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Abstract: In this paper, we prove the fixed-point theorem for rational contractive mapping on
r-metric space. Additionally, an Euclidean metric space with a binary relation example and an
application to the first-order boundary value problem are given. Moreover, the obtained results
generalize and extend some of the well-known results in the literature.
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1. Introduction

In 1922, the classical Banach contraction principle [1] made many inferences including
the existence of fixed points for contractive mapping. The Banach contraction principle
has extended and established in various metric space settings. Among these extended
versions, Alam and Imdad [2,3] formulated a relation of continuity contraction and com-
pleteness on the theoretical analogues of the standard metric space notion. Furthermore,
Ahmadullah et al. [4] and Boyd-Wong [5] extended their fixed-point theorems on nonlinear
contraction mappings. On the other hand, Senapati and Dey [6] and many other authors
have improved the notion of w-distance in relational metric space with an arbitrary binary
relation. Ali, Imdad and Sessa [7] proved fixed-point theorems on r-complete regular
symmetric spaces. Alam, George, Imdad and Hasanuzzaman [8] proved fixed-point the-
orems for nonexpansive mappings under binary relations. Javed, Arshad, Baazeem and
Nabil [9] proved fixed-point theorems on r-complete metric spaces. Faruk, Ahmad Khan,
Haq Khan and Alam [10] proved fixed-point theorems for generalized nonlinear contrac-
tions involving a new pair of auxiliary functions in a metric space endowed with a locally
finitely T-transitive binary relation. Samet et al. [11] introduced the notion of α-admissible
mappings and reported metric fixed-point results in Kannan contraction mappings. Hereby,
many authors have extended and unified most of the results in metric fixed points in these
mappings (as can be seen, e.g., in [12–15]). Several generalizations of the contraction map-
ping principle have been established since then by various mathematicians, resulting in an
abundance of fixed-point theorems in metric spaces, which has continued until today. The
fixed-point theorem relates to an arbitrary mapping from 1975 and 1976. Gopi Prasad [16]
discussed the fixed points of Kannan contractive mappings in relational metric space.
Fixed-point theorems in relational metric spaces with an application to boundary value
problems was discussed by Gopi Prasad et al. [17]. Numerous researchers have conducted
research on metric spaces for a number of years in an effort to obtain new extensions of
the well-known boundary value problem. Many other researchers are focusing on several
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metric spaces during several years (as can be seen in [18–25]). In this paper, we prove the
fixed-point theorem for rational contractive mapping on r-metric space.

2. Preliminaries

Let us begin this section with some basic definitions, propositions and related theorems
on metrical notions. Here, r denotes a non-void binary relation (briefly, BR), N represents
a set of natural numbers and N0 indicates a set of whole numbers (that is N0 = N∪ {0}).

Definition 1 ([2]). Let Ψ be a non-void set under r on Ψ and be defined as a subset of Ψ× Ψ.
Then, we mean that ρ relates $ if and only if (ρ, $) ∈r under r.

Definition 2 ([2]). Let Ψ be a non-void set under r on Ψ and ρ and $ ∈ Ψ. Then, ρ and $ are
said to be r-comparative if (ρ, $) ∈r (or) ($, ρ) ∈r. Let us denote that [ρ, $] ∈r.

Definition 3 ([2]). Let Ψ be a non-void set under r on Ψ.

(1) The dual relation or transpose or inverse of r is r−1 and is defined as r−1 = {(ρ, $) ∈
Ψ2 : ($, ρ) ∈r}.

(2) The BRr of the symmetric closure of rs is defined as the set r∪r−1 (that is rs : =

r∪r−1). In other words, rs is the smallest symmetric relation on Ψ.

Definition 4 ([2]). Let Ψ be a non-void set under r on Ψ. If a sequence {ρσ} ⊂ Ψ is said to be
r-preserving, and if (ρσ, ρσ+1) ∈r for all σ ∈ N0.

Definition 5 ([2]). Let Ψ be a non-void set under r on Ψ and Λ be a self-mapping on Ψ, which is
said to be Λ-closed, if (ρ, $) ∈r⇒ (Λρ, Λ$) ∈r for all ρ, $ ∈ Ψ.

Theorem 1 ([3]). Let Ψ be a non-void set under r on Ψ and Λ be a self-mapping on Ψ. If r is
Λ-closed, then r is also Λσ-closed for all σ ∈ N0, where Λσ denotes the n-th iterate of Λ.

