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Abstract

A novel technique to accelerate the aggregation and disaggregation stages in evanescent plane wave methods is pre-
sented. The new method calculates the six plane wave radiation patterns from a multipole expansion (aggregation) and
calculates the multipole expansion of an incoming field from the six plane wave incoming field patterns. It is faster than
the direct approach for multipole orders larger than one, and becomes six times faster for large multipole orders. The
method relies on a connection between the discretizations of the six integral representations, and on the fact that the Wig-
ner D-matrices become diagonal for rotations around the z-axis. The proposed technique can also be extended to the vec-
torial case in two different ways, one of which is very similar to the scalar case. The other method relies on a Beltrami
decomposition of the fields and is faster than the direct approach for any multipole order. This decomposition is also
not limited to evanescent wave solvers, but can be used in any vectorial multilevel fast multipole algorithm.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Stable plane wave method; Spectral representation of the Green function; Evanescent waves; Multipoles; Rotation; (Dis)ag-
gregation

1. Introduction

Currently, several so-called Multilevel Fast Multipole Algorithms (MLFMAs) exist [1–7]. These methods
accelerate the matrix-vector multiplications required for the iterative solution of the linear systems of equations
arising in Method of Moments based integral-equation solvers. Unfortunately, most of these methods only
apply to a specific type of problem. Multilevel fast multipole methods based on homogeneous plane wave expan-
sions of the Green function (the so-called plane wave method) reduce the computation time and memory require-
ments for high frequency (HF) problems to OðNÞ–N denotes the number of unknowns – or OðN log NÞ, but
completely fail for low frequency (LF) problems due to roundoff errors. On the other hand, Multilevel Fast Mul-
tipole Algorithms based on multipole expansions of the Green function reduce both computation time and mem-
ory requirements to OðNÞ for LF problems, but not for HF problems. Hence, they are referred to as the low
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frequency MLFMAs (LF-MLFMAs). To mitigate this a new class of MLFMAs was introduced, which all some-
how rely on a discretized version of the spectral representation of the Green function. These methods, most nota-
bly the stable plane wave method [6,8], are capable of delivering OðNÞ or OðN log NÞ complexity for LF and HF
problems, respectively. However, as shown in [9], the plane wave method turns out to be the most efficient
MLFMA if the frequency is high enough to reach the target accuracy. Therefore, the state of the art is to intro-
duce a level in the MLFMA tree above (the HF part) which the plane wave method is used, and below (the LF
part) which either the LF-MLFMA (as for example in [10]) or some form of evanescent plane wave method (as
for example in [9]) is used. In [8,9], it is argued that the evanescent wave technique is more efficient than the LF-
MLFMA, especially for high accuracies. The reason for this is the diagonality of the translation operator, which
reduces the cost of one translation from OðL4Þ to OðL2Þ with L the multipole order (of the LF-MLFMA). This
shows that evanescent wave methods certainly are of practical importance for the LF part of MLFMAs.

However, their main drawback is that the underlying Green function’s integral representation only con-
verges in one half-space of choice. By consequence, in practice, six integral representations are needed to cover
the entire space. For the propagating plane waves, all dependency on the half-space can be incorporated into
the translation operator, thereby allowing to calculate all six integral representations starting from only one
radiation pattern. Hence, for the propagating plane waves, only one radiation pattern is needed. For the eva-
nescent plane waves up to now no such technique exists despite several attempts to solve this conundrum. For
example, in [11], Jiang and Chew split the evanescent plane waves into so called ‘shallow evanescent plane
waves’ and ‘deep evanescent plane waves’. The shallow plane waves are obtained by extrapolating the propa-
gating plane waves and improve the efficiency of the method at higher levels. However for very low frequencies
or for very low levels in the tree, the extrapolation has little use, since virtually none of the evanescent plane
waves will be shallow. Indeed, if the extrapolation would still be effective at very low frequencies, the plane wave
method would to some extent still work at those frequencies. Also, according to [11], it is not possible to cal-
culate all six integral representations of the deep evanescent plane waves starting from only one radiation pat-
tern. The need for six radiation patterns results in high memory requirements [10] and a high computational
cost. As is done in [9,12], the memory problem can be reduced by first calculating a multipole expansion of
the radiated field, and then going to the plane wave basis. The calculation of the six evanescent radiation pat-
terns from a multipole expansion will from here on be referred to as ‘aggregation’. The reverse procedure,
namely projecting the six evanescent incoming field patterns of an MLFMA group onto multipoles, will be
referred to as ‘disaggregation’. These procedures not only arise in the LF-part of [9], but can also be used when
for example multiple scattering from a collection of spheres is considered (where the sources in every MLFMA
group are multipoles). It is thus important to do the (dis)aggregation as efficiently as possible.

The main goal of this paper is to introduce an elegant, novel and exact method to do this (dis)aggregation.
This new method relies on the use of Wigner rotation matrices and the fact that these matrices are diagonal for
rotations around the z-axis. The computation time is lower than the direct computation if the maximal mul-
tipole order L is larger than one, which is true for all practical cases. Moreover, if a large enough number of
multipoles are used, the computation time is reduced by a factor six compared to the direct case. It will also be
shown that the proposed scheme applies to both the scalar (for example acoustics) and the vectorial (for exam-
ple electromagnetics) case. In the latter case, two methods are provided, the second of which is faster than the
direct approach for any multipole order. The proposed methods do not reduce the complexity however, so
they can only be used for the LF-part of the MLFMA tree. A drawback of the method occurs when one is
simulating a structure which is long in one direction. Only a few of the six radiation patterns are needed then,
while the proposed method still calculates all six radiation patterns. Such inefficiencies can be avoided by
switching to the direct method for these cases.

Notation: throughout this paper all sources and fields are assumed time-harmonic with angular frequency
x; temporal dependencies ejxt are suppressed. Unit vectors are denoted by us, with s = x, y, z.

