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In this work we develop a fully data driven conversational agent capable of carrying out motivational coaching 
sessions in Spanish, French, Norwegian and English. Unlike the majority of coaching, and in general, well-being 
related conversational agents that can be found in the literature, ours is not designed by hand-crafted rules. 
Instead, we directly model the coaching strategy of professionals with end users. To this end, we gather a set 
of virtual coaching sessions through a Wizard of Oz platform, and apply state of the art Natural Language 
Processing techniques. We employ a transfer learning approach, pretraining GPT2 neural language models 
and fine-tuning them on our corpus. However, since these only take as input a local dialogue history, a simple 
fine-tuning procedure is not capable of modeling the long-term dialogue strategies that appear in coaching 
sessions. To alleviate this issue, we first propose to learn dialogue phase and scenario embeddings in the 
fine-tuning stage. These indicate to the model at which part of the dialogue it is and which kind of coaching 
session it is carrying out. Second, we develop global deep learning system which controls the long-term 
structure of the dialogue. We also show that this global module can be used to visualize and interpret the 
decisions taken by the the conversational agent, and that the learnt representations are comparable to dialogue 
acts. Automatic and human evaluation show that our proposals serve to improve the baseline models. Finally, 
interaction experiments with coaching experts indicate that system is usable and gives raise to positive 
emotions in Spanish, French and English, while the results in Norwegian point out that there is still work to 
be done in fully data driven approaches with very low resource languages.

CCS Concepts: • Computing methodologies → Discourse, dialogue and pragmatics.

Additional Key Words and Phrases: Dialogue System, Coaching, Multilingual, Transfer Learning, Explainable 
Artificial Intelligence

1 INTRODUCTION
The application of dialogue systems or chatbots in healthcare and well-being is a rapidly growing 
research area. These conversational agents aim at improving some or many aspects of the users’ 
health. For instance, they may be used to help treating diseases like asthma [45] or cancer [7], 
monitoring health related parameters [84], prevention and treatment of mental health disorders 
[14, 42], or to provoke reflection [47] and motivate healthy behaviour changes [75] to, e.g., increase 
the amount of fruit [11], control weight [41] or cease smoking [23]. These tasks differ considerably 
from the classical application domains of dialogues systems[71, 95], which have often been devoted
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just to provide some information or service to the user, such as checking the weather or restaurant 
booking, or just chit-chatting. From the perspective of the dialogue strategy, there is a big difference 
between providing information or simple services and trying to, for instance, provoking behavioural 
changes. In the latter there is no rush to complete any task; it is more important to calmly converse 
with the user and make them aware of their own problems, obstacles and potential goals they may 
want to achieve. The objective of the health-related conversational agents being so different and 
delicate, the employed methodologies are also significantly different. Some works propose simple 
user interfaces such as, multiple choice inputs for their system or just question-answering systems. 
Even among those which allow a dialogue via (spoken or text based) natural language interface, 
the dialogue strategy is almost always implemented by a hand-crafted strategy or at least non 
fully data driven approaches, such as finite state or frame based management [50]. On the other 
hand, some of the most promising chatbots in open-domain dialogue modeling are solely based on 
machine learning and are fully data driven [2, 86], which is radically different to the aforementioned 
dialogue management approaches. In this work, we aim at bridging this gap, applying state-of-
the-art Artificial Intelligence techniques to develop a conversational agent capable of carrying out 
coaching sessions. We propose several improvements to adapt open domain dialogue modeling 
techniques to the needs of behavioural change models and being able to effectively apply a dialogue 
strategy from the perspective of planned behaviour [3].
Unlike rule-based conversational agents, which are often implemented taking into account the 

consideration of experts, we will try to learn and model directly their professional coaching strategy. 
To this end we will use the data acquired within the project in Spanish, French and Norwegian. The 
dialogues were then translated into English, creating a multilingual corpus in four languages. The 
fact that the corpus is multilingual already poses a major challenge. The deep learning system we 
will propose in this work will be only word-based, i.e., we will try to model professional coaches 
without using any type of symbolic turn representation like dialogue acts or name entities. While 
this ensures that our approach can be easily replicated in other contexts and that does not require 
expensive labeling, it hinders our task, especially when working with very low resource languages 
like Norwegian. The second challenge to overcome is to build a conversational agent based on this 
technology that is capable of modeling complex conversations with long-term dialogue strategy 
like coaching sessions. This is especially difficult because deep learning approaches similar to the 
one proposed in this work have been mainly employed in very short dialogue tasks [104], or in 
open domain dialogue modeling where the long-term structure of the dialogue has been completely 
ignored [2], even though even social dialogues have an underlying structure [32].

To address these challenges we build upon a transfer learning approach, which has recently been 
adopted and proved to be successful in many dialogue modeling tasks [35, 104]. This methodology 
has turned out to be very handy and attractive in Natural Language Processing (NLP) in general, 
mostly due to big research teams releasing very large and pretrained neural language models 
such as GPT [79], GPT2 [80] or BERT [21]. These neural language models have shown to have a 
great generalization ability, and can be fine-tuned and converted into up and running generative 
conversational agents. In fact, experts in coaching have recently pointed out that it is necessary to 
research the applicability of these giant neural network models in well-being related tasks [107]. 
However, these models are mainly developed for the English language. Thus, we propose to pretrain 
such neural language models on big open domain text corpus available in many languages such as 
OpensSubtitles or Wikipedia, and then fine-tune them on our smaller coaching corpus.
On the other hand, the main point to be taken into account is that the target dialogues are 

coaching sessions. These, in contrast to open domain conversations, have a long-term structure 
that cannot be ignored, and therefore needs to be learnt. The open domain dialogue systems that 
we will take as baselines often take a local dialogue history only as input, and therefore, are unable
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to keep long-term coherence. Thus, we propose two substantial methodologies to further adapt the
models to our task. Our first improvement comes in the fine-tuning stage of the generative model.
We propose to learn embeddings that indicate the model at which dialogue phase it is and which
kind of coaching session is carrying out, so the generated responses are more coherent. Second, we
propose to build an additional deep learning system which will be used to take into account the
whole history of the conversation, i.e. the dialogue history. We will name it the Whole Dialogue
History system (WDH system). The two models, i.e. the fine-tuned neural language model and
the WDH system, will cooperate to produce a response as suitable as possible in the coaching
environment.
The fine-tuned neural language model will act as a generative model which produces a set

of candidate responses given the partial dialogue history. Thus, we will also refer to it as the
short-term generative model. Ideally, if the training process has been successful, these candidates
will be coherent short-term. They will take into account the current topic of the dialogue and the
last information the user has provided. However, it may well happen that not all of the candidates
are coherent long-term too. For example, the user and the agent might be talking about the user’s
dinner routine. Only taking into account that context, it might be reasonable to ask the user whether
they take fruit at dinner time. However, the agent and the user might already have discussed about
the fruit intake earlier in the dialogue in a way that it makes no sense to select this candidate as
the final response. This is where the WDH system comes into play. It analyses (the contextual
sentence embedding corresponding to) each turn in the whole dialogue history and computes a
score measuring how suitable each generated candidate is. Following our example, this system
would see that the agent and the user have already been discussing about fruit, so it would assign a
very low score to that candidate, whereas other, more relevant and coherent candidates would be
ranked much higher. Moreover, not only does the WDH system avoid repetitions, but it should also
select, in general, candidates that follow more precisely the coaching dialogue strategy appearing
in the corpus.
Additionally, we will also show that the WDH system can be a powerful tool understand and

explain on what basis the decisions of the dialogue system are taken, which is an emerging concern
in neural network based systems. In fact, we show that the unsupervised representations learnt
by the WDH system are closely related to conventional dialogue acts, but with advantage that no
costly annotations are needed to develop them.

Finally, we measure the impact of each of our proposals in terms of automatic metrics and human
evaluation of the generated responses. We also provide an analysis of interaction experiments with
our system in the four languages.

Thus, in summary, these are the contributions of this work:

• We develop a novel coaching conversational agent by directly modeling professionals. Our
proposal is trained purely on text, no dialogue acts are used, which makes it more general
and applicable in other domains. Additionally, it is multilingual, i.e., it is capable of carrying
out coaching sessions in English, Spanish, French and Norwegian.

• We describe a novel approach to improve the quality and relevance of the candidates the
fine-tuned neural language model generates. On the one hand, we use scenario embeddings
to specify which scenario the model should carry out. On the other hand, we explain how to
build dialogue phase embeddings, a simple and powerful resource to enhance a more fluid
dialogue flow.

• We propose and validate a novel mechanism, the Whole Dialogue History system, to take
into account the whole dialogue context to ensure the coaching model is coherent long-term.
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• We also show that this system can be a valuable tool in terms of explainable Artificial
Intelligence; it allows to visually analyze on what basis the system takes its decisions. To this
end, we compare the learnt representations with dialogue acts too.

• Finally, we discuss the potential impact and acceptance the described system would have on
real users, based on automatic and human evaluation of the system.

The rest of the article is organized as follows. Section 2 presents the related work. Section 3 
provides more information about the coaching dialogues to be modeled and the acquired corpus. 
Section 4 gives a top level overview of the proposed system. Section 5 describes the short-term 
generative model. There we present our proposals for the fine-tuning stage, i.e. how to train scenario 
and dialogue phase embeddings. Section 6 describes the WDH system in depth. In Section 7 we 
give more details about the experimental setup; including information about the pretraining and 
fine-tuning of the generative model and training details of the WDH system’s modules. We also 
describe the automatic metrics and human evaluation procedures. In Section 8 we report the results 
of these evaluations. Finally, in Section 9 we present the visual analysis to better understand the 
decisions taken by the system and present a comparison with dialogue acts. We conclude with 
a discussion of our findings and their implications in Section 10 and with some final remarks in 
Section 11.

2 RELATED WORK
2.1 Coaching conversational agents
Many diverse machine-assisted coaching systems, conversational agents and apps have been 
proposed in the last few years, forming a wide spectrum in terms of the employed technologies, 
implemented coaching methodologies and their area of application. In fact, besides healthcare 
and well-being, coaching systems with artificial intelligence (coaching AIs, in short) have recently 
targeted other domains such as leadership (e.g. PocketConfidant1) or employee training [66]. On 
the other hand, the coaching strategy also varies greatly. In this regard, it is important to mention 
that not all the coaching AIs in the market or in the literature make use of an NLP interface, and 
even less incorporate a conversational agent. Some, like HabitBull2 or Remente3, just track the 
user progress in one or many habits, and provide them with data analysis, motivational videos or 
interactive guides to motivate them to reach their goals. Others, such as Quenza4 or Coach.me5, 
also act as mediators between users and professional human coaches, allowing face-to-face online 
coaching sessions. However, since our work involves the design of a conversational agent, we are 
most interested in coaching AIs that approach coaching as a conversation between the coach and 
the coachee, or that at least contain a dialogue module inside them. We will first discuss some of 
the coaching chatbots that can be found in the market and then the works in the literature.

2.1.1 Coaching chatbots in the market. The so-called leadership bots, which aim at strengthening 
leadership skills, improving communication and developing self-confidence, have recently gained 
interest by many companies. Among this kind of coaching AIs, we can find PocketConfident6,

1https://pocketconfidant.com/
2http://www.habitbull.com/
3https://www.remente.com/
4https://quenza.com/
5https://www.coach.me/
6https://pocketconfidant.com/about/
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ROCKY7 or LEADx Coach Amanda8. According to their websites, PocketConfidant engages individ-
uals in personal, private and meaningful conversations to get unstuck, develop and reinforce human
competence; ROCKY provokes reflection routines asking questions to help you reflect or prepare
on your day, which vary every morning and evening and get more personalized over time thanks to
machine learning behind; and the LEADx Coach Amanda is able to provide leadership tips and
answers to employee problems. It seems to perform some kind of user customization too: because
the Coach Amanda HR chatbot knows your personality, she’ll personalize your manager training down
to the sentence level.
Naturally, there are also coaching chatbots designed for health care and well-being related

matters. Wysa9 is one of the most notable chatbots in this regard. It has been awarded as the best
health care app by ORCHA, and its effectiveness has been validated through clinical studies[42].
Wysa is able to keep relatively long dialogues with a mix of natural language and multiple-choice
input, and uses cognitive-behavioral techniques to reduce the levels of depression and stress; fight
frustration, loneliness, or isolation; and improve mental health in general. It has also been the first
AI mental health app to meet clinical safety standards, more precisely, the NHS UK’s DCB 0129
Standard of Clinical Safety. Youper10 is another app for mental health that includes a conversational
agent. It is designed to help the users overcome anxiety and depression, applying behavioral coping
skills, and monitoring mental health symptoms. Youper has been listed among the top ten behavioral
apps in terms of real-world stickiness and engagement [15]. Last, it is interesting to mention
Replika11, which acts more as a companion chatbot than an actual coaching AI. It is most popular
among young people (its main users are aged between 18 and 25), and the authors claim that it can
help managing the emotions, reducing anxiety and reducing sleeping troubles.

