B

)
−∇Pc, (2)

and
∇2φ = 4πe(nc + nh − ni0), (3)

where the cold electron number densities, speeds, and pressures are, respectively, nc, uc,
and Pc. E is the electric field caused by moving charges, as calculated by E = −∂φ/∂r.
Furthermore, φ = φ(r, t) represents the electrostatic potential, the electronic charge (mass)
is represented by e(me), and the number densities for hot electrons and ions are represented
by nh and (ni) respectively. The distribution of hot electrons and the pressure of cold
electrons are provided in the following form

Pc = Pc0

(
nc

nc0

)γ

, (4)

nh = nh0

{
1− eφ

Th(κe − 3
2 )

}−κe+
1
2

, (5)

where Pc0 = nc0Tc0, nc0 is the number density of cold electrons at equilibrium with temper-
ature Tc0, γ is the adiabatic constant, the special index (κe) accounts for the superthermal
hot electrons, and Th is the temperature of the hot electrons.

In polar form, Equations (1)–(3) can be written as

∂n̄c

∂t
+ u(0)

(
v
r

n̄c +
∂

∂r
n̄c

)
+

v
r

n̄cūc +
∂

∂r
n̄cūc = 0, (6)

∂ūc

∂t
+ u(0) ∂ūc

∂r
+ ūc

∂ūc

∂r
= −∂φ̄

∂r
− σc

(1− α)γ−1 γ(n̄c)
γ−1 ∂n̄c

∂r
, (7)

and
∂2φ̄

∂r2 +
v
r

∂φ̄

∂r
= n̄c + αnh − 1, (8)

where n̄c = nc/nc0 represents the normalised number densities of cold electrons,
ūc = (uc = u(0) + uc)/cs represents its normalised velocity, φ̄ = eφ/Th represents the
normalised electrostatic potential of EA waves, and cs =

√
Th/me represents EA speed.

ωpc =
√

4πe2nc0/me normalizes the time (t), whereas r is normalized by the Debye length
λD =

√
Th/4πe2nc0. σc = Th/Tc is the cold to hot temperatures ratio, and α = nh0/nc0

is the ratio of the number densities of cold to hot electrons. Using binomial expansion,
Equation (5) takes the form

nh = nh0

(
1 + c1φ̄ + c2φ̄2 + · · · · · ·

)
, (9)

where

c1 = −(−κe +
1
2
)/(κe −

3
2
), c2 = (−κe +

1
2
)(−κe −

1
2
)/(κe −

3
2
)2.



Symmetry 2023, 15, 436 4 of 17

3. Non-Linear Wave Analysis

For simplicity, we remove the bars on the variables in Equations (6)–(8) and apply
the RPM technique to obtain a cylindrical and spherical KdV model for the EI plasma by
expanding the variables in Equations (6)–(8) to examine the nonlinear propagation of the
EA waves in the following manner


nc

uc

φ

 =


1

0

0

+ ε


n(1)

c

u(1)
c

φ(1)

+ ε2


n(2)

c

u(2)
c

φ(2),

+ · · · . (10)

We further introduce the stretched variables to find a nonlinear solution of small
amplitude acoustic solitary waves in EI plasma

ξ = −ε
1
2 (x + λt), τ = ε

3
2 t, (11)

where ε is a small parameter indicating nonlinearity and dispersion weakness and λ is the
phase velocity of EA waves normalised by cs. The differential relations can therefore be
written as follows

∂

∂x
→ −ε

1
2

∂

∂ξ
,

∂

∂t
→
(
−ε

1
2 λ

∂

∂ξ
+ ε

3
2

∂

∂τ

)
. (12)

Putting Equations (10)–(12) in Equations (6)–(8), we obtain lower orders of ε hierarchy-
equations in the form

n(1)
c = αc1φ(1), u(1)

c = − φ(1)

(u(0) + λ)
, λ = −u(0) ±

√
1 + u((0))2(1− αc1). (13)

