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Abstract: Data assimilation techniques allow researchers to optimally merge remote sensing obser-

vations in ecohydrological models, guiding them for improving land surface fluxes predictions. 

Presently, freely available remote sensing products, such as those of Sentinel 1 radar, Landsat 8 

sensors, and Sentinel 2 sensors, allow the monitoring of land surface variables (e.g., radar backscat-

ter for soil moisture and the normalized difference vegetation index (NDVI) and for leaf area index 

(LAI)) at unprecedentedly high spatial and time resolutions, appropriate for heterogeneous ecosys-

tems, typical of semiarid ecosystems characterized by contrasting vegetation components (grass and 

trees) competing for water use. A multiscale assimilation approach that assimilates radar backscat-

ter and grass and tree NDVI in a coupled vegetation dynamic–land surface model is proposed. It is 

based on the ensemble Kalman filter (EnKF), and it is not limited to assimilating remote sensing 

data for model predictions, but it uses assimilated data for dynamically updating key model pa-

rameters (the ENKFdc approach), including saturated hydraulic conductivity and grass and tree 

maintenance respiration coefficients, which are highly sensitive parameters of soil–water balance 

and biomass budget models, respectively. The proposed EnKFdc assimilation approach facilitated 

good predictions of soil moisture, grass, and tree LAI in a heterogeneous ecosystem in Sardinia for 

a 3-year period with contrasting hydrometeorological (dry vs. wet) conditions. Contrary to the 

EnKF-based approach, the proposed EnKFdc approach performed well for the full range of hydro-

meteorological conditions and parameters, even assuming extremely biased model conditions with 

very high or low parameter values compared with the calibrated (“true”) values. The EnKFdc ap-

proach is crucial for soil moisture and LAI predictions in winter and spring, key seasons for water 

resources management in Mediterranean water-limited ecosystems. The use of ENKFdc also ena-

bled us to predict evapotranspiration and carbon flux well, with errors of less than 4% and 15%, 

respectively; such results were obtained even with extremely biased initial model conditions. 

Keywords: soil moisture; leaf area index; radar; data assimilation; heterogeneous ecosystems;  

multiscale; ecohydrological models 

 

1. Introduction 

Recent improvements in satellite remote sensing techniques obtain land information 

for ecohydrological studies at unprecedented fine spatial and time resolutions [1–3], 

which are also suitable for heterogeneous ecosystems, typical of semiarid and arid cli-

mates [4,5]. In these ecosystems, trees, grass, and bare soil components coexist, and grass 

and tree covers vary in time and almost randomly in space, at scales of the size of tree 

clumps (usually less than 50 m [6,7]). For these ecosystems, there is a need for satellite 
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data at fine spatial and temporal resolutions, such as those provided nowadays by remote 

sensors such as Sentinel and Landsat 8 [8,9], which are also freely available. 

Soil moisture and vegetation growth indices, such as the leaf area index (LAI), are 

key variables of land surface processes and ecohydrological models [10–12]. In modern 

ecohydrological models, land surface models (LSM) and vegetation dynamic models 

(VDM) have been coupled for representing the dynamic interactions between soil, vege-

tation, and atmosphere [13,14]. Observations of optical sensors such as Sentinel 2 and 

Landsat 8 can provide information on vegetation index, e.g., the normalized difference 

vegetation index (NDVI) that is related to LAI through empirical or physical relationships 

[15–21], at a spatial resolution of 10–30 m and a time resolution of 5–10 days. At the same 

time, active remote sensors, such as the Sentinel 1 radar, provide backscatter data at a 

spatial resolution of up to 10 m and a time resolution of 6 days, which can be used for soil 

moisture monitoring [17,22,23] in Mediterranean ecosystems characterized by rugged to-

pography and high spatial variability of physiographic properties [24,25]. The backscatter 

radar signal is strictly related to soil moisture and roughness, although the effect of vege-

tation growth can alter and attenuate the radar signal and needs to be properly considered 

[1,5,26–29]. In this sense, apart from the commonly used water cloud model (WCM) 

[15,30–32], Montaldo et al. [33] recently proposed a simplified approach for accounting 

for vegetation growth in the surface roughness using the Dubois et al. [34] model for soil 

moisture retrieving and NDVI data from Sentinel 2 for vegetation characterization. 

