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Abstract
Stratified cubature rules are proposed to approximate double integrals defined on 
the real positive semiaxis. In particular, anti-Gauss cubature formulae are introduced 
and averaged cubature schemes are developed. Some of their appropriate modifica-
tions are also studied. Several numerical experiments are given to testify the perfor-
mance of all the formulae.

Keywords Gauss-Laguerre cubature formulae · Anti-Gauss cubature rules · 
Averaged formulae · Truncated cubature rules · Error estimation · Extended 
cubature formulae
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1 Introduction

This paper deals with the numerical approximation of double integrals in which the 
integrand function may increase as x, y → ∞ and/or x,y → 0. Then, we consider

(1)I(f ) = ∫
∞

0 ∫
∞

0

f (x, y)w(x, y)dxdy,
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where f is a known function defined on the domain [0,∞) × [0,∞) and 
w(x, y) = x𝛼y𝛽e−(x+y), 𝛼, 𝛽 > −1  is a weight function which includes eventual alge-
braic singularities. Let us note that w turns out to be the product of two Laguerre 
weights w�(x) = x�e−x and w�(y) = x�e−y.

The numerical treatment of (1) can be approached in two ways [1, 2]. The first 
procedure consists of approximating each integral by using well-known quad-
rature rules. This is an “indirect” technique that takes the advantage of the fact 
that the univariate rules have been more treated and explored than the multivari-
ate ones. The second approach consists of constructing cubature schemes from 
scratch. In the bivariate case, an example is given in [3] where the nodes are zeros 
of suitable bivariate orthogonal polynomials (see also [4]).

In this paper, we focus on the “indirect” procedure. The optimal cubature for-
mula is the following Gauss-Laguerre cubature rule [5] based on m × n nodes

where {xk}mk=1 and {yj}nj=1 are the zeros of the Laguerre polynomials which are 
orthogonal with respect to the weights wα and wβ, respectively, {��

k
}m
k=1

 and {��
j
}n
j=1

 
are the corresponding coefficients of the Gauss-Laguerre formula, and the term 
Rm,n(f) denotes the related cubature error of Gm,n. The rule is obtained as the tensor 
product of two univariate Gauss-Laguerre quadrature formulae. Hence, it can be 
easily constructed [5] and Rm,n(f) = 0 if f ∈ ℙ2m−1,2n−1 , where ℙ2m−1,2n−1 denotes the 
set of all algebraic bivariate polynomials of degree at most 2m − 1 in the variable x 
and 2n − 1 in the variable y.

One can associate to the cubature rule (2), the truncated version introduced in 
[6]:

Here, the upper limit of summations κ and ι are the indeces determined by

with 𝜃1,𝜃2 ∈ (0,1) fixed, and R̊m,n(f )  identifies the error. As shown in [6] (see also 
[7, 8]), the cubature error of (3) has the same magnitude as the error of (2) and is 
convenient especially when the function f in (1) is bounded or does not increase too 
fast, so that the last terms of the sums in (2) can be neglected. Of course, in order to 
construct formula (3) all the m + n weights and nodes of (2) have to be computed 
but the number of function evaluations is reduced. Moreover, an application of the 
truncated formula (3) to integral equations implies a considerable computational 
saving (see [6–9]).

The aim of this paper is to give estimates of the magnitude of the errors 
Rm,n(f )  and R̊m,n(f ) . We remark that in [6, Proposition 3.1] the authors provide 
asymptotic estimates for  R̊m,n(f ) , for large values of m = n, according to the 

(2)I(f ) =

m∑
k=1

n∑
j=1

��
k
�
�

j
f (xk, yj) + Rm,n(f ) =∶ Gm,n(f ) + Rm,n(f ),

(3)I(f ) =

𝜅∑
k=1

𝜄∑
j=1

𝜆𝛼
k
𝜆
𝛽

j
f (xk, yj) + R̊m,n(f ) =∶ G̊m,n(f ) + R̊m,n(f ).

x� = min{xj|xj ≥ 4m�1}, y� = min{yj|yj ≥ 4n�2},
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nature of the integrand. Specifically, they state the order of convergence depend-
ing on the smoothness properties of the function f, providing a lower bound 
which include an unknown constant independent of m, n, and f. In this paper, we 
provide numerical estimates of the error for each fixed m and n so that one can 
determine the number of points m and n needed to approximate the integral with 
a prescribed accuracy. The estimate does not depend on unknown constants and it 
is not asymptotic. So, it does not provide a decay law depending on the smooth-
ness of f. Neverthless, it allows us to develop new cubature rules, which turns out 
to have several advantages in terms of accuracy and computational cost.

In the univariate case, an interesting approach to estimate the error of the m-point 
Gauss formula Gm consists of using another quadrature rule Ql with l > m nodes and 
degree of exactness higher than 2m − 1. A popular choice of Ql is the Gauss-Kron-
rod rule [10] which has 2m + 1 nodes, including the m nodes of Gm, and has degree 
of exactness at least 3m + 1. However, in some cases, among which the Laguerre 
one, the formula fails to exist: the nodes are not real and distinct and the weights 
are not positive [10–13]. Another possible choice is given by “stratified” quadra-
ture formulae (see, e.g., [14–18]). They are linear combinations of two rules, usually 
the m-point Gauss rule Gm and a new rule Uℓ which involves a number of points ℓ 
greater than m and has degree of exactness greater than 2m − 1. A first example of a 
“stratified” rule was given by Laurie [17] in 1996 who proposed the so-called aver-
aged Gaussian quadrature formula GL

2m+1
:

Basically, it is the average between the m-point Gauss rule Gm and the m + 1-point 
anti-Gauss formula GA

m+1
 which is such that

where I  denotes the corresponding univariate integral of the form (1). Formula 
GL

2m+1
 has degree of exactness at least 2m + 1, involves 2m + 1 real and distinct zeros 

and has positive weights. All these properties hold true also in the Laguerre case for 
each α > − 1, α being the parameter of the Laguerre weight wα appearing in the inte-
gral I  [17]. In 2002, Ehrich [16] proposed the optimal stratified extension

for the Gauss-Laguerre and the Gauss-Hermite formulae. Specifically, he proved 
that, if we handle with the Laguerre weight wα, the formula GL∗

2m+1
 of the highest 

possible degree of exactness 2m + 2 is unique and is obtained for

However, this formula has positive nodes only for α ≥ 1, whereas it has one nega-
tive node for − 1 < α < 1. In 2007, Spalević [18] developed the generalized averaged 

(4)GL
2m+1

=
1

2
(Gm + GA

m+1
).

(5)I(p) − GA
m+1

(p) = −(I(p) − Gm(p)), ∀p ∈ ℙ2m+1,

GL∗
2m+1

=
1

1 + 𝛾

(
𝛾Gm + GA

m+1

)
, 𝛾 > 0

� = 1 +
2m + � + 1

m(m + �)
.
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formula GS
2m+1

 which is the unique stratified formula with the highest possible 
degree of exactness and, in the Laguerre and the Hermite cases, coincides with 
GL∗

2m+1
 . In 2016, Djukić, Reichel, and Spalević, in an attempt to ensure that all nodes 

be internal, proposed in [15] the truncated generalized averaged Gauss quadrature 
rule obtained by removing the last r < m rows and columns from the Jacobi matrix 
of GS

2m+1
 . In particular, taking r = m − 1 one gets the truncated rule GT

m+2
 that in the 

Laguerre case has positive zeros for each α > − 1. Let us mention that here the term 
“truncated” does not have the same meaning as in formula (3). In fact, in (3) the 
truncation refers to the sequence of nodes whereas in GT

m+2
 the truncation refers to 

the Jacobi matrix. Consequently, in this last case, all the computed nodes are only 
the necessary ones. To avoid confusion, from now on, we will name GT

m+2
 “reduced” 

generalized averaged Gauss rule.
In the multidimensional case, in [19] the authors consider integrals defined on 

bounded intervals [a,b] and estimate the error of the corresponding Gauss cubature 
rule by using the generalized averaged formula GS

2m+1
.