Similarly,

∂

∂ξ
u(2)

c + (u(0) + λ)
∂

∂ξ
n(2)

c +
∂

∂τ
n(1)

c +
v

λτ
u(1)

c +
∂

∂ξ
n(1)

c u(1)
c = 0,

(u(0) + λ)
∂

∂ξ
u(2)

c −
∂

∂τ
u(1)

c + u(1)
c

∂

∂ξ
u(1)

c +
∂

∂ξ
φ2 +

σcγ(γ− 1)
(u(0) + λ)(1− α)

n(1)
c

∂

∂ξ
n(1)

c = 0,

∂2

∂ξ2 φ(1) − n(2)
c + αc1φ(2) +

αc2

2
(φ(1))2 = 0.

(14)

Combining Equations (13) and (14), we obtain the mKdV equation in the form

∂

∂τ
φ(1) +

v
2τ

φ(1) + Aφ(1) ∂

∂ξ
φ(1) + B

∂3

∂ξ3 φ(1) = 0, (15)

where A = A2/A1 and B = 1/A1 with a0 = σc
(1−α)γ−1 and

A1 =
αc1

(
a0γ + (λ + (u(0))2

)
+ 2

(λ + u(0))
(
(λ + (u(0))2)− a0γ

) ,

A2 =
α2a0γc2

1

(
−a0γ + λ(γ + 2λ− 1) + 2(u(0))2 + u(0)(γ + 4λ− 1)

)
(λ + (u(0))2)

(
((λ + (u(0))2)− a0γ

)
+

4αc1

(
(λ + (u(0))2)− a0γ

)
− 4

(λ + (u(0))2)
(
((λ + (u(0))2)− a0γ

) − αc2.

(16)
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4. Applications of RDTM

To apply RDTM to our derived model (15), we can write

Dτφ + AφDξ φ + BDξξξφ +
v
2

τ−1φ = 0, (17)

where φ = φ(1)(ξ, τ). The exact solution for system (17) is given by [32]

φ(ξ, τ) =
ξ

2Aτ
+

12B1/3

Aτ
sec h2

(
ξ + 8B1/3

B1/3
√

τ

)
. (18)

We start with one-dimensional planar geometry (v = 0) and investigate the stationary
solitary wave solution of Equation (15). Consider the initial condition

φ(ξ, 0) = φmsech2
(

ξ

∆

)
, (19)

where A, and B are given in Equation (15) and Dτ = ∂/∂τ, Dξ = ∂/∂ξ with φm = 3λ
A and

∆ =
√

4B
λ . Next, applying RDTM given in Appendix A to Equation (17), we get

Φj+1(ξ) =
1

j + 1

[
−A

j

∑
r=0

Φj(ξ)Dξ Φj−r(ξ)− BDξξξΦj(ξ)−
v
2

δ(j + 1)Φj(ξ)

]
, (20)

from the initial condition (19), we have

Φ0(ξ) = φm sech2
(

ξ

∆

)
. (21)

Putting j = 0, 1, 2 in Equation (20), we obtain

Φ1(ξ) = −AΦ0(ξ)Dξ Φ0(ξ)− BDξξξΦ0(ξ)−
v
2

δ(1)Φ0(ξ),

Φ2(ξ) = −
1
2

[
A
(
Φ0(ξ)DξΦ1(ξ) + Φ1(ξ)Dξ Φ0(ξ)

)
+ BDξξξΦ1(ξ) +

v
2

δ(2)Φ1(ξ)

]
,

Φ3(ξ) = −
1
3

[
A
(
Φ0(ξ)DξΦ2(ξ) + Φ1(ξ)Dξ Φ1(ξ) + Φ2(ξ)Dξ Φ0(ξ)

)
+ BDξξξ Φ2(ξ) +

v
2

δ(3)Φ2(ξ)

]
.