2.1.2 Coaching conversational agents in the literature. On the other hand, similar coaching AIs have
also been proposed in the literature. As we will discuss, even if they include a conversational agent,
most of them are more focused on the tracking and goal setting parts of the coaching rather than on
the motivational conversations. Additionally, the described dialogue engines are not end-to-end. For
example, [28] implement chatbot, CoachAI, which acts as a task scheduler and tracker to promote
physical activity. To this end, it includes a dialogue engine that guides the user through a series of
steps to achieve their daily goal. However, in contrast to the dialogue model presented in this work,
theirs is not a data driven one. Instead, its core is a structured finite state machine. Another work
that presents a coach AI to promote regular aerobic exercise is [70]. The users can set their weekly
goal, and the system keeps track of it, schedules exercises and offers future goals depending on their
progress. However, this coach AI does not use any complex conversational system to interact with
the user: it relies on rule-based heuristics to drive the coach’s reasoning. [31] present an ongoing
work on building a conversational agent to perform conversations about daily living to determine
their degree of independence and assessing them. While they mention their intention of building
end-to-end dialogue models in the future, the described conversational agent relies on rule-based
dialogue policies due to the lack of training data. [9] describe an interesting coaching system for
insomnia therapy made of two modules, a conversational agent and a module in charge of data
acquisition, analysis and visualization. The dialogue system, however, is rather simple and it is
based on multiple choice inputs.

7https://www.rocky.ai/chatbot
8https://leadx.org/hr-ai-chatbot-coach/
9https://www.wysa.io
10https://www.youper.ai/
11https://replika.ai/

https://www.rocky.ai/chatbot
https://leadx.org/hr-ai-chatbot-coach/
https://www.wysa.io
https://www.youper.ai/
https://replika.ai/


Asier López Zorrilla and M. Inés Torres

Closer to our domain of interest, nutrition, [16] describe a coaching chatbot to help people 
improve their food lifestyle. It offers two goal possibilities to the user: reduce their meat consumption 
or increase the amount of vegetables and fruit they take. Besides tracking the user’s situation with 
respect to their goal, it also offers the possibility to have guided conversations with the coaching 
chatbot about some predefined topics. The agent is able to provide the user with relevant images, 
videos and links to illustrate its remarks. The dialogue manager is built with the Chatfuel12 service, 
which allows to manually design dialogues using a graphical interface. Interestingly, this chatbot 
was deployed in French rather than English. [68] describe the results of a single-arm pre-post study 
carried out to test the efficacy of a virtual health coach focusing (Mediterranean) diet and exercise. 
They show that the use of the Paola chatbot was able to reduce the weight of the participants 
and highly increase their Mediterranean diet score [91]. IBM Watson Virtual Assistant artificial 
intelligence software was used to design and implement the dialogue system, which allows the 
chatbot to converse with a natural language interface. This module, in contrast to our approach, is 
based on intent and entity detection to provide an appropriate response from a set of predefined 
options.
Thus, our proposal is one of the very few works that describes a conversational agent capable 

of carrying relatively long dialogues with natural language input. Moreover, to the best of our 
knowledge, this is the first attempt to build a fully data driven end-to-end coaching conversational 
agent.

2.2 Multilingual or non-English end-to-end dialogue systems
There have been diverse attempts to build multilingual or non-English dialogue systems, yet the 
amount of works describing end-to-end13 dialogue models based on neural networks is rather scarce. 
Due to the lack of conversational data in many languages, some authors tackle this problem using 
automatic translation systems to convert the input message into English, then use an English chatbot 
to generate a response and finally translate it back into the original language [81]. Nonetheless, 
there are also some few examples of end-to-end neural dialogue systems trained directly in other 
languages. For example, [17] presented a chatbot in Chinese and a multilingual version of it in 
Chinese and English based on memory networks. Generative Adversarial Networks have been 
used to train multilingual response selection systems [88] or response generation models in very 
low resource languages like Basque [62]. Closer to our transfer learning approach, [57] built a 
multilingual transformer capable of interacting in six languages other than English, trained on a 
multilingual version of the Persona-chat database.

Nonetheless, multilingual end-to-end dialogue systems is definitely a growing area of research. 
For example, many authors have recently targeted some cross lingual and dialogue related tasks, 
such as dialogue breakdown detection [56], intent detection and slot filling [10] or topic classification 
[72].

2.3 Control mechanisms to strengthen the long-term coherence of end-to-end
dialogue systems

The task of keeping track of the dialogue context has been tackled since the early task oriented 
dialogue systems. When the objective of the dialogue is to fulfill a goal of the user, it is necessary to 
know how close to that goal the dialogue is. To this end, goal oriented dialogue systems have since 
then used a dialogue state tracking module. At first, a set of hand-crafted rules were normally used
12https://chatfuel.com/
13The term end-to-end is used with slightly different connotations by the machine learning community. In this work, with 
end-to-end we mean dialogue systems which produce a response based solely on the text corresponding to the dialogue 
history without using any kind of turn representations like dialogue acts or name entities.

https://chatfuel.com/
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to track the dialogue state. Afterwards, with the advent of POMDPs [103], probabilistic methods,
such as dynamic Bayesian networks or attributed bi-automata [93], gained popularity also for
dialogue state tracking. Since the revolution of deep learning, a variety of approaches to track the
dialogue state and/or to take into account the whole dialogue history have been proposed in task
oriented settings. Hybrid Code Networks [102], dialogue policies to specify actions plans [38], or,
in general, pipelines that include a dialogue state tracking module have been proposed [33, 36, 59],
among others. However, in all these cases the dialogue state and flow is controlled mainly or at
least partially via dialogue acts extracted from the previous system and/or user turns. Therefore,
all the methodologies require an annotated corpus (or hand-crafted rules) at some point to predict
the dialogue acts. Our proposal does not.
Other works have tried to make use of the whole dialogue history in a similar manner to our

approach, but with different goals. [6] used a recurrent neural network on top of turn embeddings
to improve the dialogue act prediction. [96] integrate the whole spoken dialogue history using a
variety of sentence embeddings for a semantic slot filling task. [76] present a dialog act classification
system on automatically generated transcriptions that combines convolutional neural networks
and conditional random fields for context modeling. [61] also perform a dialogue act classification
via a hierarchical deep learning model that takes into account the dialogue context. [100] keep
track of the dialogue history with a dual dynamic memory network and use it to make queries
to a knowledge base in a task oriented setting. The work presented in [85] has been particularly
inspiring for us. They propose to model the dynamics of turn embeddings to automatically evaluate
the quality of the dialogue in the long run.

Nonetheless, to the best of our knowledge, this is the first work which models the dynamics of
turn embeddings to include them in the decision making stage in a system which does not make
use of dialogue acts.

2.4 Conditioning the output of generative networks
In respect of our proposal to learn scenario and dialogue phase embeddings, we can find related
works in the literature that condition the output of generative networks in several ways, and with
several purposes. Some examples include using Reinforcement Learning to control the repetitiveness
of amodel [87] or different approaches to assign themodel a fixed personality [53, 108]. Conditioning
the output of a generative model is very related the area of stylized response generation too. For
instance, [30] propose a chatbot which generates responses in a similar style to a non conversational
corpus. A similar approach has also been used to ensure a certain level of politeness in the system
responses [74], and to generate system turns that express given emotional status [111]. However,
none of this works use a similar strategy to the one presented in this work, to the best of our
knowledge.

3 COACHING DIALOGUES AND CORPUS
3.1 GROW coaching dialogues
While there are several coaching techniques, in this work we will try to build a conversational agent
that carries out dialogues leaded according to the GROW coaching model14 [101]. The selection
of this model was suggested by experts in the area, on the grounds that the GROW dialogues are
much more structured than in other coaching methodologies[44]. This choice definitely permits
an easier development of automatic dialogue systems which try to replicate the behaviour of the
coach. A full GROW session consists on four main phases: Goals or objectives, Reality, Options,

14Mind that, in this article, we refer to coaching as behavioural change model which tries to make the coachees realize how
they could improve their habits, not as an instructor or trainer which explicitly tell them what to do.
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and Will or action plan. During the first phase, the agent aims at getting explicit objectives from
the user, for instance, increase the daily fruit intake or reduce the amount of sugar in their diet.
During the Reality phase, the coach and the user analyse the user’s personal context and they try
to detect potential obstacles that currently hinder achieving the previously established objectives.
As for the Options phase, the goal is to generate and find options and tools that the user may use
in order to face the aforementioned obstacles and achieve their objectives. In the last phase, the
objective is to specify an action plan for the user to carry out in order to advance towards their
objective. For instance, Table 1 shows a representative fragment from our corpus corresponding to
the Reality and Option phases, where the coach provokes a clear reflection on the user. We will
introduce the corpus in Section 3.2.

Table 1. A fragment of a coaching session extracted from our corpus.

Agent: So, Pablo, have you ever eaten consistently 2 or 3 pieces of fruit?
User: When my wife was healthier, she used to take care of buying the fruit. Thus it

was easier for me to eat it.
Agent: And in any other time of your life?
User: Long time ago, when I lived alone, I used to take care of buying the fruit myself,

and I ate it more frequently.
Agent: What does this information suggest to you about your objective?
User: Well... That it’s something that basically depends on me.
Agent: So, can you see anything you could do to get closer to your objective?
User: Uhmm... I should start thinking how I am going to organise to buy the fruit.

Mind that this dialogue structure and strategy does fall into any of the two broad categories 
conversational agents are often classified in: task-oriented or transactional, and open-domain or 
social [19]. In the field of open-domain dialogue modeling there is no topic to talk about or task 
to carry out, the only goal is to generate appropriate and meaningful responses given a dialogue 
context. On the other hand, task oriented dialogue systems are often developed in order to provide 
the user with some information or service they request as soon as possible, such as hotel booking. 
On the contrary, GROW coaching dialogues have peculiarities that do not allow to easily classify 
them as transactional nor social. They are somehow task-oriented because there are some tasks to 
be completed, such as getting the user’s objective or identifying which obstacles are not letting 
them fulfill their goal. However, the dialogue is definitely not carried out in a conventional task 
oriented manner. There is no rush to complete the task, and it is more important to calmly converse 
with the user and make them aware of their own problems, obstacles and potential goals they want 
to achieve. In this sense, coaching is also related to open domain dialogues, where there is no task 
and the only objective is to converse about different topics. However, coaching dialogues follow a 
clear and well structured strategy. These differences in the properties of the dialogues are the main 
reason why novel approaches and techniques are needed to model them.

3.2 Corpus
In order to model this dialogue strategy, a series of spoken dialogues have been acquired through a 
Wizard of Oz (WoZ) platform [90]. Two different scenarios were designed for the WoZ interactions. 
First, we designed an introductory scenario, which was used to engage the user and make them feel 
comfortable in the interaction with the system. In this scenario, the system presents itself and briefly 
describes the coaching methodology it will be following. Afterwards, it talks with the user about
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their hobbies, such as travelling, music and reading, but always with the next coaching session
in mind. Secondly, a (partial) GROW session on nutrition was simulated. Real GROW sessions
often last for one hour or more, which we considered that could bore the users and make them
feel uncomfortable. Instead, the session stopped around the 10 minute mark, which was generally
enough to complete the first phase of the GROW structure, the Goals. Other times the conversation
was very fluid, and more phases were completed. The nutrition topic was selected because it is a
key factor for healthy ageing. According to the World Health Organization, “good nutrition can
help to preserve cognitive function, delay care dependency, and reverse frailty" when ageing15.

Dialogues were acquired in three different countries with different languages and cultures: Spain,
France and Norway. A summary of the statistics of the corpus is showed in Table 2. Almost every
user interacted with the system in the two scenarios, except some due to various reasons. Thus,
the number of dialogues is slightly lower than the double of number of participants. Each dialogue
was approximately 10 minutes long, which resulted in an average of roughly 29 turns per dialogue.

Table 2. A summary of the big numbers in the corpus.

Spanish French Norwegian Total

Number of participants 79 35 35 149
Number of dialogues 142 68 62 272
Number of system turns 4813 1776 1324 7913
System turns per dialogue 33.9 26.1 21.4 29.1
Running words 92K 47K 36K 175K

In order to increase the total amount of data in each language, all the dialogues were translated
into the other two languages. This translation was done in a semi-automatic way: an automatic
machine translator was used first, followed by a manual correction. English was used as an interme-
diate language for all the translations, due to the translators mostly being fluent in their language
and in English. As a result, the corpus is also fully translated into English. Thus, the actual numbers
for each language are the same and are the ones shown in the Total column in Table 2. While the
acquired dialogues are spoken, we will only be using the textual transcriptions in this study.
This corpus has been gathered within the European Horizon 2020 Project EMPATHIC [64, 97].

In order to develop other modules not related to this work, all the turns in the dialogues were
annotated in terms of topic, intent, name entities and emotions [43, 71]. Nonetheless, we will
be using none of these annotations in this study, since we are most interested on working with
unlabeled data and developing end-to-end neural dialogue systems. Hence, our research will also be
potentially more general and helpful to others too, because not always corpora are labeled neither
the labeled ones use the same label taxonomy. The corpus will be made publicly available after
mid-2021, soon after project is finished.