Definition 6 ([3]). Let (Ψ, ψ,r) be a metric space under a r. Then, (Ψ, ψ) is said to be r-
complete, if every r-preserving Cauchy sequence in Ψ converges to a point in Ψ.

Definition 7 ([3]). Let (Ψ, ψ) be a metric space and r is a BR on Ψ and ρ ∈ Ψ. Let Λ be a
self-mapping on Ψ which is said to be r-continuous at ρ; if any r-preserving sequence {ρσ} such

that ρσ
ψ−→ ρ, then Λ(ρσ)

ψ−→ Λ(ρ). Moreover, Λ is called r-continuous if it is r-continuous at
each point of Ψ.

Definition 8 ([3]). Let (Ψ, ψ,r) be a metric space under r. A subset E of Ψ is said to be
r-connected, then there exists a path from ρ to $ in r for all ρ, $ ∈ E .

Definition 9 ([3]). Let Ψ be a non-void set with a binary relation r on Ψ which is said to be
transitive, if (ρ, $), ($, φ) ∈r⇒ (ρ, φ) ∈r, ρ, $, φ ∈ Ψ.

Definition 10 ([26]). Let Ψ be a non-void set under r on Ψ with a pair of points ρ, $ ∈ Ψ. If
there is a finite sequence {φ0, φ1, φ2, ....., φk} ⊂ Ψ such that (φi, φi+1) ∈r and φ0 = ρ, φk = $
for each i(0 ≤ i ≤ k− 1), then this finite sequence is said to be a path of length k from ρ to $ in r.

Let r be a BR and Λ be a self-mapping which is a non-void set on Ψ,

(i) F (Λ) : = the set of all fixed points of Λ;
(ii) Ψ(Λ;r) : = {ρ ∈ Ψ : (ρ, Λρ) ∈r}.

In 1968, Kannan [27] proved the fixed-point theorem on metric space as follows:
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Theorem 2. Let (Ψ, ψ) be a complete metric space and Λ be a self-mapping on Ψ. If Λ is Kannan
contraction, that is, there exists  ∈ [0, 1

2 ) such that

ψ(Λρ, Λ$) ≤ [ψ(ρ, Λρ) + ψ($, Λ$)]

then Λ has a unique fixed point θ ∈ Ψ and for each ρ ∈ Ψ, the sequence of iterates {Λnρ} converges
to θ.

Motivated by the above work, here we prove fixed-point theorems on r-metric space
under rational-type contraction mapping with an application.

3. Main Results

In this section, we first prove the existence of rational contractive mapping on r-metric
spaces. Here, we denote the complete metric space by CM space.

Theorem 3. Let the mapping Λ : Ψ→ Ψ and (Ψ, ψ) be a r-CM space such that

(a) Ψ(Λ,r) is non-void set;
(b) r is Λ-closed;
(c) Λ is r-continuous;
(d) There exists ı,  ∈ [0, 1

2 ) such that

ψ(Λρ, Λ$) ≤ ı
ψ(ρ, Λρ) · ψ($, Λ$)

1 + ψ($, Λ$)
+ ψ(ρ, $),

for all ρ, $ ∈ Ψ with (ρ, $) ∈r and ı +  < 1. Then, there exists ρ ∈ Ψ such that ρ ∈ Λρ.

Proof. Let us assume (a), and choose ρ0 as arbitrary element of Ψ(Λ,r).
Construct a sequence {ρσ} that is

ρσ = Λσ(ρ0) for all σ ∈ N0. (1)

Since (ρ0, Λρ0) ∈r, using Λ-closedness of r and Theorem 1, we have

(Λ1ρ0, Λ2ρ0), (Λ2ρ0, Λ2ρ0), · · · , (Λσρ0, Λσ+1ρ0) ∈r.