(22)

Applying the inverse differential transform (A7) to Equation (21) and Theorem A2,
we obtain

φ0 = φmsech2
(

ξ

∆

)
,

φ1 =
τ

∆3 2φm tanh
(

ξ

∆

)
sech4

(
ξ

∆

)(
A∆2φm + 2B

(
cosh

(
2ξ

∆

)
− 5
))

,

φ2 =
τ2φm

8∆4

[
8A2∆2φ2

m

(
3 cosh

(
2ξ

∆

)
− 4
)
+ 2Aφm

(
−
(

152B + ∆2v
)

cosh
(

2ξ

∆

)
+
(

8B + ∆2v
)

cosh
(

4ξ

∆

)
+ 176B− 2∆2v

)
+ 4B cosh2

(
ξ

∆

)(
− 26v cosh

(
2ξ

∆

)
+ v cosh

(
4ξ

∆

)
+ 33v− 10∆ sinh

(
2ξ

∆

)
+ ∆ sinh

(
4ξ

∆

))]
sech8(ξ).

(23)
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Other terms can be calculated in a similar way. Finally, up to the 4th order, we
can write

φ(τ, ξ) =
2

∑
j=0

[
1
j!

φj

(
ξ

∆

)]
tj. (24)

One can see that, for larger values of j→ ∞, the approximate solution (24) approaches
the exact solution (18).

5. Conservation Laws for the Model (15)

The existence of an infinite number of conservation laws is one of the most intriguing
features of KdV systems. Let us start with the derivation of a few fundamental conservation
laws. An elegant generalisation of Miura’s transformation yields a compelling argument
for the existence of an infinite number of conservation laws. Consider the following Miura
transformation [33]

φ(1) = ψ− ε∂ξ ψ− ε2ψ2. (25)

Putting Equation (25) in Equation (15), we obtain

∂

∂τ

(
ψ− ε∂ξψ− ε2ψ2

)
+

v
2τ

(
ψ− ε∂ξψ− ε2ψ2

)
+ A

(
ψ− ε∂ξψ− ε2ψ2

) ∂

∂ξ

(
ψ− ε∂ξ ψ− ε2ψ2

)
+ B

∂3

∂ξ3

(
ψ− ε∂ξ ψ− ε2ψ2

)
= 0.

(26)

Consider the series solution of the transform Equation (26)

ψ(ξ, τ, ε) =
∞

∑
n=0

εnψn(ξ, τ), (27)

then the Miura transformation (25) takes the following form

φ(1) =
∞

∑
n=0

εnψn(ξ, τ)− ε∂ξ

(
∞

∑
n=0

εnψn(ξ, τ)

)
− ε2

(
∞

∑
n=0

εnψn(ξ, τ)

)2

, (28)

Equating ε powers, we obtain the following conserved quantities

φ(1) = ψ0,

ψ1 − ∂ξ ψ0 = 0,

ψ2 − ∂ξ ψ1 − ψ2
0 = 0,

ψ3 − ∂ξ ψ2 − 2ψ0ψ1 = 0,
....

(29)

Solving these equations recursively, we get

φ(1) = ψ0,

ψ1 = ∂ξφ(1),

ψ2 = 2(φ(1))3 − (∂ξ φ(1))2,

ψ3 = ∂3
ξφ(1) + 4φ(1)∂ξ φ(1),

....

(30)
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From these, one can derive the following conservative quantities, that is, mass (M),
momentum (P) and energy (E). These quantities are represented by the following equations

M =
∫ +∞

−∞
φ(1)dξ = constant, P =

∫ +∞

−∞
(|φ(1)|2dξ = constant,

E =
∫ +∞

−∞
2(φ(1))3 − (∂ξ φ(1))2dξ = constant.

The following Table 1 shows the conservative quantities for different values of τ and ξ.

Table 1. Evaluation of the conservative quantities against the temporal variable τ and spacial
variable ξ.