2. MLFMAs with evanescent plane waves

MLFMAs with evanescent plane waves [6,8,11], like all MLFMA codes, uses a hierarchical cubical subdi-
vision of the computational domain. For the interaction between groups on a level, it relies upon the spectral
decomposition of the spherical Hankel function of the second kind and of zeroth order:
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hð2Þ0 ðcrÞ ¼ 1

2p

Z 1

�1

Z 1

�1
e�jk�r dkxdky

ckzðc;KÞ
; z ¼ uz � r?0: ð1Þ

Here, c is the free-space wavenumber, k = (kx,ky,kz) the wave vector, and r a global position vector. However,

kz is a quantity depending on c and K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
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(
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In the stable plane wave method, integral (1) is split in a propagating and an evanescent part by means of polar
coordinates (kx,ky) = (Kcos(/),Ksin(/)):
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Then both integrals are discretized separately, for example for the case z > 0:

hð2Þ0 ðcrÞ ¼
XV p

vp¼1

wp
vp

e�jkp
vp �r þ

XV e

ve¼1

we
ve

e�jke
ve �r ð5Þ

where wp
vp

, kp
vp

, we
ve

and ke
ve

are the weights and nodes of the propagating and evanescent part, respectively. The
discretization of the propagating part is straightforward [6]. The discretization of the evanescent part is more
difficult, since the evanescent integral in (4) covers an infinite region. However, since kzðc;KÞ ¼ �j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � c2

p
,

the integral converges in an exponential manner if z ? 0. This allows the discretization to be done with expo-
nential accuracy. It can be done in many ways, for example with a singular value decomposition (SVD) based
approach or uniform discretization, both described in [6]. However, the details of the discretization are not
important for the remainder of this paper.

An important property of (1) is that it is valid only if z ? 0. In the plane z = 0, this integral representation
does not converge. For the discretized version, matters are even worse, since series (5) will only converge if r
remains far enough from the plane z = 0. A more rigorous criterium for convergence of (5) is given in [6], with
some positive constant C:ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

< Cz; ð6Þ
As a consequence, only a cone-like region around the z-axis can be covered with this expansion of the Green
function. This situation is remedied by introducing extra integral (series) representations which converge along
the x- and y-axes. As a result, in total six integral representations are used, which will henceforth be denoted as
1±, 2±, and 3±. This configuration has been ubiquitously used in the literature [6,8,11]. In [6], it is shown that
in an oct-tree using these six integral representations, criterium (6) is always satisfied with C ¼

ffiffiffi
2
p

, thus assur-
ing convergence of the series. Fig. 1 shows an example configuration in which the field in the point d1 due to
sources J in the box must be calculated by means of the 3+ expansion, while the fields in the point d2 must be
calculated by means of the 1+ expansion.

The propagating parts of the six series are all integrations over one half of the Ewald sphere. As is shown in
[6] this permits absorbing all directional dependence into the weights. As a consequence only one radiation
pattern is needed for the propagating part. Unfortunately, this is not possible for the evanescent part [11].
Therefore, from now on, we will focus on the evanescent part only, so we

ve
and ke

ve
will henceforth be written

as wv and kv. In this paper, it will be shown that the six evanescent radiation patterns can be calculated from a
multipole expansion with asymptotically the same computational cost as for one radiation pattern, thus gain-
ing a factor six. The essential element of this novel method is the fact that the nodes of the different represen-
tations are rotated versions of the nodes for the expansion around the positive z-axis kvð¼ k3þ

v Þ:

I. Bogaert et al. / Journal of Computational Physics 227 (2007) 557–573 559



Author's personal copy

k1þ
v ¼ R�1

x � kv; ð7Þ
k2þ

v ¼ R�1
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v ¼ R�1

z � kv ¼ kv; ð9Þ
In addition:

kp�
v ¼ �kpþ

v 8p 2 f1; 2; 3g: ð10Þ
with the matrices Rx, Ry and Rz defined as

Rx ¼ R � 2p
3
;

1ffiffiffi
3
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� �
¼

0 1 0

0 0 1

1 0 0

2
64

3
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Ry ¼ R
2p
3
;

1ffiffiffi
3
p ðux þ uy þ uzÞ

� �
¼

0 0 1

1 0 0

0 1 0

2
64

3
75: ð12Þ

Rz ¼ 1 ð13Þ
In this, the rotation matrix R(a,u) is a 3 · 3 matrix which rotates a vector x around the axis u (with u Æ u = 1)
over the angle a into the vector x 0, viz. x 0 = R(a,u) Æ x. The direction of rotation is determined by means of the
right hand rule. A graphical representation of this is given in Fig. 2. It will now be shown that the relationships
(7)–(10) can be unified in one symmetric expression. Begin by observing that Rx, Ry, and Rz are all rotations
around the 1ffiffi

3
p ðux þ uy þ uzÞ-axis. This means they all can be converted into rotations around the z-axis by

means of one similarity transform. With R0 ¼ Rð� arccosð 1ffiffi
3
p Þ; 1ffiffi

2
p ð�ux þ uyÞÞ, this yields

Fig. 1. The radiated fields of the central box is given by different expansions in the different cone-like regions. For example, the fields in d1

must be calculated using the 3+ expansion while the fields in d2 must be calculated by means of the 1+ expansion.

x
x

u

Fig. 2. The rotation matrix R(a,u) rotates a vector x around the axis u over the angle a into the vector x 0. The direction of the rotation is
determined by the right hand rule.
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Rx ¼ R�1
0 � R � 2p

3
; uz

� �
� R0; ð14Þ

Ry ¼ R�1
0 � R � 4p

3
; uz

� �
� R0; ð15Þ

Rz ¼ R�1
0 � R � 6p

3
; uz

� �
� R0: ð16Þ

This means that the discretization points for all six representations can be unified in one formula:

kps
v ¼ R�1

0 � sR
2pp

3
; uz

� �� �
� R0 � k3þ

v 8s 2 f�1;þ1g 8p 2 f1; 2; 3g: ð17Þ

When s is used as an index, for example in kps
v , the +1 and �1 are denoted as + and �, respectively. Formula

(17) is a form in which the symmetry between the six radiation patterns is visible. This symmetry will be crucial
in developing the accelerated scheme, since it will allow the six radiation patterns to be decomposed in six
other patterns which require only one sixth of the amount of work to calculate. The derivations will be pre-
sented in the following sections.

