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A B S T R A C T   

Transport electrification and energy storage are considered part of the solution to decrease CO2 emissions from 
the energy and transport sectors. In this context, batteries can be a promising technology, since advances in the 
last few years have ensured a larger lifetime and better performance. Depending on actual use of the batteries, 
calendar ageing can be considered as the main origin of degradation in both transport electrification and energy 
storage since electric vehicles are parked 96 % of the time and battery energy storage stations (BESSs) can remain 
at a high State of Charge (SoC) for a long time along their lifetime. Therefore, a lifetime model or a degradation 
model of batteries is necessary to optimally develop an application of these in every sector. In this sense, this 
paper presents a calendar ageing model of a nickel‑manganese‑cobalt (NMC) battery, which is used in com-
mercialised electric vehicles. The degradation model presented here is based on the Hermite Cubic Interpolation 
Polynomial (PCHIP) over an experimental results data set in combination with a power law for modeling the 
influence of the storing time. In this context, four fitting equations have been compared in search of the most 
appropriate time depending rate, and the accuracy of the most commonly used model was improved. The storing 
temperature and SoC have been found to be the most harmful factors in the degradation of these batteries by 
calendar ageing. The degradation model developed yields of an average root-mean-square error (RMSE) of 0.8 % 
in capacity fade (CF), while in power fade (PF), the average RMSE has been 2.3 %.   

1. Introduction 

Traditionally, lithium-ion batteries have been used in portable 
electronics and have only been required for a few years of their lifetime. 
However, electric vehicles are high specific energy and high specific 
power loads with the desired lifetime of 10–15 years while taking 
several climatic conditions into consideration. The state of health (SoH) 
of a battery can be checked in the maximum usable range of an electric 
vehicle (EV), but SoH also affects its residual value since the battery 
accounts for nearly 65 % of its total cost [1]. Consequently, a battery 
needs to be replaced because it reaches its end-of-life (EoL) when its 
capacity retention is below 80 %, compared to a fresh one [2]. 

Degradation in battery cells usually takes place due to a combination 

of cycle and calendar ageing. Cycle ageing is the degradation given by 
the use or the cycle of the cell, and it is related to the charge and 
discharge current with respect to its nominal capacity (C-Rate), Depth of 
Discharge (DoD), number of cycles performed (N) and temperature (T). 
Charging mode has a great relevance in cycle ageing, affected by fast 
charging or charging at extreme temperatures, among others. However, 
calendar ageing is related to the degradation of the cell independent of 
charge-discharge, and it is related to the storing average State of Charge 
(SoC), time (t) and temperature of storing (T). Some of the studies on 
calendar ageing modeling are presented later in this section. 

Although it is very expensive, it is possible to test the cycle ageing 
process of a battery along its entire lifetime; however, testing for cal-
endar ageing is time intensive and usually only considers a few ageing 
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conditions [3,4]. Furthermore, the development of degradation models 
is justified, as a vehicle remains parked for approximately 96 % of the 
time [3,5–7] and Battery Energy Storage Stations (BESSs) can spend a 
significant amount of time, i.e. around 10 % of their lifetime, out of 
operation [8]. In the case of BESS, its state is defined by intervals 
(charging, discharging and not operating); the range of the operating 

SoC is limited to that set when designing it [9], and an attempt is made 
to avoid dwell time at high SoC [10]. Furthermore, risky situations such 
as large and fast variations of charge and discharge rates as well as 
depths of discharge must be avoided [11,12], while further research is 
being developed in this thermal runaway topic [13–16]. This is the 
reason why calendar ageing models are of great use in electromobility 
and energy storage while modernising the electric grid [3,17,18]. 

The degradation of a battery is a normal process that permanently 
decreases the amount of energy that a battery can store as well as the 
amount of power it can supply. The degradation mechanisms that are 
involved in the process are divided into three general categories: loss of 
lithium inventory (LLI), loss of active material and impedance increase 
[3]. Concretely, such mechanisms can be assumed to include the 
following: solid electrolyte interphase (SEI) formation, graphitic anode 
exfoliation and cracking, dendrite growth, cathode disordering, metal 
dissolution, change in porosity and current collector corrosion [19,20]. 
Regarding the operational effects produced in cells, two effects can be 
distinguished: Capacity Fade (CF) and Power Fade (PF). CF is the 
diminution of the ratio between the current capacity and the rated 

VOC(Ceq, SoHC, SoC) VT

Rc(SoHR, SoC)
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D1
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Degrada�on model
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condi�ons
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Rd(SoHR, SoC)
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Fig. 1. Structure of the developed model.  

