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ABSTRACT COVID-19 is an infectious disease that was declared a pandemic by the World Health
Organization (WHO) in early March 2020. Since its early development, it has challenged health systems
around the world. Although more than 12 billion vaccines have been administered, at the time of writing,
it has more than 623 million confirmed cases and more than 6 million deaths reported to the WHO. These
numbers continue to grow, soliciting further research efforts to reduce the impacts of such a pandemic.
In particular, artificial intelligence techniques have shown great potential in supporting the early diagnosis,
detection, and monitoring of COVID-19 infections from disparate data sources. In this work, we aim to make
a contribution to this field by analyzing a high-dimensional dataset containing blood sample data from over
forty thousand individuals recognized as infected or not with COVID-19. Encompassing a wide range of
methods, including traditional machine learning algorithms, dimensionality reduction techniques, and deep
learning strategies, our analysis investigates the performance of different classification models, showing
that accurate detection of blood infections can be obtained. In particular, an F-score of 84% was achieved
by the artificial neural network model we designed for this task, with a rate of 87% correct predictions
on the positive class. Furthermore, our study shows that the dimensionality of the original data, i.e. the
number of features involved, can be significantly reduced to gain efficiency without compromising the final
prediction performance. These results pave the way for further research in this field, confirming that artificial
intelligence techniques may play an important role in supporting medical decision-making.

INDEX TERMS Covid-19 detection, artificial intelligence, machine learning, deep learning, feature
selection.

I. INTRODUCTION

Covid-19 is an infectious disease caused by the Severe
Acute Respiratory Syndrome CoronaVirus 2 (SARS-
CoV-2) [1], declared a pandemic by the World Health Organ-
isation (WHO) at the beginning of March 2020 [2].

The pandemic came in several waves, putting the health
systems into crisis. For example, hospitals have been particu-
larly affected by this emergency, in which intensive care cases
have become a serious concern. Moreover, as of October 21,
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2022, it has over 623 million confirmed cases and more than
6 million and a half deaths reported to WHO [2]. For these
reasons, and even though more than 12 billion vaccines have
been administered to date [2], continuous monitoring and
early detection of COVID-19 positive cases remain critical
to prevent the spread of the virus and to provide the most
appropriate treatment for severe cases.

According to the National Institute of Allergy and
Infectious Diseases (NIAID), complications brought on by
a coronavirus can exhibit relevant issues that may include
symptoms such as cough and breathing difficulties, fever, and
kidney illnesses. In the worst cases, the disease may lead to
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death [3]. For these reasons, governments took preventive
actions and invested in research to tackle this problem.

In particular, in the field of artificial intelligence (Al),
many researchers have studied and employed several machine
learning (ML) and deep learning (DL) techniques to sup-
port the early diagnosis and monitoring of COVID-19. For
many years, indeed, machine learning algorithms have played
a crucial role in the medical field for clinical decision-
making [4], [5], [6], being able to help experienced doctors,
speed up the analysis process, and improve the reliability of
results [7], [8], [9], [10].

More than ever, during the pandemic, these techniques
have proved to be of extreme importance. An example is
represented by the adoption of deep learning techniques
in computer vision (CV) activities which, in some cases,
even generate new data for further investigation through the
support of models called generative adversarial networks
(GANSs) [11], [12], [13].

As witnessed by recent literature [14], [15], there is a
growing demand for automated systems that can support
healthcare professionals in extracting actionable knowledge
from the increasing amount of digitized clinical data. There
are many types of medical data, e.g., approaches based on
radiography, computed tomography, and magnetic resonance
imaging [16]. Similarly, the types of data made public inher-
ent to COVID-19 are chest X-ray (CXR) images, computed
tomography (CT) scans [17], [18], [19], cough waves, and
many others [20], including demographic and routine clinical
data.

In this context, this work aims to investigate the poten-
tial of machine learning and deep learning methods for
detecting COVID-19 in blood sample data, which can poten-
tially complement other screening and diagnostic approaches.
More specifically, this work focuses on the exploration
and analysis of a relatively recent dataset containing more
than 40000 instances, each described by more than 12 000
features derived from the digitization of collected blood
samples.

With the purpose of building models capable of discrim-
inating between infected and non-infected subjects, sev-
eral classification methods have been applied, including
Bayesian classifiers, rule-based classifiers, tree-based clas-
sifiers, instance-based classifiers, Support Vector Machines,
and state-of-art ensemble methods (Random Forest and
XGBoost). Several artificial neural network architectures
have also been explored, leading to a final deep learning
model with satisfactory performance. Furthermore, given the
high dimensionality of the problem, i.e. the large number
of features involved, our comparative study has explored
the use of automatic feature selection techniques. They
were applied in conjunction with the best-performing clas-
sification methods to provide valuable insights into which
approaches may be most suitable for analyzing this type
of data.

Summarizing, the main contributions of our research are
the following:
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1) We studied and compared the classification per-
formance of different families of machine learning
classifiers.

2) We studied and compared three deep learning classi-
fiers recently proposed for the classification of tabular
data.

3) We proposed a new artificial neural network (ANN) to
handle the task at hand.

4) We investigated the extent to which feature selection
can be beneficial with respect to the top-performing
machine and deep learning algorithms, i.e. Random
Forest and our proposed ANN.

5) We proposed an extensive comparative analysis in a
domain that has not yet been fully explored and an
effective pipeline to solve the task at hand.

