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SUMMARY

 

Previous vaccination trials against the economically important

cattle parasite 

 

Ostertagia ostertagi

 

 have indicated the protective

capacity of activation-associated secreted proteins (ASPs).

The further development of these antigens into a commercial

vaccine will require their recombinant expression. The aim

of the current study was to clone and express Oo-asp1 in a

baculovirus expression system and to evaluate the protective

capacity of the recombinant protein against an 

 

O. ostertagi

 

challenge infection in cattle. The full coding sequence of

 

Oo-asp1

 

 was cloned in a baculovirus expression vector in

frame with a carboxy-terminal Histidine tag and recombinant

virus was used to infect an insect cell culture. Western blot

analysis with anti-His and anti-Oo-ASP1 antibodies

showed the production of recombinant Oo-ASP1. The cell pellet

containing the recombinant was subsequently used to immunize

seven calves three times intramuscularly with QuilA as

adjuvant. Control animals were solely injected with the QuilA

adjuvant. The challenge infection with 

 

O. ostertagi

 

 consisted

of 30 000 L3 larvae per animal given over 30 days (1000

larvae/day, 5 days/week) and started the same day as the final

immunization. Immunization with the recombinant Oo-ASP1

did not result in any level of protection against the challenge

infection. There was no reduction in faecal egg output or in worm

burdens. Moreover, Western blot analyses and ELISA indicated

that, although the animals raised an antibody response against

the recombinant Oo-ASP1, there was hardly a response against

the native Oo-ASP1, suggesting that the baculovirus expressed

recombinant was wrongly folded or lacked essential secondary

modifications. Further analysis of the structure of the native

ASPs and their glycosylations is being done.
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RESEARCH NOTE

 

Previous vaccination trials against the economically important
cattle parasite 

 

Ostertagia ostertagi

 

 have demonstrated the
protective capacity of a protein fraction termed ES-thiol (1–3).
This antigen fraction is purified from adult excretory–
secretory material and is highly enriched for two activation-
associated secreted proteins (ASPs), Oo-ASP1 and Oo-
ASP2 (4), and cysteine protease activity (1–3). Intramuscular
immunization in combination with QuilA as adjuvant
consistently resulted in a significant reduction in cumulative
faecal egg counts of around 60%. This reduction lasted for
about 2 months after the first infection with L3 larvae. In a
recent study, Meyvis 

 

et al

 

. (3) demonstrated the protective
capacity of a purified ASP containing fraction. The ES-thiol
fraction was subfractionated by Q-Sepharose anion exchange
chromatography to separate the ASPs from the cysteine
proteases and other proteins. Three subfractions were
obtained, an ‘ASP-enriched’, a ‘cysteine protease-enriched’
and a ‘rest’ fraction. SDS-PAGE analysis, enzyme assays
and Western blotting indicated that the ASP-enriched
fraction was virtually pure ASPs and free of any cysteine
proteinase activity. Vaccination with this fraction resulted in
a 74% reduction in cumulative faecal egg counts and
significantly smaller adult male and female worms. It can be
anticipated that this level of protection would be sufficient
for a commercial vaccine (5). It would protect calves against
gastroenteritis during their first grazing season and allow
them to develop a natural immunity without production
loss. Because it is very difficult to obtain large quantities of
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these native ASPs, further development of these antigens
into a commercial vaccine will therefore rely on their recom-
binant expression.

The aim of the current study was to clone and express
Oo-asp1 in a baculovirus expression system and to evaluate
the protective capacity of the recombinant protein against
an 

 

O. ostertagi

 

 challenge infection in cattle.
The full coding sequence of 

 

Oo-asp1

 

 (4) was cloned in the
baculovirus expression vector pVec 35 (Intervet International
B.V. Boxmeer, The Netherlands) in frame with a carboxy-
terminal Histidine tag. The recombinant baculovirus was
constructed by co-transfection of the Oo-asp1 pVec 35 vector
and a wild-type virus into 

 

Sf9

 

 insect cells to promote 

 

in vivo

 

recombination. This was essentially done as previously
described by Schijns 

 

et al

 

. (6). A recombinant virus was
isolated, purified and amplified for subsequent infection of
an insect cell culture in order to produce the Oo-ASP1
recombinant antigen. Cell supernatant and cell pellet were
inactivated with 25 kGray 

 

γ

 

-irradiation and run on SDS-
PAGE gels. A Coomassie stained gel of the supernatant and
cell pellet is shown in Figure 1, panel a (lanes 1 and 2). This
material was tested for antigen production by Western blot-
ting with conjugated anti-His antibodies and monospecific
anti-Oo-ASP1 antibodies (4). The results of these blots are
shown in Figure 1, panel a. One band in the cell superna-
tant and three to four bands in the cell pellet, all around
25 kDa were detected using an anti-His antibody (lanes 3
and 4). A similar pattern was visible using monospecific
antibodies against Oo-ASP1 (lanes 5 and 6).