In order to estimate the error Rm,n, in this paper, we develop a “stratified” cubature 
formula which is obtained as an average of the cubature formula (2) and the anti-
Gauss cubature formula. According to our knowledge, this last formula has never 
been proposed to approximate double integrals and, even if we get it as tensor prod-
uct of the univariate anti-Gauss rule, some new useful properties are proved. Moreo-
ver, its stability and convergence is studied in suitable weighted spaces equipped 
with the uniform norm. In addition, we write the “reduced” generalized averaged 
Gauss cubature rule which is the bivariate version of the formula proposed in [15].

Then, we give two truncated rules aiming at estimating the error R̊m,n(f ) . Here, 
what we develop are the truncated anti-Gauss cubature rule and the “reduced” trun-
cated generalized averaged Gauss cubature rule. Basically, we consider the two 
developed cubature schemes, truncate the sequences of nodes and prove that these 
rules provide an error which is of the same magnitude of the original cubature for-
mula by only using a fraction of nodes.

The paper is structured in five main sections. Section 2 focuses on the estima-
tion of the error Rm,n, Section 3 pays attention to R̊m,n , and Section 4 gathers sev-
eral numerical examples to show and compare the performance of the four consid-
ered cubature formulae. Section 5 collects the proofs of the theoretical results and, 
finally, Section  6 draws some conclusions and briefly sketches possible research 
developments.

2  On the error of the Gauss‑Laguerre cubature formula

The aim of this section is to estimate the error Rm,n by introducing “stratified” cuba-
ture formulae or averaged schemes of the form

where η is a given real parameter, Gm,n(f) is as in (2), and Um+ 1,n+ 1 is a new cubature 
formula.

(6)H2m+1,2n+1(f ) = � ⋅ Gm,n(f ) + Um+1,n+1(f ),
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2.1  The averaged Gauss‑Laguerre cubature rule

A possible approach for constructing the new rule Um+ 1,n+ 1 is to use the well-known 
1D anti-Gauss formula [17] to approximate each integral of (1). In this way, we get a 
cubature scheme which we will refer to as anti-Gauss cubature formula GA

m+1,n+1
 . It can 

be written as

where {�̃�𝛼
k
}m+1
k=1

 and {�̃�𝛽
j
}n+1
j=1

 are the weights and {x̃k}m+1k=1
 and {ỹj}n+1j=1

 are the cubature 
nodes. In particular, let {p�

j
}∞
j=0

 be the sequence of monic orthogonal Laguerre poly-
nomial of degree j such that

where Γ(z) is the Gamma function. Such polynomials satisfy the three term recur-
rence relation

where a�
j
= 2j + � + 1 , j ≥ 0, b�

0
= Γ(1 + �) , b�

j
= j(j + �) , j ≥ 1. Similarly for p�

j
 . 

Then, the nodes {x̃k}m+1k=1
 and {ỹj}n+1j=1

 are the zeros of the polynomials p̃𝛼
m+1

 and p̃𝛽
n+1

 , 
respectively, defined as

and, consequently, are the eigenvalues of the following two matrices:

 where

(7)GA
m+1,n+1

(f ) =

m+1∑
k=1

n+1∑
j=1

�̃�𝛼
k
�̃�
𝛽

j
f (x̃k, ỹj),

(8)�
∞

0

p�
j
(x)p�

i
(x)w�(x)dx =

⎧
⎪⎨⎪⎩

0, i ≠ j,
Γ(i + � + 1)

i!
, i = j,

(9)

{
p�
−1
(x) = 0, p�

0
(x) = 1,

p�
j+1

(x) = (x − a�
m
)p�

j
(x) − b�

m
p�
j−1

(x), j = 0, 1, 2,… ,

(10)p̃𝛼
m+1

(x) = p𝛼
m+1

(x) − b𝛼
m
p𝛼
m−1

(x), p̃
𝛽

n+1
(y) = p

𝛽

n+1
(y) − b𝛽

n
p
𝛽

n−1
(y),

J̃�
m+1

=

�
J�
m

√
2b�

m
�m√

2b�
m
�
T
m

a�
m

�
, J̃

�

n+1
=

⎡⎢⎢⎣
J�
n

�
2b

�
n�n�

2b
�
n�

T
n

a�
n

⎤⎥⎥⎦
,

(11)J�
m
=

⎡⎢⎢⎢⎢⎣

a�
0

√
b�
1√

b�
1

a�
1

⋱

⋱ ⋱

√
b�
m−1√

b�
m−1

a�
m−1

⎤⎥⎥⎥⎥⎦
, J�

n
=

⎡
⎢⎢⎢⎢⎢⎢⎣

a
�

0

�
b
�

1�
b
�

1
a
�

1
⋱

⋱ ⋱

�
b
�

n−1�
b
�

n−1
a
�

n−1

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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The coefficients �̃�𝛼
k
 and �̃�𝛽

j
 are also related to the matrices J̃𝛼

m+1
 and J̃𝛽

n+1
 . Indeed, 

they are determined by the first component of the associated normalized real 
eigenvectors.

Next Proposition contains the main properties of GA
m+1,n+1

(f ).

Proposition 1 The following properties hold true.

1. Setting I(f ) = GA
m+1,n+1

(f ) + RA
m+1,n+1

(f ) , then

2. For each α,β > − 1 the nodes {x̃k}m+1k=1
 and {ỹj}n+1j=1

 are all real and positive. Moreo-
ver, they interlace the Gauss-Laguerre zeros:

3. The coefficients {�̃�𝛼
k
}m+1
k=1

 and {�̃�𝛽
j
}n+1
j=1

 are positive and are given by

4. For a fixed quadrature node x̃k and for each differentiable function g such that 
g(j) > 0 for j = 0,...,2m + 1 one has

 Similarly, for each fixed j,

Let us mention that the first property implies

This suggests that a “stratified” cubature rule of the form (6) can be obtained with 
� = 1∕2 and Um+1,n+1 = GA

m+1,n+1
∕2 , that is

From now on, we will refer to the above formula as the averaged Gauss-Laguerre 
cubature rule.

RA
m+1,n+1

(f ) =

{
−Rm,n(f ), ∀f ∈ ℙ2m+1,2n−1 and ∀f ∈ ℙ2m−1,2n+1,

0, ∀f ∈ ℙ2m−1,2n−1.

0 < x̃1 < x1 < … < x̃m < xm < x̃m+1,

0 < ỹ1 < y1 < … < ỹn < yn < ỹn+1.