Encompassing a large variety of methods, such a broad
experimental investigation can provide valuable hints to
researchers and health professionals in this field, paving the
way for further, more in-depth research.

The rest of the manuscript is structured as follows.
Section II provides a general review of the use of artificial
intelligence techniques for COVID-19 detection. Section III
presents the considered dataset and gives a brief descrip-
tion of the machine learning and deep learning techniques
and the feature selection methods used in this work. The
evaluation metrics and the leading technologies adopted
are also explained. Section IV shows the experiments con-
ducted regarding both machine learning and deep learning
approaches, used alone as well as in conjunction with differ-
ent feature selection techniques, with a discussion of the main
findings. Finally, Section V provides final considerations on
this work and outlines future research directions.

Il. RELATED WORK

Over the past two years, a great deal of research has been con-
ducted related to the diagnosis and detection of COVID-19
infections. Below we provide a general overview of previous
work that, from different perspectives, sought to contribute
to the battle against COVID-19 by exploiting artificial intel-
ligence techniques.

Among the papers summarizing relevant contributions in
the field, Bhattacharya et al. [21] describe several applica-
tions of deep learning in the context of COVID-19 study and
analysis, including outbreak prediction, monitoring the virus
spread, diagnosis and treatment, vaccine development, and
drug testing.

In the work of Rasheed et al. [20], the authors illustrate
how various deep learning techniques have been applied in
the field of computer vision, focusing on the analysis of X-ray
images. They discuss the role of Al from three perspectives:
analysis, prognosis, and case tracking of COVID-19.

Another example is the work of Shorten et al. [22]. The
authors studied the main applications of artificial intelli-
gence algorithms to deal with the pandemic. They analyzed
DL applications to natural language processing (NLP), life
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sciences, computer vision, and epidemiology, explaining how
the availability of big data affects both the construction and
application of learning models.

Although the research is still evolving, several works have
reported significant achievements in this field. In particular,
the automatic classification of COVID-19 has gained wide
attention from researchers involved in the computer vision
domain [23], [24], [25], [26], [27], [28], mainly thanks to the
availability of imaging data like CXR or CT scans [16], [20],
and even in low-end environments [29], [30].

Several works [31], [32], [33], [34], [35], [36], [37],
[38], [39] have also focused on datasets containing different
types of routine clinical information, including data extracted
from blood tests [40], [41], [42], [43]. These datasets, often
acquired under emergency conditions, are highly varied in
terms of the features considered as well as the specific targets
of the analysis. In some cases, the focus was on the most
influential hematological features for the identification of
COVID-19 positive patients [31], [32], [33], [34], [35], [36],
[38]. Other works concentrated on early detection models to
distinguish hospital admissions due to COVID-19 and possi-
ble entry into emergency department [37], or to distinguish
between COVID-19 and influenza [39].

Within this frame of reference, several traditional machine
learning algorithms were used, from Decision Trees and Ran-
dom Forest [31], [32], [35] to Bayes Network [33]. Also,
SVM-based strategies [36], eXtreme Gradient Boosting [37],
[38], [39], and hierarchical classification systems [34] were
proposed.

Some approaches have also investigated hybrid methods
based on integrating clinical data with features extracted from
CXR images, either handcrafted or automatically learned by
convolutional neural networks [44]. The reported experimen-
tation, conducted on patients admitted to Italian hospitals
during the first wave of the pandemic, aimed at devising
reliable tools for the identification of patients at risk of severe
outcomes, like intensive care or death. Despite the inherent
difficulty of such a complex task, the authors provided a
baseline performance reference to foster further research in
this direction.

Overall, the studies reported in the literature point out that
the problem of automatic detection of COVID-19 from any
data source is quite a difficult task. Typically, methods in the
computer vision domain use the ability to infer information
from imaging tools, often leading to very high performance
for specific groups of patients. However, they may not be suit-
able for every type of COVID-19-related diagnostic scenario.
On the other hand, methods based on routine clinical data,
including blood sample data, may have broader applicability
for larger groups of patients and can be potentially suitable
for large-scale (and low-cost) screenings. Such kind of data,
however, is often acquired in less controlled and heteroge-
neous settings, and no clear guidelines are available on the
best features to consider for the analysis. In general, no sin-
gle artificial intelligence approach can be optimal for each
type of COVID-19-related task, motivating the exploration
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of different approaches that may be complementary to each
other.

In this context, our work focuses on a public dataset
much less explored than others but still very interesting for
the considerable amount of data collected through large-
scale blood tests involving more than forty thousand people.
As will be presented in Section III-A, it is a challenging
benchmark provided with a high number of features deriving
from the digitization of the collected blood samples. Such
high dimensionality makes it particularly difficult to induce
accurate detection models. In addition, it does not allow direct
comparison with approaches taken in previous work based on
blood data.

The study that used data most similar to those employed
in our work was proposed by Ribeiro et al. [45]. Indeed, their
experiments were based on digitized blood samples but with
lower dimensionality than the ones considered here. Specif-
ically, the authors proposed a multilayer perceptron (MLP)
with a hidden layer of 450 neurons to devise a diagnostic
system with high sensitivity and specificity. Our experiments,
encompassing an extensive range of learning methods, con-
firm the suitability of artificial neural network models in this
task, as discussed below.