So that

(ρσ, ρσ+1) ∈r for all σ ∈ N0. (2)

Then, the sequence {ρσ} is r-preserving.
Let us apply contractive condition (d), we have

ψ(ρσ, ρσ+1) =ψ(Λρσ−1, Λρσ)

≤ı
ψ(ρσ−1, Λρσ−1) · ψ(ρσ, Λρσ)

1 + ψ(ρσ, Λρσ)
+ ψ(ρσ−1, ρσ)

≤ı
ψ(ρσ−1, ρσ) · ψ(ρσ, ρσ+1)

1 + ψ(ρσ, ρσ+1)
+ ψ(ρσ−1, ρσ)

ψ(ρσ, ρσ+1) ≤ı
ψ(ρσ−1, ρσ) · ψ(ρσ, ρσ+1)

1 + ψ(ρσ, ρσ+1)
+ ψ(ρσ−1, ρσ)

ψ(ρσ, ρσ+1) ≤ı
ψ(ρσ−1, ρσ) · ψ(ρσ, ρσ+1)

1 + ψ(ρσ, ρσ+1)
+ ψ(ρσ−1, ρσ)

ψ(ρσ, ρσ+1) ≤(ı + )ψ(ρσ−1, ρσ) for all σ ∈ N0.
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By the inductive process, we obtain

ψ(ρσ, ρσ+1) ≤
(

ı + 

)σ

ψ(ρ0, ρ1). (3)

For any positive integers ς, σ with ς > σ, we have

ψ(ρσ, ρς) ≤ψ(ρσ, ρσ+1) + · · ·+ ψ(ρς−1, ρς)

≤(rσ + · · ·+ rς−1)ψ(ρ0, ρ1), where r = ı + 

≤ rσ

1− r
ψ(ρ0, ρ1),

such that {ρσ} is a Cauchy sequence. Since (Ψ, ψ) is r-CMspace, there exists φ ∈ Ψ; then,

lim
σ→∞

ρσ = φ. (4)

Since Λ is r-continuous, then ρσ+1 = Λρσ
ψ−→ Λρ. Therefore,

Λρ = ρ.

Hence, ρ is a fixed point of Λ.
Suppose that ρ, $ is any two fixed points of Λ. Thus, we have (ρ, $) ∈r (or) ($, ρ) ∈r.

For (ρ, $) ∈r, we have

ψ(ρ, $) =ψ(Λ(ρ), Λ($))

≤ı
ψ(ρ, Λρ) · ψ($, Λ$)

1 + ψ($, Λ$)
+ ψ(ρ, $)

≤ψ(ρ, $)

<ψ(ρ, $),

which is a contradiction. Hence, we must have ρ = $. Similarly, for ($, ρ) ∈ r, we have
ρ = $. Hence, Λ has a unique fixed point.

Example 1. Let Ψ = [0, 3] equipped with a binary relationr = {(0, 0), (0, 1
2 ), (

1
2 , 1), (1, 1), (1, 3

2 ),
( 3

2 , 2), (2, 2), (2, 5
2 ), (

5
2 , 3)} and Euclidean metric ψ2; defined by

ψ((ρ1, ρ2), ($1, $2)) =
√
(ρ1 − $1)2 + (ρ2 − $2)2

then Ψ is a r-complete metric space. Define a function Λ : Ψ→ Ψ such that

Λ(ρ1, ρ2) =

{
(ρ1, 0) if ρ1 ≥ ρ2

(0, ρ2) if ρ1 < ρ2.

We notice that ψ(Λρ, Λ$) ≤ ı ψ(ρ,Λρ)·ψ($,Λ$)
1+ψ($,Λ$)

+ ψ(ρ, $) is not valid if (ρ, $) or ($, ρ) ∈ {(1, 0),
(0, 2)}. As any given ı,  ∈ [0, 1], we have
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ψ(Λ(1, 1), Λ(
3
2

, 2)) <ı
ψ((1, 1)Λ(1, 1)) · ψ(( 3

2 , 2), Λ( 3
2 , 2))

1 + ψ(( 3
2 , 2), Λ( 3

2 , 2))
+ (ψ((1, 1), (

3
2

, 2))

ψ((1, 0), (0, 2)) <ı
ψ((1, 1), (1, 0)) · ψ(( 3

2 , 2), (0, 2))

1 + ψ(( 3
2 , 2), (0, 2))

+ (ψ((1, 1), (
3
2

, 2))

√
5 <ı

3
2

1 + 3
2
+ 
√

5

√
5 <ı

3
5
+ 
√

5.

Thus, Λ does not satisfy the fixed point. Then, our contractive condition holds in (ρ, $) ∈r for all
(ρ, $) ∈r. Similarly, it can be easily verified that Λ is r-continuous.