τ ξ M P E φ(ξ, τ)

0.1 1.0 3.99999 1.59999 4.45358 0.57027
0.2 2.0 3.99999 1.59999 4.45358 0.45624
0.2 4.0 3.99999 1.59999 4.45358 0.39767
0.6 6.0 3.99999 1.59999 4.45358 0.26558
0.8 8.0 3.99999 1.59999 4.45358 0.11984
1.0 10.0 3.99999 1.59999 4.45358 0.09583

6. Phase Plane Analysis

A phase portrait is a graphical tool that shows how the solutions of a differential equa-
tion will behave over time. For plasma systems with more than three separate components,
phase portrait profiles are more complicated, resulting in more fascinating wave patterns.
The number of fixed points and separatrices in phase plots evolves with wave-matching
trajectories. The bifurcation in dynamical systems [34] is a major change in the system as a
result of a change in a physical parameter. The underlying properties of dynamical systems
are revealed through phase plane analysis utilising bifurcation theory. Any qualitative
circle in the phase plane is said to correspond to a travelling wave solution [35]. In light of
bifurcation analysis, the qualitative phase pictures for dynamical systems (15) are presented.
For phase plane analysis, consider φ(ξ, τ) = φ(ζ) with ζ = (ξ − λτ); then Equation (15) can
be written as

−λ
d

dζ
φ(ζ) +

v
2τ

φ(ζ) + A
φ(ζ)

dζ
φ(ζ) + B

d3

dζ3 φ(ζ) = 0. (31)

Integrating Equation (31) with respect to ζ and considering for ζ → ±∞, dφ/dζ → 0
and d2φ/dζ2 → 0, we obtain the following system of ordinary differential equation

dφ
dζ = z = f (φ, z),
dz
dζ = 1

B

(
λφ− A

2 φ2
)
+ v

2τ

∫ ζ
0 φ(ζ)dζ = g(φ, z).

(32)

The Jacobian matrix for the system (32) is defined by

J =

 ∂ f (φ,z)
∂φ

∂ f (φ,z)
∂ζ

∂g(φ,z)
∂φ

∂g(φ,z)
∂φ

 =

(
0 1

1
B (λ− Aφi) 0

)
. (33)

The determinant of the Jacobian is determined by

D = detJ(φi, 0) = − 1
B
(λ− Aφi), (34)

To obtain the fixed points of the system (32), considering dφ/dζ = 0 and dz/dζ = 0,
we obtain the fixed points P0(φ0, 0), P1(φ1, 0) where

φ0 = 0, φ1 =
2λ

A
.
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For phase plane analysis of the system (32), the determinant (34) is very much impor-
tant in the sense of i = 0, 1 if D < 0; then the point Pi(φi, 0) is the saddle point and for
D > 0, the point Pi(φi, 0) is the centre point of the system (32) (see [34]).

7. Results and Discussion

For numerical illustrations, we have chosen some typical parameters of a magne-
toplasma, with cold (superthermal) electrons and stationary ions being relevant to the
ionosphere as well as to laboratory scenarios. The number density and magnetic field
ranges are nc0 = 1018–1019cm−3 and B0 = 105–106 G, respectively. The most important
results are highlighted and Figure 1a illustrates the phase speed (λ) of a non-planar EA
wave as a function of the superthermality index (κe) with variations in the streaming speed
(u(0)). Notice that the index κe raises the concentration of high energy electrons and in
turn enhances the wave phase speed. Similarly, the streaming speed modifies the electron
dynamics and results in the propagation of EA pulses at a relatively high speed. We have
depicted in Figure 1b the phase speed (λ) versus the superthermal index (κe) at different
values of the cold to hot electron temperature ratio (σc). This reveals that thermal correction
due to random motion increases λ. The solution (24) for EA soliton is given in Figure 2a
against spatial variable (ξ) when the variable γ = 1 (solid curve), 2 (dashed curve), or
3 (dotted curve). Obviously, the variations reduce the amplitude of the wave profile by
increasing the values of the parameter from 1 to 3. The profile of EA pulses in Figure 2b at
different values of κe reveals that energetic electrons raise the amplitude as well as the width
of the EA potential. Similarly, the wave solution depicted with variations in, for Figure 2c,
temperature ratios and, for Figure 2d, streaming speed, admits significant modification.