Ill. MATERIALS AND METHODS

This section presents all the materials and methods involved
in our comparative analysis, including the high-dimensional
dataset containing the digitized blood samples (subsec-
tion III-A), the artificial intelligence approaches adopted
(subsection III-B), the evaluation metrics employed for the
experimental evaluation (subsection III-C) and the chosen
implementation setup (subsection III-D). Noteworthy, our
study encompasses a wide range of classification techniques,
which have been used both alone as well as in conjunction
with different feature selection methods in order to investigate
the extent to which the final classification performance varies
in dependence on the data dimensionality.

A. DATASET

The employed dataset contains data extracted from blood
samples collected through the blood scanner represented in
Fig. 1. It was released by Hilab,? a laboratory company
from Brazil, which has thousands of blood scanner points
distributed throughout the country, mostly in hospitals and
pharmacies.

Given the technology of the equipment, where blood sam-
ples are digitized, and the high number of exams, enough data
has become available to build a significant benchmark for
machine learning and deep learning tasks. Such a benchmark
has been recently used for a competition entitled COVID19
Detection in Blood Exams.’

! https://hilab.com.br/competition
2https ://hilab.com.br
3 https://www.ijenn.org/competition-ijcnn-2021
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FIGURE 1. Hilab’s blood sample scanner. Picture taken from Hilab’s
website (link in the footnote).

TABLE 1. Data subdivision.

Fragment Id  # Instances
1 5276
2 5450
3 6012
4 5032
5 6190
6 6436
7 5648
Total 40044

It is publicly available and consists of 40044 instances
uniformly distributed into two classes representing samples
positive for COVID-19 or not, as labeled by expert biomedi-
cians. Each sample is described by 12 210 numerical features,
which make the classification problem very high-dimensional
and challenging.

The releasers split the dataset into seven different frag-
ments by a stratified sampling procedure. Each one is com-
posed of approximately 5500 instances. Table 1 shows the
number of instances for each data fragment.

B. CLASSIFICATION AND SELECTION METHODS

We employed machine and deep learning approaches to
induce classification models from the considered COVID-19
detection benchmark. Furthermore, as mentioned earlier,
we explored the use of different feature selection methods
given the high dimensionality of the data at hand. A brief
description of the methods adopted is provided below.

1) MACHINE LEARNING METHODS

For our comparative study, we exploited the following
machine learning methods as representatives of different fam-
ilies of classifiers:

« Bayesian Network (BayesNet);

« Naive Bayes (NB);

o Support Vector Machine (SVM);
o k-Nearest Neighbor (k-NN);

« Ripper (JRip);

o One Rule (OneR);

o Decision Tree (J48);
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« Random Forest (RF);

« eXtreme Gradient Boosting (XGBoost).

Bayesian Networks are probabilistic models that represent,
in the form of a directed acyclic graph (DAG), the conditional
dependence relationships among the variables of the problem
at hand (namely, in our context, the target class, and the
features). The probabilistic parameters are encoded in a set
of tables, one for each node of the graph, in the form of local
conditional distributions of a node (variable) given its parent
nodes. Once the DAG structure and the probability values
have been induced from a training set of labeled examples,
new instances can be classified by properly computing the
posterior probability of each class value [46].

In the family of Bayesian Network classifiers, a straight-
forward yet effective approach is the Naive Bayes method
which assumes conditional independence among the problem
features, given the value of the target class. Despite this
strong assumption, the Naive Bayes approach has shown to
be competitive across different classification tasks [47].

Support Vector Machines are state-of-the-art classifiers
that can effectively model different types of decision bound-
aries and are known to scale well to high-dimensional fea-
ture spaces. In particular, the linear SVM approach involves
searching for an optimal hyperplane function that maxi-
mizes the width of the margin between the classes [48].
The soft margin formulation and the so-called kernel trick
allow for extending the approach to non-linearly separable
problems.

The k-NN algorithm is a popular classification method in
the family of instance-based learners [49] that assigns the
class to unknown instances based on their similarity to the
training records. Specifically, given a new instance to classify,
the algorithm finds the & training records closest to it (namely,
its k nearest neighbors) and makes a prediction based on a
majority voting decision. A common variant is to weight the
k nearest neighbors based on their distance from the unknown
instance, giving higher weights to the closest neighbors [46].

Repeated Incremental Pruning to Produce Error Reduction
(RIPPER) is a rule-based classifier that relies on a sequential
covering approach [50] to induce an ordered list of prediction
rules. Each rule is built greedily, starting with an empty rule
antecedent and repeatedly adding conjuncts to maximize the
FOIL’s gain measure. The resulting rules are then refined
using an incremental reduced error pruning technique. More
in detail, a validation set is used to estimate the predictive per-
formance of each rule based on a metric that is monotonically
related to the rule’s accuracy. Pruning is done starting from
the last conjunct added to the rule: the conjunct is removed if
the performance metric improves after pruning. This style of
pruning has proven to be quite effective in raising predictive
accuracy in noisy domains.

In the family of rule-based classifiers, One Rule is another
well-known approach [51]. Basically, the algorithm con-
structs a rule by considering the most frequent class for each
input feature’s value (in the case of numerical features, they
are properly discretized). Therefore, each rule is simply a set
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of feature values bound to their majority class. The rule with
the lowest training error is finally used for prediction.

Among the tree-based classifiers, we considered the J48
algorithm, which builds a decision tree model according to
the approach originally proposed by Quinlan [52]. At each
node of the tree, the attribute with the highest information
gain ratio is used to split the data into purer subsets. In order
to reduce the risk of overfitting, the size of the tree is con-
trolled by a post-pruning strategy based on a pessimistic error
estimate made on the training data itself.