Thus, Λ is satisfied by all the conditions of the above Theorem 3. Hence, (0, 0) is the fixed
point of Λ and has a unique fixed point.

Theorem 4. Let the mapping Λ : Ψ→ Ψ and (Ψ, ψ) be a r-CM space such that:

(a) Ψ(Λ,r) is non-void set;
(b) r is Λ-closed;
(c) Λ is r-continuous;
(d) There exits ı,  ∈ [0, 1

2 ) such that

ψ(Λρ, Λ$) ≤ ıψ(ρ, $) + [ψ(ρ, Λρ) + ψ($, Λ$)]

for all ρ, $ ∈ Ψ with (ρ, $) ∈r and ı + 2 < 1. Then, Λ has a fixed point.

Proof. Let us assume (a), and choose ρ0 as arbitrary element of Ψ(Λ,r). Construct a
sequence {ρσ} that is

ρσ = Λσ(ρ0) for all σ ∈ N0. (5)

Since (ρ0, Λρ0) ∈r, using Λ-closedness of r and Theorem 1, we have

(Λσ(ρ0), Λσ+1(ρ0)) ∈r.

So that

(ρσ, ρσ+1) ∈r, for all σ ∈ N0. (6)

Then, the sequence {ρσ} is r-preserving. Let us apply the contractive condition

ψ(ρσ, ρσ+1) =ψ(Λρσ−1, Λρσ)

≤ıψ(ρσ−1, ρσ) + [ψ(ρσ−1, Λρσ−1) + ψ(ρσ, Λρσ)]

≤ıψ(ρσ−1, ρσ) + [ψ(ρσ−1, ρσ) + ψ(ρσ, ρσ+1)]

≤ıψ(ρσ−1, ρσ) + ψ(ρσ−1, ρσ) + ψ(ρσ, ρσ+1)

ψ(ρσ, ρσ+1)− ψ(ρσ, ρσ+1) ≤(ı + )ψ(ρσ−1, ρσ)

ψ(ρσ, ρσ+1) ≤
ı + 

1− 
ψ(ρσ−1, ρσ) for all σ ∈ N0.

By the inductive process, we obtain

ψ(ρσ, ρσ+1) ≤
(

ı + 

1− 

)σ

ψ(ρ0, ρ1), for all σ ∈ N0. (7)
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For any positive integers ς, σ with ς > σ, we have

ψ(ρσ, ρς) ≤ψ(ρσ, ρσ+1) + · · ·+ ψ(ρς−1, ρς)

≤(rσ + · · ·+ rς−1)ψ(ρ0, ρ1) where r =
ı + 

1− 

ψ(ρσ, ρς) ≤
rσ

1− r
ψ(ρ0, ρ1),

such that {ρσ} is a Cauchy sequence. Since (Ψ, ψ) is r-CMspace, there exists φ ∈ Ψ then

lim
σ→∞

ρσ = φ. (8)

Since Λ is r-continuous. Then, ρσ+1 = Λρσ
ψ−→ Λρ. Therefore,

Λρ = ρ,

Hence, ρ is a fixed point of Λ.

Theorem 5. In addition to the hypothesis of the above Theorem 4, if the following condition holds:

Λ(Ψ) is rs − connected. Then Λ has a unique fixed point.

Proof. Let ρ and $ be two fixed points of Λ, that is F (Λ) 6= φ and ρ, $ ∈ F (Λ) then for all
σ ∈ N0, we have

Λσρ = ρ, Λσ$ = $. (9)

By our assumption, there exists a path (say u0, u1, · · · uk) of some finite length k in rs from
ρ to $.

u0 = ρ, uk = $ and [ui, ui+1] ∈r. (10)

Since the mapping is Λ-closed, using r-complete and r-continuous

(Λσui, Λσui+1) ∈r, for each i(0 ≤ i ≤ k− 1). (11)

Let us apply the contractive condition

ψ(Λσui, Λσui+1) ≤ıψ(Λσ−1ui, Λσ−1ui+1)

+ [ψ(Λσ−1ui, Λσui) + ψ(Λσ−1ui+1, Λσui+1)]

≤ıψ(Λσ−1ui, Λσ−1ui+1)