Fig. 2. Studied cell: LG E63.  

Table 1 
Basic data about the LG E63 cell.  

Discharge capacity 25 ◦C, 2.50–4.20 V 
Standard charge/discharge 
21.6 A  

25 ◦C, 2.50–4.20 V 
Standard charge/discharge 
32.5 A 

Nominal: 65.6 Ah 
Minimum: 64.6 
Ah  

Nominal: 64.8 Ah 
Minimum: 63.8 
Ah 

Nominal voltage  3.60 V 
Voltage  2.50–4.20 V 
Continuous operation 

temperature  
10 ◦C–45 ◦C  

Fig. 3. Useful capacity–temperature graph.  
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capacity and is generally attributed to LLI, whereas PF is the diminution 
of the ratio between the current maximum power that a cell can deliver 
and the initial one, caused by an increase of the passivation layer 
associated with internal resistance [3,21-25]. In the case of EVs, the 

batteries are usually oversized in terms of power, i.e. they can, generally, 
deliver more power than what the powertrain components can handle. 
Consequently, degradation in power terms is not usually considered so 
critical as CF [26]. However, in the case of BESSs, both CF and PF effects 

VOC(Ceq, SoHC, SoC) VT

Rc(SoHR, SoC)

Rd(SoHR, SoC)

I

Fig. 4. Internal resistance model.  

Fig. 5. Characteristics of open-circuit voltage.  

Fig. 6. Characteristics of internal resistance.  

Condi�on 
specifica�on Degrada�on quan�fica�on

Power fade Capacity fade

Calendar Test matrix

Pure Calendar Aging model

Capacity fadePower fade

Experimental results

Fig. 7. Overview of the calendar ageing degradation model.  

Table 2 
Confidence bounds of the calendar ageing model.  

Temperature (T) State of Charge (SoC): Time (t): 

[25–45] ◦C [5–90]% [0–40] weeks 
[45–60] ◦C [60–90]% [0–28] weeks  

Fig. 8. Calendar ageing test matrix.  
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have to be considered in BESS operation limits definition when 
designing it, since power and energy conditions have to be met in bid-
dings. In this sense, every demanded services provision must be within 
BESS operational limits. 

Electric energy storage systems degradation models are gaining 
popularity in academia, as many developments depend on them. Some 
examples that demonstrate their utility are EVs and BESSs providing 
ancillary services and contributing to grid stability. Therefore, studies 
on battery SoH estimation and modeling are encouraged. 

Degradation models are usually classified as electrochemical, 
analytical, electrical and stochastic models. Electrochemical models try 
to describe ageing using equations based on electrochemical principles 
[27–32]. Although these models are highly detailed, they usually 

require a large amount of data extracted from ex-situ techniques (i.e. 
techniques that cannot be performed in real-time) and need large 
computation resources. In order to deal with these disadvantages, only 
main degradation mechanisms are usually considered while others are 
neglected [33]; this was done in [34] where the authors constructed a 
degradation model by only considering cathodic degradation 
mechanisms. 

Stochastic models describe ageing with mathematical expressions by 
taking into consideration probabilistic transitions from previous steps; 
usually, Markov chains are used to express this evolution. This approach 
can be particularly accurate in terms of predicting EoL parameters in 
real-time applications; however, their usages must be carefully evalu-
ated since they do not take into account the physical aspects associated 
with battery operations. 

Analytical models aim to correlate CF and PF with a combination of 
stress factors (i.e. temperature, SoC and time in the case of calendar 
ageing). They rely on the data from experimental trials and can decouple 
degradation in calendar and cycle ageing or compute them as a whole. In 
this context, some of them propose equations based on the purely best 
data fitting method (empirical models), while others seek to relate the 
observed trend with a physical meaning (semi-empirical models). They 
can deal with ageing in comparison with the equivalent situation (e.g. 
full cycles to failure) with empirical models or semi-empirical models. 
The equivalent situation method is the simplest approach where ageing 
is considered as proportional in every moment, empirical models 
perform mathematical expressions derived from experimental data 
fitting and semi-empirical models are based on the physical description 
of analytical equations. As evident, they also need large testing data, but 
their execution time is much lower and they can be implemented in 
battery management systems (BMSs). 