Finally, two ensemble methods were used, i.e. Random
Forest and XGBoost. The Random Forest classifier relies on
multiple decision trees built from different bootstrap samples
of the training data [53]. In order to introduce as much
diversity as possible among the ensemble components, each
tree is built by selecting, for each internal node, the best
splitting attribute among a set of candidate features chosen
at random. Such an approach has shown a robust behavior
in high dimensional spaces and, compared to other ensemble
approaches, turns out to be computationally more efficient.

XGBoost [54] is an extensible gradient boosting tree algo-
rithm that belongs to the Gradient Boosted Decision Trees
(GBDT) library, introduced by Grari et al. [55]. As an ensem-
ble grouping model, in XGBoost, new models are created
from the residuals of previous models and combined to obtain
the final prediction. When new models are added, a gradient
descent algorithm minimizes the loss. Therefore, each tree
learns from its predecessors and updates the residual errors,
minimizing the errors from the previous tree.

2) FEATURE SELECTION METHODS

Feature selection, also known as variable selection or attribute
selection, is a widely employed technique for reducing the
original data dimensionality [56]. It involves selecting the
most relevant features for the task at hand with the aim of
improving the efficiency and the understandability of the
induced models without degrading their performance signifi-
cantly. The literature contains several approaches to formalize
the concept of feature relevance and quantify the degree of
relevance [57]. Nevertheless, there are no clear and standard
guidelines to follow for a specific problem [58].

When used in the context of classification tasks, fea-
ture selection methods are usually categorized into three
groups [59], [60]: i) filters, which assess the degree of cor-
relation among the features and the target class by only rely-
ing on the intrinsic data characteristics, without interacting
with the classification algorithm that will be used in the
construction of the final model; ii) wrappers, which use a
specific classifier to evaluate different candidate subsets of
features (built through proper search strategies, e.g., a greedy
stepwise search or an evolutionary search) and choose the one
that leads to the best performance; iii) embedded approaches,
which are based on the intrinsic ability of some classifi-
cation algorithms to assign weights to the features without
requiring a systematic comparison among different candidate
subsets.
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Due to their lower computational cost, filters are the pri-
mary choice in very high-dimensional problems, such as the
one considered here. Specifically, in this work, we adopted a
ranking-based selection approach, in which the features are
ordered from the most important to the least important based
on the strength of their correlation with the target class. Only
a predefined number of highly ranked features is then used
for model induction, as discussed in Section IV.

In particular, the following ranking methods, widely
employed in different application domains [61], including
the analysis of high-dimensional biomedical data [62], [63],
[64], [65], were chosen for our experiments:

o Pearson’s Correlation (Corr);

o Information Gain (InfoG);

o Gain Ratio (GainR);

o Symmetrical Uncertainty (SU);

o Mutual Information (MI).

Pearson’s Correlation is a well-known criterion to evalu-
ate the linear correlation between two variables [66]. In the
context of feature selection, it assesses the worth of each
attribute by evaluating the extent to which its values are
linearly correlated with the class: the higher the correlation,
the more relevant the attribute is for the classification task at
hand.

Information Gain, Gain Ratio, and Symmetrical Uncer-
tainty rely on the information-theoretical concept of
entropy [46]. Specifically, InfoG computes a weight for each
feature by measuring the extent to which the entropy of the
class decreases when the value of that feature is known.
GainR and SU adopt a similar approach but introduce proper
normalization factors to compensate for the InfoG’s bias
toward features with more values.

In turn, Mutual Information is an entropic criterion to mea-
sure the degree of dependency between two variables. The
specific implementation here adopted relies on a nonpara-
metric approach based on entropy estimation from k-nearest
neighbors’ distances as described in [67] and [68].

3) DEEP LEARNING METHODS

Deep learning is a branch of machine learning that focuses
on Artificial Neural Networks (ANNs), i.e. complex com-
putational systems that attempt to emulate biological neural
systems and employ this metaphor to learn from data.

An artificial neural network comprises a set of layers, each
consisting of a collection of processing units called nodes
or neurons, which are connected to each other via properly
weighted directed links. Each neuron includes an activation
function that determines the node’s output based on the inputs
received through the incoming links. The weights of the links
(i.e. the network parameters) represent a fundamental aspect
as the system’s predictive ability depends on them.

ANN systems provide a powerful way of representing
features at different levels of abstraction. In fact, at the various
layers of the network, more complex features are defined
starting from the raw attributes of the input dataset [66], [69].
In contrast to ““shallow” networks that involve only a small
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number of hidden layers, deep neural networks are charac-
terized by multiple layers, i.e. multiple levels of abstraction,
with the ability to model very complex decision boundaries.

In order to train such complex models, adequate compu-
tational resources and advanced algorithmic procedures are
required due to various factors that come into play. In partic-
ular, regularization methods play a crucial role in reducing the
risk of overfitting. Further, depending on the data character-
istics, proper architectural solutions need to be adopted [70].
Successful applications of such a computational paradigm
are increasingly reported in the literature, across different
real-world domains [71], [72], [73], [74], [75], including
COVID-19 detection [25], [26], [27], [28], [44], [76].