Here, we propose a data assimilation system of both NDVI data and backscatter ra-

dar data from remote sensors in an ecohydrological model for improving soil–water bal-

ance and vegetation dynamic predictions in heterogeneous ecosystems. Data assimilation 

systems have been developed for guiding the model with observations towards optimal 

solutions [33,35–38], and can be useful in the case of operational prediction approaches 

with highly uncertain model parameterization. The use of filters such as the Kalman filter 

[39] in data assimilation systems can optimally consider both model and observation er-

rors. The ensemble Kalman filter (EnKF) has been developed for overcoming the need to 

linearize models, a typical issue of traditional Kalman filters in ecohydrological modeling 

[38–43]. Recently, Albergel et al. [44] and Bonan et al. [45] assimilated LAI data and soil 

moisture in ecohydrological models using radar sensors (advanced scatterometer, 

ASCAT) for soil moisture retrieval from remote sensors at coarse spatial resolutions (>1 

km). Meanwhile, Rahman et al. [46] assimilated the moderate resolution imaging spectro-

radiometer on terra and aqua satellites (MODIS), theadvanced very high resolution radi-

ometer (AVHRR) data for LAI, and the NASA’s Soil Moisture Active Passive (SMAP) data 

for soil moisture in a land surface model for the whole United States of America, although 

this was also carried out at a coarse spatial resolution (>50 km). Instead, Pan et al. [47] and 

Zhuo et al. [48] assimilated radar Sentinel 1 and optical Sentinel 2 data in the Word Food 

Studies (WOFOST) model using the EnKF for agricultural land at finer spatial resolution 

(<50 m); however, they did not consider heterogeneity in the land and complex ecosys-

tems. 

Because semiarid and arid ecosystems in water-limited conditions are typically char-

acterized by strong heterogeneity, we propose a data assimilation system suited to these 

ecosystems based on EnKF. The system assimilates grass and tree NDVI data distinctly, 

and radar backscatter data for LAI and soil moisture predictions in a coupled LSM–VDM. 

We used the Montaldo et al. [14] LSM–VDM, which was developed for heterogeneous 

ecosystems, and predicts soil and energy balance components and vegetation dynamics 

separately for each land cover component (grass, trees, and bare soil). The EnKF, and as-

similation filters in general, may fail when key parameters of uncalibrated models are 

largely different from calibrated (“true”) values [38,49–51]. In this sense, Montaldo et al. 

[38] proposed an assimilation approach that calibrated key parameters of the LSM 

through the soil moisture assimilation based on EnKF, dynamically updating a key model 

parameter, the saturated hydraulic conductivity, from the persistent bias in soil–water 

balance predictions. Following Montaldo et al. [38], Lu et al. [52,53], and Nie et al. [50] 
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assimilated soil moisture data and dynamically calibrated  key parameters of a soil–wa-

ter balance model. However, all these previous efforts used field observations of soil mois-

ture, not using actual satellite remote observations.  

Here, we propose to assimilate both NDVI satellite data and radar backscatter Senti-

nel 1 data for predicting soil moisture and grass and tree LAI through an LSM–VDM, and 

dynamically calibrate key LSM and VDM parameters—saturated hydraulic conductivity 

and maintenance respiration coefficients—for reaching an operative multiscale assimila-

tion system suited to heterogeneous ecosystems. Following Montaldo et al. [38], we have 

chosen these parameters because the saturated hydraulic conductivity is a main soil–wa-

ter balance parameter, which largely affects soil moisture predictions [54,55], and the veg-

etation growth predictions are highly sensitive to the maintenance respiration coefficients 

[56]. The proposed approach was tested in a Sardinian field site, largely employed in eco-

hydrological studies (e.g., [5,6,57,58]), where a grassland coexists with wild olive trees 

under water-limited conditions, and the data of a micrometeorological eddy-covariance-

based tower are available. In the data assimilation system, we used Sentinel 1 radar data 

for backscatter retrieval, Landsat 8 and Sentinel 2 data for NDVI estimates, and the LSM–

VDM of Montaldo et al. [14]. Analogous solutions should be derivable for most other eco-

hydrological models and remote sensing data. 

2. Materials and Methods 

The case study and available data are first presented. Then, the proposed data assim-

ilation approach is described.  