3 4 5 6 7

κ
e

0.1

0.15

0.2

0.25

0.3

λ

(a)

3 4 5 6 7

κ
e

-0.6

-0.4

-0.2

0

0.2

0.4

λ

(b)

Figure 1. The phase speed (λ) given in Equation (24) against κe by changing (a) u(0) = 1 (solid line),
1.1 (dashed line), 1.2 (dotted line) and (b) α = 0.1 (solid line), 0.5 (dashed line), 1 (dotted line).

-10 -5 0 5 10

ξ

0

0.01

0.02

0.03

0.04

0.05

φ

(a)

Figure 2. Cont.
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-20 -10 0 10 20

ξ

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

φ

(b)

-20 -10 0 10 20

ξ

0

0.1

0.2

0.3

0.4

0.5

φ

(c)

-20 -10 0 10 20

ξ

0

0.05

0.1

0.15

0.2

0.25

φ

(d)

Figure 2. The profiles of solitary waves for σc = 0.3, λ = 0.2 based on Equation (24) plotting the
electrostatic potential Φ against the spatial coordinate ξ by changing (a) γ = 1 (Solid curve), γ = 2
(dashed curve), γ = 3 (dotted curve), (b) changing refractive index κe = 3 (solid curve), κe = 5 (dashed
curve), κe = 7 (dotted curve), (c) changing the cold to hot electrons temperature ratio α = 0.4 (solid
curve), α = 0.5 (dashed curve), α = 0.6 (dotted curve) and (d) changing the plasma streaming effect
u(0) = 0.3 (solid curve), u(0) = 0.5 (dashed curve), u(0) = 0.7 (dotted curve).

For larger time span, the waves start oscillation between −1 and 1 for both cylindrical
and spherical cases as we have shown in Figure 3a and Figure 3b, respectively. The temporal
variable τ in the model modifies the amplitude and width of the wave profile. In Figure 4a,
we traced the direction field of the system (32) for cylindrical (v = 1) and spherical (v = 2)
for different parameters (σc = 0.2, λ = 0.1). Similarly, a phase portrait of the system (32)
with σc = 0.5, λ = 0.3 and α = 0.2 is given in Figure 5 for (a) cylindrical KdV (v = 1) and
(b) for spherical KdV (v = 2). It can be observed that, in both cases, there is the saddle
point P0(0, 0) and the centre at P1(φ1, 0). A phase portrait of the system (32) with σc = 0.5,
λ = 0.3 in for cylindrical KdV (v = 1) (a) α = 0.09 and (b) α = 0.1 for spherical KdV (v = 2)
is shown Figure 6. It can be observed that a nonlinear homoclinic orbit (NHO) about P0(0, 0)
enclosing fixed point P1(φ1, 0) and nonlinear periodic orbit (NPO) enclosing the fixed point
P1(φ1, 0) correspond to EA waves. However, when we take the parameters values to unity,



Symmetry 2023, 15, 436 10 of 17

we get periodic waves of the system about P0(0, 0), as shown in Figure 7a,b. The effect of
the parameter κe on the periodic waves for large values of time parameter τ = 20 is shown
in Figure 8a,b for both cylindrical and spherical KdV. The conserved quantities momentum,
mass and energy derived four our model in Section 5 are numerically shown in Table 1. We
see that all these conserved quantities are unaffected with the passage of time.

