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Portfolio optimization with digitized counterdiabatic quantum algorithms
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We consider digitized-counterdiabatic quantum computing as an advanced paradigm to approach quantum
advantage for industrial applications in the NISQ era. We apply this concept to investigate a discrete mean-
variance portfolio optimization problem, showing its usefulness in a key finance application. Our analysis shows
a drastic improvement in the success probabilities of the resulting digital quantum algorithm when approximate
counterdiabatic techniques are introduced. Along these lines, we discuss the enhanced performance of our
methods over variational quantum algorithms like QAOA and DC-QAOA.
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I. INTRODUCTION

Optimization problems have been of significant interest
due to their fundamental applications in many fields such as
logistics, medicine, and finance, among others. Nevertheless,
due to their computational complexity, they cannot be solved
efficiently using classical computers for industrial purposes.
It is believed that a quantum computer might surpass the
capabilities of a classical one. Due to the experimental de-
velopments during the last years, it might become useful for
commercial purposes [1,2]. This potential breakthrough has
boosted proposals of several algorithms in different areas,
such as differential equations, linear algebra, and optimization
problems [3], which have been implemented in small quantum
computers as proof of principle. However, the applicability
of these algorithms in the current noisy intermediate-scale
quantum (NISQ) devices [4] is still under investigation. This
is because of the difficulty to implement scalable error cor-
rection protocols with the current and near-future devices, a
bottle neck for fault-tolerant quantum computing.

In recent years, the use of adiabatic quantum optimiza-
tion (AQO) algorithms to solve optimization problems has
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received interest due to its experimentally feasible implemen-
tation [5–9]. These algorithms solve optimization problems
by codifying them in the ground state of a Hamiltonian and
accessing it via adiabatic evolution from another Hamiltonian,
whose ground state is trivial to prepare. Current technology
allows the implementation of incoherent adiabatic quantum
computers or quantum annealers with thousands of qubits.
Nevertheless, due to the considerable time involved in an
adiabatic evolution, such devices have various limitations like
noise and limited qubit connectivity. To overcome these dif-
ficulties, the use of digitized adiabatic quantum computing
(DAdQC) [10] methods has been developed and implemented.
These techniques are similar to AQO, but they digitized the
evolution to implement the corresponding algorithms in a
gate-based quantum computer. The convenience of digitiza-
tion is that any arbitrary interactions can be included in the
target Hamiltonian, providing more flexibility in choosing the
optimization problem. However, it requires a large number
of gates, which reduces the fidelity of the algorithms and
makes them still impractical to approach quantum advantage
in NISQ devices without error correction.

Other types of algorithms to solve optimization problems
are the hybrid quantum-classical gate-based algorithms, like
quantum approximate optimization algorithm (QAOA) [11].
In QAOA, a sequence of two evolutions is applied iteratively
to an initial state. The evolution times are considered as free
parameters to be optimized to minimize the cost function that
encodes the solution to the problem. These evolutions are
governed by a mixing Hamiltonian. Typically, a Pauli-X oper-
ation is applied to all the qubits and a problem Hamiltonian
that codifies the cost function. Finally, the elapsed time of
each evolution is optimized by a classical algorithm. Although
QAOA is simple, it presents some major problems like the
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number of algorithmic layers required to optimize the cost
function. This issue, in general, is hard to solve for many-
body Hamiltonians, limiting the possible scalability in current
NISQ devices. Additionally, classical optimization does not
guarantee the reach of the global minimum, as it can get stuck
into local minima, or barren plateaus may appear [12–14].

To overcome these limitations, shortcuts to adiabaticity
(STA) methods were proposed. These are known to improve
the adiabatic processes by circumventing the need of slow
driving [15]. STA includes methods like fast-forward [16,17],
invariant based inverse engineering [18,19], and counterdia-
batic (CD) driving [20–24]. Among these, CD driving, i.e.,
the addition of an extra term that suppresses the non-adiabatic
transitions, has already shown improvements in adiabatic
quantum computing [25,26] and quantum annealing [27–29].

Recently, Hegade et al. showed the advantage of CD
driving in DAdQC methods [25], which have shown inter-
esting improvements in many-body ground state preparations
and adiabatic quantum factorization problems [26]. It was
also studied that the inclusion of these approximate coun-
terdiabatic terms could enhance the performance of QAOA
while solving combinatorial optimization problems and state
preparation of many-body ground states [30–32]. This ar-
ticle considers the advantages of digitized-counterdiabatic
quantum computing (DCQC) and digitized-counterdiabatic
quantum approximate optimization algorithms (DC-QAOA)
in financial applications. In particular, we investigate the
Markowitz portfolio optimization problem [33], a common
problem used intensively by financial asset managers and is.
This problem deals with how to optimize the weights of the
assets in a portfolio to give out returns based on the require-
ments of the asset manager, as is the case of maximum return
and minimum risk. We select a large number of data instances
and solve the problem using the DAdQC combined with CD-
driving protocols. By considering variational minimization
techniques, we obtain the approximate CD terms, getting a
drastic enhancement in the success probability for most of
selected instances. We also show that inclusion of these CD
terms in hybrid quantum-classical algorithms like QAOA,
namely DC-QAOA, results in improvement of success proba-
bilities. This article demonstrates the relevance of CD driving,
its limitations, and applicability for finance industry problems
in the NISQ era.