Several studies have been conducted in this area. In [35], the authors 
performed a calendar ageing empirical model of 15 Ah lithium‑iron- 
phosphate (LFP) cells. They modelled CF, but PF was neglected in this 
study. The same drawback was found in [36]. In [37], however, PF was 
analysed and CF was neglected in a nickel‑cobalt-aluminium (NCA) cell; 
only high SoC levels were analysed. In [24], authors got an ageing model 
based on experimental tests, for a wide temperature range (0–60 ◦C) and 
SoC range (0–100 %) with up to 2.2 % and 6.9 % of error in CF and PF, 
respectively. However, the cell that was analysed was a 3 Ah cell, i.e. one 
with a relatively low capacity for EV applications. 

The literature review revealed several works that indicated that 
calendar ageing CF follows a nonlinear law with time, more concretely, 
a power law. In this sense, most studies suggested a function propor-
tional to t1/2 given by the SEI growth [24,38–44] with an error of 1.0 % 
to 2.2 % in CF and up to 6.9 % in PF; however, other studies suggested 
t0.75 [45,46] with an error up to 1.1 % in CF or even a linear relationship. 

Electrical models update circuital parameters of a previously defined 

Table 3 
Definition of the compared models.   

Capacity Resistance Free 
parameters 

Model 
1 

SoHC = 100 − aC(SoC,T) ⋅ t SoHR = aR(SoC,T) ⋅ t  2 

Model 
2 

SoHC = 100 − aC(SoC,T)⋅ 
̅̅
t

√
SoHR = aR(SoC,T)⋅

̅̅
t

√ 2 

Model 
3 

SoHC = 100 − aC(SoC,T) ⋅ 
t0.75 

SoHR = aR(SoC,T) ⋅ 
t0.75  

2 

Model 
4 

SoHC = 100 − aC(SoC,T) ⋅ tb 

(T) 
SoHR = aR(SoC,T) ⋅ tb 

(T)  
3  

Fig. 9. Different models fittings for 45 ◦C and 55 % SoC storing calendar ca-
pacity fade data. 

Table 4 
Correlation values (R2) obtained for data normalisation under calendar ageing for capacity and resistance in every model.  

T SoC Model 1 Model 2 Model 3 Model 4 

Cap R Cap R Cap R Cap R 

25 ◦C 5 %  0.4638  1  0.3823  1  0.432  1  0.3698  1 
40 %  0.8545  1  0.7615  1  0.8457  1  0.7312  1 
60 %  0.7448  1  0.9522  1  0.8905  1  0.9458  1 
70 %  0.699  1  0.969  1  0.8779  1  0.9674  1 
90 %  0.3909  − 0.0017  0.929  0.0905  0.6956  0.0474  0.9556  0.1117 

45 ◦C 5 %  0.9693  0.6373  0.8319  0.5353  0.9299  0.6156  0.8735  0.5312 
40 %  0.9375  0.7899  0.9444  0.6878  0.9873  0.7775  0.9745  0.6829 
55 %  0.9041  0.8404  0.9477  0.7918  0.9708  0.8602  0.9707  0.7872 
60 %  0.8699  0.749  0.9551  0.8586  0.9572  0.8485  0.971  0.8564 
70 %  0.8117  0.5008  0.9627  0.85  0.931  0.7144  0.967  0.852 
90 %  0.6934  − 0.5455  0.968  0.6066  0.8735  0.0795  0.9507  0.6201 

60 ◦C 60 %  0.8237  0.9602  0.981  0.8091  0.9496  0.9249  0.9596  0.8715 
90 %  0.8013  0.9906  0.9953  0.8742  0.9452  0.976  0.9786  0.933 
100 %  0.4425  0.7959  0.9478  0.9478  0.7411  0.921  0.9759  0.9535 

Average R2  0.7649  0.8186  0.9081  0.8255  0.8710  0.8289  0.9135  0.8351  
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electrical model according to the same stress factors as in analytical 
models in order to reproduce the terminal voltage. Their accuracy and 
execution times are dependent on the number of elements in the circuit. 
Most works focused on analysing the internal resistance evolution using 
the internal resistance model [47–49], while other works [50,51] used 
Thevenin models for dynamical simulations in nickel-manganese-cobalt 
(NMC) or NCA cells and account for CF as well. 