In this work, we explored different network models to
investigate the potential of deep learning in the diagnostic
task at hand. The specific solution adopted, with its design
choices and settings, is detailed in Section IV. Basically,
it involves several intermediate layers, and the dimensionality
of the input dataset is gradually reduced. Such a solution was
also compared with existing state-of-the-art deep learning
methods for tabular data. More specifically, the comparison
included the following algorithms:

o TabNet;

o Neural Oblivious Decision Ensembles (NODE);

o 1D Convolutional Neural Network (1D-CNN).

TabNet [77] is a transformer-based model for tabular data.
It comprises multiple subnetworks processed sequentially
and hierarchically, like a decision tree. In particular, each
subnetwork corresponds to a decision stage and receives the
current batch of data as input. Then, TabNet aggregates the
results of all decision phases to obtain the final prediction.
TabNet first applies a sparse feature mask in each decision
phase to perform a feature selection.

Instead, NODE is considered a fully differentiable model.
Therefore, it permits end-to-end deep learning for training
and inference employing gradient descent optimizers. Pro-
posed by Popov et al. [78], NODE is an ensemble of differen-
tiable oblivious decision trees [79] and uses the same splitting
function for all nodes on the same level. Based on decision
tree ensembles, no preprocessing or data transformation is
needed.

Convolutional Neural Networks (CNNs) are rarely used on
tabular data because the feature ordering has no locality char-
acteristics. Nevertheless, a method based on a 1D convolu-
tional neural network recently achieved the best single model
performance in a Kaggle competition with tabular data [80].
More precisely, the main idea is to take advantage of CNN’s
property to extract features. Therefore, a fully connected layer
creates a large set of features with locality characteristics,
followed by multiple 1D convolutional layers.

C. EVALUATION METRICS
The metrics taken into account for the final evaluation are the
following:

TP + TN )
TP+ TN + FP+FN’

Accuracy =

ey
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TP

Precision = ——; )
TP + FP
TP
TPR or Recall = ——; 3)
TP + FN
FP
FPR = ———; @)
FP+ TN
2 - precision - recall
F_score = (5)

precision + recall

where TP, TN, FP, FN represent true positives, true negatives,
false positives, and false negatives, respectively.

More in detail, the accuracy indicates the overall per-
centage of correctly classified records, as shown in Eq. (1).
The precision represents the fraction of correct predictions
among all instances assigned to the positive class; clearly,
it depends on the number of false positives and is maximum
when there are no false positives (Eq. (2)). Instead, the True
Positive Rate (TPR), also known as recall, is the fraction of
positive instances correctly classified as positive; it depends
on the number of false negatives, with the maximum reached
when there are no false negatives (Eq. (3)). A proper trade-
off between precision and recall is provided by the F-score
(or F-measure), which is defined as the harmonic mean of
precision and recall (Eq. (5)) and takes both false positives
and false negatives into account.

Another common metric is the Area Under the ROC Curve
(AUC), which is a valuable criterion for comparing differ-
ent classifiers [66]. Basically, the ROC (Receiver Operating
Characteristic) curve is a graph that plots the True Positive
Rate (TPR, Eq. (3)) against the False Positive Rate (FPR,
Eq. (4)) at different probability thresholds for the positive
class. Lowering the probability threshold classifies more
items as positive, thus increasing both true and false positives.
The area under the ROC curve provides a single score to
summarize the classifier’s performance on a given domain.

D. TECHNOLOGIES AND SETUP

All the experiments have been conducted on the same
machine with the following configuration: Intel(R) Xeon(R)
Gold 6136 CPU @ 3.00GHz CPU and Tesla P6 16 GB GPU.

Moreover, we used:

o The Weka machine learning library [46], which con-
tains a variety of functions for classification, includ-
ing the different machine learning methods described
in Section III-B. It also provides functions for data
preprocessing, including various feature extraction and
feature selection techniques, which have been used in
this work to reduce the dimensionality of the considered
benchmark.

o Keras [81], a Python library that provides extensive
support for deep learning; it was exploited to com-
pare different artificial neural network architectures and
implement our final deep learning model.

« Scikit-learn [82], a Python library that supports machine
learning investigations and contains some feature selec-
tion techniques, particularly the MI implementation
adopted in this work.
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TABLE 2. Performance of the considered ML techniques. The table reports the accuracy, F-score, and AUC obtained using different data fragments as

training/test sets. Values in bold are the best obtained.

Accuracy F-score AUC
Algorithm 1&3 3&1 2&4 4&2 1&3 3&1 2&4 4&2 1&3 3&1 2&4 4&2
BayesNet 0.569 0599 0586 0592 0569 0587 0584 0586 0.578 0.634 0.599 0.630
NaiveBayes 0.558 0.545 0534 0552 0533 0495 0504 0.504 0559 0545 0.535 0553
Linear SVM 0.587 0.536 0570 0.570 0.544 0441 0488 0489 0587 0.530 0.570 0.567
k-NN 0.582 0.601 0592 0.608 0.577 0594 0586 0.603 0.610 0.629 0.629 0.639
k-NN (weighted)  0.583  0.601  0.592 0.607 0.577 0.595 0586 0.602 0.614 0.631 0.636 0.642
JRIP 0.583 0.586 0.604 0.601 0.582 0.585 0.603 0.600 059 0.602 0.612 0.615
OneR 0512 0518 0536 0534 0518 0516 0535 0527 0519 0518 0536 0.534
J48 0598 0.581 0.586 0585 0.597 0581 0.586 0.585 0.606 0.590 0.583 0.594
Random Forest 0.667 0.700 0.685 0.687 0.667 0.700 0.684 0.686 0.734 0.773 0.757 0.761
XGBoost 0.680 0.694 0.681 0.679 0.679 0.694 0.681 0.678 0.679 0.694 0.681 0.679

TABLE 3. Mean values, and corresponding standard deviation, of the
accuracy, F-score, and AUC obtained using different data fragments as
training/test sets. Values in bold are the best obtained.