�̃�𝛼
k
= 2

‖p𝛼
m
‖2

p𝛼
m
(x̃k)p̃

𝛼
m+1

�(x̃k)
and �̃�

𝛽

j
= 2

‖p𝛽
m
‖2

p
𝛽
m(ỹj)p̃

𝛽

m+1

�
(ỹj)

.

k−1∑
i=1

�̃�𝛼
i
g(x̃i) < �

x̃k+1

0

g(x)w𝛼(x)dx, �
x̃k−1

0

g(x)w𝛼(x)dx ≤
k∑

i=1

�̃�𝛼
i
g(x̃i).

j−1∑
i=1

�̃�
𝛽

i
g(ỹi) < �

ỹj+1

0

g(y)w𝛽(y)dy, �
ỹj−1

0

g(y)w𝛽(y)dy ≤
j∑

i=1

�̃�
𝛽

i
g(ỹi).

(12)GA
m+1,n+1

(f ) = 2I(f ) − Gm,n(f ), ∀f ∈ ℙ2m+1,2n−1 ∪ ℙ2m−1,2n+1.

(13)GL
2m+1,2n+1

(f ) =∶
1

2
[Gm,n(f ) + GA

m+1,n+1
(f )].
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Let us also note that GL
2m+1,2n+1

 requires the computation of 2(m + n + 1) nodes and 
weights and if we use the algorithm devised by Golub and Welsch in [20] their compu-
tation has a cost equal to 2c(m2 + n2) + 2O(m) + 2O(n) , that is one half of the cost of 
the cubature Gauss rule G2m,2n which is 4c(m2 + n2) + 2O(m) + 2O(n).

Moreover, the first property of Proposition 1 suggests that the cubature error for 
GL

2m+1,2n+1
(f ) is smaller then the cubature error Rm,n since GL

2m+1,2n+1
(f ) = I(f ) for each 

f ∈ ℙ2m+1,2n−1 ∪ ℙ2m−1,2n+1 . This allows us to reach a certain accuracy with a number 
of evaluation of the integrand function which is smaller than that required by G2m,2n. 
Furthermore, we can use GL

2m+1,2n+1
(f ) to provide an accurate approximation of the 

cubature error (2), that is

Let us mention that R[1]
m,n

(f ) provides an accurate numerical estimates for Rm,n(f); for 
each fixed m and n, see Table 8 for a numerical evidence.

Finally, we underline that the inequalities proved in Property 4 are Possé-Cheby-
shev-Markov-Stieltjes type inequalities [21, p. 33] and they allow us to state the follow-
ing corollary.

Corollary 1 For a fixed quadrature node x̃k and ỹk and for each differentiable func-
tion g such that g(j) > 0 for j = 0,...,2m + 1 one has

The Corollary is essential to prove the stability of the formula GA
m+1,n+1

 in suitable 
weighted spaces. In spaces of continuous functions C ≡ C([0,∞]) , the stability is 
trivial.

Let us now investigate on the stability and convergence properties of the anti-Gauss 
cubature formula in suitable weighted spaces Cu. This setting is useful when we want 
to consider functions f(x,y) that may tend to infinity with algebraic growth as x,y →  0+ 
and with an exponential growth as x, y → ∞ . Fix the weight functions

and, setting

we define the weighted space Cu as the set of all continuous functions on 
(0,∞) × (0,∞) such that

(14)
Rm,n(f ) = I(f ) − Gm,n(f ) ≃ GL

2m+1,2n+1
(f ) − Gm,n(f )

=
1

2
[GA

m+1,n+1
(f ) − Gm,n(f )] =∶ R[1]

m,n
(f ).

�̃�𝛼
k
g(x̃k) < ∫

x̃k+2

x̃k−2

g(x)w𝛼(x)dx, �̃�
𝛽

k
g(ỹk) < ∫

ỹk+2

ỹk−2

g(x)w𝛽(y)dy.

ui(x) = (1 + x)�i x�i e−x∕2, �i, �i ≥ 0, i = 1, 2,

(15)u(x, y) = u1(x)u2(y),

⎧⎪⎨⎪⎩

lim
x→∞
x→0+

(fu)(x, y) = 0, ∀y ∈ [0,∞),

lim
y→∞
y→0+

(fu)(x, y) = 0, ∀x ∈ [0,∞).
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We endow the space Cu with the norm

For smoother functions, we introduce the Sobolev-type space of index 1 ≤ r ∈ ℕ

where �1(x) =
√
x , �2(y) =

√
y and fy means that the function f is considered as a 

function of the only variable x. Similarly for fx.
In Cu, we define the error of best polynomial approximation by means of bivari-

ate polynomials in ℙm,n as

(see, e.g., [6, Theorem  2.1]). It is well known that [6, Theorem  2.1 and estimate 
(3.1)]

where C is a positive constant independent of m, n and f.

Theorem 1 For any f ∈ Cu  if α > γ1 − 1 and β > γ2 − 1, the anti-Gauss cubature 
formula is stable and

where C is a positive constant independent of m, n, and f.

By the previous theorem, we can deduce the following estimate for the error of 
the averaged rule (13)

Corollary 2 For any f ∈ Cu , if α > γ1 − 1 and β > γ2 − 1, then

2.2  The reduced generalized averaged Gauss cubature rule

In this subsection, we want to extend to the bivariate case the one-dimensional 
quadrature rule GS

2m+1
 having the highest possible degree of exactness 2m + 2. Such 

rule has several formulations [16, 18, 22] and has been applied to matrix functions 
approximation with applications to complex networks analysis [23, 24].

‖f‖Cu
= ‖fu‖∞ = sup

x,y∈ℝ+

�(fu)(x, y)�.

Wr(u) =
�
f ∈ Cu ∶ ‖f‖Wr(u)

= ‖fu‖∞ +max{‖f (r)
y
𝜑r
1
u‖∞, ‖f (r)x

𝜑r
2
u‖∞} < ∞

�
,

Em,n(f )u = inf
P∈ℙm,n

‖(f − P)u‖∞

(16)Em,n(f )u ≤ C

�
1

mr∕2
+

1

nr∕2

�
‖f‖Wr(u)

,

|RA
m+1,n+1

(f )| ≤ CE2m−1,2n−1(f )u,

RL
2m+1,2n+1

(f ) = I(f ) − GL
2m+1,2n+1

(f ).

|RL
2m+1,2n+1

(f )| ≤ C

2
E2m−1,2n−1(f )u.
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For our aims, we will consider the formulation presented in [18] and we will refer 
to it as the generalized averaged Gauss cubature rule GS

2m+1,2n+1
 . It is obtained as ten-

sor product of GS
2m+1

 and GS
2n+1

 and reads as

where {�̄�𝛼
k
}m+1
k=1

 and {�̄�𝛽
j
}n+1
j=1

 are the weights, and {x̄k}m+1k=1
 and {ȳj}n+1j=1

 are the nodes. 
Specifically, the nodes {x̄k}m+1k=1

 are the eigenvalues of the symmetric tridiagonal 
matrix

where ek = [0,… , 0, 1, 0,… , 0]T , Zm is the m × m reversal matrix [25, Sec-
tion 0.9.5], J�

m
 is given by (11) and a�

m
 and b�

m
 are the recursion coefficients of the 

Laguerre polynomial p�
m
 . The weights {�̄�𝛼

k
}m+1
k=1

 are the squares of the first compo-
nents of normalized real eigenvectors of (18) multiplied by b�

0
 . The zeros {ȳj}n+1j=1

 and 
the coefficients {�̄�𝛽

j
}n+1
j=1

 can be computed in the same way by replacing α with β and 
m with n.

Formula (18) retains nice properties that can be automatically deducted by the 
corresponding univariate rule [16, 18, 22]. We summarize them in the following 
proposition.