In this context, experimental studies on degradation usually 
considered only a few storage SoCs (or storage voltages) and tempera-
tures; therefore, a general model is needed to obtain results for those 
conditions that have not been explicitly tested. The model developed in 
this paper contributed to the literature in the following ways: 1. A 
relatively fast and high accuracy model was developed; 2. It comprised a 
wide range of SoC and temperature, which were strongly related to EV 
and BESS operation; 3. A comparison of the most used model was 
performed. 

Fig. 1 shows the model that was developed, which is compounded by 
two linked submodels. The first one of them is a semi-empirical sub-
model of degradation that estimates the degradation of the battery by 
calendar ageing at the determined conditions, performing several in-
terpolations over the experimental results data set. All the important 
factors were considered, namely SoC, storing time and temperature with 
a root-mean-square error (RMSE) of 0.8 % in CF, and a low execution 
time was maintained. Then, the SoH data was used to upgrade the pa-
rameters of the second submodel – an electrical submodel – to calculate 
the terminal voltage at every storing moment. 

This paper is structured as follows: Section 2 shows the studied cell 
data and the electrical model applied. Section 3 describes the modeling 
techniques used to develop the battery degradation model, and section 4 

describes the degradation model that was developed. Finally, the dis-
cussion and conclusions are presented in Section 5. 

2. Studied cell data – electrical model 

Fig. 2 shows the cell selected for study, the commercially available 
“Pouch” cell LG Chem E63, which was engineered for high-demanding 
applications and installed in Renault Zoe EVs. This high-capacity 
lithium-ion cell includes an NMC cathode and a graphite anode. 
Table 1 presents the data about this cell [52]. 

The capacity–temperature relationship of a battery follows a 
nonlinear law [53,54], as it is graphed in Fig. 3 from the technical 
product specification report of the manufacturer [55]. Temperature acts 
as a catalyst; the rate of chemical reactions taking place during the 
charging and discharging processes is favoured by higher temperatures. 
These higher rates are considered as higher useful capacity by the user. 

In Fig. 3, the continuous curve of the modeling was obtained by 
applying the Hermite Cubic Interpolation Polynomial (PCHIP). Since it 
relies on an interpolation method, the obtained curve perfectly aligned 
with the experimental points obtained in trials. This interpolation 
method was selected for demonstrating great robustness while 
respecting the monotonicity of the data. In this context, the PCHIP 
interpolation [56,57] was previously validated in [52]. 

The electrical model used here is known as an internal resistance 
model. In this model, only an internal voltage source representing bat-
tery voltage at equilibrium conditions and series resistance were 
considered. The internal voltage source considered was dependent on 
capacity, which in turn was given by the actual temperature, SoC and 
SoH. The resistance considered for charging was different from that for 

Fig. 10. Calendar ageing under 45 ◦C temperature fitted with a) Model 1, b) Model 2, c) Model 3, and d) Model 4.  
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discharging, but both of them were dependent on the actual SoC and 
SoH. The capacity state of health (SoHC), which is related to capacity 
retention, was also distinguished from the resistance state of health 
(SoHR), which is related to the increase in internal resistance, and they 
were also considered. This differentiation allowed the CF and PF to be 
decoupled. Fig. 4 shows the internal resistance model considered here. 

The expression for calculating the terminal voltage in the internal 
resistance model is shown in Eq. (1): 

VT(t) = VOC(SoC) − R(SoHR, SoC)⋅I(t) (1)  

where VT(t) is the terminal voltage in each time step, VOC(SoC) is the 
open-circuit voltage according to SoC, R(SoHR, SoC) is the internal 
resistance value according to SoHR and SoC, and I(t) is the current value 
in each time step. 