3. A faster (dis)aggregation for the scalar case

As stated in the introduction, the aggregation denotes the calculation of the six evanescent radiation pat-
terns from a multipole expansion. This process is used and elaborated in [9]. It consists of calculating

Hps
v ¼

XL

l¼0

Xl

m¼�l

almjlY l;mðkps
v Þ 8p 2 f1; 2; 3g; s 2 f�1;þ1g; ð18Þ

where the alm are the multipole coefficients, Yl,m(k) denotes a spherical harmonic and L is the maximum mul-
tipole order that is taken into account. The kps

v are the discretization nodes from the evanescent part in (5). The
definition and some properties of the spherical harmonics are summarized in the Appendix. When Ups

v denotes
the incoming field patterns in the six directions, the disaggregation is given by

blm ¼
X

v

wv

X
p;s

Ups
v ð�1ÞmY l;�mðkps

v Þ ð19Þ

¼
X

v

wv

X
p;s

Ups
v Y �l;mðk

ps�
v Þ: ð20Þ

Here, * denotes the complex conjugate. The fact that - in contrast to the nodes - the weights wv do not depend
on p nor s has also been used. In the following sections, the accelerated scheme will be developed.

3.1. Aggregation

The accelerated scheme relies for a great deal on the connection (17) between the discretization points for
the six representations. Substitution of (17) in Hps

v yields:

Hps
v ¼

XL

l¼0

Xl

m¼�l

almjlY l;m

�
R�1

0 � sR
2pp

3
; uz

� �� �
� R0 � k3þ

v

�
: ð21Þ

The outer rotation in the argument of the spherical harmonic can be brought outside the function by means of
the Wigner D-matrices, defined in Appendix, as follows

Hps
v ¼

XL

l¼0

Xl

m¼�l

X
m1

almjlDl
m;m1
ðR�1

0 ÞY l;m1
sR

2pp
3
; uz

� �
� R0 � k3þ

v

� �
ð22Þ

¼
XL

l¼0

Xl

m1¼�l

a0lm1
jlY l;m1

sR
2pp

3
; uz

� �
� R0 � k3þ

v

� �
ð23Þ

I. Bogaert et al. / Journal of Computational Physics 227 (2007) 557–573 561



Author's personal copy

where

a0lm1
¼
X

m

almDl
m;m1
ðR�1

0 Þ ð24Þ

This sum runs over m only and thus can be done fast, compared to the full aggregation. After this operation,
all sources are actually rotated to a reference system in which the former 1ffiffi

3
p ðux þ uy þ uzÞ axis is the new z-axis.

In a second step the dependence on p and s can be removed. According to Eq. (A.6) the spherical harmonics
are eigenfunctions of the inversion operator (which replaces r by �r) with eigenvalues (�1)l, which allows for
the removal of s. Moving the p-dependence out of the spherical harmonic can again be done using the Wigner
D-matrices. However a crucial point here is that Wigner D-matrices for rotations around the z-axis are diag-
onal, as stated in (A.20). This yields:

Hps
v ¼

XL

l¼0

Xl

m¼�l

a0lmjlsleim2pp
3 Y l;mðR0 � k3þ

v Þ ð25Þ

or after splitting the summations:

Hps
v ¼

X1

r¼0

X2

q¼0

sreiq2pp
3

X
r¼lm mod 2

X
q¼m mod 3

a0lmjlY l;mðR0 � k3þ
v Þ ð26Þ

The inner summation runs over all m for which q = mmod3 and all l for which r = lmod 2. ‘mod’ means mod-
ulo, so for example 1 = 7mod 3. Eq. (26) shows that (18) can be re-expressed as an aggregation towards six
new radiation patterns jqr

v

jqr
v ¼

X
r¼l mod 2

X
q¼m mod 3

a0lmjlY l;mðR0 � k3þ
v Þ 8q 2 f0; 1; 2g; 8r 2 f0; 1g ð27Þ

However, only one sixth of the multipoles contributes to each of these patterns. In this way, calculating these
six new patterns costs as little as calculating one pattern with the direct formula (18). Of course, there is the
extra cost of a postprocessing step, i.e., the summation over q and r in (26), but this cost has only an OðL2Þ
complexity and is negligible compared to the entire aggregation. Note that this whole scheme works totally
independent from the choice of the discretization points k3þ

v . Only the connection (17) is required. Another
important point was brought up by one of the reviewers: very elongated structures require less than six radi-
ation patterns to be computed. For example a long wire will need the MLFMA groups to have only two radi-
ation patterns. In this case (26) will only yield an asymptotic factor two. If an MLFMA group needs only one
radiation pattern, then a switch to the direct method should be made. The same considerations apply to the
disaggregation and the first method for the vectorial case. The second method will be shown to be capable of
accelerating by a factor 2 even if only one radiation pattern is required.

An explicit operation count will be done to show that the proposed method requires less multiplications
than the direct approach for most practical cases. The operation count for doing the rotation on alm (24) is:XL

l¼0

ð2lþ 1Þ2 ¼ 1

3
ð4L3 þ 12L2 þ 11Lþ 3Þ ð28Þ

The operation count for the construction of the new radiation patterns jqr
v clearly is V(L + 1)2. V is the num-

ber of discretization points for the Green function’s integral representation. The postprocessing step requires
36V multiplications. Hence the total number of multiplications is:

1

3
ð4L3 þ 12L2 þ 11Lþ 3Þ þ V ðL2 þ 2Lþ 37Þ ð29Þ

The number of multiplications without acceleration is 6V(L + 1)2. Therefore, the value of V for which the pro-
posed method is faster than the one without acceleration is given by:

V >
1

3

4L3 þ 12L2 þ 11Lþ 3

5L2 þ 10L� 31
8L > 1 ð30Þ
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For the case where L = 1, > in Eq. (30) has to be replaced by < because 5L2 + 10L � 31 is negative. Therefore,
if L = 1, (30) is not satisfied and the new method is slower than the direct approach. For L = 2, the right hand
side becomes 35

9
< 4. Since the number of discretization points is always more than 3, (30) is always satisfied.