Proposition 2 The generalized averaged Gauss cubature rule (18) has the follow-
ing properties.

•  I(f ) = GS
2m+1,2n+1

(f ) for each f ∈ ℙ2m+2,2n+2.
• The nodes are all real. Specifically, when they are ordered in increasing order, 

they are such that

 where xk are the Gauss nodes and x∗
k
 are the zeros of the following polynomial

 i.e., the eigenvalues of the following matrix

(17)GS
2m+1,2n+1

(f ) =

2m+1∑
k=1

2n+1∑
j=1

�̄�𝛼
k
�̄�
𝛽

j
f (x̄k, ȳj),

(18)J̄𝛼
2m+1

=

⎡
⎢⎢⎢⎣

J𝛼
m

√
b𝛼
m
em 0√

b𝛼
m
e
T
m

a𝛼
m

�
b𝛼
m+1

e
T
1

0
�

b𝛼
m+1

e1 ZmJ
𝛼
m
Zm

⎤
⎥⎥⎥⎦
,

x̄k =

{
xk, if k is even

x∗
k
, if k is odd

p∗
m+1

(�, x) = p�
m+1

(x) − b�
m+1

p�
m−1

(x),

J∗
m+1

=

⎡⎢⎢⎣
J�
m

�
b�
m
+ b�

m+1
�m�

b�
m
+ b�

m+1
�
T
m

a�
m

⎤⎥⎥⎦
.
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 The same holds for the nodes ȳj with β and n in place of α and m, respectively.
• The weights are all positive. In details, assuming that they are ordered in 

increasing order, one has

where �∗
k
 can be computed from the first components of the associated normal-

ized real eigenvectors of the matrix J∗
m+1

.
• If α,β ≥ 1 all the nodes x̄k, ȳj are positive. On the other hand, if α,β ∈ (− 1,1) 

then there exist negative zeros for any m,n ≥ 1.

According to the last property, the introduced cubature rule (18) has nodes 
outside the domain (0,∞) . Therefore, in order to overcome this problem, we fol-
low what has been proposed in [15] for the univariate case, that is, we consider 
the Jacobi matrix J̄𝛼

2m+1
 given in (18) (and the analogous J̄𝛽

2n+1
 ) and remove the 

last m − 1 (resp. n − 1) rows and columns.
Then, we define the reduced generalized averaged Gauss cubature rule as

where the nodes {x̂k}m+2k=1
 and {ŷj}n+2j=1

 are the zeros of the polynomials p̂𝛼
m+1

 and p̂𝛽
n+1

 , 
respectively, defined by

i.e., the eigenvalues of the matrices

The weights {�̂�𝛼
k
}m+2
k=1

 and {�̂�𝛽
j
}n+2
j=1

 are the first component of the eigenvector associ-
ated to the eigenvalue x̂k and ŷj , respectively.

Proposition 3 The reduced formula GT
m+2,n+2

(f ) is still exact for polynomi-
als belonging to ℙ2m+2,2n+2 . Moreover, all the nodes are positive for any m,n ≥ 2 
if �, � ≥ 0 and for any m,n ≥ 3 if �, �,∈ (−1, 1).

�̄�k =

⎧
⎪⎪⎨⎪⎪⎩

b𝛼
m+1

b𝛼
m
+ b𝛼

m+1

𝜆k, if k is even,

b𝛼
m

b𝛼
m
+ b𝛼

m+1

𝜆∗
k
, if k is odd

(19)GT
m+2,n+2

(f ) =

m+2∑
k=1

n+2∑
j=1

�̂�𝛼
k
�̂�
𝛽

j
f (x̂k, ŷj),

(20)
p̂𝛼
m+1

(x) = (x − a𝛼
m−1

)p𝛼
m+1

(x) − b𝛼
m+1

p𝛼
m
(x),

p̂
𝛽

n+1
(y) = (y − a

𝛽

n−1
)p

𝛽

n+1
(y) − b

𝛽

n+1
p𝛽
n
(y),

Ĵ𝛼
m+2

=

⎡⎢⎢⎢⎣

J𝛼
m

√
b𝛼
m
em 0√

b𝛼
m
e
T
m

a𝛼
m

�
b𝛼
m+1

e
T
1

0
�

b𝛼
m+1

e1 a𝛼
m−1

⎤⎥⎥⎥⎦
and Ĵ

𝛽

n+2
=

⎡
⎢⎢⎢⎢⎣

J𝛽
n

�
b
𝛽
nen 0�

b
𝛽
ne

T
n

a𝛽
n

�
b
𝛽

n+1
e
T
1

0

�
b
𝛽

n+1
e1 a

𝛽

n−1

⎤
⎥⎥⎥⎥⎦
.
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The above Proposition suggests that we can use GT
m+2,n+2

(f ) to estimate the 
cubature error Rm,n(f) by computing the following difference:

3  On the error of the truncated Gauss‑Laguerre cubature rule

In this section, we develop truncated versions of both the rules previously intro-
duced, preserving the same accuracy of the original cubature error. We aim at reduc-
ing the number of function evaluations, producing at the same time an estimate for 
the error of the truncated Gauss-Laguerre rule (3).

Generally, truncated rules are very useful in the numerical solution of integral 
equations [6, 8, 9]. In fact, collocation methods lead to square linear systems whose 
order depends on the number of cubature points. If we approximate the integral 
operator by using a cubature scheme with m × n nodes, then the system will be of 
order mn. Moreover, if the kernel and the right-hand side of the equation are not 
smooth, to obtain a good accuracy, we need to take m,n ≫ 1, so that the system 
becomes very large. Truncated rules use only a fraction of the nodes in the cubature 
scheme, reaching the same precision by solving a smaller linear system, with a sig-
nificant saving in computing time.

3.1  The truncated averaged Gauss‑Laguerre cubature rule

Let us consider the rule (7). Among all the computed nodes {x̃k}m+1k=1
 and {ỹj}n+1j=1

 let 
us select the node x̃𝜅 and the node ỹ𝜄 such that

where �1, �2 ∈ (0, 1) are two fixed parameters.
Then, we define the truncated anti-Gauss Laguerre cubature formula as

Denoting

next proposition shows that, for a certain class of polynomials, formula (22) gives an 
error opposite in sign of the error of formula (3).

Proposition 4 For each polynomial p ∈ ℙ2m+1,2n−1 ∪ ℙ2m−1,2n+1 , one has

(21)Rm,n(f ) = I(f ) − Gm,n(f ) ≃ GT
m+2,n+2

(f ) − Gm,n(f ) =∶ R[2]
m,n

(f ).

x̃𝜅 = min{x̃k|x̃k ≥ 4m𝜃1}, ỹ𝜄 = min{ỹj|ỹj ≥ 4n𝜃2},

(22)G̊A
m+1,n+1

(f ) =

𝜅∑
k=1

𝜄∑
j=1

�̃�𝛼
k
�̃�
𝛽

j
f (x̃k, ỹj).

R̊A
m+1,n+1

(f ) = I(f ) − G̊A
m+1,n+1

(f ),

R̊A
m+1,n+1

(p) ≈ −R̊m,n(p).
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Remark 1 Let ℙ∗
m,n

 be the set of all bivariate polynomials vanishing at the points 
(x̃i, ỹj) with x̃i ≥ 4m𝜃1 and ỹj ≥ 4n𝜃2 . Then, since R̊m,n(f ) = 0 for all p ∈ ℙ

∗
2m−1,2n−1

 , 
it follows

According to Proposition 4, one has

This identity suggest us to define the truncated averaged Gauss-Laguerre cubature 
rule as

Such formulae can be used to estimate the cubature error of (3)

Let us note that R̊[1]
m,n

(f ) provides an accurate numerical estimate for R̊m,n(f ) ; for each 
fixed m and n, see Table 9 for a numerical evidence, which also confirms the lower 
bound given in [6].