+ [ψ(Λσ−1ui, Λσ−1ui+1) + ψ(Λσ−1ui+1, Λσui) + ψ(σ−1ui+1, Λσui+1)]

=ıψ(Λσ−1ui, Λσ−1ui+1)

+ [ψ(Λσ−1ui, Λσ−1ui+1) + ψ(Λσui, Λσ−1ui+1) + ψ(Λσ−1ui+1, Λσui+1)]

≤ıψ(Λσ−1ui, Λσ−1ui+1)

+ [ψ(Λσ−1ui, Λσ−1ui+1) + ψ(Λσui, Λσui+1)]

≤ıψ(Λσ−1ui, Λσ−1ui+1)

+ ψ(Λσ−1ui, Λσ−1ui+1) + ψ(Λσui, Λσui+1)

ψ(Λσui, Λσui+1)−ψ(Λσui, Λσui+1) ≤ (ı + )ψ(Λσ−1ui, Λσ−1ui+1)

ψ(Λσui, Λσui+1) ≤
(

ı + 

1− 

)
ψ(Λσ−1ui, Λσ−1ui+1)
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For our convenience, we put ψi
σ = ψ(Λσui, Λσui+1). Therefore, we have

ψi
σ ≤

(
ı + 

1− 

)
ψi

σ−1, for each i(0 ≤ i ≤ k− 1). (12)

Using the inductive process,

ψi
σ ≤

(
ı + 

1− 

)
ψi

σ−1 ≤
(

ı + 

1− 

)2

ψi
σ−2 ≤

(
ı + 

1− 

)σ

ψi
0.

so that

ψi
σ ≤

(
ı + 

1− 

)σ

ψi
0.

Taking the limit σ→ ∞ in the above inequality, we have

lim
σ→∞

ψi
σ = 0 for each i, (0 ≤ i ≤ k− 1). (13)

By the definition of triangular inequality in (13), we obtain

ψ(ρ, $) = ψ(Λσu0, Λσuk) ≤ ψ0
σ + ψ1

σ + · · ·+ ψk−1
σ → 0 as σ→ ∞.

Hence, Λ has a unique fixed point.

Remark 1. In the above Theorem 5, we put ı = 0, then it can be reduced to Theorem 3.2 in [16].

Example 2. Let Ψ = {(0, 0), (1, 0), (1, 1), (1, 2), (1, 3), (0, 2), (2, 1), (2, 2), (2, 3)} equipped with
binary relation r = {((0, 0), (0, 0)), ((1, 0), (1, 1)), ((1, 2), (1, 3)),
((2, 0), (0, 0)), ((0, 0), (2, 0)), ((2, 0), (0, 2)), ((2, 2), (2, 3))} and Euclidean metric ψ2; defined by

ψ((ρ1, ρ2), ($1, $2)) =
√
(ρ1 − $1)2 + (ρ2 − $2)2

then Ψ is a r-complete metric space. Define a function Λ : Ψ→ Ψ such that

Λ(ρ1, ρ2) =

{
(ρ1, 0) if ρ1 ≤ ρ2

(0, ρ2) if ρ1 > ρ2.

We notice that ψ(Λρ, Λ$) ≤ ıψ(ρ, $) + [ψ(ρ, Λρ) + ψ($, Λ$)] is not valid if (ρ, $) or ($, ρ) ∈
{(1, 3), (2, 1)}. As given any ı,  ∈ [0, 1], we have

ψ(Λ(1, 3), Λ(2, 1)) <ıψ((1, 3), (2, 1)) + [ψ((1, 3), Λ(1, 3)) + ψ((2, 1), Λ(2, 1))]

ψ((1, 0), (0, 1)) <ıψ((1, 3), (2, 1)) + [ψ((1, 3), (1, 0)) + ψ((2, 1), (0, 1))]
√

2 <ı
√

5 + (
√

9 + 2)
√

2 <ı(
√

5) + (5).

Thus, Λ does not satisfy the fixed point. Then, our contractive condition holds in (ρ, $) ∈r for all
(ρ, $) ∈r. Similarly, it can be easily verified that Λ is r-continuous and Λ(Ψ) is rs-connected.