4 SYSTEM OVERVIEW
We propose a dialogue system which can effectively model the described long-term dialogue
strategies while dealing only with unlabeled text. The proposed system is made of two important
parts: a short-term generative model which creates some response candidates given a local dialogue
history, and a global module which ranks the candidates according to their relevance given the
whole dialogue history. We will name this module the Whole Dialogue History system (WDH

15https://www.who.int/news-room/fact-sheets/detail/ageing-and-health

https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
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system hereinafter). Before getting into the details of both parts of the system and proposed 
novelties, we will provide a top level view of the system’s functioning.
The short-term generative model is a fine-tuned neural language model, a GPT2 transformer 

more precisely. It is trained in a transfer learning fashion to produce responses similar to what 
a coach would, given the local dialogue history made of the last turns of the conversation. The 
responses are generated via a top-K sampling decoding, which allows the generation of many 
different candidates given the same local context. However, since the local history that the model 
sees is not large enough to take into account the coaching strategy we aim at modeling, some of the 
generated responses are likely to be non-relevant or inappropriate. In Section 5, we will propose 
some control mechanisms that can be included in the fine-tuning stage to alleviate this problem.
Nonetheless, we firmly believe that, in any case, it is necessary to take into account the whole 

dialogue history in order to successfully carry out complex dialogues like coaching sessions. If the 
model responses are produced only given the local context, repetitions might occur and in general 
non-consistent turns can appear very easily. Since with the current hardware it is not possible to 
include all the dialogue in the generative model’s input due to memory limitations, we propose to 
build another system, the aforementioned WDH system. This evaluates how coherent each of the 
candidates proposed by the short-term generative model is given the whole dialogue history. The 
main idea behind the WDH system is to model the long-term dynamics of the dialogue and include 
them in the decision making stage. More precisely, we will model the path the dialogues follow 
in the abstract semantic space of sentence or turn embeddings. To this end, the embeddings will 
be grouped into clusters, with the assumption that turns inside each cluster should share some 
semantics and their role in the dialogue should not be too different. In fact, we will later show (in 
Section 9.2) that there is a strong correlation between the cluster a turn has been assigned to and 
the corresponding dialogue act. Figure 1 shows a bidimensional projection of the turn embeddings 
and the resulting clusters. For the sake of simplicity, the number of clusters shown in the image is 
lower than the actual one. For instance, it can be seen that the purple cluster in the figure contains 
introductory turns, such as greetings or system presentations; the black cluster turns about food 
routine; the green one is travelling related, and the light blue contains turns about music.
As it can be seen, the turn embedding space seems to be organized enough so as to provide 

valuable information in the decision making stage. We will discuss this space more in depth in 
Section 9. Note that, if we group each turn into a cluster, the dialogues in the corpus can be 
represented as sequences of clusters. Since the dialogues in the corpus follow certain patterns and 
strategies, these sequences should follow them too. We will try to model the sequences of clusters 
and produce a system response which belongs to a cluster that is likely given a certain cluster 
sequence. A diagram of the whole system is shown in Figure 2. In the diagram the GPT2 score 
represents the score that the generative model assigns to each candidate via a reranking procedure 
(more about this score on Section 5.4).

In addition to its relevance in the decision making stage, the WDH system can be employed to 
analyse and visualize the dialogues in the corpus. It also helps to explain and understand system’s 
decisions. We show it at the end this study, in Section 9.

5 ADDING EMBEDDINGS TO THE SHORT-TERM GENERATIVE MODEL
In this Section we will focus on the short-term generative model that can be seen in Figure 2. 
The neural network trained to produce candidate responses given a local dialogue history is a 
sequence-to-sequence transformer model [98]. We will start with a pretrained GPT2 language 
model [80], and convert it into a response generation model applying transfer learning. In order 
to apply this methodology in the most effective fashion, it is key to exploit all the capabilities 
of the pretrained model. In the case of the GPT2 transformer models, [104] have already proved
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Hi again.
Welcome!
Nice to meet you. My name is Natalia.

Do you know what coaching is?
No problem, what do you think coaching is?
Before we get into it, tell me, which are your hobbies?

United States, I see. When was that?
What did you like the most about Japan?
And do you usually travel alone?

Do you like music?
I see you are very interested on it.
Do you like to dance while you listen to music?

Fig. 1. A bidimensional projection of turn embeddings, coloured by the cluster they have been assigned to.

Fig. 2. The diagram of the proposed conversational agent.

that adding information in form of additional embeddings to the input representation can be very
useful.

Thus, taking their work as baseline, we will introduce two modifications to the input representa-
tion to improve its performance and adapt it to the needs of a motivational conversation model. As
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we will explain in Sections 5.1, 5.2 and 5.3, this proposal consists in learning different embeddings to
control the behaviour of the network in one way or another. A diagram of an example of a complete
input to our transformer can be found in Figure 3, where only two input turns are shown for
simplicity. In Section 5.1 we explain our baseline model (BS), in Section 5.2 the scenario embeddings
(SC), and in Section 5.3 the dialogue phase embeddings (PH). Finally, in Section 5.4, we give further
details about the generative model.

Fig. 3. An example of the proposed input representation to fine-tune the GPT2 transformer network. The 
actual input to the transformer is the sum of all the embeddings in each time step. The segment embeddings 
(Section 5.2) indicate that the system is performing a nutrition dialogue, and the dialogue phase embeddings 
(Section 5.3) that it is the third phase of the dialogue.

5.1 Baseline (BL)
In our baseline, the input is represented with two parallel sequences of embeddings16. Since the first 
layer of the transformer takes only one sequence of vectors as input, the embeddings corresponding 
to each time step are added before being fed into the transformer. Let us describe the task of each 
embedding.

The first sequence corresponds to the word embeddings of the word/tokens of last turns of the 
dialogues. In our experiments we use the last five turns in the dialogue history, and concatenate 
them using special tokens as separators. This sequence of embeddings is the first row in the example 
shown in Figure 3. The second one is used to segment the input into some categories. In our baseline, 
these segment embeddings indicate which input tokens correspond to the system’s turns and which 
ones to the user’s: <spk1> and <spk2>. This is the most straightforward way of applying transfer 
learning to convert a language model into a chatbot. While it might be interesting and appropriate 
for small conversations or just chit-chatting, in our case we need to ensure the overall robustness 
and coherence of the model if we want it to handle coaching sessions.

5.2 Scenario segment embeddings (SC)
First of all, we have to take into account that our task requires the dialogue model to be able to 
carry out two different kind of dialogues: an introductory dialogue and a partial GROW session 
about nutrition. Thus, we certainly need the option to specify which scenario to carry out to the 
model. It is also necessary that it does not arbitrarily jump from a scenario to the other. While we
16Of course, positional encoding embeddings are also used throughout the whole work, but they are omitted here for the 
sake of simplicity, because they are common to almost all the transformer networks [98].
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could train two different models for each scenario to avoid these issues, this approach would not
allow each model to benefit from the conversational patterns appearing in the other half of the
corpus. We consider that training a single model with the whole corpus in a multitask fashion is
highly advantageous in this situation where the amount of data is not very high.
We propose to substitute the segment embeddings of the baseline with four different segment

embeddings, in order to indicate which type of dialogue to carry out to the model: <spk1_int>,
<spk1_nut>, <spk2_int> and <spk2_nut>. These now indicate which the user is but also the
scenario. For instance, the second row of Figure 3 the embeddings indicate that the selected scenario
is the nutrition one.
The scenario segment embeddings provide consequently a way of controlling the topic the

system will talk about with the user: if at the beginning of a dialogue we feed the nutrition segment
embeddings, the model will then talk about nutrition. If, conversely, we use the introductory
segment embeddings, the machine will carry out an introductory conversation. Furthermore, note
that this idea can be easily implemented in many other multitask frameworks other than ours.

5.3 Dialogue phase embeddings (PH)
Finally, motivated by the empirical fact that the addition of (high-dimensional) embeddings is an
appropriate technique to mix several pieces of information [104], we decided to add a third set of
embeddings: the dialogue phase embeddings. This is devoted to enhance a dynamic progress of
the conversation (without repetitions or loops) and a controlled ending. The phase embeddings
tell the system at which point of the conversation it is, i.e., which proportion of the dialogue has
been completed. For dialogues with lengths between 20 and 30 turns, we found that learning four
dialogue phase embeddings was enough to lead to big improvements in terms of controlling the
flow and limiting the length of the dialogue. Once a phase embedding is selected in function of
the turn number and the desired length of the dialogue, it is added to all the input embeddings,
as Figure 3 shows. Let us describe when each of the embeddings is used and which is its task,
intuitively:

• The <phase_1> embedding is used in the first 20% of the dialogue. It tells the system that
the conversation is starting, and thus when this embedding is added to each of the word
embeddings, the systems tends to produce opening sentences or greetings.

• The <phase_2> embedding is used from the 20% of the dialogue until the 50%. It corresponds
to the rest of the first half of the dialogue, where the system tries to find an appropriate topic
of conversation, asking the user some open questions.

• The <phase_3> embedding is used from the 50% of the dialogue until the 90%. In this phase
the system and the user mostly discuss about the topic they started in the second phase.

• Finally, the <phase_4> embedding is used within the last 10% of the dialogue. The system
ends the discussion held in the previous phase, closes the conversation and says goodbye to
the user.

We also investigated and tested other smoother designs for these embeddings, such as using
different embeddings per each turn. Nonetheless, we ended up discarding this option because our
corpus (as many others) includes dialogues of very diverse lengths: sometimes the conversation
ends in turn 15 whereas other times at turn 15 the user is still starting to talk about their nutrition
habits. This can definitively lead to these embeddings not being trained precisely, and hence we
opted for the relative phase embeddings approach.
This one, besides being more suitable in this case, also introduces the option of manually

selecting the desired length of a conversation once the model is trained. This control, albeit not
being extraordinarily versatile, is enough to tweak the flow of the dialogue, which is very useful
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when dealing with end-to-end neural dialogue models, where controlling the system responses is 
often a very tough task.

5.4 Decoding in the short-term model and GPT2 candidate reranking
In order to complete the description of the generative network of our system, let us now give details 
about how the decoding, i.e. the generation of candidates is carried out. We will also mention how 
the GPT2 score for each generated candidate is computed. In Figure 2, while the described input 
embedding proposals have been centered in the input arrow to the short-term generative model 
block, the decoding refers to its output arrow, and the GPT2 score is shown in the bottom right 
purple block, where the total score for each candidate is computed.
Decoding details: Neural dialogue systems have been well known to generate too generic 

and repetitive. This problem has been tackled with many approaches, such as modifying the 
loss function [52] or using adversarial training [54, 63]. Lately, making use of a proper decoding 
procedure has proved to be essential for generative models to produce good quality non-generic 
responses [34, 49]. We adopt the recently introduced nucleus sampling strategy [40] to prevent 
the system from generating dull or generic responses as much as possible. This technique consists 
in sampling only from a subset of tokens at each generation step. This subset is composed of the 
tokens whose cumulative probability is greater than or equal to a threshold. We set this threshold 
to 0.9. Additionally, prior to computing the aforementioned subset of candidate tokens at each 
generation step, we also apply some temperature [1, 29] to the logits to control the diversity of the 
responses. For our application, we found that temperatures ranging from 0.65 to 0.8 led to very 
interesting responses. The value we set for the final experiments is 0.7.
Candidate reranking via the GPT2 score: GPT2 models are often trained both to generate 

candidates given a context and also to predict the next utterance given a set of possible ones 
[36, 104]. More precisely, they are trained to predict whether a certain candidate is the correct 
response given the context or not. This binary prediction is done by a linear classifier that takes 
as input the hidden state of the transformer after processing the last token of the candidate. The 
output of this linear layer, i.e., the unnormalized probability of a candidate being the correct next 
utterance, will be the GPT2 reranking score. Intuitively, this score should be high when a candidate 
is informative and coherent with the local context; whereas non-relevant candidates or candidates 
containing grammatical errors should be assigned a low GPT2 score.

6 RERANKING USING THE WHOLE DIALOGUE HISTORY
Let us now present the WDH system in depth. It is composed of four modules. The first one’s 
function is to produce sentence embeddings of each system turn. The second one carries out a 
dimension reduction of the previously computed sentence embeddings. The third one is a clustering 
module which assigns a cluster to the lower-dimensional embedding. These first three modules 
correspond to the clustering block in Figure 2. Finally, the last module produces an (unnormalized) 
probability distribution over all the possible clusters given the sequence of clusters that represents 
the dialogue history. This probability is the WDH score. In Figure 2, this fourth module is the block 
shown in the top right, and the resulting WDH score can be found the bottom right.

6.1 Contextual turn embeddings
There are several techniques to produce sentence embeddings, and each of them have shown 
strengths and weaknesses depending on the NLP task they have been employed in. In preliminary 
experiments we compared generic sentence embedding methods, such as multilingual universal 
sentence encoders [106], sentence transformers [83], or a weighted average of word vectors [5].
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However, none of these methods worked as well as using the embeddings produced by the short-
term generative GPT2 models. The embeddings are the hidden state of the transformer after
processing the last token of the sentence.
Using the short-term model for computing these sentence embeddings not only simplifies the

system’s pipeline, but it also provides additional benefits. First of all, since the model takes as input
a partial dialogue history, the embedding it outputs contains information about both the user and
system turns. This should definitely be considered an asset, because it allows to pack the information
of the user’s turn in the system’s contextual embedding. Otherwise, if a non-contextual embedding
method were to be used, it would require to compute and process two different embeddings, one
for the user and another one for the system. The second benefit of using a fine-tuned model is that
the resulting embeddings are domain specific too, which is key for a better performance.
Since we definitely want the embeddings to include the scenario and dialogue phase scenario

information mentioned in Section 5, we first considered using the full system with scenario and
dialogue phase embeddings. However, further experiments showed that it was more convenient to
use just the baseline model, and include the scenario and phase information in the dimensionality
reduction stage we will describe next.