3.2  The truncated reduced generalized averaged Gauss cubature rule

Similarly to what has been done for the anti-Gauss rule, let us consider now the for-
mula (19) and introduce the nodes

where �1, �2 ∈ (0, 1)  are two fixed parameters. Then, we define truncated reduced 
generalized averaged Gauss cubature rule as

Next proposition shows that the error given by the above formula

is of the same order as the one given by the original formula (19). Then, in order to 
use fewer points, we can use this formula to estimate the cubature error R̊m,n(f ) , i.e.,

∫
∞

0 ∫
∞

0

p(x, y)w(x, y)dxdy =

𝜅∑
k=1

𝜄∑
j=1

�̃�𝛼
k
�̃�
𝛽

j
p(x̃k, ỹj).

G̊A
m+1,n+1

(f ) = 2I(f ) − G̊m,n(f ), ∀f ∈ ℙ2m+1,2n−1 ∪ ℙ2m−1,2n+1

G̊L
2m+1,2n+1

(f ) =
1

2
[G̊m,n(f ) + G̊A

m+1,n+1
(f )].

(23)
R̊m,n(f ) = I(f ) − G̊m,n(f ) ≃ G̊L

2m+1,2n+1
(f ) − G̊m,n(f )

=
1

2
[G̊A

m+1,n+1
(f ) − G̊m,n(f )] =∶ R̊[1]

m,n
(f ).

x̂𝜅 = min{x̂k|x̂k ≥ 4m𝜃1}, ŷ𝜄 = min{ŷj|ŷj ≥ 4n𝜃2},

G̊T
m+2,n+2

=

𝜅∑
k=1

𝜄∑
j=1

�̂�𝛼
k
�̂�
𝛽

j
f (x̂k, ŷj).

R̊T
m+2,n+2

(f ) = I(f ) − G̊T
m+2,n+2

(f )



1 3

Numerical Algorithms 

Proposition 5 Let f ∈ Cu where u is given by (15) with γ1 < α + 1 and γ2 < β + 1. 
Then,

where C and c are positive constants independent of m and n.

4  Numerical examples

The aim of this section is to show and compare the performance of the four cubature 
rules applied to several integrals of the form (1).

In each example, for increasing value of m and n, we compute the relative errors 
of the Gauss and anti-Gauss cubature rule 𝜖m,n, �Am+1,n+1 , together with the corre-
sponding relative error �L

2m+1,2n+1
 furnished by the averaged formula (13). Then, we 

show the relative errors of the associated truncated rules �̊�m,n , �̊�Am+1,n+1 and �̊�L
m+1,n+1

 
to highlight the advantage of such formulae in terms of accuracy and evaluation of 
functions. In addition, we test the performance of the reduced generalized averaged 
Gauss rule and its truncated version, by showing the relative errors �T

m+2,m+2
 and 

�̊�T
m+2,n+2

.
In each example, we also compute the Estimated Order of Convergence (EOC), 

i.e.,

where here errm,n is the absolute error of the cubature rule we are dealing with.
All the computations were performed on an Intel Xeon E-2244G system with 

16Gb RAM, running MATLAB 9.10. The software developed is only prototypal, 
but it is available from the authors upon request.

Example 1 Let us test the convergence of the considered cubature rules to the fol-
lowing integral

with f (x, y) = sin(x + y)x3y and w(x,y) = e−x−y. The integrand function is very 
smooth and then we expect a fast convergence. The numerical tests are performed 
with high-precision arithmetic. Specifically, to make the round-off errors introduced 
during the computations negligible, the computations are achieved with 110 signifi-
cant decimal digits. By choosing m = n, Table 1 contains the relative errors of the 

(24)R̊m,n(f ) = I(f ) − G̊m,n(f ) ≃ G̊T
m+2,n+2

(f ) − G̊m,n(f ) =∶ R̊[2]
m,n

(f ).

�R̊T
m+2,n+2

(f )� ≤ �RT
m+2,n+2

(f )� + C(Em(f )u + e−c(m+n)‖fu‖∞)

EOCm,n =

log
(

errm,n

err2m,2n

)

log 2
,

∫
∞

0 ∫
∞

0

sin(x + y)x3ye−x−ydxdy = −
3

4
,
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classical Gauss-Laguerre formula Gm,m(f), the anti-Gauss rule GA
m,m

(f ) and the cor-
responding averaged rule GL

2m+1,2m+1
(f ) , together with the corresponding EOCm,m. 

By comparing the second and fourth column, we can see that the anti-Gauss formula 
furnishes an error opposite in sign and with the same magnitude of the Gauss rule. 
Consequently, if we approximate the integral by using the averaged rule, then we get 
a better approximation as highlighted by the sixth column.

In Table 2, we collect the results we get by approximating the integral with the 
truncated version of the Gauss, anti-Gauss rule, and the corresponding averaged for-
mula, by fixing 𝜃1 = 𝜃2 = 0.4. The truncated anti-Gauss rule still retains the same 
properties of its complete formulation, that is gives an error opposite in sign and 
with the same magnitude of the truncated Gauss-rule. This implies that if we use 
the truncated averaged rule we get the same accuracy of the complete rule but with 
fewer points. For instance, we get an error of the order  10− 9 with 27 × 2 = 54 nodes 
(instead of 33 × 2 = 66 nodes) and 365 evaluations of functions (instead of 545 
evaluations).

Table  3 contains the relative errors we get with the reduced generalized aver-
aged formula GT

m+2,m+2
 and its truncated version G̊T

m+2,m+2
 . They are smaller than the 

errors given by the single rules Gm,m and GA
m+1,m+1

 but the averaged rule GL
2m+1,2m+1

 
is more precise. By the last column, we can see that, also in this case, the truncated 
form gives the same accuracy of the complete rule with fewer points.

Table 1  Numerical results for Example 1

m = n 𝜖m,m(f) EOCm,m  �A
m+1,m+1

(f )  EOCA
m,m

  �L
2m+1,2m+1

(f )  EOCL
m,m

8 − 5.13e − 03 13.06 6.51e − 03 13.38 6.95e − 04 17.25
16 − 6.00e − 07 29.60 6.09e − 07 28.87 4.44e − 09 24.08
32 − 7.40e − 16 1.48 1.24e − 15 1.79 2.50e − 16 2.43
64 2.66e-16 − 3.59e − 16 − 4.63e − 17

Table 2  Numerical results for 
Example 1 with 𝜃1 = 𝜃2 = 0.4

m = n ι = κ �̊�m,n(f ) ι = κ  �̊�A
m+1,n+1

(f )    �̊�L
2m+1,2n+1

(f )  

8 7 − 5.12e − 03 8 6.51e − 03 6.97e − 04
16 13 − 6.00e − 07 14 6.09e − 07 4.53e − 09
32 25 − 7.40e − 16 26 1.24e − 15 2.50e − 16
64 49 2.66e − 16 50 − 3.59e − 16 − 4.63e − 17

Table 3  Numerical results for 
Example 1 with 𝜃1 = 𝜃2 = 0.4

m = n  �T
m+2,m+2

  EOCT
m
 ι = κ  �̊�T

m+2,m+2

8 − 1.61e − 03 14.59 9 − 1.61e − 03
16 − 2.27e − 08 24.20 14 − 2.25e − 08
32 − 8.77e − 16 1.87 26 − 8.77e − 16
64 − 9.31e − 16 50 − 9.31e − 16



1 3

Numerical Algorithms 

In Table 4, we want to compare the performance of the reduced generalized aver-
aged formula GT

m+2,m+2
 with the complete generalized averaged formula from which 

it derives GS
2m+1,2m+1

 to show that the first formula reaches the same accuracy of 
the second one even if the number of points is reduced. To this end, to make inter-
nal the complete formula, we set the parameters of the weight function as α = 2  
and β = 1 and f (x, y) = sin (x + y).