Fig. 5 shows the open-circuit voltage (VOC) depending on SoC, which 

was obtained by applying PCHIP to the available measured data 
collected from trials. 

The open-circuit voltage curve was only experimentally tested at 
25 ◦C; therefore, no open circuit voltage characterization that attended 
to temperature could be performed. 

Fig. 6 shows the internal resistance-SoC characteristic during the 
processes of charging and discharging; it was obtained by applying 
PCHIP. The way in which the internal resistance in these cells increases 
significantly when SoC is low can be observed. 

Figs. 5 and 6 show the values corresponding to those of a fresh cell. 
However, due to degradation by calendar ageing, the capacity de-
creases, while the internal resistance increases. The evolution rate of 
these parameters depends on the storage conditions and can be deter-
mined using the degradation model explained in this paper. Both sub-
models were coupled in the following manner: the calendar ageing 
degradation model determines the actual capacity and internal resis-
tance of the cell after the desired storing time, which then upgrades the 
parameters of the electrical model. 

3. Calendar ageing degradation model 

The degradation model that was developed considered battery 
degradation by calendar ageing in CF and PF terms. For this purpose, a 
reference matrix was defined, and the ageing given by the desired 

Fig. 11. aC and aR coefficient values in a) Model 1, b) Model 2, c) Model 3 and d) Model 4.  

Table 5 
Normalised calendar ageing matrix.  

SoC [− ] t [weeks] T 

5 %, 20 %, 40 %, 55 %, 60 %, 70 %, 80 
%, 90 %, 100 % 

0, 2, 4, 6, 8, 12, 16, 20, 24, 28, 
32, 36, 40 

25 ◦C 
45 ◦C 
60 ◦C  
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variables was determined based on the results of some experimental 
tests. Fig. 7 shows a general overview of the model developed in this 
paper. 

In the process of developing this calendar ageing model, the 
following statements were assumed:  

• Battery degradation can be classified into calendar ageing or cycle 
ageing. In this paper, it is assumed that these phenomena can be 
distinguished and decoupled [58], since the model here developed is 
based on storage experiments all degradation is assumed to be cal-
endar ageing. Cycle ageing during capacity tests is neglected.  

• Since this model relies on interpolations, the available data define 
the highest confidence bounds, which are shown in Table 2. How-
ever, it is also possible to use this model to calculate battery degra-
dation out of these confidence bounds. 

3.1. Test matrix 

The cells under study were tested under 16 different storage condi-
tions in [55], and Fig. 8 specifies the test matrix. 

The studied cells were stored at a specified SoC and temperature, and 
the capacity and internal resistance measurements were taken, gener-
ally, in steps over 4 weeks. These measurements were performed in the 
following manner: the cells were put in a chamber at 25 ◦C for one hour; 
then, they were discharged at 32.5 A (constant current), i.e. at C/2C-rate 
until the undervoltage limit of 2.50 V was reached. Then, the cells were 
charged at a constant current in two stages: the first at 21.6 A (C/3) and 
the second at 13 A (C/5) until 4.05 V and 4.20 V were reached, 
respectively. This discharging–charging process was repeated twice in 
order to collect average measurements. 

3.2. Data treatment and normalisation 

Data treatment and normalisation were performed after collecting all 
of the experimental test results to get a normalised data matrix, i.e. even 
if the experimental trials were conducted at certain conditions of SoC, 
temperature and time, the developed model could estimate degradation 
values using any value of these variables. 

For every test conducted, a concrete equation describing degradation 
was obtained by considering every SoC, t and T based on Eqs. (2) and 
(3). 

SoHC = 100 − aC(SoC, T)⋅tbC(T) (2)  

SoHR = aR(SoC, T)⋅tbR(T) (3)  

where SoH is the state of health, a is a prepotential factor, t is the number 
of weeks and b is a potential factor. SoHC, SoHR, aC, aR, bC, and bR are 
distinguished for CF and PF, respectively. 

The great relevance of the precision ensured while modeling the 
degradation in the tested cells by fitting equations should be noted since 
all interpolations will rely on this precision. Better fittings will always 
lead to a better result independent of the point of interest. 