6.2 Dimensionality reduction
We apply a dimensionality reduction technique prior to the clustering method to avoid curse of
dimensionality [8], since it is known to improve the quality of the clustering methods when these
are distance or similarity-based [94].
We tried many methodologies such as PCA to carry out this dimensionality reduction, but we

ended up building an autoencoder [48]. The reason for this is that, as aforementioned, we can
easily incorporate supervision in the dimension reduction process, in a similar fashion to [51]. The
most straightforward way of training autoencoders is to optimize a recovery loss from a space
with a lower dimension than the original space. In addition to the recovery loss, we minimize two
classification losses, computed after a linear transformation of the low dimensional space. These
correspond to the scenario and dialogue phase classification.
A summary of the structure of the autoencoder can be found at Figure 4. It takes as input a

sentence embedding 𝑥 , and after applying some non-linear layers with successively less output size,
it ends up transforming it into 𝒉, the low-dimensional representation of 𝒙 . This is the vector we
will be using at the clustering stage. Then additional layers transform 𝒉 into 𝒙 ′, the reconstructed
version of 𝒙 . Thus, 𝒉 contains as much information of 𝒙 as possible. Furthermore, two linear layers
perform two classifications from 𝒉. After respective softmax normalizations, 𝒚𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 and 𝒚𝑝ℎ𝑎𝑠𝑒

are produced, the probability distributions over the possible scenarios and dialogues phases. These
two classifications ensure that the low-dimensional representation of the turn embeddings maintain
as much information as possible about the scenario and dialogue phase, which are key properties
of the turns.
Therefore, the training objective for this autoencoder will be a combination of three losses, as

shown in Equation 1. We tried some weighted sums of the losses instead of the unweighted one,
but we found no improvement. The reconstruction loss is the euclidean distance between 𝒙 ′ and 𝒙 .
On the other hand, L𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 and L𝑝ℎ𝑎𝑠𝑒 are cross entropy losses for classification.

L𝑎𝑢𝑡𝑜𝑒𝑛𝑐𝑜𝑑𝑒𝑟 = L𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 + L𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 + L𝑝ℎ𝑎𝑠𝑒 (1)

6.3 Clustering the turn embeddings
After the sentence embeddings corresponding to the system turns are computed and dimensionally
reduced, we propose to group them into clusters, in an unsupervised fashion. Intuitively, system
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Fig. 4. A diagram of the proposed supervised autoencoder to reduce the dimension of turn embeddings.

turns that are close to each other in the low dimensional embedding space will be semantically
close, and they will also share key dialogue information, such as the scenario and dialogue phase.

There are many techniques to perform unsupervised clustering, and which is the superior one if
often a matter of the use case [89]. We tried and compared various methods, such as DBSCAN [27],
Birch [110], OPTICS [4] and K-Means [67]. After an inspection of the turns inside each cluster, we
decided to stick to the K-Means, because we found no improvement with the more sophisticated
methods. Additionally, the K-Means algorithm provides two substantial benefits in our case. First,
it takes the number of clusters as a parameter, which is very valuable for our application: we
want enough clusters so that each of them represents a different state in the dialogue; but if the
number is too large compared to the number of dialogues in our corpus, the task of learning
the probability of the next cluster would not be feasible. A detailed analysis of the effect of the
number of clusters is provided in Appendix B. The second benefit is that, in contrast to many
other clustering algorithms, it allows to predict the cluster corresponding to a new sample in a
very simple way. This is necessary when interacting with the system, because it is not possible to
know the cluster a given turn corresponds to beforehand. Instead of having to train an additional
classifier that learns to map from turn embeddings to clusters, the distance from the new sample to
the cluster centroids can be measured, and the argument of the minimum will be the corresponding
cluster.

6.4 Learning the next cluster probability distribution
We cast the task of learning the next cluster probability as a sequence modeling problem. Given a
set or vocabulary of𝑚 clusters V = {𝑣1, 𝑣2, ..., 𝑣𝑚}, and a sequence of clusters corresponding to
a dialogue history 𝑐1, 𝑐2, ..., 𝑐𝑛 , the objective is to compute the discrete probability distribution of
each cluster being the next one in the sequence (Equation 2).

𝑃 (𝑐𝑛+1 = 𝑣𝑖 | 𝑐1, 𝑐2, ..., 𝑐𝑛), ∀𝑣𝑖 ∈ V (2)
This task is very similar to a language modelling task, but having clusters instead of words. 

Therefore, we considered classical language modelling methodologies to tackle this problem. Even 
though N-gram models are simple models and have broadly been used to this end, recurrent neural 
networks, GRUs [18] more precisely, were our final choice. The main problem with N-grams is that 
they are based on the Markov Assumption, which assumes that the probability of the next cluster 
can be computed based only on the last few clusters. We really want the WDH system to take into 
account the whole dialogue history, so the N gram models were finally discarded. On the contrary,
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GRUs process the whole cluster sequence. Appendix A shows that, indeed, taking into account the
whole sequence is highly beneficial, since the GRUs outperform the N-gram models in terms of
accuracy and top N accuracy.

The objective function used to train the GRU was the negative log likelihood at the cluster level:

L𝐺𝑅𝑈 =
1
|C|

∑
𝒄∈C

1
|𝒄 |

|𝒄 |∑
𝑖=1

−log 𝑃 (𝑐𝑖+1 | 𝑐1, 𝑐2, ..., 𝑐𝑖−1) (3)

where C is the training corpus made of sequences of clusters 𝒄 , each of them corresponding to a
dialogue. The probability of 𝑐𝑖+1 being the next cluster given the partial sequence 𝑐1, 𝑐2, ..., 𝑐𝑖−1 is
computed by a softmax normalization on top of a linear classifier given the last hidden state of the
GRU after processing the cluster sequence.

6.5 Computing the total score for each candidate
The GPT2 score and theWDH system’s score are fused in a simple way. The total score is a weighted
both scores, as shown in Equation 4. This Equation is also shown in the bottom right of Figure
2. A detailed analysis of the chosen value for the hyperparameter 𝛼 and its role in the system’s
performance is shown in Section 8.1.

Total score = GPT2 score + 𝛼 · Cluster score (4)

7 TRAINING DETAILS AND EXPERIMENTAL SETUP
In this section we give more details about our implementation and introduce the experimental
setup that was used to produce the results we will present and discuss in Section 8. According to
our proposal, we will mainly be training and comparing six models:

• The baseline model (BL). This refers to the model presented in Section 5.1, without any
reranking. I.e., here we will only be using the short-term generative model, without the WDH
system. This will generate just one candidate and it will be used as the system response.

• The baseline model with scenario embeddings (BL+SC). In this model we add the scenario
embeddings (Section 5.2) to the baseline model.

• The baseline model with dialogue phase embeddings (BL+PH). Here we add the dialogue
phase (Section 5.3) to the baseline model, but without the scenario embeddings.

• The full generative model (FM). This one includes both the scenario and dialogue phase
embeddings. But still there is no reranking, i.e., it outputs the first utterance it generates.

• The full model with just GPT2 reranking (FM+RR). In order to check the influence of the
WDH system, we first include a reranking process with only the GPT2 score. We generate
and rank 10 candidates.

• The full model with both the GPT2 reranking and the WDH reranking (FM+WDH). This
model includes all our proposals. The number of candidates is the same than in the FM+RR
model, 10.

We first explain the process of pretraining the GPT2 neural language models in Spanish, French
and Norwegian. Thenwe get into the fine-tuning details of thesemodels with the EMPATHIC corpus.
Finally, give details about the WDH system and introduce the experiments and the evaluation
procedures.

7.1 Pretraining procedure
We are dealing with a multilingual corpus in Spanish, French, Norwegian and English. However,
most of the big pretrained neural language models are only available in English. After some
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preliminar experiments using multilingual pretrained transformers such as XLM [20], we found
that fine-tuning these did not result in great dialogue models. Thus, we ended up pretraining
GPT2 models from scratch in Spanish, French and Norwegian, and using the pretrained and freely
available GPT2 models in English.
There are four different GPT2 architectures [80], which mainly differ in the number of layers

and their size. We selected the small GPT2 transformer architecture for all of our experiments in
Spanish, French and Norwegian, which has 124 million parameters. This selection was made to
meet two important criteria: the model should be large enough to be capable of learning our task,
but small enough to fit into standard GPUs and be pretrained in a reasonable amount of time. As
for English, we compared the small model with the medium, which has 324 million parameters.
The latter one worked much better already since the first experiments, as shown in Section 8.1.
Therefore, unless it is mentioned explicitly, the results for the English system were achieved with
the medium GPT2.
We used the Spanish, French and Norwegian versions of Wikipedia and OpenSubtitles [58] to

pretrain each language model. The reason for choosing these corpora is that both are available
in the target languages, and that both include valuable information which could improve the
final performance of the coaching dialogue model. Wikipedia contains information about millions
of topics, and OpenSubtitles is made of conversations mainly, which hopefully helps the model
learning dialogue skills. Since the amount of data in Norwegian was much lower, we also included
a fraction of the Norwegian version of the OSCAR text corpus [77]. OSCAR is a subset of Common
Crawl, and thus it is made of web scrapped text from the Internet. Mind that, therefore, this corpus
may not be as related to our task as OpenSubtitles or Wikipedia. Table 3 shows a summary of the
data used for pretraining after having cleaned lines containing strange characters, urls, and so on.

Table 3. Statistics of the corpora used to pretrain the GPT2 model in Spanish, French and Norwegian. In
Norwegian, values in brackets refer to the data prior to the addition of a fraction of the OSCAR corpus.

Spanish French Norwegian

Amount of raw text 10GB 7GB 5GB (1GB)
Number of sentences 230M 121M 30M (14M)
Running words 1.7B 1.3B 750M (150M)

We first trained a BPE tokenizer [92] in each language with this data. This tokenizers will be used
during the pretraining and fine-tuning steps. We selected a vocabulary of 10K subwords in each
language. This number is slower than the pretrained tokenizer in English, which has a vocabulary
of around 50K subwords. Using a reduced vocabulary size reduces also the memory consumption
and training time.

We then trained each GPT2 model from scratch, throughout two complete epochs on each dataset.
We set the maximum number of input tokens to 512, which we consider enough since it allows
us to afterwards include 5 turns of dialogue history in the fine-tuning step. We used the ADAM
optimizer [46] with a linearly decaying learning rate from 1e-5 to 5e-4, and a batch size of 4, the
maximum that fitted in our GPU. We clipped the gradients at a maximum absolute value of 1. Each
training procedure took around 2-3 weeks in total to be completed in a single Nvidia Titan Xp GPU.

7.2 Fine-tuning the GPT2 generative model on the EMPATHIC corpus
After pretraining the language models, we fine-tuned them on our dialogue corpus to convert
them into dialogue models. We fine-tuned each model with combinations of the three input
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representations explained in Section 5, for comparison purposes. We trained the baseline, the
baseline with scenario embeddings, the baseline with dialogue phase embeddings, and finally the
full generative model with both scenario and dialogue phase embeddings. All the systems were
also trained to predict the end of the dialogue. To this end, an end of dialogue token was inserted in
the last system turn of every dialogue. The number of turns selected for the local dialogue history
was five: three user turns and two system turns. In order to measure the effect of not pretraining,
we also trained a GPT2 model from scratch with our corpus in Spanish.

We split the data into train (85%) and test (15%) partitions. These proportions were kept when
splitting the original dialogues in each language and also the dialogues translated from the remaining
two languages. Each partition also contains the same number of introductory and nutrition dialogues.
Since most of the users interacted with the system in both scenarios, we also made sure that all the
dialogues corresponding to a given user only appeared in one of the partitions.

Training details: Following previous work we employ multitask learning to fine-tune our
network; optimizing a linear combination of two loss functions during the fine-tuning step [13,
79, 104]: the language model loss and the next turn prediction loss. The second one also enables
the possibility of using the GPT2 score described in Section 6.5. We set the weight of the language
model loss to be the double of the next turn prediction one. We used 10 candidates for the next
turn prediction loss, the actual ground truth, 3 system turns from the previous dialogue history
(but not appearing in the local history), 3 system turns that occurred later in the dialogue, and 3
random turns sampled randomly from the training set. The combined loss function was minimized
throughout 4 epochs via the AdamW optimizer [65]. The learning rate was linearly decreased from
6e-5 to zero, gradients were clipped at their absolute value of 1 and weight decay of 0.01 was used.
We could only fit one training example at a time in the GPU during the training process, but we
still experimented with greater virtual batch sizes, accumulating the gradients for some steps. We
found that a virtual batch size of 4 led to the most consistent results.