The manuscript is arranged as follows. In the follow-
ing section Sec. II, we present the theory of the Markowitz
portfolio optimization problem and how to encode it as a
quadratic unconstrained binary optimization problem, which
can later map to finding the ground state of an Ising Hamilto-
nian. In Sec. III, we formulate the digitized-counterdiabatic
techniques to enhance the performance of adiabatic quan-
tum algorithms for obtaining the approximate ground states
in a finite time. We consider local CD driving and approx-
imate CD terms and show their performance for solving
different instances of the portfolio optimization problem
with ideal simulations and noisy simulations with Quantin-
uum’s trapped-ion quantum emulator. Section IV considers
the hybrid quantum-classical algorithms like QAOA and
DC-QAOA to tackle the same problem and compare their
performance. Finally, in Sec. V, we discuss our results and
conclude.

II. PRELIMINARIES

Suppose an asset manager is willing to invest a budget
b in a given portfolio with n number of assets. Markowitz
portfolio optimization [33] answers the question: How to dis-
tribute the given budget b into n assets such that the asset
manager would receive maximum returns at minimum risk.
For example, the asset manager could invest evenly in all the
assets, but that may not be the best choice. Given the expected
returns of each asset xi and the risk associated with the assets,
applying Markowitz portfolio optimization, we can predict the
distribution of the budget b to get the maximum returns out
of the portfolio. Expected returns can be estimated from the
preceding market return data, and the risk is assessed via a
covariance matrix. As the name suggests, a covariance ma-
trix shows the covariance of different stocks in the portfolio.
Thus, these types of problems are classified as mean-variance
portfolio optimization problems.

The portfolio optimization problem has two components,
the cost function and the constraints. The cost function in-
cludes quantities such as the average returns, the variance of
the portfolio, and others that need to be maximized or min-
imized based upon the need of the asset manager, while the
constraints can include budget constraints or transition costs
or market inflation. Based on the constraints, the portfolio
optimization problems can be broadly divided into three types.
The first type of optimization problem is the unconstrained
portfolio optimization, where the constraints are added as the
penalty terms in the cost function with the help of Lagrange
multipliers. The second type is when the constraints can be
represented as inequalities, and the third type is when the
constraints are the integer constraints, the so-called mixed-
integer problem. Examples and computational complexities of
all these problems are discussed in Ref. [34]. Different types
of these portfolio optimization problems have been studied
recently using quantum computing [35–39], and quantum an-
nealing methods [40–42].

As far as the variables are concerned, portfolio op-
timization can be solved as a continuous-variable and
discrete-variable problem. Discrete mean-variance optimiza-
tion proves to be a beneficial method to optimize the given
portfolio in cases where the assets are traded in lots, which
are integer multiples of a base size of assets traded. Thus,
the asset manager will only be interested in the number of
lots which makes the problem discrete. In consequence, using
the digitized-counterdiabatic quantum computing paradigm,
we will investigate here an unconstrained single-period dis-
crete mean-variance portfolio optimization which is in general
an NP-complete optimization problem. This complexity is
discussed in detail in Ref. [43] where authors discuss that
the inclusion of real features like transaction costs and
budget requirements makes this a complex mathematical
problem.

Our task is to distribute b budget into n assets with mean
returns mi and the covariance matrix ρi j to maximize re-
turns at a minimum variance. The problem can be formulated
as,

max
x

n∑
i=1

θ1mixi − θ2ρi jxix j − θ3(G f bxi − b)2, (1)
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where xi are the assets represented by integers. The first term
of Eq. (1) indicates the expected returns, where mi are the
daily return data, and the second term shows the variance
of the portfolio, where ρi j show the variance of jth asset
with i. The market data (mi and ρi j) is easily available and
can be generated in various ways [44,45]. The third term
shows the constraint applied to the budget. Most of the times,
asset managers have a certain budget to follow, so this term
penalizes the solutions that do not satisfy the budget criteria.
The term G f in Eq. (1) shows the granularity function which is
given by G f = 1/2(g−1), where g is the number of slices of the
budget. This implies that the fraction of the budget that can be
chosen is G f bxi. To explain this, assume that we set g = 2, so
the budget is cut into two slices giving G f = 1/2. Therefore,
we have b/2 weight of the budget that can be invested in
required assets. In other words, granularity function decides
how small a fraction of b you can invest in a particular stock.
Thus, with increasing the value of slice g, we get the freedom
to invest smaller fractions of the budget which will give us
more precision while deciding the optimal results. θ1, θ2, and
θ3 are the Lagrange multipliers and their role is to adjust
weights of different terms to adjust constraints according to
the manager’s requirements. For instance, if the manager is
less concerned about the risk and more interested about the
returns, we can set θ1 higher than θ2 such that the expected
return term is given more weight.