Concretely and based on Eqs. (11) and (12), four models were tested 
in search of the best fitting. These models were also selected according to 
such models available in the literature. Among these four models, 
different time depending rates were considered. Table 3 presents the 
model definitions that were considered, while Fig. 9 shows the fittings of 
these models to an experimentally taken data set. As can be observed, all 
of them had a general good fitting, although certain considerations were 
there, which are explained later on. 

The capacity and internal resistance of a cell at actual conditions 
were determined by Eqs. (4) and (5). 

Cap(SoHC) = CapN ⋅SoHC (4)  

R(SoC, SoHR) = R(SoC)⋅(1+ SoHR) (5)  

where Cap(SoHC) is the actual capacity at current on SoH, CapN is the 
nominal capacity, R(SoHC, SoHR) is the actual resistance at current SoC 
and SoH and R(SoC) is the resistance at current SoC in a fresh cell. 

For every data set (for every temperature and SoC), a nonlinear 
regression fit was calculated while taking the following into 
consideration:  

• All data sets were fitted to every model based on Eqs. (2) or (3), and 
they are specified in Table 3.  

• All data sets regarding the same temperature were normalised using 
a nonlinear square regressions algorithm of multiple data sets, and 
the b potential factor was set to a constant along T to obtain non- 
crossed curves. In Models 1–3, the b factor was 1, 0.5 and 0.75, 
respectively, while in Model 4, it was free to fit. 

Consequently, the a prepotential factor varied along the storing SoC 
and T, while the b potential factor varied only along the storing T. 
Table 4 presents R2 correlating factor values for every data set and 
model definition as well as an average measure calculated as RMS for 
every model. 

Fig. 10 shows the results for 45 ◦C, indicating the discrete points 

(1,1,3)

.

.

.

(1,1,1)

SoC [-]

[
erutarep

meT
ᵒC

]

0.05      0.2       0.4      0.55     0.6        0.7        0.8      0.9         1

06
54

52

(9,1,3)

.

.

.

(9,1,1)

Fig. 12. Structure of the calendar ageing reference matrix.  
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obtained from the experimental tests and the continuous curves ob-
tained by applying Models 1–4. Upper and lower boundaries were 
applied to the models in order to omit capacity data points over 100 % 
and internal resistance increase data points below 0 %, as they were 
either considered as transient stages or not as a tendency. As evident 
from Table 4 and Fig. 10, Model 4 showed the greatest fit, improving the 
accuracy by, on average, 0.54 % in CF and 0.96 % in PF, compared to the 
commonly used Model 2. Additionally, Model 1 seemed to be a better 
approximation when SoCs and temperature were low, but it got worse as 
the SoC increased. However, for medium SoC values, Model 3 displayed 
better behaviour. This showed that battery degradation in these cells 
could be represented by a linear behaviour at low SoCs and tempera-
tures, and this behaviour became nonlinear as the SoC rises or when the 
temperature is relatively high. Therefore, Model 4 was chosen as the best 

fit and was applied thereafter. 
After performing an analysis of the a parameter values, it was 

concluded that the a parameter follows the potential law presented in 
Eqs. (6) and (7). 

aC = dC⋅SoCeC + fC (6)  

aR = dR⋅SoCeR + fR (7) 

Fig. 11 shows a parameter factor values along SoC for all the models 
that were studied. R2 correlation values for this adjust were above 
0.9937 in capacity and 0.9638 in resistance (for Model 4). 

This adjustment was applied to obtain the value of the aC pre-
potential factor for every value of SoC at 25 ◦C, 45 ◦C and 60 ◦C. By 
combining these adjustments with Model 4, the calendar ageing 
modeling expressions were obtained. After sorting them, a reference 

Fig. 13. a) CF for 25 ◦C, b) PF for 25 ◦C, c) CF for 45 ◦C, d) PF for 45 ◦C, e) CF for 60 ◦C and f) PF for 60 ◦C.  
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normalised matrix was obtained, and Table 5 shows the structure of this 
matrix. 

4. General model development 

Based on the normalised calendar ageing and to calculate every 
storing condition, the model calculated the PCHIP interpolating pa-
rameters that fit the available data better. Therefore, the model 
considered a dynamic interpolating algorithm that recalculated every 
PCHIP parameter value depending on the storing conditions. 