Additional details: The desired length of the dialogues was fixed to 20 system turns. As for the
systems that use reranking (BL+RR and BL+WDH), in the decoding step we generated and ranked
10 candidates.

7.3 WDH system details
As mentioned in Sections 6.1, 6.2 and 6.3, we considered many strategies and algorithms to compute
the sentence embeddings, dimension reduction and clustering. The final choice for each module in
the pipeline was decided after an inspection of the resulting clusters. We checked that the turns
grouped in the same clusters were in fact semantically close, and that it would make sense to use
them in similar dialogue contexts. Finally, the baseline short-term generative model was used to
produce sentence embeddings, a supervised autoencoder for dimension reduction and the K-Means
algorithm for clustering. In Section 9, we provide a more insightful analysis of the results of the
clustering pipeline.
Let us now give the details about the architecture and hyperparameter selection in the WDH

modules. The turn embeddings were computed with the BL model. As for the autoencoder, its
input and output size is the same than the turn embeddings. In the case of the Spanish, French and
Norwegian systems this was 768, and in the case of English 1024, due to the use of themedium GPT2
architecture instead of the small one. The autoencoder’s encoder and decoder are symmetrical.
They are made of three fully connected layers of sizes 200, 50 and 5. The hyperbolic tangent was
used as the activation function. Thus the low dimensional embedding space is of dimension 5.
The two classification layers take as input this embedding and linearly classify the scenario and
dialogue phase. The autoencoder was trained with the sentence embeddings of the training set of
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the corpus during four epochs via the Adam optimizer. A batch size of 4 and a learning rate of 1e-4 
were used.

As for the clustering, the Elkan’s variation of the K-Means algorithm was used [24], with the 
euclidean distance in the low dimensional embedding space. After analysing its impact on different 
metrics, the number of clusters was set to 60. As shown in Appendix B, this value represents a 
nice compromise between a balanced number of turns per cluster and the performance of the 
WDH system at the next utterance classification task (which we will introduce next in Section 
7.4). Additionally, it is also a value that permits a good mapping from cluster index to dialogue 
act, as explained in Section 9.2, where the correlation between the clustering and dialogue act 
classification is explored.
Once the clustering pipeline was fixed and trained, we proceeded with the cluster sequence 

modeling experiments via GRUs. The hyperparameters of the recurrent neural network were tuned 
in a development partition within the training set to preserve the train-test independence. The 
input size of the cluster sequence modeling GRU was set to 5. Namely, each cluster was represented 
by a five dimensional vector. We tried initializing them in terms of the turn embeddings but got 
no improvement, so they were randomly initialized and learnt in the process. Two GRU layers of 
hidden size 60 were used following, and finally a softmax layer of size 60 was used to output the 
probability distribution over the possible 60 clusters. The GRU was trained during 3 epochs via the 
Adam optimizer, with a batch size of 4 and a learning rate of 1e-4. The results in terms of accuracy 
and top N accuracy at the next cluster prediction task for each model and language are shown in 
Appendix A.

7.4 Automatic and human evaluation
Once all the models were trained on the train partition of the corpus in all the languages, we 
evaluated each of them according to their responses in the test partition. On the one hand, we 
computed some automatic metrics to measure the similarity of the generated response to the ground 
truth and the accuracy of the reranking methodologies. On the other hand, experts in coaching 
compared the responses of different models and selected the most appropriate one. Finally, these 
experts also interacted with the best model and evaluated the resulting dialogues.
Automatic metrics: Automatic evaluation of dialogue models is a very active and complex 

research area. In the last few years, many authors have been seeking metrics that measure the 
quality of the responses, and that correlate as much as possible with human evaluation in terms of, 
e.g. relevance, semantical appropriateness or informativeness. On the one hand, there are word
overlap metrics such as BLEU [78], which measure how the generated response and the ground
truth resemble at the word level. More recently, this similarity has also been measured via word or
sentence embeddings [109]. There are even authors who propose unsupervised metrics which do
not rely on ground truth responses [69, 73].

In this work we use two of the official metrics proposed in the The Conversational Intelligence 
Challenge 2 [22]: the accuracy at selecting the correct next utterance among a set of 10 candidates 
or next utterance classification accuracy, and the F1 score between the set of words of the response 
generated by the system and the ground truth. Additionally, we include the BLEU score as an 
additional measure of how similar the ground truth and the generated response are.
The next utterance selection accuracy is particularly interesting in our case, since much of our 

work focuses on improving the selection of good responses given a set of candidates. Note that this 
metric does not directly evaluate the response generation task. Instead, it focuses on the ability 
of the different models on selecting the correct response from a set candidates sampled from the 
corpus. This selection is done via the aforementioned GPT2 reranking modules (Section 5.4), and 
also with the WDH system in the case of the FM+WDH model. In any case, this metric should be a
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nice indicator of the systems’ performance when interacting with real users. The only difference
is that in that case the set of candidates are not sampled from the corpus, but generated by the
generative model. In the original metric of the Conversational Intelligence Challenge 2 [22], the
set of candidates is made of randomly sampled responses entirely. However, in our case, 6 out of
the 10 candidates are system turns that are part of the same dialogue, which makes the task more
challenging since many candidates will probably be closer semantically. Among the remaining
candidates, 3 are randomly sampled from the corpus, and last one is the ground truth.

Human evaluation: On the other hand, we carried out two series of human evaluation pro-
cesses to validate our methodologies in the task of coaching. Since coaching is not a simple topic
and expertise is needed to evaluate how good a system would be in this area, the selected human
evaluators were the same professionals that carried out or participated in the Wizard of Oz experi-
ments to acquire the corpus. This is very important, because it may well happen that a non-expert
human considered that the interaction with the system has been good for example, but that would
not ensure that the system is actually performing any type of coaching.
In the first series of evaluations we evaluate response quality of the different versions of our

model. In order to measure the impact of each proposal, we compare them in an incremental fashion,
through a sequence of pairwise comparisons. We start comparing the BL with the BL+SC to check
the influence of the scenario embeddings. We do the same with the dialogue phase embeddings,
comparing the BL with the BL+PH. Then the influence of adding the both embeddings is measured
via the comparison of the BL with the FM. Afterwards, we analyse the impact of the candidate
reranking with two comparisons, FM vs. FM+RR and FM+RR vs. FM+WDH. Finally, to give a grasp
of the absolute quality of the responses, we compare the FM+WDH with the ground truth (GT
hereinafter), i.e., the the human response found in the test set. Note that reason behind the choice
of carrying out these incremental comparisons pairwise instead of, e.g. via a likert-score based
evaluation per model, is that the results would be harder to compare, due to the potential evaluator
bias when selecting the score in the likert scale, as discussed in [55]. Some annotators might be
more generous and while others might tend to stick to more neutral responses. That bias is reduced
in a pairwise setup, because the evaluators should only select which answer is better (or whether
they are equal), but not to what extent. The biggest drawback of the pairwise comparisons is that
might be difficult to aggregate the results if the comparisons are not incremental. In our case, this
only happens with the BL vs. BL+SC and BL vs. BL+PH. This is why we also perform the BL vs. FM
comparison.

In the second series of human evaluations, we focus on the usability and potential impact of the
best system. We asked each coaching expert to interact with the model in each scenario and then
to fill two questionnaires. Even though the system is planned to be used with a spoken interface, it
was tested on a text based interface to avoid potential biases created by third modules. The first
questionnaire is the chatbot usability questionnaire (CUQ) [39]. This novel questionnaire is similar
to the classical system usability scale (SUS) [12] for human-computer interfaces, but adapted to
the particular domain of chatbots, taking into account their peculiarities. On the other hand, the
second questionnaire is based on the standarized questionnaire AttrakDiff [37]. AttrakDiff was
designed to measure the user experience in human-machine interaction in four axis: the pragmatic
attractiveness and three hedonic qualities. [26] adapted this questionnaire for the evaluation of
virtual agents. In this study we will use the questionnaire related to one of the hedonic qualities
axis, to the hedonic quality stimulation or feelings, more precisely. It aims at identifying the feelings
may arise on the user when interacting with the system. This is particular important to assess the
usability and potential consequences of a health-care related conversational agent. A system which
gives raise to negative feelings on the user would never be acceptable, for instance. We will refer to
this questionnaire as HFQ (Hedonic Feelings Questionnaire). Both questionnaires can be found in
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Tables 14 and 15 in Appendix C. The responses were arranged in a five level Likert scale ranging
from Strongly agree to Strongly disagree. Since both questionnaires ask about positive qualities of
the system in even questions and about negative in odd ones, a score for each questionnaire can be
easily calculated. A score of 100 would be obtained if a evaluator would Strongly agree with all the
positive questions and Strongly disagree with all the negative ones, and a 0 in the opposite case.

8 RESULTS
In this section we present and discuss the automatic and human evaluations of our proposal.

8.1 Automatic evaluation
Let us now show the results of the automatic metrics. We will start discussing the performance of
the models in terms of the next utterance selection accuracy among 10 candidates (Table 4), since it
provides the most consistent results across all languages. We will then provide the results in terms
of F1 and BLEU scores.

Table 4. Next utterance classification accuracy among a set of 10 candidates obtained by all the models in
the four languages in the test partition of the corpus.

Next utterance classification accuracy
English Spanish French Norwegian

BL no pretraining - 0.251 - -
BL small 0.461 - - -
BL 0.482 0.374 0.404 0.350
BL+SC 0.488 0.379 0.402 0.343
BL+PH 0.488 0.388 0.417 0.366
FM 0.494 0.401 0.421 0.375
FM+RR 0.494 0.401 0.421 0.375
FM+WDH 0.518 0.412 0.435 0.388

Next utterance classification accuracy: First of all, we can see that there is a big gap between 
not pretraining the baseline and pretraining it in the Spanish model. Given this big gap, we did 
not consider trying with non pretrained baselines in the other languages. In English, there is also 
an improvement if we consider the medium GPT2 architecture (BL) or the small one (BL small). 
Therefore, the rest of experiments were carried out with the medium architecture.

Including the scenario embeddings does not seem to influence this accuracy as much as including 
the dialogue phase embeddings do. This is probably due to the nature of the candidates to be ranked: 
among the 10 candidates, 6 are system turns of the same dialogue. This can probably confuse 
the BS and the BL+SC more than the BL+PH model, because the candidates share the scenario 
and potentially the topic, but the phase embeddings might be able to capture that they are out of 
position given the status of the dialogue. The FM further improves over both BL+SC and BS+PH, 
proving that combining both embeddings leads to a better performance. In respect of the FM+RR, 
note that the next utterance accuracy is the same than the FM model. This is because these models 
are essentially the same; they only differ in the decoding stage: the FM generates just one response, 
whereas the FM+RR generates a number of candidates and then selects the best according to the 
GPT2 score. But in this case, since the set of candidates are given, there is no big difference. Finally, 
the full model with the WDH reranking method obtains the best results across all the languages. 
This clearly shows that the proposed reranking method helps to improve the candidate selection

.
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criteria. Consequently, it also reinforces our initial hypothesis that it is necessary to process the
whole dialogue history to improve the overall quality of end-to-end neural dialogue systems. This
is even more critical when no dialogue acts or dialogue state tracker are being used; and also when
the application, such as coaching, requires the dialogues to be well structured.

Let us show further the influence of theWDH system in the next utterance classification accuracy.
As explained in Section 6.5 and Equation 4, the total score for a response candidate is a weighted
sum of the GPT2 score and the WDH score, where 𝛼 is the weight of WDH score. We performed a
grid search with values of different orders of magnitude for this weight. The results are shown in
Figure 5.

Fig. 5. The next utterance selection accuracy with respect to the WDH score’s weight. Note that the x-scale
is equally spaced between the tested values.

In general, the behaviour of the metric as a function of the cluster score is the expected one.
When the next cluster score is 0, the model is equivalent to the FM+RR, and so the next utterance
selection accuracy are the same shown in Table 4 for the FM+RR models. On the other hand, the
accuracy peaks when the next cluster score is between 0.1 and 0.3. The maximum values are the
ones shown in the table. If we increase the weight of the cluster score way much than its optimal
value, the accuracy decreases drastically. This means that the WDH system should be used only
as an addition to the GPT2 score, not as a substitute. The reason for this is that the GPT2 score
takes into account properties that the WDH does not, and vice versa. The GPT2 score focuses
on short-term coherence, but also in grammatical appropriateness, since it evaluates the turn
embedding. On the other hand, the WDH is not aware of the system turn itself, only of the cluster
it belongs too. Therefore it may assign a very high score to a candidate that belongs to a very
relevant cluster given the dialogue history, but is grammatically incorrect, for example.
Not only does the next utterance accuracy reveal differences between models, but also across

languages. There seems to be a big correlation between this accuracy and quality of the pretrained
language model. First, the English models outperform the models in lower-resource languages.
If we then compare the remaining three languages, Spanish and French are one step ahead of
Norwegian. As we will see in the next sections, this will be a recurring phenomenon. The GPT2
model in English was pretrained and released by Open AI. 40 GB of web cleaned and processed data
was used. In comparison, we only used 10GB, 7GB and 5GB used to pretrain the Spanish, French
and Norwegian models, respectively. Additionally, we also believe that the OSCAR corpus used to
increase the amount of data in Norwegian is not as benefitial for our domain as Opensubtitles and
Wikipedia, due to its nature. Since it is made of web scrapped text from the Internet, it may contain
many sentences that are not related to our task at all, hindering the fine-tuning procedure.