Once these terms are determined, we can convert Eq. (1)
into an Ising Hamiltonian. To do so, we start with transform-
ing Eq. (1) into a quadratic unconstrained binary optimization
problem (QUBO) by encoding assets xi integers into an g bit
binary number. Apart from binary encoding, various ways
of encoding like unary, sequential, and partition have been
proposed [41]. Hence, xi’s are given by

xi =
g∑

k=1

2k−1zu(i,k), (2)

where u(i, k) = (i − 1)g + k and z ∈ {0, 1}. This problem can
be transformed into a QUBO problem by substituting xi’s
from Eq. (2) into Eq. (1). After making some rearrangements
and transformation of zi = 1

2 (1 + σ z
i ), we get an Ising Hamil-

tonian given by

Hp =
∑

i

hiσ
z
i +

∑
i, j

Ji jσ
z
i σ z

j + β, (3)

where Ji j shows the interaction coefficient between the spins i
and j, while hi shows the coefficient associated with the local
field along the z axis. Explicit forms of these coefficients are
given by

Ji j = 1

4

(
θ2b2G2

f + θ3ρi, j
)
, (4)

hi = (−θ1mi − 2θ2b2G f )

2
+

∑
j

Ji, j, (5)

with a constant β that can be ignored. In this manner, we
have transformed Eq. (1) into an Ising Hamiltonian such
that its ground state encodes the solution to the optimization
problem. In the following sections we show application of

digitized-counterdiabatic quantum computing methods to find
this ground state.

III. DIGITIZED-COUNTERDIABATIC QUANTUM
COMPUTING

To find the ground state of the Hamiltonian in Eq. (3),
we follow the adiabatic theorem by starting with an initial
Hamiltonian whose ground state can be easily prepared, and
slowly turn on the problem Hamiltonian. The corresponding
total Hamiltonian is given by

Had (λ) = (1 − λ)Hi + λHp, (6)

where λ is a time dependent scheduling function. We choose
the initial Hamiltonian as Hi = −∑N

i hxσ x
i , whose ground

state |ψ (0)〉 = 2−N/2(|0〉 + |1〉)⊗N can be easily prepared. If
the evolution is slow enough, the adiabatic theorem guarantees
that the final state will have a large overlap with the ground
state of the problem Hamiltonian. In principle, to obtain the
ground state with a higher success probability, one has to
consider the total evolution time T much larger than the
minimum energy gap �min between the ground state and the
first excited state. However, in practice, one cannot rely on the
adiabatic evolution due to limited coherence time and device
noise. One has to consider a short time evolution that will lead
to nonadiabatic transitions between the eigenstates. In order
to suppress these transitions, a technique called shortcuts to
adiabaticity was developed [46,47]. The idea is to introduce an
additional term called counterdiabatic-driving term (CD term)
so that the excitations due to the finite time evolution will be
compensated, and the resulting evolution will be quasiadia-
batic. The modified Hamiltonian by adding the CD term takes
the form

H (t ) = Had + λ̇Aλ, (7)

where Aλ is called adiabatic gauge potential [48], which satis-
fies the condition [i∂λHad − [Aλ, Had ], Had ] = 0. In principle,
one can evolve the system very fast without any excitation by
including the CD term. However, obtaining the exact gauge
potential for a many-body system is a difficult task. Also, the
operator form of the CD term for a many-body system with
N interacting spins generally contains nonlocal N-body inter-
action terms, which makes it experimentally challenging to
realize. To overcome this challenge a variational method was
proposed to obtain an approximate CD term [48]. And, many
recent works show the advantage of using variationally cal-
culated local CD terms for different applications [22,49,50].
The main advantage of this method is that the approximate
local CD terms can be easily implemented in laboratory and
its calculation does not require any knowledge of the instanta-
neous eigenstates. This feature makes it suitable for adiabatic
quantum computation.

For the Hamiltonian (3), we choose the local CD term of
the form Ãλ = ∑N

i αi(t )σ y
i . Here, the CD coefficient αi(t ) is

obtained by minimizing the action S = Tr[G2
λ], where Gλ =

∂λHad + i[Ãλ, Had ],

αi(t ) = − hxhz
i

2
(
hx2[λ − 1]2 + λ2

[
hz

i
2 + ∑

i �= j J2
i j

]) . (8)
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(a) (b)

(d)

FIG. 1. Histogram depicts the ground state success probability for 1000 randomly chosen instances of the portfolio optimization problem
with and without CD driving. We considered 12 qubit systems with different numbers of assets (n) and partitions (g). When the number of
partitions is smaller, the LCD in Eq. (8) gives a better enhancement. Whereas, when g is larger, ACD from Eq. (12) shows greater improvement.
The simulation parameters are: total evolution time T = 1, and the step size �t = 0.05.