-5 0 5
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-0.2

0

0.2

0.4

0.6

φ

(a)

-5 0 5

ξ

-0.5

0

0.5

φ

(b)

Figure 3. The oscillatory wave profiles for Equation (24) for different values of the parameters as
given in Figure 2 for larger temporal variable as (a) τ = 1 (solid curve), τ = 2 (dashed curve) and
τ = 3 (dotted curve) curves in cylindrical KdV (v = 1) and (b) τ = 1 (solid curve), τ = 2 (dashed
curve) and τ = 3 (dotted curve) curves in spherical KdV (v = 2).
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P1

-1.0 -0.5 0.0 0.5 1.0
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Figure 4. Cont.
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1.0

F

z

HbL

Figure 4. Direction field lines of EI plasma referring to system (32) with σc = 0.2, λ = 0.1, κe = 3 and
α = 0.01 for (a) cylindrical (v = 1) and (b) spherical (v = 2).

Figure 5. Phase portrait of EI plasma referring to system (32) with σc = 0.5, u(0) = 1, λ = 0.3, α = 0.2
and κe = 1.6 for (a) cylindrical (v = 1) and (b) spherical (v = 2).
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Figure 6. Contours for EI plasma referring to system (32) with σc = 0.5, u(0) = 1, λ = 0.3, α = 0.2
and κe = 1.65 for (a) cylindrical (v = 1) and (b) spherical (v = 2).
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Figure 7. Cont.
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ξ

-0.04

-0.02
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φ

(b)

Figure 7. The oscillatory profile of the system (32) with σc = 1, λ = 1, γ = 1, α = 1 and (a) κe = 5 for
cylindrical (v = 1) KdV (b) κe = 7 for spherical KdV (v = 2).

Figure 8. Periodic waves of the system (32) for larger time (τ = 20) with σc = 1, λ = 0.52, γ = 0.43,
α = 1 and (a) for cylindrical (v = 1) KdV (b) for spherical KdV (v = 2) with κe = 1.6 (solid), 1.62
(dashed) and 1.64 (dotted).

8. Conclusions

Cylindrical and spherical KdV models for EI plasma with hot and cold electrons
and stationary ions were derived using the reductive perturbative (RP) method. For the
first time, the cold electrons following the constant shear flow u(0) in the KdV model are
considered. An analytical method called the reduced differential transform method is
applied to calculate an approximate solution to the model. It is observed that for smaller
values of the temporal variable τ the approximate solution (24) converges to the exact
solution (18) of the model. It is shown that, when the temperature of hot electrons is
low, a small-amplitude EAW develops. When a small-amplitude EAW grows smoother,
the spectral index of electrons approaches the Maxwellian limit. As a result, our findings
indicate the presence of small-amplitude nonlinear electron acoustic waves (EAWs) in
plasmas with distributed cold and hot electrons. Studying the non-planar convergence in
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such plasmas, in the presence of cold and hot electrons with stationary ions, specifically
electrons and ions, is significant because the non-planar wave is crucial to understanding
inertial confinement fusion as well as space laboratory plasmas. Since we are interested
in seeing how the ratio α, the super thermal index κe and the streaming speed u(0) of
the cold electrons affect the non-planar wave profile, we took the temperature ratio of
cold to hot electrons as being smaller than unity to see how this ratio affects the wave
profile. The geometry has a major influence on the non-planar wave. As the distance from
the spherical or cylindrical geometry’s centre grows, the non-planar waves progressively
weaken. The pressure density behind the wave front changes as it moves forward and
backward, which is how this occurs physically.