.
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Word overlapping metrics: While the next utterance classification score seem to be very
aligned with the expected behaviour of our proposal, the F1 and BLEU score do not seem to be that
correlated. Table 5 shows the obtained results. Nonetheless, there are still some conclusions to be
made.

Table 5. F1 and BLEU scores obtained by all the models in the four languages in the test partition of the
corpus..

English Spanish French Norwegian
F1 BLEU F1 BLEU F1 BLEU F1 BLEU

BL no pretraining - - 0.198 0.096 - - - -
BL small 0.303 0.143 - - - - - -
BL 0.305 0.139 0.229 0.109 0.250 0.119 0.297 0.147
BL+SC 0.299 0.140 0.248 0.122 0.257 0.124 0.274 0.123
BL+PH 0.283 0.132 0.259 0.130 0.241 0.111 0.297 0.141
FM 0.302 0.143 0.272 0.145 0.259 0.122 0.309 0.149
FM+RR 0.315 0.150 0.288 0.150 0.275 0.135 0.317 0.158
FM+WDH 0.303 0.142 0.296 0.159 0.276 0.131 0.322 0.164

First of all, the two metrics behave in a very similar manner, which makes sense because both 
are measures of how the produced system response resembles the ground truth sentence found in 
the corpus. Second, if we compare the results of the different models, we can see that including the 
scenario or phase embeddings does not consistently yield to better results. There does not seem 
to be any difference between the small and medium models in English. On the other hand, not 
pretraining the baseline in Spanish again yields to worst results. Interestingly, applying a reranking 
process does improve the result in both metrics across the four languages. This shows that the 
reranking methodologies play an important role in our system, and that are capable of selecting 
the responses which are closer to the ones produced by human experts. Finally, we would also 
like to mention that in this case the results on different languages should not be compared too 
in depth, because the four languages are morphologically different and therefore the differences 
might well be due to language particularities instead of to performance discrepancies. In any case, 
many authors have argued that word overlapping metrics are not highly correlated with the actual 
quality of the responses [60], because a response that does not share any words with the ground 
truth reference could indeed be completely appropriate. Thus, we now provide a human evaluation 
to further validate our proposals.

8.2 Human evaluation of the responses
The quality of the generated responses was measured by coaching experts. Four different experts per 
language participated in this evaluation. They compared pairs of responses of different models. Per 
each language and model pair, 40 pairs of responses were ranked twice. Every evaluator assessed the 
same number of instances per model pair, where each instance consisted of a local dialogue history 
made of the last 5 turns, and two possible continuations for the system. The dialogue histories were 
different for each model pair in order not to bias the evaluators. Four options were presented to the 
evaluators. According to their criteria in the context of coaching and the project, they had to select 
whether the first response was better, the second one was better, both of them were equally valid 
to continue the dialogue, or none of them was acceptable. We considered using more fine-grain 
level metrics, such as the ones used in [105], but we decided to stick to the simpler approach
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because: 1) since the evaluators are experts, they should be able to weight the different aspects of
the responses and reckon which is more appropriate for the task, 2) the models to be compared
should not vary drastically in the style of the responses, because they are different versions of
similar methodologies, and 3) it is therefore more cost-efficient; the additional costs would not
compensate the potential benefits of a more detailed evaluation, owing to the aforementioned
reasons. Additionally, in Section 8.3, we perform a detailed evaluation of the best model, which
shows the strengths and weaknesses of our conversational agent in depth.
Table 6 shows the results of the comparison of the models, combined in all the languages.

Additionally, Tables 7, 8, 9 and 10 show these results divided by language; in English, Spanish,
French and Norwegian, respectively. Binomial tests of significance were carried out in the global
comparison of the models shown in Table 6, since it contains more samples and it is therefore more
appropriate. The p-value was computed taking into account only the decisive comparisons: A is
better versus B is better.

Table 6. Results of the pairwise response quality evaluation combined in the four target languages. Models
in bold indicate that they are significantly better than their counterpart (p<0.05).

Model A Model B Neither A nor B A is better B is better Both A and B

BL BL+SC 17.50 26.25 30.00 26.25
BL BL+PH 18.75 27.81 28.38 24.06
BL FM 17.81 24.38 35.00 22.81
FM FM+RR 20.63 18.75 31.56 29.06
FM+RR FM+WDH 17.50 21.88 31.87 28.75
FM+WDH GT 7.50 19.06 50.94 22.50

Table 7. Results of the pairwise response quality evaluation in English.

Model A Model B Neither A nor B A is better B is better Both A and B

BL BL small 12.50 41.25 17.50 28.75

BL BL+SC 11.25 33.75 23.75 31.25
BL BL+PH 12.50 27.50 30.00 30.00
BL FM 11.25 21.25 32.50 35.00
FM FM+RR 13.75 13.75 38.75 33.75
FM+RR FM+WDH 13.75 25.00 32.50 28.75
FM+WDH GT 10.00 30.00 42.50 17.50

In general, the obtained results are coherent with our proposal and with the automatic evaluation,
especially with the next utterance classification accuracy. While only including one of the proposed
embeddings to control the dialogue not always results on a better model according to this evaluation,
including both significantly improves the quality of the responses compare to the baseline. The
effect of the reranking using just the GPT2 score is particularly interesting. Even if, in general,
it is significantly better than not using it, there are some difference if we compare the results
across languages. It improves the quality of the responses in English the most, followed by French
and Spanish. In Norwegian slightly worsens the quality of the responses. This could be closely
related to the next utterance classification accuracy, which was shown in Table 4. In English the
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Table 8. Results of the pairwise response quality evaluation in Spanish.

Model A Model B Neither A nor B A is better B is better Both A and B

BL BL no pretraining 26.25 37.50 18.75 17.50

BL BL+SC 13.75 20.00 32.50 33.75
BL BL+PH 13.75 31.25 30.00 25.00
BL FM 16.25 23.75 33.75 26.25
FM FM+RR 18.75 20.00 31.25 30.00
FM+RR FM+WDH 15.00 26.25 33.75 25.00
FM+WDH GT 5.00 10.00 52.50 32.50

Table 9. Results of the pairwise response quality evaluation in French.

Model A Model B Neither A nor B A is better B is better Both A and B

BL BL+SC 22.50 27.50 25.00 25.00
BL BL+PH 23.75 23.75 26.25 26.25
BL FM 22.50 30.00 36.25 11.25
FM FM+RR 25.00 13.75 36.25 25.00
FM+RR FM+WDH 15.00 17.50 31.25 36.25
FM+WDH GT 3.75 22.50 60.00 13.75

Table 10. Results of the pairwise response quality evaluation in Norwegian.

Model A Model B Neither A nor B A is better B is better Both A and B

BL BL+SC 22.50 23.75 38.75 15.00
BL BL+PH 25.00 28.75 31.25 15.00
BL FM 21.25 22.50 37.50 18.75
FM FM+RR 25.00 27.50 20.0 27.50
FM+RR FM+WDH 26.25 18.75 30.00 25.00
FM+WDH GT 11.25 13.75 48.75 26.25

next utterance accuracy is the highest of all languages, and therefore the model selects candidates 
with are often closer to what a human would select. Then French and Spanish are next, and so 
their improvement is not as big as in the English model in this case. Finally, the worst accuracy is 
obtained in Norwegian, which may well indicate that the GPT2 score by itself is not reliable to 
successfully select good candidates. Moreover, if we now focus on the influence of adding the WDH 
score instead of using only the GPT2 score, we can see that it consistently improves the quality 
of the responses. This definitely makes sense since it already showed an improvement in terms 
of next utterance accuracy, as shown in Figure 5. However, it is important to remark that in this 
case the reranking is carried out over a set of model-generated candidates, while in the previous 
study of the next utterance accuracy the candidates where human responses from the corpus. This 
indicates that the WDH system is robust no matter the nature of the candidates. Finally, our full 
proposal (FM+WDH) was compared with the ground truth responses of the corpus. As expected, 
the ground truth significantly outperforms our model in all the languages. However, the margin in
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English is remarkably small, which shows that a better pretraining is key to develop end-to-end
dialogue models.

In this regard, an additional comparison was carried out to measure the effect of not pretraining
the baseline model in Spanish (first row in Table 8). It underlines the fact that a pretrained language
model is essential to enhance the posterior performance of the dialogue model. A similar study
was carried out in English. In this case, we compared the small and medium pretrained GPT2
architectures (first row in Table 7). The medium architecture showed its superiority, as it has done
in many other NLP tasks [80]. We were not able to pretrain medium models for the other languages
due to the lack of computational and corpus resources.

8.3 Human interaction evaluation
Let us introduce the results of the human interaction with the FM+WDH system. The same four
evaluators per language that carried out the evaluation of the responses were the ones interacting
with the system. Additionally, some of the non-English evaluators but fluent in English also tested
the English system. Thus, the English system was evaluated by 12 experts, and the rest of the
systems by 4. Each evaluator carried out two dialogues with the corresponding system, first the
introductory dialogue into coaching, and afterwards the first part of a GROW nutrition session.
On average, the dialogues were 40 turns long (20 user turns + 20 system turns). This value was
controlled via the dialogue phase embeddings. After interacting in the two scenarios, the evaluators
filled the aforementioned CUQ and HFQ questionnaires (Appendix C). Table 11 shows the mean
and standard deviation of the score achieved in these two questionnaires, divided per language.

Table 11. CUQ and HFQ mean scores (and standard deviation), divided per language.

Language CUQ score HFQ score

English 69.1 (12.9) 63.1 (18.0)
Spanish 62.1 (11.0) 62.5 (13.8)
French 68.7 (6.6) 61.9 (11.2)
Norwegian 39.1 (11.1) 43.8 (11.8)

The English, Spanish and French models achieved a score higher than 50 in both tests, which
means that on average the evaluators tended to agree on the positive aspects of the system and
disagree on the negative ones. On the contrary, this was not the case for the Norwegian system,
which shows that there is still a significant performance gap to be closed for systems in languages
with very few resources. The English model achieved the best results once again, but interestingly
enough, the French and Spanish models were unexpectedly close in terms of HFQ score, and the
French one was very close in the CUQ score too. This might be due to the fact that the pretraining
of the GPT2 models affects mostly on the candidate generation stage, whereas the WDH system
is only (except the turn embeddings) learnt on our coaching corpus. The WDH reranking is a
key aspect on the whole pipeline, since it is the main responsible of keeping coherence in the
dialogue, which greatly influence the user experience. This is even more important when dealing
with coaching dialogues where the long-term strategy is so valuable. Thus, we hypothesize that
future improvements in this direction would result in more structured, and therefore better rated,
dialogues. In the case of the Norwegian, however, themain issuemight be that, overall, the generated
candidates lack quality due to the worse pretraining of the GPT2 generative model. If this were the
case, improving the quality of multilingual transformers or a better pretraining in low resource
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languages would be essential to improve the usability and emotional influence of this kind of
models in the future.

Let us now focus on the specific answers of each questionnaire. Figures 6 and 7 shows the average
results and their standard deviation for each question in the CUQ and HFQ, respectively. The values
have been computed with the combination of the questionnaires in the four target languages.

Fig. 6. Results of the Chatbot Usability Questionnaire.

Fig. 7. Results of the Hedonic Feelings Questionnaire.

As for the usability, the responses to questions ranging from CUQ-3 to CUQ-6 indicate that the 
dialogue system presents itself correctly and that indicates well its purpose. More exactly, this 
means that the user understands that a session of coaching is about to be carried out, and that 
to this end they will first talk about the user’s hobbies before getting into the nutrition GROW 
session. Responses to CUQ-7, CUQ-8, CUQ-15 and CUQ-16 indicate that the interaction with the 
system is rather simple and easy, which is an important point for future interactions with real 
users. In general, the performance is not that great in terms of understanding the user and acting 
accordingly, as reflected in the results of questions from CUQ-9 to CUQ-12. In this regard, it is 
important to recall that the proposed methodology does not make use of any explicit knowledge 
representation like entities, ontologies or dialogue acts. It purely learns from the text transcription 
of dialogues. This makes possible to develop a dialogue system in an easier and more affordable 
way, but it also has its limitations. The systems is less likely to react to user turns that contain some 
relevant information than if a Natural Language Understanding module was used, for example. 
CUQ-13 and CUQ-14 refer to the ability of the system to recover from errors. It seems that the 
system can recover from errors sometimes, but that other times it fails to do so. This is definitely
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an interesting and open topic of research, and we plan to use the WDH system to detect dialogue
breakdowns, and avoid them if possible. Finally, responses to CUQ-1 and CUQ-2 indicate that the
system is engaging to some degree, but that it is also quite robotic.
On the other hand, the HFQ provides useful information to measure the potential impact the

system may have on the user, at least short-term. Very importantly, experts strongly agree that
the interaction with the system is neither depressing nor stressful (HFQ-8 and HFQ-10). This is
a good starting point, because at least the system does not seem to give rise to very negative
feelings. It does not seem to be boring either (HFQ-2). On the other hand, the HFQ also reveals
that there is much progress to be done, since the system could be much more stimulant (HFQ-7).
Coaching is about stimulating the user in order to help them to achieve their own goals. Thus we
would really like to improve in this aspect. Nonetheless, experts do not think the communication is
not stimulant either, which also means are not completely away from our objective. Apart from
this, experts feel the system is quite innovative (HFQ-3) and do not agree nor disagree on the fact
that the communication with system is extraordinary (HFQ-1), disappointing (HFQ-4), thrilling
(HFQ-5), trivial (HFQ-6) or reassuring (HFQ-9). Being able to produce dialogues even more coherent
long-term would likely result on improvements on these aspects.