Accuracy F-score AUC

Algorithms Mean o Mean o Mean o

BayesNet 0.587 0.013 0.582 0.008 0.610 0.027
NaiveBayes 0.547 0.010 0.509 0.017 0.548 0.010
Linear SVM 0.566 0.021 0.491 0.042 0.564 0.024
k-NN 0.596 0.011 0.590 0.011 0.627 0.012
k-NN (weighted) 0.596 0.011 0.590 0.011 0.631 0.012
JRIP 0.594 0.011 0.593 0.011 0.606 0.009
OneR 0.525 0.012 0.524 0.009 0.527 0.010
J48 0.588 0.007 0.587 0.007 0.593 0.010
Random Forest ~ 0.685 0.014 0.684 0.014 0.756 0.016
XGBoost 0.684 0.007 0.683 0.007 0.683 0.007

IV. EXPERIMENTS AND RESULTS

This section presents a summary of the experimental results
obtained. First, we present an investigation with different ML
techniques in Section IV-A. In Section IV-B, we then explore
deep learning techniques by introducing a custom artificial
neural network architecture designed and implemented for
this task. Finally, we discuss the results of our comparative
study.

A. MACHINE LEARNING APPROACH

Here, we provide details of the experiments conducted with
the machine learning approach. In particular, we have divided
the experimental investigation into two main phases:

1) A preliminary analysis, in which we exploited some
fragments of the dataset (see details on the data subdi-
vision in Table 1). The results of this phase are reported
in Table 2 and Table 3.

2) A detailed analysis of the entire dataset, the results of
which are presented in Fig. 2 and Fig. 3. In particu-
lar, the behavior of the best performing classifier was
studied in conjunction with different feature selection
approaches by introducing multiple levels of dimen-
sionality reduction.

In the preliminary analysis, we ran several tests with
the considered machine learning algorithms using only the
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first four fragments of the dataset. In this way, we tried to
get an introductory view of the data to see whether some
subdivisions could produce better performance or, in gen-
eral, whether any of them had more meaningful information
than others. Specifically, the following configurations were
considered:

« training set: fragment 1, test set: fragment 3;

« training set: fragment 3, test set: fragment 1;

« training set: fragment 2, test set: fragment 4;

« training set: fragment 4, test set: fragment 2.

The employed classifiers, described in Section III-B, were
mainly trained with their default parameters. In particular,
we used a linear kernel for the SVM method, while the
Random Forest classifier was implemented with 100 trees and
log, (n)+1 random features. In the case of the k-NN approach,
with and without instance weighting, the default value of k
(i.e. the number of nearest neighbors) was changed to 5; lower
values, indeed, can increase the risk of over-fitting.

On the other hand, the configuration adopted for the exper-
iments on the entire dataset was the following:

o Training set: merge of fragments 1,

and 5 (R70%);,

« Validation set: fragment 7 (=14%);

o Test set: fragment 6 (*16%).

As presented in Table 1, the composition of the dataset allowed
us to take advantage of stratified sampling to divide it into
training, validation, and test sets, while maintaining a bal-
anced distribution of classes.

2, 3, 4,

1) RESULTS OF THE PRELIMINARY ANALYSIS
The results of the first phase of our comparative analysis
are summarized in Table 2, where the accuracy, F-score,
and AUC values are reported for the different configura-
tions considered (involving fragments 1 and 3 as well as
fragments 2 and 4, as explained above). The mean and stan-
dard deviation for all three metrics have also been calculated
across the different configurations, as shown in Table 3. They
gave more insights into the performance and behavior of each
algorithm.

As seen from the tables, the results are not satisfactory
overall and express the difficulty of analyzing the considered
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FIGURE 2. F-score performance of the Random Forest classifier in conjunction with MI, GainR, InfoG, SU and Corr selection

methods, for different numbers of selected features.

high-dimensional benchmark. In each case, the Random For-
est obtained the best results (emphasized in bold), with the
highest values of accuracy, F-score, and AUC. This confirms
the effectiveness of this ensemble approach that has proven
to be a “‘best of class” learner in several tasks [83], including
the analysis of high-dimensional biomedical data [62], [84],
[85], [86].

These findings prompted us to focus on the Random For-
est classifier for our detailed analysis of the entire dataset,
as explained below.

2) RESULTS WITH FEATURE SELECTION

As previously mentioned, all the 40044 available samples,
properly divided into training, validation, and test sets, were
used in this analysis phase. The experiments were carried
out considering the learning method that worked best in
our preliminary investigations (see Section IV-Al), i.e. the
Random Forest.

More in detail, the analysis was conducted using all the
original features and considering reduced feature spaces of
different dimensionalities. For feature selection, the rank-
ing techniques introduced in Section I1I-B2 were employed,
i.e. Corr, InfoG, GainR, SU, and MI. Since each technique
outputs a list in which the features appear in decreasing order
of relevance, we cut this list at a proper threshold point to
select the desired number of features.