Example 2 The aim of this test is to show that in the two-dimensional case (and even 
more in the multidimensional one) the averaged rules are more competitive with 
respect to the simple Gauss formula. Let us consider the following integral

which is of the form (1) with

The function f is smooth and, for each fixed y, is bounded and does not increase too 
fast, so we need to use a large value of m and n to get a good accuracy [7]. The exact 
value of the integral is not known. Since the use of a high precision considerably 
increases the computation times when m is large, we have computed the exact value 
numerically with Wolfram Mathematica. We perform the computation with 32 sig-
nificant decimal digits.

By inspecting Table 5 we can deduce, for instance, that to get an error of the order 
 10− 8 we have two options: using the averaged rule GL

2m+1,2n+1
 with m = n = 64 which 

∫
∞

0 ∫
∞

0

e
−

3

4
x−y

1 + y + 2x

dx dy

(x − 2)2 + 1
,

w(x, y) = e−(x+y) f (x, y) =
1

1 + y + 2x

ex∕4

(x − 2)2 + 1
.

Table 4  Numerical results for 
Example 1 in the case α = 2 and 
β = 1

m  �S
2m+1,2m+1

(f )  �T
m+2,m+2

(f ) 

8 2.36e − 04 5.37e − 04
16 2.23e − 09 − 2.10e − 09
32 − 7.42e − 16 − 1.15e − 16

Table 5  Numerical results for Example 2

m = n 𝜖m,m(f) EOCm  �A
m+1,m+1

(f )  EOCA
m
  �L

2m+1,2m+1
(f )  EOCL

m

16 − 2.57e − 03 2.91 2.06e − 03 2.74 − 2.55e − 04 3.92
32 3.42e − 04 3.82 − 3.08e − 04 3.68 1.68e − 05 7.43
64 2.42e − 05 6.73 − 2.40e − 05 6.70 9.74e − 08 6.91
128 2.29e − 07 9.37 − 2.30e − 07 9.41 − 8.09e − 10 8.05
256 − 3.46e − 10 12.97 3.39e − 10 13.01 − 3.05e − 12 11.52
512 − 4.31e − 14 4.10e − 14 − 1.04e − 15
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requires the computation of 2(2m + 1) = 258 nodes and  642 +  652 = 8321 evaluation 
of functions, or using the simple Gauss-Laguerre formula Gm,m with m = n = 128. 
However, in the latter case, we have to compute 256 nodes and 16384 evaluation of 
functions.

If we move to the truncated averaged rules, the number of function evaluations is 
further reduced. As showed in Table 6, to reach an error of order  10− 8, by using the 
truncated averaged rule GL

2m+1,2m+1
 , we only need to compute the integrand function 

in  362 +  372 = 2665 points. On the contrary, the computational cost of the truncated 
Gauss G̊m,m rule is  712 = 5041 evaluations.

Table  7 contains the results concerning the reduced generalized averaged rule 
from which we can see that GT

m+2,m+2
 is less accurate than the rule GL

2m+1,2m+1
.

Example 3 Let us consider an integral in which the integrand function is not smooth 
as in the previous examples, that is

where we can fix wα(x) = x− 1/10e−x and wβ(y) = y− 1/5e−y. Here, we compute the tests 
with double arithmetic precision and since the exact value is not known, we consider 
as exact the approximated value obtained by the Gauss cubature formula with 
m = 1024. The integrand function f (x, y) = |y−1|5∕2

25+x3+y3
 is smooth with respect to the 

variable x but belongs to the Sobolev space W2 with respect to the variable y. Then, 

∫
∞

0 ∫
∞

0

�y − 1�5∕2
25 + x3 + y3

e−(x+y)

5
√
y 10
√
x
dx dy,

Table 6  Numerical results for 
Example 2 with 𝜃1 = 𝜃2 = 0.2

m = n ι = κ �̊�m,m(f ) ι = κ  �̊�A
m+1,m+1

(f )  �̊�L
2m+1,2m+1

(f )

16 10 − 2.57e − 03 10 2.06e − 03 − 2.54e − 04
32 18 3.42e − 04 19 − 3.08e − 04 1.68e − 05
64 36 2.42e − 05 37 − 2.40e − 05 9.74e − 08
128 71 2.29e − 07 72 − 2.30e − 07 − 8.09e − 10
256 142 − 3.46e − 10 142 3.39e − 10 − 3.05e − 12
512 282 − 4.31e − 14 283 4.10e − 14 − 1.04e − 15

Table 7  Numerical results for 
Example 2 with 𝜃1 = 𝜃2 = 0.2

m = n  �T
m+2,m+2

  EOCT
m
 ι = κ  �̊�T

m+2,m+2

16 − 3.61e − 03 2.95 11 − 3.61e − 03
32 4.68e − 04 5.04 20 4.68e − 04
64 1.42e − 05 6.82 37 1.42e − 05
128 1.26e − 07 8.42 72 1.26e − 07
256 − 3.67e − 10 13.25 143 − 3.67e − 10
512 − 3.77e − 14 284 − 3.77e − 14
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we expect a theoretical convergence of the order O(m−1) ; according to Theorem 1 
combined with (16) (see also [6, Proposition 3.1]). The performance of the rules are 
displayed in Tables 8, 9, and 10. Once again, the computational saving of the trun-
cated averaged rule is confirmed.

In this example, we have also add a column in each table to show that the pro-
posed formulae can be used to estimate the relative error given by the classical 
Gauss cubature formulae Gm,m and G̊m,m as emphasized in (14), (21), (23), and (24).