In summary, these result indicate that, in general, our proposals are heading in the right direction,
but also that improvements are probably needed to systematically use our coaching system with
end users.

9 THE WDH SYSTEM AS A TOOL TO EXPLAIN THE BEHAVIOUR OF THE
CONVERSATIONAL AGENT

The WDH system has shown to improve the response quality of the system by integrating the
whole dialogue history into the decision making stage. Additionally, it can also be a powerful tool
understand on what basis these decisions have been taken. In this section we will first analyse the
distribution of turn embeddings in the low dimensional space. This can help us understand how
the turns are clustered, and intuitively validate those, also by comparing them to dialogue acts.
Additionally, we will arrange the clusters and dialogue acts into graphs to visualize the paths the
system is more likely to take and understand why. Moreover, we believe this kind of analysis could
be taken one step beyond, and use it not only to analyse but also to improve the behaviour of the
system. We leave this interesting research topic for future work.

9.1 Low dimensional turn embedding space
In all the presented experiments the low-dimensional turn embedding space has been of size 5.
Empirically, it has been a good choice to provide interesting results and to make the WDH work.
However, we can also choose to convert the high dimensional turn embeddings into bidimensional,
and therefore visualizable, vectors. While this can be done by projecting the 5 dimensional vectors
into two dimensions with another dimension reduction technique, we have opted to train a second
supervised autoencoder. We believe that this way the distribution of the points (system turns) in
the bidimensional space should be more similar to the one in the 5 dimensional one.
For example, this way we can see the clusters the turns are grouped in. We have shown this

distribution back in Section 4, in Figure 1. There, the number of clusters is 20, lower than the
actual 60 used in our experiments, for the sake of clarity. They correspond to the English version
of the corpus. In that figure some turns that have been grouped together have been highlighted.
This manual inspection already suggests that turns clustered together share semantic information.
Additionally, much more patterns can easily be detected. For instance, we can also group the system
turns according to the scenario or dialogue phase they belong, as shown in Figure 8.
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(a) Scenario. (b) Dialogue phase.

Fig. 8. Bidimensional turn embeddings grouped by the scenario and dialogue phase they belong to.

The groups in this case make a lot of sense. For instance, we can see that the systems turns 
corresponding to the two scenarios are well separated. Nonetheless, there are two areas where these 
are much closer. If we check the dialogue phase distribution, we see that these areas correspond to 
the first and last dialogue phases. This seems very much reasonable, because the greetings and the 
goodbyes are similar in both scenarios, or at least much less different than the rest of the system 
turns.

There are also other properties of the corpus that become visible in this space. For example, we 
can take advantage of our corpus being labeled [99], even if we have not been used this labels at 
any stage of the development of the dialogue system. We can check the distribution of the turns 
according to their labels. This is shown in Figure 9.

For sake of simplicity, we are only showing the turns corresponding to a subset of the labels, and 
some labels have been merged for a better visualization (some different types of questions about 
nutrition are merged into just Nutrition question, for example). For example, Figure 9 shows that the 
turns labeled as Hello are placed in the same place as the ones corresponding to the first dialogue 
phase, and the same applies for the Goodbye and the last dialogue phase turns. Turns labeled as 
System introduction occupy the same space than the introductory scenario turns of the first and 
second dialogue phase, suggesting that, in fact, the system presents itself at the beginning of the 
first scenario. Travelling and Music/hobbies are very close in the bidimensional space, roughly in 
the place of the second and third phase of the introductory scenario. These are actually two of the 
topics the system usually covers to make the user feel more comfortable.
In the right hand side of the space we can find the turns categorized as Objective and Nutrition 

question, which clearly correspond to the GROW session about nutrition. They seem to be in a 
very similar region. This could be due to the dimension reduction being too drastic, and they could 
perfectly be better separated in a higher dimensional space. Additionally, the Nutrition question 
turns seem to be a bit more widespread than the Objective. This is coherent with the GROW 
coaching strategy: the system asks questions about nutrition in many situations, but only focuses 
on the objective once the user has confirmed that there is in fact something they would like to 
achieve.
There are also turns labeled as Confirmation, which are to be found all over the place in both 

scenarios. This definitely makes sense; the system may have to confirm whatever the user asks at 
any point. Finally, we have Change topic turns, which are located in both scenarios but only in a
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Fig. 9. Bidimensional turn embeddings divided according to the dialogue act labels.

few areas. These correspond to utterances where the system and the user finish talking about a
given topic, and the system or the user suggest a new one.

9.2 Clustering as an unsupervised way of learning dialogue acts
The fact that this low dimensional turn embedding space is so structured also validates the proposed
methodology from a more intuitive point of view: if the turns that are close in the low dimensional
space share semantic information, can often be labeled with the same dialogue act and are used in
similar situations in the dialogue, then the resulting clusters should also represent that information.
Therefore, might clustering be considered an unsupervised way of learning dialogue acts to a certain
extent? To answer this question, we perform dialogue act classifications from turn embeddings
and from cluster indexes. If clusters act as unsupervised dialogue acts, both classifications should
produce similar or at least comparable results.
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To this end, we employed a bigger set of dialogue acts than the shown in Figure 9. For example,
the Nutrition question label was subdivided Motivational question, Resources or Obstacles question,
and so on. As a result, a set of 26 dialogue acts were finally used as the classification targets. These
are listed and described in Appendix D. We perform three series of experiments. First, we attempt
the dialogue act classification task from turn embeddings, via a simple two-layer feed forward
neural network. Second, we do the same, but from the low dimensional embeddings, which were as
the input to the clustering method in order to avoid the curse of dimensionality issue, as mentioned
back in Section 6.2. Thus the comparison might be more fair, since the clustering module and the
classifier will have exactly the same input. Third, we try to predict the dialogue act only from the
cluster a system turn has been assigned to. To do so, we learn a mapping from cluster indexes to
dialogue acts in the training partition of the corpus, applying a (multi-start) local search heuristic
optimization to maximize the F1 score. Specifically, a first improvement heuristic was employed,
and two mappings were considered neighbors if and only if they only differed in one value, i.e. if
one and only one cluster was mapped to a different dialogue act. Table 12 shows the F1 scores of
the three classification methods in the test partition of the corpus in the four target languages.

Table 12. F1 scores of the three classification methods in the test partition of the corpus in the four target
languages.

F1 Score at dialogue act classification English Spanish French Norwegian

From turn embeddings 0.505 0.498 0.483 0.473
From dimensionally reduced turn embeddings 0.328 0.293 0.299 0.292
From cluster index 0.287 0.279 0.285 0.285

In general terms, the F1 scores are reasonable, considering that this challenging task involves a 
classification between 26 quite imbalanced classes, where the majority class is around 26.4 more 
frequent than the minority class. Mind that a random classifier obtains an F1 score of around 
0.03. It can be seen that the results follow the same pattern across the four languages. The best 
results are achieved, as expected, with the whole turn embeddings. Then the F1 score drops around 
two tenths if the lower dimensional embeddings are used. However, interestingly, the difference 
between the classification from the low dimensional turn embeddings and from the cluster indexes 
is rather marginal. This comparison is very important, since both algorithms takes as input the same 
dimensionally reduced embeddings. Therefore, it seems that clustering is able to extract almost the 
same information about dialogue acts from those embeddings than a classifier trained specifically 
to do so. Thus, it seems reasonable to say that, indeed, clustering works as an unsupervised way of 
learning dialogue acts. At least, there seems to be a strong correlation between the learnt clusters 
and the dialogue acts.

In order to gain a deeper insight into this correlation, it is specially interesting to analyze how the 
F1 score of the cluster to dialogue mapping changes with respect to the number of clusters. This is 
shown in the Figure 14 in Appendix B, it is the purple line in the plot. The F1 score grows a lot from 
10 clusters to 50, but from 60 clusters on it stabilizes. Thus, the optimal number of clusters (around 
60), is quite higher than the number of dialogue acts, the double approximately. This indicates that 
if the number of clusters is too low, some of the clusters will contain turns with many different 
dialogue acts. After splitting them, when the optimal number of clusters is reached, there will be 
multiple clusters mapped to the same dialogue act. The turns within these clusters will probably 
differ in the context they are used: since the low-dimensional turn embeddings are learnt in a way 
that they contain information about the scenario and the dialogue phase, it might happen that the
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clustering makes some distinctions where the dialogue acts do not. For example, if we consider the
system turns “I understand that you have a healthy eating routine" and “I understand, you really love
travelling", it may perfectly happen that they are assigned to different clusters, one that contains
mainly similar sentences about nutrition and the other one into a cluster more related to travelling
or to the introductory scenario. However, regarding the dialogue act, both would be labeled as I
understand. Last, if we increase the number of clusters even more, the F1 score does not notably
change anymore. This is probably due to some clusters being divided, but then they being mapped
to the same dialogue act. Thus, the classification results are very similar.

9.3 Cluster and dialogue act dynamics

Fig. 10. A graph where nodes represent clusters, and their colors the scenario of the turns they gather.

This relation between dialogue acts and clusters is also visible if we analyse the dialogue flow.
This can be done by arranging the clusters or dialogue acts into a graph that shows the number of
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Fig. 11. A graph of dialogue acts, coloured according to the scenario they were used in.

transitions between each of them. We show such graphs for clusters in Figures 10 and 12, and for 
dialogue acts in Figures 11 and 13. These have been built with the English version of the corpus. In 
all the diagrams, the node -1 is the source, i.e. the nodes that come after it represent the cluster/act 
of the first system utterance in dialogue. On the other side, the node -2 is a sink; it represents the 
end of a dialogue. To keep the graphs as informative as possible, we skip some minor transitions: 
we do not show edges that correspond to less than the five percent of the total transitions from a 
cluster/act to another. This is the reason why some nodes have no edges in their direction in the 
figures.

In Figure 10, the clusters have been coloured according to the scenario of the turns they gather. 
The browner nodes refer to clusters that mainly contain turns used in the introductory scenario. 
Alternatively, the greener ones correspond to clusters related with the GROW session about 
nutrition. The same color scheme has been applied in Figure 11, but for dialogue acts. If we focus 
on Figure 10, it is interesting that, while most of the clusters are one-sided, there are some few 
that share introductory and nutrition turns. These often include generic turns like confirmations 
or backchannels. In general, we can see that the graph can be split into two major regions: the 
browner one that corresponds to introductory dialogues, and a greener one which unravels the 
structure of the coaching sessions about nutrition. The two regions merge almost exclusively at the 
end of the dialogues, when the system bids farewell to the user. However, the dialogue act graph 
in Figure 11 is not so split. Even though there are many dialogue acts that clearly correspond to 
one scenario, many others are colored in white, such as, Thanking, I understand, Neg. feedback or 
Clarify. As aforementioned, the clusters corresponding to these acts have probably been broken 
into several different clusters. Another dialogue act that is probably divided into many clusters is
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Fig. 12. A graph where nodes represent clusters, and their colors the dialogue phase of the turns they gather.

Current situation, which is a very central node in the graph, meaning that it is used in different
contexts. This makes sense, since it is necessary to analyse the user’s current situation in order to
establish a goal and carry out the coaching session accordingly.
On the other hand, the graphs shown in Figures 12 and 13, where the nodes are coloured in

terms of the dialogue phase, show similar patterns. For example, in this case we can deduce that the
Topic label has also been divided into multiple clusters. On the one hand it is colored in blue/green
which means that it contains many turns used when the dialogue is quite advanced; but there is
also a an arrow from -1 to it, denoting that there are many dialogues that start with that dialogue
act. This really makes sense, because the Topic dialogue act groups utterances that open, close or
choose a new topic. This distinction has probably been learnt in the clustering, but is not shown in
the dialogue act graph.
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Fig. 13. A graph of dialogue acts, coloured according to the dialogue phase they were used in.