Specifically, Fig. 2 shows the performance of a Random
Forest model trained on increasing numbers of selected fea-
tures. Different colors are used in the chart to distinguish
the outcome of the different selection methods. We can see
that only 100 features are sufficient to achieve an F-score
value superior to 0.65. By increasing the number of selected
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TABLE 4. Hyperparameters selected for the final ANN.

Hyperparamer value

Epochs 1000

Batch size 128
Activation functions ~ {Leaky ReLU, Sigmoid}
Loss BCE
Optimizer ADAM
Learning rate 1x107°

features, the classification performance gradually improves
and tends to stabilize for feature subsets containing more than
2000 features.

Overall, the different selection methods lead to similar
results, with a slight superiority of the MI approach. With a
reduced subset of 2 000 features, in fact, it leads to an F-score
of almost (.75, the same achieved on the original feature set
(containing 12 210 features).

A comparison of the confusion matrices obtained with and
without feature selection is provided in Fig. 3, which shows
the Random Forest performance over the whole feature set
(left) as well as using a reduced set of 2 000 features (right),
as selected by MI. We can see that the rate of correct predic-
tions on the positive class is the same, while the rate of correct
predictions on the negative class is slightly higher using MI.
Therefore, even with 84% fewer features, we achieved pretty
good results, equaling those obtained with all 12 210 features.

B. DEEP LEARNING APPROACH

As additional solutions, deep learning techniques were also
explored. In this regard, we conducted a large-scale pre-
liminary investigation by implementing and testing several
artificial neural network classifiers, which were trained using
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FIGURE 3. Confusion matrices obtained with the Random Forest classifier. Fig. 3a shows the results without feature selection, while Fig. 3b shows the
results over a subset of 2 000 features, as selected by the Mutual Information (MI) method.

Input layer |
FIGURE 4. Final ANN architecture.

all the original features and on feature spaces of reduced
dimensionality. The adopted configuration, the final result of
these preliminary experiments, is depicted in Fig. 4. It was
also compared with some state-of-the-art deep learning meth-
ods proposed for tabular data.

As can be seen, we introduced a number of intermediate
layers where the dimensionality of the input layer is grad-
ually reduced, which allowed for the extraction, through the
architecture itself, of progressively fewer features (of a higher
level) to be used for the final class assignment. In particular,
our preliminary investigation led us to a significant initial
reduction in the number of neurons, going from the input
to the first hidden layer, with a more gradual dimensionality
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Hidden layers

Output layer

decrease through the subsequent layers. In turn, the optimal
dimensionality of the input layer was also explored by intro-
ducing a preliminary feature selection step, as detailed below.
In addition to the investigation of the optimal network
structure, a grid search was performed with the following
hyperparameters:
« Epochs: 100, 500, 1000, 1500, 2000, 3000, 4000,
5000;
« Batch sizes: 16, 32, 64, 128, 256, 512, 1 024, 2 048;
« Hidden layer activation functions: ReLU, Leaky ReLU;
o Output layer activation functions: Sigmoid, Tanh;
o Loss functions: Binary Cross-Entropy, Hinge, Squared
Hinge;
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FIGURE 5. F-score performance of the proposed ANN classifier in conjunction with MI, GainR, InfoG, SU and Corr selection

methods, for different numbers of selected features.

« Optimizers: Stochastic Gradient Descent (SGD), ADap-

tive Moment Estimation (ADAM);

o Learning rates: le-3, le-4, le-5, le-6, le-7.

The grid search led to the best hyperparameters summa-
rized in Table 4. In particular, Leaky ReLU was adopted on
all hidden layers, while sigmoid was only in the output layer.
In addition, a dropout of 10% was added on all but the last
hidden layer to avoid overfitting. It resulted in improved gen-
eralization performance. Moreover, for all models, an early
stopping criterion based on the validation loss was applied.
ADAM was chosen as the optimizer, with a learning rate
Ir = le-5 and beta; = 0.9 and beta, = 0.999, respectively.
Finally, a batch size of 128 was used for 1 000 total epochs.

Our final ANN model’s performance was significantly
better than the one previously obtained with the machine
learning approaches, including the Random Forest classifier.
Indeed, using all 12210 features of our benchmark, we got
an F-score of 0.84, which is a good outcome compared to the
results obtained in the competition for which the dataset was
initially released (see Section III-A).

The performance obtained by the proposed ANN was
also compared with other deep learning methods (see
Section III-B3). The results are reported in Table 5. As can
be seen, our approach outperformed the other approaches,
even though the 1D-CNN model turned out to be promising
as well.

We have also reported a time comparison between the
methods (see Table 6) and briefly state some consider-
ations regarding the execution time. Using the machine
setup described in Section III-D, the proposed architecture
needed 27 minutes to accomplish 1,000 epochs of training,
while the inference time is 2.42 seconds. More specifically,
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Table 6 shows that our proposed architecture can obtain com-
petitive accuracy and time-efficient (and energy-efficient)
performance. In fact, it outperformed each other deep learn-
ing methods, except for TabNet, which is composed of only
26k trainable parameters.

Furthermore, as in our previous experiments, we explored
the extent to which the original data dimensionality can be
reduced without compromising the final classification perfor-
mance. In particular, Fig. 5 shows the F-score obtained with
the designed ANN classifier for different numbers of input
features, as selected by the MI, GainR, InfoG, SU, and Corr
ranking methods.