Moreover, V ¼ OðL2Þ because the multipole and plane wave expansion have approximately the same informa-
tion content. This makes sure that Eq. (30) is also satisfied for larger L. Therefore it is safe to say that for any
L > 1, the method presented in 4.2 is faster than the direct approach. It has to be acknowledged that this oper-
ation count has to be put in the right perspective, because different optimizations and hardware can have a
great influence on performance.

3.2. Disaggregation

The disaggregation can also be accelerated. The operations are analogous to the aggregation, but are done
in reversed order. A short treatment is given below for completeness. The derivation is again started by using
(17) in (20), which yields:

blm ¼
X

v

wv

X
p;s

Ups
v Y �l;m R�1

0 � sR
2pp

3
; uz

� �� �
� R0 � k3þ�

v

� �
: ð31Þ

As a first step it is possible to remove the last rotation by contracting blm with Dl�
m2;m
ðR0Þ:

b0lm2
¼
X

m

Dl�
m2;m
ðR0Þblm ¼

X
v

wv

X
p;s

Ups
v Y �l;m2

sR
2pp

3
; uz

� �
� R0 � k3þ�

v

� �
: ð32Þ

Again the rotation around the z-axis can be taken out of the spherical harmonics by using the diagonal Wigner
D-matrices:

b0lm2
¼
X

v

wv

X
p;s

Ups
v sl

Xl

m3¼�l

Dl�
m2;m3

R
2pp

3
; uz

� �� �
Y �l;m3
ðR0 � k3þ�

v Þ ð33Þ

¼
X

v

wv

X
p;s

Ups
v sle�im2

2pp
3 Y �l;m2

ðR0 � k3þ�
v Þ: ð34Þ

The summation over p,s gives rise to 6 distinct new disaggregation patterns:

Nk;r
v ¼

X
p;s

Ups
v sre�ik2pp

3 ; 8k 2 f0; 1; 2g; 2 f0; 1g: ð35Þ

These new patterns allow for a faster disaggregation because they each only contribute to one sixth of the b0lm1
:

b0lm1
¼
X

v

wvN
m1 mod 3;l mod 2
v Y l;m1

ðR0 � k3þ�
v Þ: ð36Þ

In order to obtain the blm, the b0lm1
have only to be rotated back:

blm ¼
Xl

m3¼�l

Xl

m1¼�l

Dl�
m;m1
ðR�1

0 ÞDl�
m1;m3
ðR0Þbl;m3

ð37Þ

¼
Xl

m1¼�l

Dl�
m;m1
ðR�1

0 Þb0l;m1
ð38Þ

¼
Xl

m1¼�l

Dl
m1;m
ðR0Þb0l;m1

: ð39Þ

4. A faster (dis)aggregation for the vectorial case

The proposed technique can also be used in the vectorial case, as is needed for the general electromagnetic
case. Multipoles for the vectorial case, or vector multipoles, can be collected in two independent sets, which
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will be called Mlm(cr) and Nlm(cr) as defined in Appendix. The multipole coefficients associated with these mul-
tipoles will thus carry the label M or N besides the usual l and m. Because the vectorial case is less well-known,
a short derivation of the formulas for the (dis)aggregation will be given here. Let U(r) be the vectorial field
generated by sources inside a sphere with center r1. This field can be expanded into outgoing multipoles:

UðrÞ ¼
XL

l¼0

Xl

m¼�l

½aM
lmMhð2Þ

l;m ðcðr� r1ÞÞ þ aN
lmNhð2Þ

l;m ðcðr� r1ÞÞ� ð40Þ

U(r) can now be expanded around r2 as:

UðrÞ ¼
XL

l¼0

Xl

m¼�l

½bM
lmM j

l;mðcðr� r2ÞÞ þ bN
lmN j

l;mðcðr� r2ÞÞ� ð41Þ

with bM
l;m and bN

l;m defined by means of the multipole translation matrix [13]:

bM

bN

" #
¼ avecðcrÞ �

aM

aN

� �
¼

aMMðcrÞ aNMðcrÞ
aNMðcrÞ aMMðcrÞ

� �
�

aM

aN

� �
ð42Þ

with

½aMMðcrÞ�l0 ;m0 ;l;m ¼ 2jl�l0
Z 1

�1

Z 1

�1
X l;mðkÞ � ½X l0 ;m0 ðk�Þ��e�jk�r dkxdky

ckzðc;KÞ
ð43Þ

½aMN ðcrÞ�l0 ;m0 ;l;m ¼ 2jl�l0
Z 1

�1

Z 1

�1
½�jWl;mðkÞ� � ½X l0;m0 ðk�Þ��e�jk�r dkxdky

ckzðc;KÞ
ð44Þ

Here, the Xl,m(Æ) and Wl,m(Æ) are the so-called vector spherical harmonics, again defined in Appendix. Integrals
(43) and (44) can again be split up in a propagating and an evanescent part and discretized. The propagating
part will again be omitted. By means of (43) and (44), and the formulas in Appendix (A.15) and (A.16), the
aggregation toward the six evanescent radiation patterns can be written as follows:

Hps
v ¼

XL

l¼0

Xl

m¼�l

jl½aM
lmX l;mðkps

v Þ � jaN
lmWl;mðkps

v Þ� ð45Þ

The vector Hps
v has three components. From the definition of the vector spherical harmonics in Appendix, it is

clear that Hps
v � k

ps
v ¼ 0. This relation removes one degree of freedom and permits representing the vector Hps

v

with only the two components orthogonal to kps
v . An obvious choice for these components is to take the part of