The qualitative phase portrait profiles for dynamical systems (32) were illustrated
using the bifurcation theory of dynamical systems. The NPO and NHO of the dynamical
system generated from the KdV Equation (15) support the EAW solutions. The presence of
a small amplitude EAW solution of the KdV equation in the investigated plasma system
was discovered for the first time using bifurcation through phase plane analysis.
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Appendix A

Appendix A.1. One-Dimensional RDTM

The jth derivative of a function φ(t) in one variable is transformed as follows: If
φ(t) ∈ R can be written as a Taylor series around the fixed point t0, then φ(t) can be
written as

φ(t) =
∞

∑
j=0

φ(j)(t0)

j!
(t− t0)

j. (A1)

Similarly, if φn(t) = ∑n
j=0

φ(j)(t0)
j! (t− t0)

j is the nth partial sum of the expansion (A1),
then we have

φ(t) =
n

∑
j=0

φ(j)(t0)

j!
(t− t0)

j + Rn(t), (A2)

where Rn(t) is the remainder term and nth is the Taylor polynomial for φ(t) around t0.
The differential transform Φ(j) of the function φ(t) is defined by

Φ(j) =
1
j!

[
djφ(t)

dtj

]
t=t0

, j = 0, 1, 2, · · ·∞, (A3)

and Equation (A1) reduced to

φ(t) =
n

∑
j=0

Φ(j)(t− t0)
j, (A4)
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and the nth partial sum of Equation (A2) takes the form

φn(t) =
n

∑
j=0

Φ(j)(t− t0)
j + Rn(t). (A5)

Appendix A.2. Two-Dimensional Reduced Differential Transform Method

Consider the function φ(x, t), such that φ(x, t) = f (x)g(t). It can be represented as
follows based on the properties of one-dimensional DTM:

φ(x, t) =
∞

∑
i=0

P(i)(x)i
∞

∑
i=0

Q(j)(t)j =
∞

∑
i=0

∞

∑
j=0

R(i, j)xitj, (A6)

where R(i, j) = P(i)Q(j) is called the spectrum of the two-dimensional function φ(x, t).
If φ(x, t) is the analytic function in some specific domain of interest then the
spectrum function

Φj(x, t) =
1
j!

[
∂j

∂tj φ(x, t)
]

t=t0

, (A7)

is the reduced transform function of φ(x, t) and its inverse reduce transform is defined by

φ(x, t) =
∞

∑
j=0

Φj(x)(t− t0)
j, (A8)

Combining Equations (A7) and (A8), we obtain

φ(x, t) =
n

∑
j=0

1
j!

[
∂j

∂tj φ(x, t)
]

t=t0

. (A9)

Equation (A9) is the Taylor series expansion of φ(x, t) around t = t0.

Appendix A.3. Analysis on RDTM

Here, we consider the following non-linear partial differential equation

Lφ(x, t) + Rφ(x, t) + Nφ(x, t) = 0, (A10)

with the following initial condition

φ(x, t = 0) = φ0,

where L and R are the linear operators and N is a non-linear operator, then applying the
RDTM to Equation (A10) with Theorems A1–A3, we obtain the following recursive relation

(j + 1)Φj+1(x) + RΦj(x) + NΦj(x) = 0. (A11)

Theorem A1. If φ(x, t) = ∂n

∂tn φ(x, t), then Φj(x) = (j+n)!
j! Φ(j+n)(x),

Theorem A2. If φ(x, t) = xmtn, then,

Φj(x) = xmδ(j− n) =
{

1 if j = n,
0 otherwise.

Theorem A3. If φ(x, t) = φ(x, t) ∂n

∂tn φ(x, t), then Φj(x) = ∑
j
r=0 Φr(x) ∂

∂x Φr−j(x).
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Similarly the initial condition takes the form

Φ0(x) = φ0, (A12)

where Φj(x) in Equation (A11) is the transform function of the original function φ(x, t).
For j = 0, 1, 2 a few terms are

Φ1(X) = −R(Φ0(x))− N(Φ0(x)), Φ2(x) = −R(Φ1(x))− N(Φ1(x)),

Φ3(x) = −R(Φ2(x))− N(Φ2(x)).

With the help of Equation (A12) and using the inverse differential transform (A8), we
obtain the following approximate solution:

φ(x, t) =
n

∑
j=0

Φj(x)tj. (A13)
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