Thus, Λ is satisfied by all the conditions of the above Theorems 4 and 5. Hence, (0, 0) is the
fixed point of Λ and has a unique fixed point.
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4. An Application

We give an application for the first-order periodic boundary value problem of a unique
solution with a binary relation which is applicable in our main results. Let us consider the
first-order periodic boundary value problem as follows:

ρ′(θ) = f(θ, ρ(θ)); θ ∈ I = [0, Λ]; ρ(0) = ρ(Λ), (14)

the map f : ∆×r→r is a continuous function and Λ > 0.
Let us denote the space of continuous function be Π(∆) and defined on ∆. Let us recall

some basic definition as follows:

Definition 11 ([13]). If a function χ ∈ Π1(∆) is said to be a lower solution of (14), if

χ′(θ) ≤ f(θ, χ(θ)), θ ∈ ∆,

ρ(0) ≤ ρ(Λ).

Definition 12 ([13]). If a function χ ∈ Π1(∆) is said to be a upper solution of (14), if

χ′(θ) ≥ f(θ, χ(θ)), θ ∈ ∆,

ρ(0) ≥ ρ(Λ).

Theorem 6. In addition to the boundary value problem of (14), then there exists a ρ > 0 for all
ρ, $ ∈r with ρ ≤ $,

0 ≤ f(θ, $) + ı$− [f(θ, ρ) + ıρ] ≤ ıf($− ρ) + [f(Λρ− ρ) + f(Λ$− $)]. (15)

Then, Λ has a unique solution.

Proof. From a boundary value problem, the equation can be considered as

ρ′(θ) + ıρ(θ) = f(ρ(θ), ρσ(θ)) + ıρ(θ); θ ∈ I = [0, Λ]

ρ(0) = ρ(Λ)

From the above problem, the equation is equivalent to the integral equation

ρ(θ) =
∫ Λ

0
G(θ, s)[f(ρ(s), ρσ(s)) + ıρ(s)]ψs.

where

G(θ, s) =

 eı(Λ+s−θ)

e−ıθ−1 , 0 ≤ s < θ ≤ Λ,
e(s−θ)

e−θ−1
, 0 ≤ θ < s ≤ Λ.

A mapping from Λ : Π(∆)→ Π(∆) and binary relation by

(ρ)(θ) =
∫

0
G(θ, s)[f(ρ(s), ρσ(s)) + ıρ(s)]ψs,

r = {(ρ, $) ∈ Π(∆)×Π(∆) : ρ(θ) ≤ $(θ)for allθ ∈ ∆}.

(i) ψ(ρ, $) = sup |ρ(θ)− $(θ)| is the sup-metric with Π(∆) for θ ∈ ∆ and the complete
metric space is ρ, $ ∈ Π(∆) and hence (Π(∆), ψ) is r-complete.

(ii) Let us choose r-preserving, sequence {ρσ} such that ρσ
ψ−→ φ, for all θ ∈ ∆, then

ρ0(θ) ≤ ρ1(θ) ≤ · · · ≤ ρσ(θ) ≤ ρσ+1 ≤ · · ·
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and convergent to ρ(θ) which implies ρσ(θ) ≤ φ(θ)for allθ ∈ ∆, σ ∈ N0, which
implies [ρσ, φ] ∈r for all σ ∈ N0.
Hence, r-continuous.

(iii) Let α ∈ Π1(∆) be a lower solution of (14), then

ρ′(θ) + ıρ(θ) ≤ f(ρ(θ), ρσ(θ)) + ıρ(θ), for allθ ∈ ∆.

Multiplying by eıθ+θ , we have

(ρ(θ)e(ı+)θ)′ ≤ [f(ρ(θ), ρσ(θ)) + ıρ(θ)]e(ı+)θ , for allθ ∈ ∆,

which implies

ρ(θ)e(ı+)θ ≤ ρ(0) +
∫ θ

0
[f(ρ(s), ρσ(s)) + ıρ(s)]e(ı+)sψs, (16)

As ρ(0) ≤ ρ(Λ),

ρ(0)e(ı+) ≤ ρ(Λ)e(ı+) ≤ ρ(0) +
∫ Λ

0
[f(ρ(s) + ρσ(s)) + ıρ(s)]e(ı+)sψs,

thus,

ρ(0) ≤
∫ Λ

0

e(ı+)s

e(ı+) − 1
[f(ρ(s), ρσ(s)) + ıρ(s)]ψs, (17)