10 DISCUSSION OF FINDINGS AND IMPLICATIONS
Let us summarize the most notable findings of our research and their implications on developing 
intelligent conversational agents.
Bridging the gap between state-of-the-art Artificial Intelligence techniques and current coaching 

models. If we compare the dialogue technologies used in coaching agents found in the literature 
and the market and the ones employed in the most novel and prominent chatbots, there is a big 
disparity. This is valid for most of the health-care related conversational systems too. In a nutshell, 
professional dialogue strategies in health-care related conversational agents are often implemented, 
at least partially, via hand-crafted policies. On the other hand, state-of-the-art dialogue models 
are fully data driven, and thus do not require carefully designed policies, these are learnt from the 
data. In this work we have shown that it is possible to adapt and modify these novel technologies 
to develop complex coaching conversations. This provides mayor benefits. First, explicit expert 
knowledge does not need to be provided to develop such conversational agents, which definitely 
simplifies the whole process of building them. Second, general purpose neural dialogue models 
such as GPT2, which form the base of our conversational agent, have shown extraordinary abilities 
to learn and generalize for many tasks. Thus, the resulting dialogue models might potentially 
perform better than rule-based models, which can only work for a limited amount of domains and 
situations. Nonetheless, there are still limitations to this attractive approach. Its main drawback is 
a consequence of the models being fully data driven. It may happen that, for instance, the system 
makes an error at some point in the dialogue, as a result of a non-completely successful training; or 
there might also be some inconsistencies with the name entities, because the system is not able to 
automatically coherently keep track of them. While those errors could be solved in a rule-based
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system easily, they have no direct solution in a fully data driven model. Our proposals help alleviate
this issue by enhancing coherent responses, but they do not ensure errors will not happen. However,
we believe that we are in the point where the aforementioned benefits start to compensate these
limitations; where the ease of building the systems and their better and more general responses
make some minor errors affordable. Thus, we foresee that more and more coaching agents, and
intelligent conversational agents in general, will adapt methodologies similar to the ones presented
here.
These methodologies are mostly ready for multilingual conversational systems. Not only do we

reckon that the time for end-to-end conversational agents has already arrived, but we also think
that this holds for models in many languages other than English. Additionally, the fact that our
models in English, Spanish, French and Norwegian require just the same engineering effort is also
encouraging. In contrast, classical modular dialogue systems require the development of some very
language dependent modules, such as the Natural Language Understanding or Natural Language
Generation modules, which often multiply the effort needed to develop the conversational system
in an additional language. In our case, the only limitation is the pretraining step of the generative
model. In this regard, we have shown that pretraining the GPT2 model on languages like French
or Spanish with open domain corpora such as OpenSubtitles or Wikipedia leads to only slightly
worse results than the ones obtained with the official pretrained English model. However, the
experts evaluated the Norwegian system much poorer, due to less data being available for the
pretraining. In any case, with more and more research targeting non-English languages, we believe
that the difference in performance of conversational agents and other NLP models in English and
in other languages will rapidly attenuate in the near future, and that therefore language-agnostic
approaches like ours will gain popularity and perform even better.

Our work and proposals are general; they can be applied in many other tasks and contexts. We will
now discuss our two main methodological contributions, but first we would like to remark that,
even though they aim at improving the performance and coherence of a coaching model, they are
also valid when developing end-to-end dialogue systems for many other applications. On the one
hand, the scenario embeddings allow generative models to select which scenario or they should
carry out, which can come out handy in any multi-task set up. On the other hand, the dialogue
phase embeddings and the WDH system permit to model and improve the long-term structure
of the dialogue. This can be beneficial for almost every dialogue system, from task-oriented to
even open-domain, since all of them need to be coherent long-term. In fact, open-domain dialogues
or chit-chatting have traditionally been treated as completely unstructured, but there are always
underlying phases, even in open social dialogues [32].

Improved response generation by conditioning the generative network using scenario and dialogue
phase embeddings. Our first methodological contribution are the scenario and dialogue phase
embeddings. Learning these kind of embeddings are very simple and very flexible too. As afore-
mentioned, scenario embeddings could be used in multi-task or multi-domain environments, which
have recently gained a lot of interest from the dialogue community [25, 82]. Apart from enabling
the use of a single system for all the domains, the learnt embeddings could also provide information
about each task and serve as a tool for comparing them. We have not carried out such analysis in
this work because there are only two domains in our corpus, but studies in other corpora could
be a direction for future work. As for the dialogue phase embeddings, for the moment we have
predefined when a dialogue phase starts and when it ends, based on a manual inspection of our
data. However, we believe that this approach could be further enhanced, probably with mechanisms
that learn the beginning and the end of a phase in a unsupervised way. We think that the WDH
system could be useful to this end.
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Improved long-term coherence via the WDH system and unsupervised dialogue act learning. The
proposedWDH system has shown a great potential. It has improved the performance of our baseline
models in automatic and human evaluation in the four target languages, showing that dialogue
models actually require long-term context information to keep more coherent conversations. Not
only that, we have also analysed the clustering process inside this long-term context system, and a
strong correlation with dialogue acts has been found. More precisely, as the experiments carried out
in Section 9.2 indicate, the clusters the system turns have been grouped in share to a certain extent
the dialogue act they were assigned in a manual labeling. In other words, clustering system turns
and then mapping the corresponding cluster into a dialogue act is almost as effective as directly
applying supervised learning from the low-dimensional turn embeddings, and not exceedingly
worse than classifying the whole turn embedding. Thus, we hypothesize that building a similar
system that uses dialogue acts would not outperform our proposal by a big margin. This is a big
deal, since many conversational agents rely on dialogue act representations, which involve costly
and time-consuming annotations. We hope that our efforts to find alternatives will trigger other
researchers’ interest on alternative (and potentially unsupervised) turn representations, which
could simplify the process of building and designing conversational systems. On the other hand, the
main downside of not employing explicit turn representations like dialogue acts or name entities is
the potential external control over the system is reduced, i.e., it is harder to explicitly manipulate
the behaviour of the system in the case this was necessary in some application. We plan to research
on this subject in the future, with the goal that end-to-end conversational agents will be more
reliable and robust in the future. We might investigate methodologies that make use of the proposed
WDH system to this end. We have already shown that it can be used to visualize many patterns
that appear in our data and to better understand why the system might prefer some candidates
over others. We hypothesize that there might be some way to use this information explicitly to
tweak the dialogue in some way.

11 CONCLUSION
We have presented an end-to-end neural coaching model capable of learning to carry out coaching
sessions in English, Spanish, French and Norwegian. Automatic and human evaluation have shown
that our proposals to enhance the long-term structure improve the baseline model in all the
languages. The evaluation of the experts’ interaction with the system reveals that its performance is
rather good in terms of usability and the emotions it may provoke on the users. However, this only
holds for the English, Spanish and French systems. In the case of the Norwegian one, the results
are much poorer, to the worse pretraining of that model. Additionally, even though the evaluations
in the rest of the languages show acceptable results, this does not mean that our system is perfectly
ready to be used in real environments. The system still makes some errors and does not always
provide completely coherent responses. We plan to investigate how to use the turn representations
learnt by the clustering in the WDH system to explicitly correct some of the most consistent errors.
In any case, we hope that our ideas can be helpful for other researches and encourage them to
apply state-of-the-art dialogue modelling techniques in healthcare and well-being. Moreover, since
our proposals are general and can be applied in most dialogue tasks, we also expect that many
others can benefit from our work, and adopt similar approaches to improve the behaviour of their
dialogue systems.
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A CLUSTER SEQUENCE MODELING RESULTS
Table 13 shows a the results of the cluster modeling task. The accuracy and top N accuracy (with
N=3) on the test set are shown for each language. The GRU and three N gram models are compared.

Table 13. Accuracy and top N accuracy (with N=3) obtained by the cluster sequence modeling models across
the four languages on the test set.

English Spanish French Norwegian
Acc. Top N acc. Acc. Top N acc. Acc. Top N acc. Acc. Top N acc.

GRU 0.350 0.581 0.346 0.567 0.327 0.592 0.356 0.616
Bigrams 0.243 0.479 0.247 0.475 0.248 0.535 0.231 0.522
Trigrams 0.183 0.352 0.188 0.376 0.177 0.413 0.173 0.396
4-grams 0.147 0.304 0.155 0.299 0.151 0.349 0.146 0.323

B THE INFLUENCE OF THE NUMBER OF CLUSTERS
The number of clusters was set to 60 in the K-Means algorithm. Let us show the relation of the 
selected number of clusters and the number of turns per cluster, the WDH system’s accuracy 
at the next utterance classification task and the F1 score at dialogue act classification from the 
cluster index. In order to analyse how balanced the number of turns per cluster is, we computed 
its coefficient of variation (the ratio of the standard deviation to the mean). A lower coefficient of 
variation implies that the clusters are more balanced, i.e., that they include a more similar number 
of turns each; whereas larger values indicate that some clusters are very populated while others 
contain very few turns inside. Lower values are therefore preferred, since they should allow a 
better modeling of the cluster flow, as this data set would be more balanced. More information 
on how the next utterance classification accuracy and the F1 score of dialogue act classification 
from clusters are computed can be found at Sections 7.4 and 9.2, respectively. Figure 14 shows the 
influence of the number of clusters for these metrics. For simplicity, we only show the results of 
these experiment in English, but they follow a similar tendency in all the versions of the corpus. 
The metrics were obtained on the test partition.
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https://doi.org/10.1145/233269.233324


A multilingual neural coaching model

Fig. 14. Different metrics in terms of the selected number of clusters. On top, the coefficient of variation of
the number of turns per cluster. At the bottom, the next utterance classification accuracy in blue (the scale is
on the left), and the F1 score of dialogue act classification from clusters in purple (the scale is on the right).

Regarding the coefficient of variation of the number of turns per cluster, there seem to be a first
and very notorious local minimum at around 25-30 clusters. Then the values go up at 40 clusters
and they are reduced again, even though slightly at around 60-70 clusters. We decided to select
60 instead of 25 or 30 due to the behaviour of the other metrics. The F1 score of dialogue act
classification from clusters gets better as the number of clusters increase. However, this metric
stabilizes at around 50-60 clusters, and it does not improve significantly from there on. Last, the
next utterance classification accuracy is the noisiest metric. Anyway, it can be seen that it is worse
with less clusters (10-30), and then it improves after 40, with the maximum at 60. Thus we believe
that the choice of 60 clusters represents a good balance between all these metrics.

C QUESTIONNAIRES
Tables 14 and 15 show the Chatbot Usability Questionnaire and the Hedonic Feelings Questionnaire,
respectively.
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Table 14. Chatbot Usability Questionnaire.

Question code Question

CUQ-1 The chatbot’s personality was realistic and engaging.
CUQ-2 The chatbot seemed too robotic.
CUQ-3 The chatbot was welcoming during initial setup.
CUQ-4 The chatbot seemed very unfriendly.
CUQ-5 The chatbot explained its scope and purpose well.
CUQ-6 The chatbot gave no indication as to its purpose.
CUQ-7 The chatbot was easy to navigate.
CUQ-8 It would be easy to get confused when using the chatbot.
CUQ-9 The chatbot understood me well.
CUQ-10 The chatbot failed to recognise a lot of my inputs.
CUQ-11 Chatbot responses were useful, appropriate and informative.
CUQ-12 Chatbot responses were not relevant.
CUQ-13 The chatbot coped well with any errors or mistakes.
CUQ-14 The chatbot seemed unable to handle any errors.
CUQ-15 The chatbot was very easy to use.
CUQ-16 The chatbot was very complex.

Table 15. Hedonic FeelingsQuestionnaire.

Question code Question

HFQ-1 I think the communication with the agent was extraordinary.
HFQ-2 I think the communication with the agent was boring.
HFQ-3 I think the communication with the agent was innovative.
HFQ-4 I think the communication with the agent was disappointing.
HFQ-5 I think the communication with the agent was thrilling.
HFQ-6 I think the communication with the agent was trivial.
HFQ-7 I think the communication with the agent was stimulant.
HFQ-8 I think the communication with the agent was depressing.
HFQ-9 I think the communication with the agent was reassuring.
HFQ-10 I think the communication with the agent was stressful.

D THE SET OF DIALOGUE ACTS
The dialogue acts employed to perform the dialogue act classification in Section 9.2 and the analysis
of the dialogue flow in Section 9.3 are shown in Table 16.
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Table 16. Dialogue acts and their abbreviations.

Dialogue act Description

Hello Hello, salutation.
Ask name Ask about the user’s name and spelling.
Patience request Patience request.
Self-intro The system presents itself.
Know coaching? Ask about the user’s knowledge about coaching.
Echo Repeat something said by the user, to transmit empathy and understanding.
Open Q An open question about the user.
Yes/no Q A yes/no question about the user.
Music A question/statement about music.
Travel A question/statement about travelling.
Other hobbies A question/statement about a hobby that is not music nor travelling.
I understand Explicitly tell the user that their message has been understood.
Clarify Ask for a clarification.
Neg feedback Disagree with the user or show a negative/non-positive opinion.
Pos feedback Show a positive opinion.
Agreement Agree with the user.
Topic Open, close or choose a new topic.
Current situation Questions about the current situation of the user regarding their goal.
GSQ-IS Goal Setting Question - Ideal Situation. Ask the user which would be the

ideal situation in connection with their goal
GSQ-Obj Goal Setting Question - Objective. Ask the user to define their goal.
MQ Motivational Question.
ORQ Obstacles/Resources Question. Questions to find out which obstacles that

hinder the achievement of the goal, and the possible resources to overcome
them.

PAQ Plan Action Question. Question to define a plan that brings the user closer
to their objective.

Thanking Thank the user.
Farewell Say goodbye.
Other A system turn that was not classifiable as any of the aforementioned dia-

logue acts.
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