The vaccination trial with the recombinant Oo-ASP1 was
essentially done as previously described in Geldhof 

 

et al

 

. (1).
Fourteen male 7-months-old calves were randomized over
two groups of seven animals. The animals were immunized
three times by intramuscular injection in the neck at 3-week
intervals. One group was administered 100 

 

μ

 

g of  the
Oo-ASP1 containing cell pellet in combination with 750 

 

μ

 

g
QuilA adjuvant (Superfos Biosector). The control animals
were solely injected with the QuilA adjuvant. The challenge
infection with 

 

O. ostertagi

 

 consisted of 30 000 L3 larvae per
animal given over 30 days (1000 larvae/day, 5 days/week)
and started the same day as the final immunization. The animals
were observed daily for adverse reactions to the immuniza-
tions and for clinical signs of  ostertagiosis. The animals
were bled 1 week after each immunization and at the time of
necropsy 24 days after the final challenge infection. Faecal
egg counts were done three times a week from 20 days after
the first challenge infection until necropsy. The faecal egg
output was determined using a modified McMaster technique
with a sensitivity of 25 eggs per gram (EPG). The cumulative
faecal egg output was calculated for each animal as described
by Vercruysse 

 

et al

 

. (7). At necropsy, the abomasal washings
and the abomasal digests were performed as previously

Figure 1 (a) Protein profile and Western blots of the insect cell 
supernatant and pellet. Lanes 1 and 2: Coomassie stained gel of cell 
supernatant and cell pellet, respectively. Lanes 3 and 4: Western 
blot of cell supernatant and cell pellet developed with anti-His 
antibody. Lanes 5 and 6: Western blot of cell supernatant and cell 
pellet developed with anti-Oo-ASP1 antibody, produced as 
described by Geldhof et al. (2003) (4). (b) Geometric mean of the 
faecal egg output during the 2-month period of the vaccination trial 
of the animals vaccinated with QuilA (control) and the animals 
vaccinated with the recombinant Oo-ASP1 (rec. ASP). (c) Serum 
antibody response of the animals vaccinated with the recombinant 
Oo-ASP1 against the cell pellet. Lane 1: pre-immune serum, lane 2: 
serum taken 1 week after the second immunization. (d) Antibody 
response in animals vaccinated with the recombinant Oo-ASP1 
against the native Oo-ASP1. A native ‘ASP-enriched’ fraction was 
used to coat the ELISA plate. Serum from the animals vaccinated 
with the recombinant Oo-ASP1 was compared with the response 
from animals vaccinated with the native ‘ASP-enriched’ fraction.
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described (1). Two percent of both the abomasal washings
and digests were analysed to determine the worm burden.
Geometric mean egg and worm counts were calculated
after transformation of the individual counts to ln (count + 1).
The significance of differences in the parasitological parameters
(cumulative faecal egg counts, worms counts) between the
two groups was investigated by a one-tailed Mann–Whitney

 

U

 

-test.
The results of  the faecal egg counts during the course

of the vaccination trial are shown in Figure 1, panel b as
geometric means. During most of the vaccination trial the
geometric mean egg counts for the rOo-ASP1 vaccinated
animals were higher compared to the control animals. The
parasitological data are summarized in Table 1. There was
no significant difference in the number of adult worms
between the two groups.

The serum antibody responses of  the calves to the
immunizations were evaluated by Western blotting using
sera collected 1 week after the second immunization. Ten
micrograms of the recombinant cell pellet was fractionated
on 10% SDS-PAGE gels under reducing conditions and
subsequently blot transferred to PVDF membranes. After
overnight blocking in 10% horse serum in PBS Tween 20
(PBST), the blots were probed for 2 h with pooled sera
(diluted 1 : 400 in 2% horse serum PBST), followed by
addition of the conjugate (rabbit antibovine HRPO, Sigma)
at a 1 : 8000 dilution in 2% horse serum PBST. The
immunoreactive antigens were visualized by addition of
0·05% 3,3 diaminobenzidine tetrachloride in PBS containing
0·01% H

 

2

 

O

 

2

 

 (v/v). The results are shown in Figure 1, panel
c. No antibodies to the antigens were detected in the
pre-immune serum (lane 1), while serum taken after the
immunization strongly recognized different antigens in
the cell pellet, especially a region around 25 kDa, coinciding
with the size of the rOo-ASP1 (lane 2). There was no reactivity
from serum of the control group (results not shown).