The calendar ageing interpolation was executed in 3 variables or 
dimensions, namely storing SoC, time and temperature. The determi-
nation of degradation at the desired SoC and temperature was calculated 
based on PCHIP, while the time of storing, t, reconstructed the equation 
for model 4 from Table 3. Fig. 12 shows the resulting 3D reference 
matrix structure. 

The developed model in Matlab R2021a offered a low computational 
demand and high speed, needing as much as 0.57 s to calculate both CF 
and PF for the required conditions on an intel i7 2.80 GHz processor. 
This highest resource-demanding scenario matched the case where all 
variables needed to be interpolated. Fig. 13 indicates the validation of 
the CF and PF model results. 

The same process was performed with the three other models, 
requiring the execution time of 0.33 s, 0.27 s and 0.31 s for Model 1, 
Model 2 and Model 3, respectively. In this context, the most accurate 
model was also the slowest one, requiring an execution time that was 
approximately double than that in the most commonly used model (i.e. 
Model 2), but it was still reasonable. 

As expected, it was observed that greater SoC was linked with a 
greater degradation of the cell, both in CF and PF. Additionally, 
regarding temperature, it was found that there was no great significance 
when the temperature was maintained with the range of 25 ◦C–45 ◦C 
range; however, it was a major factor when it was over 45 ◦C. High 
temperature and high SoC were found to be the most harmful state for 
these cells. 

Residuals or relative errors were also calculated for every condition 
that was tested, and they were calculated as follows: 

eiC =
SoHi,C meas − SoHi,C estim

SoHi,C meas
(8)  

ei,R =
SoHi,R meas − SoHi,R estim

SoHi,R meas
(9) 

Fig. 14 plots all residuals for CF and PF. 

As seen in Fig. 14, since most of the points were over zero, the 
developed model tended to underestimate the capacity of the cell or 
SoHC, which meant that this model could be regarded as conservative. A 
conservative model is advantageous when it is used in EV or BESS ap-
plications since the estimated SoH is below the real one, thereby 
reducing the probability of not fulfilling the needs of the application. In 
PF, however, in the initial stages of storing, the model tended to over-
estimate SoHR and started to underestimate it as time went by. While 
simulating CF, the maximum error was reported to be 4.4 % when SoC =
1, t = 28 weeks and T = 60 ◦C, while the average RMSE was 0.8 %. 
Regarding PF simulation, the maximum error obtained was 12.7 % when 
SoC = 1, t = 24 weeks and T = 60 ◦C, while the average RMSE was 2.3 %. 

5. Discussion and conclusions 

Calendar ageing is an important degradation factor that must be 
considered in every work related to EVs and BESSs. In this context, this 
paper presented a simple but accurate electrical and degradation model 
for an NMC cell battery that is already being used in a commercial EV. It 
was assumed that 20 % of the degraded cells were not valid for elec-
tromobility, and a second life for these cells needed to be found. Their 
use in stationary applications such as BESS is gaining interest; therefore, 
degradation models concerning both applications are needed. 

Four models were compared in order to identify the most accurate 
one. In this sense, was determined that the commonly used model with 
0.5 degradation rate (Model 2) has good accuracy, especially consid-
ering its operation speed; however, it can be improved by determining a 
custom degradation rate. Although its operation speed is lowered to, 
approximately, the half in comparison with Model 2, it is still a 
reasonable speed and is compatible with real-time operations. 

The developed model represented the degradation by calendar 
ageing with an RMSE of 0.8 % in CF and 2.3 % in PF under a wide range 
of SoCs and temperatures for the desired storing time. It was observed 
that the temperature and SoCs above certain values have the highest 
impact on battery degradation and keeping cells at a relatively medium 
or low SoC and temperature can be highly beneficial. 
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Appendix A. Appendix  

Table A 
Subscripts.  

C Capacity 
i Data number 
R Resistance 
meas Measured 
estim Estimated 
T Terminal 
oc Open circuit   

Table B 
Notations.  

V Voltage 
i Data number 
R Resistance 
meas Measured 
estim Estimated 
I Current 
a Prepotential factor 
b Potential factor 
cap Capacity 
d Prepotential factor for a 
e Potential factor for a 
f Offset factor  
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