Hps
v parallel with ups

/;v and ups
h;v, which are defined as follows:

ups
/;v ¼ R�1

0 � R
2pp

3
; uz

� �
� R0 � u3þ

/;v ð46Þ

ups
h;v ¼ sR�1

0 � R
2pp

3
; uz

� �
� R0 � u3þ

h;v ð47Þ

Here u3þ
/;v and u3þ

h;v are the two usual nonradial unit vectors in the spherical coordinate system. Expression (46)
does not contain an s in the right hand side for reasons that will be explained in Section 4.2. The aggregation
to Hps

v is thus reduced to an aggregation to two scalar quantities namely to ups
/;v �H

ps
v and ups

h;v �H
ps
v :

ups
/;v �H

ps
v ¼

XL

l¼0

Xl

m¼�l

jl½aM
lmups

/;v � X l;mðkps
v Þ � jaN

lmups
/;v �Wl;mðkps

v Þ� ð48Þ

ups
h;v �H

ps
v ¼

XL

l¼0

Xl

m¼�l

jl½aM
lmups

h;v � X l;mðkps
v Þ � jaN

lmups
h;v �Wl;mðkps

v Þ� ð49Þ

This aggregation for the vectorial case can now be accelerated in two ways. These will both be outlined below.
In what follows we will only consider (48) because the formulas for (49) can be derived in a very similar
fashion.
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4.1. A faster aggregation for the vectorial case: method 1

The rotations of the argument of the vector spherical harmonics can again be brought outside by means of
the Wigner D-matrices which yields:

ups
/;v �H

ps
v ¼

XL

l¼0

Xl

m¼�l

"
R

2pp
3
;uz

� �
�R0 � u3þ

/;v

� �
�X l;m sR

2pp
3
;uz

� �
�R0 � k3þ

v

� �
a0Mlm � j R

2pp
3
;uz

� �
�R0 � u3þ

/;v

� �

�Wl;m sR
2pp

3
;uz

� �
�R0 � k3þ

v

� �
a0Nlm

#
ð50Þ

with:

a0Mlm1
¼
X

m

Dl
m;m1
ðR�1

0 ÞjlaM
l;m ð51Þ

a0Nlm1
¼
X

m

Dl
m;m1
ðR�1

0 ÞjlaN
l;m ð52Þ

To remove the dependence on s the properties of the vector spherical harmonics (A.13) and (A.14) can be
used. The dependence on p can again be removed using the diagonal Wigner D-matrices for rotations around
the z-axis:

ups
/;v �H

ps
v ¼

XL

l¼0

Xl

m¼�l

sleim2pp
3

�
ðR0 � u3þ

/;vÞ � X l;mðR0 � k3þ
v Þa0Mlm ð53Þ

�jsðR0 � u3þ
/;vÞ �Wl;mðR0 � k3þ

v Þa0Nlm
�

ð54Þ

or after splitting the summations:

ups
/;v �H

ps
v ¼

X1

r¼0

X2

q¼0

sreiq2pp
3

X
r¼l mod 2

X
q¼m mod 3

½ðR0 � u3þ
/;vÞ � X l;mðR0 � k3þ

v Þa0Mlm � jsðR0 � u3þ
/;vÞ �Wl;mðR0 � k3þ

v Þa0Nlm�

ð55Þ
Despite the splitting of the sums, there is still an s inside the brackets. This can be resolved by rewriting the
sum as:

ups
/;v �H

ps
v ¼

X1

r¼0

X2

q¼0

sreiq2pp
3

X
q¼mmod3

X
r¼lmod2

ðR0 �u3þ
/;vÞ �X l;mðR0 �k3þ

v Þa0Mlm

"
� j

X
l¼ð1�rÞmod2

ðR0 �u3þ
/;vÞ �Wl;mðR0 �k3þ

v Þa0Nlm

#

ð56Þ
Eq. (56) again requires only one sixth of the amount of work that is needed for (48). Indeed, there are six new
radiation patterns, but each of them requires six times less work. The disaggregation is entirely analogous to
the aggregation.

4.2. A faster aggregation for the vectorial case: Method 2

The (dis)aggregation in the vectorial case can also be accelerated in a different way. This method does not
use the inversion properties of the vector spherical harmonics, but rather uses the transformation properties
under the curl operator. This method is easier to implement and slightly faster than method 1. The aggrega-
tion, given by (48) and (49), can be concisely written as:

ups
/;v �H

ps
v

ups
h;v �H

ps
v

" #
¼
XL

l¼0

Xl

m¼�l

AM ;p;s;l;m
/;v AN ;p;s;l;m

/;v

AM ;p;s;l;m
h;v AN ;p;s;l;m

h;v

" #
�

aM
l;m

aN
l;m

" #
; ð57Þ
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with:

AM ;p;s;l;m
h;v ¼ jlups

h;v � X l;mðkps
v Þ; ð58Þ

AN ;p;s;l;m
h;v ¼ jlups

h;v � ½�jWl;mðkps
v Þ�; ð59Þ

AM ;p;s;l;m
/;v ¼ jlups

/;v � X l;mðkps
v Þ; ð60Þ

AN ;p;s;l;m
/;v ¼ jlups

/;v � ½�jWl;mðkps
v Þ�: ð61Þ

As stated before, the unit vectors ups
h;v and ups

/;v are orthogonal to each other and to kps
v . As a consequence:

ups
h;v � ðk

ps
v � ups

/;vÞ ¼ kps
v ðu

ps
h;v � u

ps
/;vÞ � ups

/;vðu
ps
h;v � k

ps
v Þ ð62Þ

ups
h;v � ðk

ps
v � ups

/;vÞ ¼ 0 ð63Þ

which yields, with the fact that ups
/;v and ups

h;v have unit length:

kps
v � ups

/;v ¼ �cups
h;v ð64Þ

The sign can be chosen freely, but it is convenient to work with a plus sign, since that is similar to the usual
unit vectors in spherical coordinates. As a consequence:

kps
v � ups

/;v ¼ cups
h;v ð65Þ

ups
h;v � kps

v ¼ cups
/;v ð66Þ

cups
/;v � ups

h;v ¼ kps
v ð67Þ

This particular choice explains why ups
h;v has the additional factor s in (47):

kps
v � ups

/;v ¼ cups
h;v ¼ R�1

0 � R
2pp

3
; uz

� �
� R0 � sk3þ

v � u3þ
/;v

h i
ð68Þ

¼ scR�1
0 � R

2pp
3
; uz

� �
� R0 � u3þ

h;v ð69Þ

With this choice, it can be easily shown that:

AM ;p;s;l;m
/;v ¼ �jl kps

v

c
� ups

h;v

� �
� X l;mðkps

v Þ ¼ jlups
h;v �Wl;mðkps

v Þ ¼ jAN ;p;s;l;m
h;v ð70Þ

AN ;p;s;l;m
/;v ¼ jlþ1 kps

v

c
� ups

h;v

� �
�Wl;mðkps

v Þ ¼ jlþ1ups
h;v � X l;mðkps

v Þ ¼ jAM ;p;s;l;m
h;v ð71Þ

So (57) becomes:

�jups
/;v �H

ps
v

ups
h;v �H

ps
v

" #
¼
XL

l¼0

Xl

m¼�l

AN ;p;s;l;m
h;v AM ;p;s;l;m

h;v

AM ;p;s;l;m
h;v AN ;p;s;l;m

h;v

" #
�

aM
l;m

aN
l;m

" #
ð72Þ

It is worthwhile to point out that the 2 · 2 matrix occurring in (72) is circulant and can thus be diagonalized by
means of the 2 · 2 Fourier matrix. After some calculations, this yields:

ð�jups
/;v þ ups

h;vÞ �H
ps
v

ð�jups
/;v � ups

h;vÞ �H
ps
v

" #
¼ 1

2

XL

l¼0

Xl

m¼�l

AN ;p;s;l;m
h;v þ AM ;p;s;l;m

h;v 0

0 AN ;p;s;l;m
h;v � AM ;p;s;l;m

h;v

" #
�

aM
l;m þ aN

l;m

aM
l;m � aN

l;m

" #
ð73Þ

This expression allows to reduce the amount of work associated with the aggregations by a factor two. It also
exposes some fundamental aspects of vector multipoles. For example consider the vector multipole translation
matrix avec(cr) as given in (42). This matrix avec(cr) is block-circulant and can thus also be block-diagonalized
by means of the 2 · 2 Fourier matrix. This yields:

bM þ bN

bM � bN

" #
¼

aMM þ aNM 0

0 aMM � aNM

� �
�

aM þ aN

aM � aN

� �
ð74Þ
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This allows a two times faster application of the vector multipole translation matrix. Another example can be
found in [14]: the recurrences for the calculation of the vector multipole translation matrices aMM and aMN are
coupled, but they can be decoupled by using aMM ± aMN instead. As for the vector multipoles themselves, this
block-diagonalization of avec(cr) is a change of basis which boils down to using using the combinations
Mf

lm �N f
lm instead of M f

lm and N f
lm. All this is caused by the transformation properties of Mf

lm �N f
lm under

the curl operator:

$� ½Mf
lm �N f

lm� ¼ c½N f
lm �M f

lm� ¼ �c½M f
lm �N f

lm� ð75Þ
Apparently M f

lm þN f
lm and M f

lm �N f
lm are eigenfunctions of the curl operator with eigenvalues +c and �c,

respectively. Any electromagnetic field in a source-free region is a superposition of vector multipoles M j
lm

and N j
lm and can thus be decomposed into a part with eigenvalue +c and a part with eigenvalue �c with

respect to the curl operator. This is the so-called Beltrami-decomposition of the electromagnetic field
[15,16]. Because the curl operator commutes with the translation operator, these parts will remain sepa-
rated under translation. Indeed, applying the curl before or after translation of one of the parts must yield
the same result, so no mixing of the two parts can take place under translation. Therefore, the vector mul-
tipole translation matrix cannot contain coupling between M f

lm þN f
lm and Mf

lm �N f
lm fields. For the aggre-

gation, no mixing will occur if the plane waves (to which the aggregation is done) are also eigenfunctions
of the curl operator. Although not explicitly visible, this is already the case in (73). To show this, (73) is
rewritten as:

ð�jups
/;v � ups

h;vÞ �H
ps
v ¼

1

4

XL

l¼0

Xl

m¼�l

jlð�jups
/;v � ups

h;vÞ � ½X l;mðkps
v Þ � jWl;mðkps

v Þ�½aM
l;m � aN

l;m� ð76Þ

From this it is seen that the plane waves have the form

½X l;mðkps
v Þ � jWl;mðkps

v Þ�e�jkps
v �r ð77Þ

and it can be verified easily that these plane waves are eigenfunctions of the curl operator:

$� ½X l;mðkps
v Þ � jWl;mðkps

v Þ�e�jkps
v �r

h i
¼ �c½X l;mðkps

v Þ � jWl;mðkps
v Þ�e�jkps

v �r ð78Þ

A similar block-diagonalization as the one for the aggregation can also be done for the disaggregation, yield-
ing an acceleration by a factor two. The dependencies (17) can now be used again to obtain further acceler-
ation by a factor three, resulting in a total acceleration by a factor six. Unfortunately, the inversion properties
(A.13) and (A.14) of the vector harmonics cannot be used any more because Mf

lm �N f
lm are not eigenfunctions

of the inversion operator. Indeed, the inversion and curl operator do not commute, so their eigenfunctions
cannot be the same.