An ELISA was used to measure the presence of cross-
reactive antibodies against the native ‘ASP-enriched’
fraction in the animals vaccinated with the baculovirus
expressed Oo-ASP1. The ‘ASP-enriched’ antigen fraction
was purified as previously described in Meyvis 

 

et al

 

. (3) and
coated on the ELISA plate at 5 

 

μ

 

g/mL with 150 

 

μ

 

L/well
overnight at 4

 

°

 

C. After three washes with PBST, the plate

was blocked with 200 

 

μ

 

L/well of 2% horse serum PBST for
2 h at room temperature. The primary antibody, that is,
pooled serum from the vaccinated animals, was added at
a dilution of 1 : 500 in 2% horse serum PBST. After 2 h at
37

 

°

 

C, the conjugate was added (rabbit antibovine HPRO,
Sigma) at a dilution of 1 : 5000 in 2% horse serum PBST
and the plate incubated for 2 h at 37

 

°

 

C. 

 

o

 

-Phenylenediamine
0·1% in citrate buffer (pH 5·0) served as substrate and
optical density (OD) was measured at 492 nm. The OD of
the baculo Oo-ASP1 vaccinated animals was compared with
the antibody response in animals vaccinated with the native
ASP-enriched fraction from a previous vaccination trial (3).
The results of the ELISA are shown in Figure 1, panel d.
The rOo-ASP1 vaccinated animals showed an OD value
of 0·321, which is only 15% of  the OD value of  animals
vaccinated with the native antigens (OD 2·038).

The data presented here indicate that the recombinant
version of Oo-ASP1 tested in this study was unable to induce
any protection. Moreover, immunization with the recombinant
antigen hardly resulted in the production of cross-reactive
antibodies against the native version of Oo-ASP1. A possible
explanation is that the relative quantities of ASP1 in the
insect cell pellet might have been too low to induce a proper
cross-reactive antibody response. In the vaccine trial
described by Meyvis 

 

et al

 

. (3) animals were vaccinated
with approximately 30 

 

μ

 

g of the native ‘ASP-enriched’ fraction.
In the current experiment, a 100-

 

μ

 

g of the antigen mixture
was injected, a large portion of which are the ASP1 bands.
In addition, the Western blot analysis indicated that the
immunized animals strongly recognized the recombinant
ASP1 bands. It is therefore questionable if  vaccinating with
a higher dose would increase the titre of  cross-reactive
antibodies and subsequently induce protection. Alternatively,
the baculovirus expressed recombinant could be wrongly
folded or lack essential secondary modifications and might
therefore not induce cross-reactive antibodies. The baculovirus
expression system has previously been successfully used to
express host-protective antigens from 

 

Fasciola hepatica

 

 (8),

 

Schistosoma japonicum

 

 (9) and 

 

Ancylostoma caninum

 

 (10).
However, it was never used to express a nematode ASP
molecule. All previously tested ASP recombinants were
bacterial and/or yeast expressed versions. This was the case
for ASPs from hookworms (11–14), 

 

Haemonchus contortus

 

(15) and 

 

Onchocerca volvulus

 

 (16). In the case of the 

 

O.

ostertagi

 

 ASP, a bacterially expressed Oo-ASP1 previously
proved to be insoluble and could not be refolded or solubilized
(Y. Meyvis, unpublished results), most likely due to the high
cysteine content in this type of molecules (4). A further
analysis of  the structure of  the native ASPs and their
glycosylations is being done. It will investigate the peptide
and/or glycan epitopes that are important for the protection.
On the other hand, it is important to note that the native

Table 1 Numbers of animals per group (n), cumulative faecal egg
counts (FEC + range), geometric mean total worms counts (+
range) and percentage L4 stage

Group n FEC No. of worms % L4

Control 7 2986 (1288–7263) 5771 (2900–8350) 0·3
Rec. ASP1 7 3173 (1438–5950) 7158 (1700–10 050) 0
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ASP fraction consisted of two ASPs, that is, ASP1 and
ASP2. Although ASP1 is far more abundant in the protec-
tive fraction and shares similarity with ASP2, it may very
well be that ASP2 or a mix of both molecules is required for
the protection.
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