From (16) and (17),

ρ(θ)e(ı+) ≤
∫ Λ

0

e(ı+)s

e(ı+) − 1
[f(ρ(s), ρσ(s)) + ıρ(s)]ψs

+
∫ θ

0
[f(ρ(s), ρσ(s)) + ıρ(s)]e(ı+)sψs

=
∫ Λ

0

eı(+s)

e−ıθ − 1
[f(ρ(s), ρσ(s))] + ıρ(s)ψs

+
∫ Λ

0

e(s)

e−θ − 1
[f(ρ(s), ρσ(s))] + ıρ(s)ψs,

so that,

ρ(θ) ≤
∫ Λ

0

eı(+s−θ)

e−ıθ − 1
[f(ρ(s), ρσ(s))] + ıρ(s)ψs

+
∫ Λ

θ

e(s−θ)

e−θ − 1
[f(ρ(s), ρσ(s))] + ıρ(s)ψs,

=
∫ Λ

0
G(θ, s)[f(ρ(s), ρσ(s))]ψs

= (Λρ)(θ)

that is (ρ(θ), Λρ(θ)) ∈r for all θ ∈ ∆, which implies that X (Λ,r) 6= φ.
(iv) For any (ρ, $) ∈r, that is ρ(θ) ≤ $(θ)

f(ρ(θ), ρσ(θ)) + ıρ(θ) ≤ f($(θ), $σ(θ)) + ı$(θ), for allθ ∈ ∆
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and G(θ, s) > 0 for (θ, s) ∈ ∆× ∆,

(Λρ)(θ) =
∫ Λ

0
G(θ, s)[f(ρ(s), ρσ(s)) + ıρ(s)]ψs,

≤ G(θ, s)[f($(s), $σ(s)) + ı$(s)]ψs,

= (Λ$)(θ) for allθ ∈ ∆

which implies that (Λρ, Λ$) ∈r, that is r is Λ-closed.
(v) For all (ρ, $) ∈r,

ψ(Λρ, Λ$) = sup
θ∈∆
|(Λρ)(θ)− (Λ$)(θ)| = sup

θ∈∆
((Λ$)(θ)− (Λρ)(θ))

≤ sup
θ∈∆

∫ Λ

0
G(θ, s)[f($(s), $σ(s)) + ı$(s)− f(ρ(s), ρσ(s))− ıρ(s)]ψs

≤ sup
θ∈∆

∫ Λ

0
G(θ, s)ı2($(s)− ρ(s))ψs

+ sup
θ∈∆

∫ Λ

0
G(θ, s)2[f($(s), $σ(s))− f(ρ(s), ρσ(s))]ψs

= ı2ψ(ρ, $)
∫ Λ

0
G(θ, s)ψs+ 2[ψ(ρ, Λρ) + ψ($, Λ$)]

∫ Λ

0
G(θ, s)ψs

= ı2ψ(ρ, $) sup
θ∈∆

1
e−ıθ − 1

(
1
ı
eı(Λ+s−θ)

∣∣∣∣θ
0
+

1
ı
eı(s−θ)

∣∣∣∣Λ
θ

)

+ 2[ψ(ρ, Λρ) + ψ($, Λ$)] sup
θ∈∆

1
e−θ − 1

(
1

e(+s−θ)

∣∣∣∣θ
0
+

1

e(s−θ)

∣∣∣∣Λ
θ

)
= ı2ψ(ρ, $)

1
ıe−ıθ − 1

(e−ıθ − 1) + 2[ψ(ρ, Λρ) + ψ($, Λ$)]
(e−θ − 1)
e−θ − 1

= ıψ(ρ, $) + [ψ(ρ, Λρ) + ψ($, Λ$)]

ψ(Λρ, Λ$) ≤ ıψ(ρ, $) + [ψ(ρ, Λρ) + ψ($, Λ$)], for all ρ, $ ∈r.

Hence, from the above Theorem 4, all conditions are satisfied. Thus, Λ has a unique
fixed point.

5. Conclusions

In this paper, we proved a unique fixed point theorem using the concept of rational
contractive mappings in r-metric space. A concrete illustration is given to demonstrate the
validity of the concept and the degree of applicability of our findings. Özgür and Taş [28]
proved the fixed-circle theorem on metric spaces. It remains an intriguing open problem to
investigate the fixed circle on r-metric space instead of fixed-point theorems on r-metric
space.
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