The CD term should vanish at the beginning and end of
the protocol, for that we consider the scheduling function as
λ(t ) = sin2[π

2 sin2( πt
2T )], also λ̇, and λ̈ vanishes at t = 0 and

t = T . The time evolution including the CD term is given by

|ψ (T )〉 = T e−i
∫ T

0 H (t )dt |ψ (0)〉 = U (0, T ) |ψ (0)〉 . (9)

For the gate-model implementation of the evolution, we write
the total Hamiltonian as the sum of 2-local terms, i.e., H (t ) =∑

j c j (t )Hj (t ). We discretize the total time into M parts with
step size �t = T/M. Using Trotter-Suzuki formula, we ap-
proximate the time evolution operator as

Udig(0, T ) =
M∏

k=1

∏
j

exp{−i�tc j (k�t )Hj}. (10)

In this work, we only considered first-order trotterization,
which leads to an error of the order O(�t2). Using single-
qubit and two-qubit gates, each matrix exponential term in
Eq. (10) can be easily implemented. Since the Hamiltonian
involves all-to-all connection between the qubits, extra swap
gates might be needed on a device with only nearest neighbor
interactions. We consider a wide range of portfolios where the
data (mi and ρi j) is randomly generated such that it mimics
the real world trends. θ1 = 0.3, θ2 = 0.5, and θ3 = 0.2 are
selected so that the budget constraint is given greater impor-
tance. We run 1000 different instances and system sizes up
to N = 14 qubits with a different number of stocks n and
slicing g.

Since current NISQ devices can only implement circuits of
limited depth, we consider a short-time evolution and compare
the final success probability with and without including the
CD term. In Fig. 1, the ground state success probability for
1000 randomly chosen instances of the portfolio optimization
problem is depicted for a system size N = 12. In Fig. 1(a), the
number of assets and the slices are chosen as n = 12, g = 1,
respectively. And, in Fig. 1(b), n = 6, g = 2. We fix the total
evolution time T = 1, and step size �t = 0.05 with total 20

Trotter steps. In both cases, the local CD (LCD) term HLCD =
λ̇

∑N
i αi(t )σ y

i is considered.
We observe that when the number of slices is less, the LCD

terms drastically improves the success probability for most of
the instances. However, as g becomes larger, the performance
of LCD terms will be decreased. Previously, it was shown
that the density of states close to the ground state would also
become larger with the increasing number of slices, leading
to an increase in the probability of transition to the higher
excited states [40]. In order to suppress these transitions,
we considered higher-order CD terms obtained by the nested
commutator (NC) ansatz [51],

A(l )
λ = i

l∑
k=1

αk (t ) [Had , [Had , ......[Had ,︸ ︷︷ ︸
2k−1

∂λHad ]]]. (11)

Here, l corresponds to the expansion order, and when l → ∞
we will get the exact gauge potential. By considering only the
first-order expansion (l = 1), we obtain the approximate CD
(ACD) term for the problem Hamiltonian in Eq. (3) as

HACD = 2λ̇hxα1(t )

⎡
⎣

N∑
i

hz
i σ

y
i +

∑
i, j

Ji j
(
σ

y
i σ z

j + σ z
i σ

y
j

)
⎤
⎦,

(12)
where α1(t ) is obtained as before by minimization of the
action S = Tr[G2

λ]. The general expression for α1(t ) for an
Ising spin-glass Hamiltonian is given in [52]. In Figs. 1(c)
and 1(d), we considered g = 3 and g = 4, respectively, and
compare the probability of success for different instances by
including ACD and without including the CD term. The CD
solutions depend upon the choice of instances which can be
either easy or hard depending on the value of the slicing
parameter g. As follows from Eqs. (4) and (5), the local field
hi is significantly large compared to the interaction term Ji j for
lower values of g that translates into a weakly coupled Ising
system. Consequently, for hi � Ji j , the success probability
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FIG. 2. The upper plot depicts the average success probability
enhancement [Eq. (14)], and the lower plot represents the enhance-
ment ratio [Eq. (13)] for various system sizes with LCD and ACD.
The error bars represent the standard deviation. Due to the huge vari-
ations in the success probability enhancement for different instances
using LCD, the error bars have larger values.

can be improved drastically using the Local CD driving due
to relatively larger energy gaps which is in accordance with
Figs. 1(a) and 1(b) [25]. Such instances are referred to as the
easy ones. On the other hand, the hard instances occur when
g is large, we obtain a strongly coupled Ising Hamiltonian
where hi ≈ Ji j . In such cases, we need to take aid of the ap-
proximate CD driving to show the enhancement in the success
probability [see Figs. 1(c) and 1(d)]. Nonetheless, in both the
cases, we can obtain an enhancement at least up to an order of
magnitude.

To show the enhancement that results from applying the
CD term, we define a metric called enhancement ratio,

Renh = I

I0
, (13)

where I0 is the total number of instances considered, and
I denotes the number of instances with enhanced success
probability by including the CD term. The enhancement that
results from applying the CD term is quantified by the success
probability enhancement,

Penh = P

P0
. (14)

Here, P is the ground state success probability by including
the CD term, and P0 is the success probability obtained by
naive evolution without the CD term. Figure 2 depicts the
average success probability enhancement and enhancement
ratio for various system sizes by including the CD driving. We
observed that for ACD, the enhancement ratio is 1, indicating
that it is always advantageous to include the approximate
CD terms obtained from the first order NC ansatz with fixed
g = 2. The simulation result indicates that the enhancement
with the CD term will increase with the system size. In Fig. 4,
the ground state success probability as a function of total
evolution time T is shown. The result shows that a huge
enhancement can be obtained for both LCD and ACD. For
Fig. 4, we selected 40 random instances, and each colored
line depicts one of the instances considered. It can be observed
that two particular instances achieve better success probability
than the rest while using LCD. This is due to the fact that those

FIG. 3. Output probability distribution of an instance with n =
3 and g = 2. We considered T = 0.3 and δt = 0.1. The green bar
corresponds to the results obtained from Quantinuum’s H1 emulator,
which mimics the noise model of the hardware Model H1. The red
and blue bars are for the ideal simulation results with and without
including the CD terms, respectively. The ground-state bitstring is
also shown.

particular easy instances have a significantly larger energy
gap compared to other instances. This can be verified from
Fig. 4(a) where, even in the adiabatic case, those two instances
give better success probability referring to the existence of
a larger gap, which makes the suppression of nonadiabatic
contributions easier with LCD.