Table 8  Numerical results for Example 3

m = n 𝜖m,m(f) EOCm  �A
m+1,m+1

(f )  EOCA
m
  �L

2m+1,2m+1
(f )  EOCL

m
  �[1]

m,m
(f ) 

16 − 3.29e − 03 1.54 2.75e − 03 1.57 − 2.70e − 04 1.38 − 3.02e − 03
32 − 1.13e − 03 2.06 9.26e − 04 1.60 − 1.04e − 04 2.65 − 1.03e − 03
64 2.72e − 04 1.78 − 3.05e − 04 1.70 − 1.65e − 05 1.20 2.89e − 04
128 7.93e − 05 1.75 − 9.36e − 05 1.67 − 7.18e − 06 1.34 8.65e − 05
256 2.36e − 05 6.74 − 2.93e − 05 7.07 − 2.84e − 06 10.81 2.65e − 05
512 − 2.22e − 07 2.18e − 07 − 1.58e − 09 − 2.20e − 07

Table 9  Numerical results for Example 3 with 𝜃1 = 𝜃2 = 0.2

m = n ι = κ �̊�m,m(f ) ι = κ  R̊A
m+1,m+1

(f )  �̊�L
2m+1,2m+1

(f )  �̊�[1]
m,m

(f ) 

16 10 − 3.29e − 03 11 2.75e − 03 − 2.70e − 04 − 3.02e − 03
32 19 − 1.13e − 03 19 9.26e − 04 − 1.04e − 04 − 1.03e − 03
64 36 2.72e − 04 37 − 3.05e − 04 − 1.65e − 05 2.89e − 04
128 71 7.93e − 05 72 − 9.36e − 05 − 7.18e − 06 8.65e − 05
256 142 2.36e − 05 142 − 2.93e − 05 − 2.84e − 06 2.65e − 05
512 282 − 2.22e − 07 283 2.18e − 07 − 1.58e − 09 − 2.20e − 07

Table 10  Numerical results for Example 3 with 𝜃1 = 𝜃2 = 0.2

m = n  �T
m+2,m+2

  EOCT
m
 ι = κ  �̊�T

m+2,m+2
  �[2]

m,n
(f )  �̊�[2]

m,n
(f ) 

16 − 2.63e − 03 1.58 11 − 2.63e − 03 − 6.61e − 04 − 6.61e − 04
32 − 8.77e − 04 1.72 20 − 8.77e − 04 − 2.56e − 04 − 2.56e − 04
64 2.67e − 04 2.04 37 2.67e − 04 5.50e − 06 5.50e − 06
128 6.48e − 05 1.59 72 6.48e − 05 1.45e − 05 1.45e − 05
256 2.15e − 05 3.76 143 2.15e − 05 2.14e − 06 2.14e − 06
512 − 1.59e − 06 284 − 1.59e − 06 1.37e − 06 1.37e − 06
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5  Proofs

Proof of  Proposition 1. Property 1 Assume without loss of generality that 
degx f ≤ 2m + 1 and degy f ≤ 2n − 1 . Then

 is a polynomial in xi of degree at most 2m + 1, and we similarly have

 Thus,

 are the Gauss and anti-Gauss rule applied on the polynomial g. Using the fact that 
these two rules give the opposite errors on all polynomials of degree at most 2m + 1, 
we conclude that

Property 2 It is inherited by the one-variable anti-Gauss rule [17, 26].
Property 3 The positivity follows by the fact that the j th weight is the squared of 

the first component of the eigenvector associated to the j th eigenvalue. Let us now 
give the proof of the expression of the weights ��

k
 , by following essentially the one 

given in [26] for bounded intervals. The identity related to the weights ��
j
 can be 

proved in the same way. For each fixed k, let us consider the polynomial of degree 
2m

 Since Gm(fk) = 0, the univariate averaged rule (4) gives the identity

On the other hand, for each k, there exist a polynomial qm− 1,k of degree m − 1 such 
that

g(xi) ∶= ∫
∞

0

f (xi, y)w�(y)dy =

n∑
j=1

�
�

j
f (xi, yj)

n+1∑
j=1

𝜆
𝛽

j
f (x̃i, ỹj) = g(x̃i).

Gm,n =

m∑
i=1

𝜆𝛼
i
g(xi), GA

m+1,n+1
=

m+1∑
i=1

�̃�𝛼
i
g(x̃i)

1

2
(Gm,n + GA

m+1,n+1
) = ∫

∞

0

g(x)w�(x)dx = ∬
ℝ+

f (x, y)w(x, y)dxdy.

fk(x) = p𝛼
m
(x)

p̃𝛼
m+1

(x)

x − x̃k
.

(25)
1

2
GA

m+1
(fk) =

1

2
�̃�𝛼
k
fk(x̃k) =

1

2
�̃�kp

𝛼
m
(x̃k)p̃

𝛼
m+1

�(x̃k).

(26)∫
∞

0

fk(x)w�(x)dx = ∫
∞

0

p�
m
(x)[xm + qm−1,k(x)]w�(x)dx = ‖p�

m
‖2,
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where ∥⋅∥ denotes the usual norm in the Hilbert space L2(ℝ+) . Then, by combining 
(25) with (26), we get the assertion.

Property 4
Let P and Q be two polynomials of degree 2m − 2 (or 2m − 1 if k = 1 or k = m) 

such that

 and

 These polynomials are uniquely determined (see, for instance, [21, Lemma 1.3]).
The polynomial P(x) < g(x) for x < x̃k , hits the x-axis at x̃k+1 and is negative 

thereafter, so

 Thus,

Similarly,

 and consequently, we can claim that

The last inequalities can be proved similarly. 

Proof of Corollary 1. By Property 4 of Proposition 1 we can state

P(x̃i) =

{
g(x̃i), i ≤ k − 1,

0, i ≥ k + 1,
and

dP

dx
(x̃i) =

{
g�(x̃i), i ≤ k − 1,

0, i ≥ k + 2,

Q(x̃i) =

{
g(x̃i), i ≤ k − 2,

0, i ≥ k,
and

dQ

dx
(x̃i) =

{
g�(x̃i), i ≤ k − 2,

0, i ≥ k + 1.

P(x) <

{
g(x), x < x̃k+1,

0, x > x̃k+1.

k−1∑
i=1

�̃�𝛼
i
g(x̃i) =

k−1∑
i=1

�̃�𝛼
i
P(x̃i) <

n+1∑
i=1

�̃�𝛼
i
P(x̃i)

= ∫
∞

0

P(x)w𝛼(x)dx < ∫
x̃k+1

0

g(x)w𝛼(x)dx.

Q(x) >

{
g(x), x < x̃k−1,

0, x > x̃k−1,

k∑
i=1

�̃�𝛼
i
g(x̃i) >

k∑
i=1

�̃�𝛼
i
Q(x̃i) =

n+1∑
i=1

�̃�iQ(x̃i)

= ∫
∞

0

Q(x)w𝛼(x)dx > ∫
x̃k−1

0

g(x)w𝛼(x)dx.



 Numerical Algorithms

1 3

 and

 so that 

Proof of Theorem 1. To prove the stability of the formula, we have to prove that

 Now, by Corollary 1 with g(x) = e
x

2 , we get

where C is a positive constant independent of m. Similarly, we deduce that

 Consequently, by the assumption on α and β, we deduce the boundedness of the 
integrals and then the stability of the formula. About the convergence, denoted by 
P ∈ ℙ2m−1,2n−1 we have

Then, taking infimum on ℙ2m−1,2n−1 , by assumptions we get the thesis. 

k∑
i=1

�̃�𝛼
i
g(x̃i) < ∫

x̃k+2

0

g(x)w𝛼(x)dx

k−1∑
i=1

�̃�𝛼
i
g(x̃i) > ∫

x̃k−2

0

g(x)w𝛼(x)dx,

�̃�𝛼
k
g(x̃k) =

k∑
i=1

�̃�𝛼
k
g(x̃k) −

k−1∑
i=1

�̃�𝛼
k
g(x̃k) < ∫

x̃k+2

x̃k−2

g(x)w𝛼(x)dx.

sup
m,n

sup
‖fu‖∞=1

�
m+1�
k=1

n+1�
j=1

�̃�𝛼
k

u1(x̃k)

�̃�
𝛽

j

u2(ỹj)

�
< ∞.

m+1∑
k=1

�̃�𝛼
k

u1(x̃k)
=

m+1∑
k=1

�̃�𝛼
k
ex̃k∕2

(1 + x̃k)
𝜂1 x̃

𝛾1
k

≤
m+1∑
k=1

[
�

x̃k

x̃k−2

ex∕2w𝛼(x)

(1 + x)𝜂1x𝛾1
dx +

(
1 + x̃k+2

1 + x̃k

)𝜂1
(
x̃k+2

x̃k

)𝛾1

�
x̃k+2

x̃k

e
x

2w𝛼(x)

(1 + x)𝜂1x𝛾1
dx

]

≤ C�
∞

0

x𝛼−𝛾1

(1 + x)𝜂1
e−x∕2dx.

n+1∑
j=1

�̃�
𝛽

j

u2(ỹj)
≤ C�

∞

0

y𝛽−𝛾2

(1 + y)𝜂2
e−y∕2dy.