As can be seen, MI emerged again as the best selection
technique, as also observed in the previous section for the
machine learning approach. In particular, using 3 000 features
selected by MI, the ANN classifier is able to reach the same
performance achieved over the entire feature set, as also
detailed in Fig. 6. Specifically, Fig. 6a shows the confusion
matrix obtained with the proposed artificial neural network
trained on all 12210 features. In comparison, the matrix
obtained by training the network on only 3000 features
(as selected by MI) is shown in Fig. 6b.

Let us finally discuss the robustness of the proposed
method from two points of view: the possibility of using it as a
real-time application in the healthcare domain and the results
obtained. First, we consider the proposed architecture suit-
able for deployment in real-time systems since it consists of
3,756,386 trainable parameters. Second, we have shown that
the method’s performance with a reduced number of features,
as selected by a proper feature selection technique, is as high
as that obtained using all features. Unfortunately, as antici-
pated in Section II, a direct comparison of the results obtained
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FIGURE 6. Confusion matrices obtained with the proposed ANN classifier. Fig. 6a shows the results without feature selection, while Fig. 6b shows the
results over a subset of 3 000 features, as selected by the Mutual Information (MI) method.

TABLE 5. Accuracy, F-score, and AUC obtained using different
state-of-the-art DL techniques for tabular data.

Algorithms Accuracy F-score AUC

TabNet 0.802 0.786  0.808
ID-CNN 0.823 0.810  0.868
NODE 0.620 0.530 0.640
Our 0.840 0.835 0.841

TABLE 6. Training and inference run-time for models tested with the
setup presented in Section I1I-D. For ease of reading, we reported the
time needed to execute one epoch with the default parameters as
the training time.

Method  Training Inference
TabNet 0.82s 1.22s
ID-CNN  12.26s 6.56s
NODE 90s 18.49s
Our 1.58s 2.42s

in our work with the state of the art is not possible due to the
different characteristics of the datasets used. However, taking
as a reference some works based on the analysis of datasets
containing hematological features, it is possible to point out
that the results we have obtained are better than or in line with
them. For example, Brinati et al. [31] reported an accuracy
between 82% and 86% on a dataset of blood parameters they
proposed [40]; Alves et al. [35] obtained an F—score of 76%
on the dataset presented in [41], which consists of SARS-
CoV-2 RT-PCR parameters and blood tests.

Compared with these results, we believe that the per-
formance obtained by our proposed ANN can be deemed
satisfactory, considering the high dimensionality of the data
explored and the intrinsic difficulty of the related classifica-
tion task.

VOLUME 10, 2022

V. CONCLUDING REMARKS AND FUTURE

RESEARCH DIRECTIONS

The goal of this work was to make a contribution to the fields
of machine and deep learning for the detection of COVID-19
from blood test data. To this end, we investigated and tested
several approaches on a recently proposed public dataset,
which proved very challenging.

First, we provided a comparative analysis of several
machine learning algorithms in terms of different perfor-
mance metrics. Second, deep learning techniques were also
explored, leading to the proposal of an ANN architecture
specifically designed for this task. Third, several feature
selection techniques were investigated to reduce the dimen-
sionality of the considered benchmark, thus allowing the
construction of more efficient prediction models.

As previously discussed, Random Forest turned out to
be the best-performing machine learning technique, with a
rate of 73% correct predictions on the COVID-19 positive
class. The proposed deep learning strategy offered a signif-
icant improvement, which outperformed the machine learn-
ing approach by correctly classifying 87% of the positive
instances. Our analysis also revealed, for both Random Forest
and ANN models, that the original number of features can be
significantly reduced, through a preliminary feature selection
step, without compromising the final classification perfor-
mance. In particular, among the considered feature selection
techniques, Mutual Information performed consistently bet-
ter in our experiments.

Based on the different investigations conducted, we firmly
believe that Al-based approaches have great potential to
provide even higher results in this context. This could be
achieved through a deeper analysis in multiple directions.
A wider range of learning algorithms can be considered, and
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further architectural solutions for the deep learning approach.
Furthermore, a deeper understanding of the interdependen-
cies and correlations among the features could help improve
the final classification results.

Indeed, the ranking methods here considered are the more
efficient choice to reduce the data dimensionality but are
not designed to capture the relationships among the fea-
tures and cannot handle feature redundancy. More sophis-
ticated selection strategies could be adopted, even relying
on different selection algorithms at different stages of the
selection process (e.g., initially reducing the data dimen-
sionality through an efficient ranking approach and then
further refining the search through a wrapper approach capa-
ble of optimizing the performance of a given classifier)
[87], [88]. Ensemble selection methods have also recently
been investigated in high-dimensional settings with promis-
ing results [89], [90].

From a broader perspective, the explored case study high-
lights the challenges that still need to be addressed in the
context of artificial intelligence applied to COVID-19 diag-
nosis. In particular, the intrinsic difficulty of building high-
performing classifiers from a single type of data, such as the
blood sample data here considered, prompts the development
of multimodal machine learning models that can process and
fuse information from different data sources [34].

Finally, although artificial intelligence techniques have
demonstrated remarkable performance in many diagnostic
tasks, it is important to consider that medical applications
require, more than others, a high level of accountability
and transparency. Therefore, explanations for algorithm deci-
sions and predictions are increasingly needed to justify
their reliability and offer high interpretability for the end
users [91], [92]. We also intend to explore these aspects in
our future work.
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