To make our arguments even more concrete, we also im-
plemented a N = 6 qubit system with n = 3, g = 2 on an
emulator that closely mimics the noise model of the hardware
Quantinuum System Model H1 [53], which is an all-to-all
connected trapped-ion quantum computing system with 20
qubits. Trapped-ion systems are a good choice for this prob-
lem because of their all-to-all connectivity, making it easier
to implement the interactions without using any additional
SWAP gates. In our implementation, we initialize all the
qubits in |+〉 state, which corresponds to the ground state of
the initial Hamiltonian and then apply the digitized time evo-
lution with the help of the native gates provided by the device.
As the two-qubit ZZ (θ ) gate is native to this hardware, we can
efficiently implement the matrix exponential terms in Eq. (10)
without relying on the standard decomposition with CNOTs.
And finally, we measure the final state on a computational
basis. We have selected a total time evolution for the noisy
simulation as T = 0.3, with step size δt = 0.1, which gives
three trotter steps. The number of shots is set to Nshots = 500
and the ground-state of the instance we investigate is GS =
|100010〉. Since the time scale we chose is small, the CD terms
are dominant for this fast evolution. While implementing on
the hardware, we could discard the term Had to reduce the
gate counts without affecting the success probability. In Fig. 3,
we have plotted the probability distribution obtained at the
end of the evolution without CD term and with ACD. Even
with just three trotter steps, the evolution with ACD gives
the ground state with very high success probability compared
to the without CD case. We remark that this performance
will be similar when the real device is used. Evidently CD
driving does perform well even in the presence of noise, and
we can still get a drastic enhancement over the usual digitized
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FIG. 4. Success probability as a function of total evolution time
T for randomly chosen 40 instances is depicted. Here we considered
n = 6 assets and g = 2 partitions resulting in system size N = 12.
A substantial improvement in success probability is obtained for
most of the instances by including the local CD term HLCD, and the
approximate CD term HACD. Here we considered the Trotter step size
as �t = 0.1. Different colored lines show each of the 40 instances.

adiabatic evolution making our algorithm suitable for NISQ
devices.

IV. DIGITIZED-COUNTERDIABATIC QUANTUM
APPROXIMATE OPTIMIZATION ALGORITHM

(DC-QAOA)

Hybrid quantum-classical optimization algorithms like
QAOA [11] have been of interest due to their applicabil-
ity in the noisy intermediate-scale quantum (NISQ) devices.
These algorithms fall under the class of variational quan-
tum algorithms, where classical optimization routines are
employed to find suitable parameters (γ , β ) that optimize a
cost function C(γ , β ). In our case, we have set C(γ , β ) =
〈ψ f (γ , β )| Hp |ψ f (γ , β )〉 such that C(γ , β ) shows the expec-
tation value of the problem Hamiltonian Hp and |ψ f (γ , β )〉 is
given by,

|ψ f (γ , β )〉 = U (γ , β ) |ψi〉 , (15)

where |ψi〉 = |+〉⊗N is the initial state corresponding to the
mixer Hamiltonian and,

U (γ , β ) = Um(βp)Uc(γp)Um(βp−1)Uc(γp−1)

. . . Um(β1)Uc(γ1). (16)

Here, Ub(β ) and Uc(γ ) are two unitaries corresponding to
the mixer and the problem Hamiltonian, respectively, applied
iteratively for p layers. At p → ∞, QAOA is expected to
converge to the ground state of any problem Hamiltonian
because it mimics the adiabatic evolution. However, experi-
mentally realising large p circuits is difficult due to the noise,

FIG. 5. Average success probability (Ps) as a function of number
of layers for a N = 6 system with n = 3, g = 2. Results show mean
success probability obtained after considering 10 instances and 20
random initializations in each instance. Error bars represent variance
of the distribution. Stochastic gradient descent based optimizer called
adagrad optimizer with step size = 0.1 was used as the classical
optimizer for all instances.

hence, significant research has been done recently to improve
the performance of low p QAOA circuits. Over the years,
many modifications have been reported in the standard QAOA
[30–32,54–56] to serve this purpose. Among them, the addi-
tion of terms using counterdiabatic (CD) protocols has shown
significant improvements, specially in finding the ground state
of many-body Hamiltonians [30–32]. One of the algorithms
following the same principle is the digitized-counterdiabatic
quantum approximate optimization algorithm (DC-QAOA)
[31]. In DC-QAOA, CD protocol is utilized to introduce an
additional CD unitary UD(α). The form of CD unitary is
chosen from the operator pool A(l )