The method described here is slightly faster than the method from Section 4.1. This is because the factor
two from the block-diagonalization of the (dis)aggregation is almost completely free of any overhead. Just
combine the aM

l;m and aN
l;m into aM

l;m � aN
l;m before the start of the entire MLFMA and the two sets of coefficients

remain completely independent until the FMM is finished. This also permits running the MLFMA on two
processors without any communication between them, with perfect load balancing. Moreover, the second
method is easier to implement. It is worthwhile to point out that the gain from using eigenfunctions of the
curl operator is not limited to evanescent wave solvers. In fact it can be used in any vectorial MLFMA in elec-
tromagnetics, including the plane wave method (faster (dis)aggregation if both electric and magnetic currents
are present) and LF-MLFMAs (all translation matrices become block-diagonal, as shown in (74), yielding a
factor two). Finally, in the method described here the kpþ

v and kp�
v radiation patterns do not couple. So if for

example only radiation pattern k2þ
v is required, only the three kpþ

v patterns will be calculated. As a consequence
an asymptotic factor 2 is still gained compared to the direct method.

An operation count as in Section 3 will now be performed. The operation count for doing the rotation on
the two sets of coefficients is:

2
XL

l¼1

ð2lþ 1Þ2 ¼ 2

3
ð4L3 þ 12L2 þ 11LÞ ð79Þ
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The operation count for the construction of the new radiation patterns clearly is 4V(L2 + 2L). The postpro-
cessing step requires 36V multiplications. The total cost is thus:

2

3
ð4L3 þ 12L2 þ 11LÞ þ 4V ðL2 þ 2Lþ 9Þ ð80Þ

The cost without acceleration is 24V(L2 + 2L). Therefore, the value of V for which the proposed method is
faster than the one without acceleration is given by:

V >
L
6

4L2 þ 12Lþ 11

5L2 þ 10L� 9
ð81Þ

Eq. (81) is always satisfied if L < 7, because the right hand side is certainly smaller than 1 which is smaller than
V. Moreover, V ¼ OðL2Þ again assures that (81) is also satisfied for larger L. Therefore it is safe to say that for
any L, the method presented in 4.2 is faster than the direct approach. This will also be validated in Section 6.
The acceleration factor is given by:

24V ðL2 þ 4LÞ
3
2
ð4L3 þ 12L2 þ 11LÞ þ 4V ðL2 þ 4Lþ 9Þ

ð82Þ

Again for large L, V ¼ OðL2Þ so the acceleration factor becomes six.
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Fig. 3. An example configuration with seven axes.

568 I. Bogaert et al. / Journal of Computational Physics 227 (2007) 557–573



Author's personal copy

5. Extension to N axes

The rotation method described in the above can be generalized to a case where N axes are located on a cone
as in Fig. 3. This generalization will be demonstrated for the scalar case only, but evidently it can be used for
the vectorial case as well. The formula for kps

v becomes

kps
v ¼ R�1

0 � sR
2pp
N

; uz

� �� �
� R0 � kNþ

v 8s 2 f�1;þ1g 8p 2 f1; . . . ;Ng ð83Þ

with R0 the rotation matrix which rotates the reference frame to a new frame in which the symmetry axis of the
cone is the new z-axis. When all the steps of the method are repeated, the following expression is obtained:

Hps
v ¼

X1

r¼0

XN

q¼0

sreiq2pp
N Crq

v ð84Þ

Here, Crq
v are 2N new radiation patterns, which each require 2N times less work than one ‘normal’ pattern.

Therefore the total amount of work for evaluating the Crq
v is independent of the number of axes N. The recom-

bination step is the only remaining step and can be done with an FFT. Indeed, the sum over q represents pre-
cisely an inverse FFT.

6. Results

The vectorial stable plane wave method was applied to the scattering from spheres [17]. In particular the T-
matrix method was used, described in detail in [18], which was then accelerated with the vectorial stable plane
wave method. The multipole-to-plane-wave and plane-wave-to-multipole operations are natural parts of this
algorithm. A uniform discretization of the evanescent integral in both of the integration variables was used. This
technique is discussed briefly in [6]. The method from Section 4.2 was used to speed up the (dis)aggregation.
Fig. 4 shows the acceleration factor of the (dis)aggregation from the multipole sources on the spheres to the eva-
nescent plane wave radiation patterns of the lowest-level boxes as a function of the multipole order L used on the
spheres. The acceleration factor is defined here as the time needed for the direct scheme ((49) and (48)) divided by
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Fig. 4. The acceleration factor of Method 2 for the vectorial case as a function of L. The Intel processor is a Pentium 4, 2.40 GHz and the
other processor is an Opteron 270.
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the time needed for the newly proposed method from Section 4.2. As can be seen, the curves show strong fluc-
tuations. This is caused by pecularities in the hardware because when the code is run on two different processors
(an Intel Pentium 4, 2.40 GHz and an AMD Opteron 270), the curves behave differently. However, it is clear that
the acceleration factor grows towards six with increasing multipole order for all the curves.

In order to assess the acceleration directly in the context of the stable plane wave method, a typical multiple
scattering problem was solved. The problem consists of 8 · 4 · 4 = 128 spheres with radius 5 cm on a rectan-
gular grid with period 15 cm. The spheres have a relative permittivity of 12 and a relative permeability of 1.
Fig. 5 shows the geometry of the problem. This scattering problem was solved for various accuracies at a fre-
quency of 0.5 GHz, so the aggregation is in the LF regime. The accuracy setting has an influence on both the
stable plane wave method and on the multipole order that is necessary to represent the fields on the spheres. In
this test, for every multipole order L between 1 and 9, the accuracy obtained by an exact solver was measured,
and the stable plane wave method was set to deliver this accuracy. For each box, all the radiation patterns

Fig. 5. The geometry for testing the performance of the new method in the stable plane wave method. The spheres with radius 5 cm and
permittivity 12 are located on a 8 · 4 · 4 grid with period 15 cm. The frequency is 0.5 GHz.
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Fig. 6. The accuracy and time required for 1 iteration as a function of the multipole order L. The scattering geometry is shown in 5.
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were calculated, so that the results would be more representative for larger scattering problems. The stable
plane wave method used one level with translations. Fig. 6 shows a logarithmic plot of the iteration time
and accuracy as a function of the multipole order for both the direct aggregation method and the method from
Section 4.2. From 6 it is visible that the acceleration in this problem saturates at approximately a factor four.
This is caused by the fact that the other operations (near interactions, translation) also add computational
cost. Since these operations are not accelerated, this has a negative effect on the acceleration.