�RA
m+1,n+1

(f )� = �RA
m+1,n+1

(f − P)� = ���I(f − P) − GA
m+1,n+1

(f − P)
���

≤ ‖(f − P)u‖∞
�

I
�
1

u

�
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�
m+1�
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n+1�
j=1

�̃�
𝛽
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u2(ỹj)

��

≤ C‖(f − P)u‖∞.
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Proof of  Corollary 2 By definition, taking Theorem  1 into account and being 
|Rm,n(f )| ≤ CE2m−1,2n−1(f )u one get 

Proof of Proposition 3 Both assertions follow by the properties of the corresponding 
univariate quadrature rule GT

m+2
 [14]. 

Proof of Proposition 4 By the first assertion of Proposition 1 we can write

Therefore, we have

Let us now prove that S1 and S2 are negligible so that they cannot influence the 
sign of the first term at the right-hand side.

Let u(x,y) = u1(x)u2(y) with ui(x) = (1 + x)�i x�i e−x∕2, where ηi ≥ 0 for each i = 1,2 
and γ1 < α + 1, γ2 < β + 1. Then, setting � = min{�1, �2} and M = min{m, n} , we 
have S1 = sign(S1)|S1|, where [9, formula 4.2]

with C and c two positive constants independent of M and p, and with c depending 
on 𝜃. Hence, S1 approaches zero and then whatever its sign, it does not change the 
sign of R̊m,n(f ) . A similar result can be proven for the sum S2 so that we have the 
assertion. 

Proof of  Proposition 6 Let PM the polynomial of best approximation for f, we can 
write

|I(f ) − GL
2m+1,2n+1

(f )| ≤ 1

2
[|Rm,n| + |RA

m+1,n+1
|] ≤ C

2
E2m−1,2n−1(f )u.

I(p) − G̊A
m+1,n+1

(p)

= I(p) − GA
m+1,n+1

(p) +

m+1∑
k=𝜅+1

n+1∑
j=𝜄+1

�̃�𝛼
k
�̃�
𝛽

j
p(x̃k, ỹj)

= −(I(p) − G̊m+1,n+1(p)) +

m∑
k=𝜅+1

n∑
j=𝜄+1

𝜆𝛼
k
𝜆
𝛽

j
p(xk, yj) +

m+1∑
k=𝜅+1

n+1∑
j=𝜄+1

�̃�𝛼
k
�̃�
𝛽

j
p(x̃k, ỹj).

R̊A
m+1,n+1

(p) = −R̊m,n(p) +

m∑
k=𝜅+1

n∑
j=𝜄+1

𝜆𝛼
k
𝜆
𝛽

j
p(xk, yj) +

m+1∑
k=𝜅+1

n+1∑
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�̃�𝛼
k
�̃�
𝛽

j
p(x̃k, ỹj)

= −R̊m,n(p) + S1 + S2.

�S1� ≤ ‖p‖Cu([4M�,+∞))

m�
k=�+1

n�
j=�+1

��
k

u1(xk)

�
�

j

u2(xk)
≤ Ce−cMI

�
1

u

�
‖pu‖∞,
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By virtue of the exactness of formula GT
m+2,n+2

 for constants, we have

Moreover, by proceeding as done in Proposition 4 for the sums S1 and S2, we get

6  Conclusions and research perspectives

In this paper, we have proposed four cubature rules to approximate double inte-
grals defined on the interval [0,+∞) . The first one is the averaged Gauss cubature 
formula which is an average of the Gauss cubature formula and the anti-Gauss 
cubature rule, introduced here for the first time. Then, we have extended to the 
bivariate case the formula proposed in [15] by writing the reduced generalized 
averaged Gauss cubature rule. Finally, we have investigated on the corresponding 
truncated versions obtained by removing “large” nodes.

Our numerical results confirm the theoretical properties of these schemes. In 
the case of the averaged rule, the formula does not only provide a good estimate 
for the remainder terms Rm,m(f )  and R̊m,m(f )  but gives a good approximation of 
the integral with a reduced number of evaluation of functions with respect to the 
one given by the Gauss cubature formula G2m,2n. To this advantage, the reduced 
computational cost for computing nodes and weights is added, compared to the 
related cost required for the construction of G2m,2n. If we move on the truncated 
versions, the number of evaluation of function is streactly reduced.

All the above formulae are constructed as tensor product of the corresponding 
univariate formulae and then are based on the zeros of polynomials orthogonal 
with respect to a weight function of the type u(x) = xαe−x.

|R̊T
m+2,n+2

(f )| ≤ |RT
m+2,n+2

(f )| +
m+2∑

k=𝜅+1

n+2∑
j=𝜄+1

�̂�𝛼
k
�̂�
𝛽

j
|f (x̂k, ŷj) − PM(x̂k, ŷj)|

+

m+2∑
k=𝜅+1

n+2∑
j=𝜄+1

�̂�𝛼
k
�̂�
𝛽

j
|PM(x̂k, ŷj)|.
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k=𝜅+1

n+2∑
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�̂�𝛼
k

u1(x̂k)

�̂�
𝛽

j

u2(ŷj)
|(f (x̂k, ŷj) − PM(x̂k, ŷj))u(x̂k, ŷj)|

≤ EM(f )u

m+2∑
k=1

n+2∑
j=1

�̂�𝛼
k

u1(x̂k)

�̂�
𝛽

j

u2(ŷj)

≤ CEM(f )u�
∞

0 �
∞

0

w(x, y)

u(x, y)
dxdy.

m+2�
k=𝜅+1

n+2�
j=𝜄+1

�̂�𝛼
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u1(x̂k)

�̂�
𝛽

j

u2(ŷj)
�PM(x̂k, ŷj)� ≤ Ce−c(m+n)‖fu‖∞.



1 3

Numerical Algorithms 

Regarding research perspectives, we want to construct these formulae by con-
sidering the more general weight u(x) = x�e−x

� [27–29]. In this case, the coeffi-
cients of the recurrence relation are not known in a closed form and then must be 
evaluated numerically. The Mathematica package “Orthogonal Polynomial” [30, 
31] computes such coefficients (and then evaluates nodes and weights) for the 
Gauss and anti-Gauss rule but not for the reduced generalized averaged formula. 
Then, we want to develop a software package, written in Matlab, which includes 
the computation of the recurrence coefficients of all the cubature formulae inves-
tigated here.

Our package will also include solvers for the numerical solution of integral 
equations defined on the set (0,∞) × (0,∞) based on the cubature schemes pre-
sented in this paper [32]. Their properties will imply a considerable computa-
tional saving in the numerical solution of the linear system that will have to be 
solved.
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