λ obtained using the nested
commutator (NC) method as mentioned in Sec. III. There-
fore, three unitaries Ub(β ), Uc(γ ), and UD(α) are applied
iteratively while performing DC-QAOA. In this section, we
perform QAOA and DC-QAOA for 10 instances of portfolios
with system size N = 6 qubits (n = 3, g = 2) with θ1 = 0.3,
θ2 = 0.5, and θ3 = 0.2 to compare the obtained success prob-
abilities (Ps) and demonstrate the advantage of CD-induced
variational quantum algorithms for portfolio optimization. In
QAOA, p layers of Ub(β ) = e−iβ

∑
i σ

x
i and Up(γ ) = e−iγ Hp ,

where Hp is given by Eq. (3), are applied to the initial
state |ψi〉. In DC-QAOA, UD(α) = e−iα

∑
i hiσ

y
i is added, where

σ y is a local first-order term chosen from an operator pool
A(2)

λ = {σ y, σ zσ y, σ yσ z, σ xσ y, σ yσ x} which is obtained from
Eq. (11). Parameters (γ , β, α) are updated using a stochastic
gradient descent (SGD) based classical optimizer called Ada-
grad optimizer [57] with step size = 0.1.

Figure 5 shows the mean success probabilities (Ps) as
a function of number of layers (p) for N = 6 system with
n = 3, g = 2. Results show mean of the 10 different instances
where each instance is best output chosen from 20 runs of
different random initial parameters for each layer. We observe
that by using DC-QAOA, improvement in the Ps value is
achieved for all the instances. The higher error bars shows
that even for the same system size and values of n and g,
the performance of DC-QAOA and QAOA depends upon the
the energy landscape and the choice of the CD operator. This
improvement by using DC-QAOA can be attributed to the fact
that the introduction of a free parameter makes the Hilbert
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space more accessible to the optimizer so it increases the
expressibility of the circuit ansatz. The high variances can also
be attributed to the fact that the performance of these algo-
rithms depend upon the initial parameters and the classical
optimizer chosen. In particular, classical optimizers and their
step sizes play a significant role in improving the performance
of the algorithm. Nevertheless, a considerable improvement
can always be achieved using DC-QAOA over conventional
QAOA algorithm. Moreover, here we have used local CD
operators only, but in the typical hard instances, higher-order
CD terms might give more improvement. However, inclusion
of these higher-order CD terms might also increase the effec-
tive circuit depth to a larger extent which can induce errors,
reducing the advantages of DC-QAOA.

V. CONCLUSION

We studied the financial portfolio optimization problem
using recently proposed digitized-counterdiabatic quantum al-
gorithms. We computed the approximate CD terms that can
be easily implemented on any current gate-based quantum
computer. We compared the ground state success probability
for the evolution with and without including the CD terms,
by fixing the total evolution time or the number of Trotter
steps. We considered many instances of the portfolio opti-
mization problem with randomly generated data. The results
indicate that, for most cases, the inclusion of the local CD
term and approximate CD term substantially improves the
success probability. We also verified this behavior by con-
sidering the noisy emulator of a trapped-ion system with
all-to-all connected qubits. As expected, we get an advantage
over the state-of-the-art methods when noise is present in the
system. Also, we consider the hybrid classical-quantum algo-
rithms for tackling hard instances of the portfolio optimization
problem. In particular, we considered QAOA and DC-QAOA
methods and showed that CD-assisted QAOA gives better
performance than the naive approach. However, for random

initialization, finding optimal parameters for QAOA and DC-
QAOA is a challenging task due to the highly nonconvex
nature of the cost landscape. Moreover, a hybrid quantum-
classical algorithm can face challenges such as local-minima,
noise-induced barren plateaus, etc.

In conclusion, adding the local and approximate CD terms
provides a drastic enhancement for solving the portfolio opti-
mization problem by finite-time adiabatic evolution and also
for hybrid classical-quantum algorithms. The present study
considers only 2-local CD terms. Extending this to higher-
order terms is expected to give further enhancement. This
article presents an interesting approach to address the portfo-
lio optimization problem using the digitized-counterdiabatic
method. However, one should note that the counterdiabatic
method is ubiquitous in nature and can be applied to a wide
range of combinatorial optimization problems in the quantum
computing paradigm. As an outlook, to consider the develop-
ment of a digital-analog quantum computing encoding, on top
of the digitized-counterdiabatic quantum algorithm for solv-
ing the same problem, may approach us to quantum advantage
for industrial use cases in the NISQ era.
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Odelin, and J. G. Muga, Fast Optimal Frictionless Atom Cool-
ing in Harmonic Traps: Shortcut to Adiabaticity, Phys. Rev.
Lett. 104, 063002 (2010).

[19] X. Chen, E. Torrontegui, and J. G. Muga, Lewis-Riesenfeld
invariants and transitionless quantum driving, Phys. Rev. A 83,
062116 (2011).

[20] M. Demirplak and S. A. Rice, Assisted adiabatic passage revis-
ited, J. Phys. Chem. B 109, 6838 (2005).