7. Conclusion

A novel method has been proposed that accelerates the multipole-to-plane-wave and plane-wave-to-multi-
pole operations in the stable plane wave method. The fact that the Wigner D-matrices become diagonal for
rotations around the z-axis has been exploited to obtain a acceleration of a factor six. Apart from some over-
head which becomes negligible for not-too-small multipole orders, this reduces the computational cost of the
six (dis)aggregations of the stable plane wave method to the cost of only one. The method has also been
extended to the vectorial case and to the case with N axes. For the vectorial case, two possible methods have
been proposed. The first is very similar to the scalar case, the second uses the Beltrami decomposition of the
electromagnetic field. This property permits splitting the vectorial MLFMA into two completely independent
MLFMAs, including the (dis)aggregation from multipoles. As a consequence, some of the overhead associated
with the new method is eliminated and this results in a method which is faster than the direct approach for any
multipole order. These results have been shown both theoretically and numerically. The Beltrami decompo-
sition is also valid for any vectorial MLFMA, still yielding an acceleration of a factor two.
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Appendix

For the definition of the spherical harmonics we will follow the conventions from [13]:

Y l;mðkÞ ¼ ð�1Þm
kx þ jky

k

� �m

KlmP m
l

kz

k

� �
; ðA:1Þ

Y l;�mðkÞ ¼
kx � jky

k

� �m

KlmP m
l

kz

k

� �
; ðA:2Þ

with m P 0, k ¼
ffiffiffiffiffiffiffiffiffi
k � k
p

,

Klm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4p
ðl� mÞ!
ðlþ mÞ!

s
; ðA:3Þ

and

P m
l ðtÞ ¼

dm

dtm
P lðtÞ: ðA:4Þ

Here Pl(t) is a Legendre polynomial. Some of the properties of spherical harmonics are:

ð�1ÞmY l;�mðkÞ ¼ ½Y l;mðk�Þ�� 	 Y �l;mðk
�Þ; ðA:5Þ

Y l;mð�kÞ ¼ ð�1ÞlY l;mðkÞ: ðA:6Þ
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The scalar multipoles are given by

� f
l;mðcrÞ ¼ f ðcrÞY l;mðrÞ: ðA:7Þ

Here f(Æ) denotes a spherical Hankel function hð2Þl ð�Þ or a spherical Bessel function jl(Æ).
While the scalar multipoles are appropriate to describe scalar fields, vector multipoles are the most efficient

way to describe vector fields arising in the general electromagnetic case. First the vector spherical harmonics
will be introduced, followed by the vector multipoles. Since the electromagnetic field is divergence-free in
sourcefree regions, only two sets of vector spherical harmonics are needed:

X l;mðkÞ ¼
L̂Y l;mðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þ
p ; ðA:8Þ

Wl;mðkÞ ¼
k

k
� X l;mðkÞ; ðA:9Þ

with

L̂ ¼ �jr� $ ¼ j½eh
1

sin h
o/ � e/oh�: ðA:10Þ

Obviously, Xl,m(k) and Wl,m(k) do not have radial components and their properties are easily deduced from the
properties of spherical harmonics:

ð�1Þmþ1
X l;�mðkÞ ¼ X�l;mðk

�Þ; ðA:11Þ

ð�1Þmþ1Wl;�mðkÞ ¼ W�l;mðk
�Þ; ðA:12Þ

X l;mð�kÞ ¼ ð�1ÞlX l;mðkÞ; ðA:13Þ

Wl;mð�kÞ ¼ ð�1Þlþ1Wl;mðkÞ; ðA:14Þ
X l;mðkÞ � X l0;m0 ðkÞ ¼ Wl;mðkÞ �Wl0;m0 ðkÞ; ðA:15Þ
X l;mðkÞ �Wl0;m0 ðkÞ ¼ �Wl;mðkÞ � X l0 ;m0 ðkÞ: ðA:16Þ

The vector multipoles are defined as in Wittmann [13]:

M f
l;mðcrÞ ¼ f ðcrÞX l;mðrÞ ðA:17Þ

N f
l;mðcrÞ ¼ 1

c
$�Mf

l;mðcrÞ ðA:18Þ

with f again a spherical Bessel or Hankel function.
Rotations will be defined by the 3 · 3 matrix R(a, a) which does the active rotation of a 3-vector around an

axis a (with a Æ a = 1) over the angle a. An alternative representation is the Wigner D-matrix, which will be
defined in this paper as:

Y l;m1
ðRrÞ ¼

Xl

m2¼�l

Dl
m1;m2
ðRÞY l;m2

ðrÞ ðA:19Þ

These Wigner D-matrices can be calculated very efficiently with a recursive algorithm described in [19]. A use-
ful property of the Wigner D-matrices is that they become diagonal in the case of a rotation around the z-axis:

Dl
m;m0 ðRðh; uzÞÞ ¼ eimhdm;m0 ðA:20Þ

The vector spherical harmonics transform under a rotation as follows:

R�1X l;m1
ðRrÞ ¼

Xl

m2¼�l

Dl
m1;m2
ðRÞX l;m2

ðrÞ ðA:21Þ

R�1Wl;m1
ðRrÞ ¼

Xl

m2¼�l

Dl
m1;m2
ðRÞWl;m2

ðrÞ ðA:22Þ
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