[21] M. Demirplak and S. A. Rice, Adiabatic population transfer
with control fields, J. Phys. Chem. A 107, 9937 (2003).

[22] L. Prielinger, A. Hartmann, Y. Yamashiro, and K. Nishimura,
Two-parameter counter-diabatic driving in quantum annealing,
Phys. Rev. Res. 3, 013227 (2021).

[23] A. del Campo, Shortcuts to Adiabaticity by Counterdiabatic
Driving, Phys. Rev. Lett. 111, 100502 (2013).

[24] A. B. Özgüler, R. Joynt, and M. G. Vavilov, Steering random
spin systems to speed up the quantum adiabatic algorithm, Phys.
Rev. A 98, 062311 (2018).

[25] N. N. Hegade, K. Paul, Y. Ding, M. Sanz, F. Albarrán-
Arriagada, E. Solano, and X. Chen, Shortcuts to Adiabaticity
in Digitized Adiabatic Quantum Computing, Phys. Rev. Appl.
15, 024038 (2021).

[26] N. N. Hegade, K. Paul, F. Albarrán-Arriagada, X. Chen, and E.
Solano, Digitized adiabatic quantum factorization, Phys. Rev. A
104, L050403 (2021).

[27] W. Vinci and D. A. Lidar, Non-stoquastic Hamiltonians in quan-
tum annealing via geometric phases, npj Quantum Inf. 3, 38
(2017).

[28] K. Takahashi, Shortcuts to adiabaticity for quantum annealing,
Phys. Rev. A 95, 012309 (2017).

[29] G. Passarelli, V. Cataudella, R. Fazio, and P. Lucignano, Coun-
terdiabatic driving in the quantum annealing of the p-spin
model: A variational approach, Phys. Rev. Res. 2, 013283
(2020).

[30] J. Yao, L. Lin, and M. Bukov, Reinforcement Learning for
Many-Body Ground-State Preparation Inspired by Counterdia-
batic Driving, Phys. Rev. X 11, 031070 (2021).

[31] P. Chandarana, N. N. Hegade, K. Paul, F. Albarrá n-
Arriagada, E. Solano, A. del Campo, and X. Chen, Digitized-
counterdiabatic quantum approximate optimization algorithm,
Phys. Rev. Res. 4, 013141 (2022).

[32] J. Wurtz and P. J. Love, Counterdiabaticity and the quan-
tum approximate optimization algorithm, Quantum 6, 635
(2022).

[33] H. Markowitz, Portfolio selection, J. Finance 7, 77 (1952).
[34] A. Bouland, W. van Dam, H. Joorati, I. Kerenidis, and

A. Prakash, Prospects and challenges of quantum finance,
arXiv:2011.06492.

[35] M. Hodson, B. Ruck, H. Ong, D. Garvin, and S. Dulman, Port-
folio rebalancing experiments using the Quantum Alternating
Operator Ansatz, arXiv:1911.05296.

[36] M. Marzec, Portfolio optimization: Applications in quantum
computing, Handbook of high-frequency trading and modeling
in finance, 73 (2016), https://papers.ssrn.com/sol3/papers.cfm?
abstract_id=2278729.

[37] P. Rebentrost and S. Lloyd, Quantum computational
finance: quantum algorithm for portfolio optimization,
arXiv:1811.03975.

[38] R. Orús, S. Mugel, and E. Lizaso, Quantum computing
for finance: Overview and prospects, Rev. Phys. 4, 100028
(2019).

[39] S. Mugel, C. Kuchkovsky, E. Sanchez, S. Fernandez-Lorenzo,
J. Luis-Hita, E. Lizaso, and R. Orús, Dynamic portfolio op-
timization with real datasets using quantum processors and
quantum-inspired tensor networks, Phys. Rev. Res. 4, 013006
(2022).

[40] E. Grant, T. S. Humble, and B. Stump, Benchmarking Quantum
Annealing Controls with Portfolio Optimization, Phys. Rev.
Appl. 15, 014012 (2021).

[41] G. Rosenberg, P. Haghnegahdar, P. Goddard, P. Carr, K. Wu,
and M. L. de Prado, Solving the optimal trading trajectory
problem using a quantum annealer, IEEE J. Sel. Top. Signal
Process. 10, 1053 (2016).

[42] D. Venturelli and A. Kondratyev, Reverse quantum annealing
approach to portfolio optimization problems, Quantum Mach.
Intell. 1, 17 (2019).

[43] H. Kellerer, R. Mansini, and M. G. Speranza, Selecting port-
folios with fixed costs and minimum transaction lots, Ann.
Operations Res. 99, 287 (2000).

[44] X. Huang, Meann “variance models for portfolio selection sub-
ject to experts” estimations, Expert Systems Applications 39,
5887 (2012).

[45] I. Martin, What is the expected return on the market? Q. J. Econ.
132, 367 (2017).

[46] E. Torrontegui, S. Ibánez, S. Martínez-Garaot, M. Modugno,
A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X. Chen, and
J. G. Muga, Chapter 2 - Shortcuts to adiabaticity, Adv. At. Mol.
Opt. Phys. 62, 117 (2013).

[47] D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui,
S. Martínez-Garaot, and J. G. Muga, Shortcuts to adiabatic-
ity: Concepts, methods, and applications, Rev. Mod. Phys. 91,
045001 (2019).

[48] D. Sels and A. Polkovnikov, Minimizing irreversible losses in
quantum systems by local counterdiabatic driving, Proc. Natl.
Acad. Sci. USA 114, E3909 (2017).

[49] A. Hartmann, V. Mukherjee, G. B. Mbeng, W. Niedenzu,
and W. Lechner, Multi-spin counter-diabatic driving in
many-body quantum Otto refrigerators, Quantum 4, 377
(2020).

[50] S. Iram, E. Dolson, J. Chiel, J. Pelesko, N. Krishnan, Ö.
Güngör, B. Kuznets-Speck, S. Deffner, E. Ilker, and J. G. Scott,

043204-8

http://arxiv.org/abs/arXiv:1411.4028
https://doi.org/10.22331/q-2019-12-09-214
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1038/s41467-021-21728-w
https://doi.org/10.7566/JPSJ.88.061002
https://doi.org/10.1098/rspa.2009.0446
https://doi.org/10.1103/PhysRevA.78.062108
https://doi.org/10.1103/PhysRevLett.104.063002
https://doi.org/10.1103/PhysRevA.83.062116
https://doi.org/10.1021/jp040647w
https://doi.org/10.1021/jp030708a
https://doi.org/10.1103/PhysRevResearch.3.013227
https://doi.org/10.1103/PhysRevLett.111.100502
https://doi.org/10.1103/PhysRevA.98.062311
https://doi.org/10.1103/PhysRevApplied.15.024038
https://doi.org/10.1103/PhysRevA.104.L050403
https://doi.org/10.1038/s41534-017-0037-z
https://doi.org/10.1103/PhysRevA.95.012309
https://doi.org/10.1103/PhysRevResearch.2.013283
https://doi.org/10.1103/PhysRevX.11.031070
https://doi.org/10.1103/PhysRevResearch.4.013141
https://doi.org/10.22331/q-2022-01-27-635
https://doi.org/10.2307/2975974
http://arxiv.org/abs/arXiv:2011.06492
http://arxiv.org/abs/arXiv:1911.05296
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2278729
http://arxiv.org/abs/arXiv:1811.03975
https://doi.org/10.1016/j.revip.2019.100028
https://doi.org/10.1103/PhysRevResearch.4.013006
https://doi.org/10.1103/PhysRevApplied.15.014012
https://doi.org/10.1109/JSTSP.2016.2574703
https://doi.org/10.1007/s42484-019-00001-w
https://doi.org/10.1023/A:1019279918596
https://doi.org/10.1016/j.eswa.2011.11.119
https://doi.org/10.1093/qje/qjw034
https://doi.org/10.1016/B978-0-12-408090-4.00002-5
https://doi.org/10.1103/RevModPhys.91.045001
https://doi.org/10.1073/pnas.1619826114
https://doi.org/10.22331/q-2020-12-24-377


PORTFOLIO OPTIMIZATION WITH DIGITIZED … PHYSICAL REVIEW RESEARCH 4, 043204 (2022)

Controlling the speed and trajectory of evolution with counter-
diabatic driving, Nat. Phys. 17, 135 (2021).

[51] P. W. Claeys, M. Pandey, D. Sels, and A. Polkovnikov,
Floquet-Engineering Counterdiabatic Protocols in Quan-
tum Many-Body Systems, Phys. Rev. Lett. 123, 090602
(2019).

[52] N. N. Hegade, X. Chen, and E. Solano, Digitized-
counterdiabatic quantum optimization, Phys. Rev. Res. 4,
L042030 (2022).

[53] Quantinuum H1-1 emulator, https://www.quantinuum.com,
September 10-12, 2022.

[54] L. Zhu, H. L. Tang, G. S. Barron, F. A. Calderon-Vargas, N. J.
Mayhall, E. Barnes, and S. E. Economou, Adaptive quantum

approximate optimization algorithm for solving combinatorial
problems on a quantum computer, Phys. Rev. Res. 4, 033029
(2022).

[55] S. Hadfield, Z. Wang, B. O’Gorman, E. Rieffel, D. Venturelli,
and R. Biswas, From the quantum approximate optimization
algorithm to a quantum alternating operator ansatz, Algorithms
12, 34 (2019).

[56] D. Headley, T. Müler, A. Martin, E. Solano, M. Sanz, and F. K.
Wilhelm, Approximating the quantum approximate optimiza-
tion algorithm with digital-analog interactions, Phys. Rev. A
106, 042446 (2022).

[57] S. Ruder, An overview of gradient descent optimization algo-
rithms, arXiv:1609.04747.

043204-9

https://doi.org/10.1038/s41567-020-0989-3
https://doi.org/10.1103/PhysRevLett.123.090602
https://doi.org/10.1103/PhysRevResearch.4.L042030
https://www.quantinuum.com
https://doi.org/10.1103/PhysRevResearch.4.033029
https://doi.org/10.3390/a12020034
https://doi.org/10.1103/PhysRevA.106.042446
http://arxiv.org/abs/arXiv:1609.04747