2.1. Case Study 

The proposed assimilation approach was tested with observations from a field site at 

Orroli, Italy, located in east-central Sardinia (39°41′12.57″N, 9°16′30.34″E, 500 m a.s.l.; 

[6,14,57,58]). The landscape is mainly grass (67%) and woody vegetation in the footprint 

area, mainly wild olives with a variable height of 3.5–4.5 m (Figure 1). The grass species 

grow during wet seasons and reach approximate heights of 0.5 m in spring. The soil thick-

ness varies from 15 to 40 cm, averaging 17 ± 6 cm (standard deviation, SD) above fractured 

basalt [14,57]. The climate at the flux site is the maritime Mediterranean, with a mean an-

nual precipitation of 643 mm, and a mean July precipitation of 11 mm. The mean annual 

air temperature (Ta) is 14.6 °C, with a mean July Ta of 23.7 °C. 

 

Figure 1. Representation of the Sardinian heterogeneous ecosystem: (a) the position of the tower 

(red cross) in Sardinia; (b) aerial photography of summer 2016 with the position of the eddy covar-

iance tower (red cross); (c) the NDVI map from a Landsat 8 image with the position of the eddy 
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covariance tower (red cross), and the representative grass and tree cells, which NDVI evolutions in 

time during the 2016 year are reported in the inset; (d) a picture of the landscape on a dry summer 

day. 

2.1.1. Field Data 

A 10 m micrometeorological station was operating at the site to measure land–atmos-

phere fluxes of energy, water, and carbon in addition to key state variables. The apparatus 

included a Campbell Scientific CSAT-3 sonic anemometer and a Licor-7500 CO2/H2O in-

frared gas analyzer positioned adjacent to each other at the top of the tower. These two 

instruments measured velocity, temperature, and gas concentrations for the estimation of 

sensible heat flux, evapotranspiration (ET), and CO2 exchanges (Fc) with the standard 

eddy covariance method (e.g., [59]). Half-hourly statistics were computed.  

The two-dimensional footprint model of Detto et al. [6], previously tested for this site, 

was used for interpreting eddy correlation measurements in the context of the contrib-

uting land cover area. The combined use of the footprint model and the satellite images 

allowed us to interpret the eddy-covariance-observed surface flux and distinguish the 

source area of each vegetation component and bare soil from the measured flux, using the 

methodology in Detto et al. [6]. Considering the main eddy covariance tower footprint at 

the Sardinian site [6], an area of ~500 m × 500 m around the tower (~90% of the footprint) 

was considered for model predictions (Figure 1). 

The surface temperature of the tree canopy and grass/bare soil patches (using IRTS-

P by Apogee Instruments), incoming and outgoing shortwave and longwave radiation 

(from which to derive net radiation) (using CNR-1 by Kipp and Zonen), and the soil heat 

flux and temperature (using HFT3 REBS) at two locations close to the eddy covariance 

tower were monitored and half-hourly means were recorded. Precipitation was measured 

using a PMB2 CAE rain gauge. Seven frequency domain reflectometer probes (FDR, 

Campbell Scientific Model CS-616) were inserted in the soil close to the tower (3.3–5.5 m 

away) to estimate moisture at half-hourly intervals in the thin soil layer. Complete details 

of these measurements and data processing are available from Detto et al. [6], Montaldo 

et al. [14], and Montaldo et al. [58]. 

The LAI was measured indirectly through a ceptometer (Accupar model PAR-80, 

Decagon Devices Inc., Washington, DC, USA), which measures the PAR in the 400–700nm 

waveband, and estimates the LAI from these readings (details are given in the instruction 

manual edited by Decagon Devices Inc.). LAI measurements were performed mainly dur-

ing the grass growth season [14]. Finally, specific leaf areas (LAI divided by dry biomass) 

of predominant grass (0.01 m2 gDM−1) and woody vegetation (0.005 m2 gDM−1) species 

were measured directly by weighing the dry biomass. 

2.1.2. Remote Sensing Data 

The Sentinel 1 radar data originated from the S1A and S1B satellites, and the level-1 

ground-range-detected (GRD) data were used. The images were calibrated, noise cor-

rected with a Lee filter (7 × 7), and resampled from 10 to 30 m spatial resolution [33]. S1A 

images were available from January 2015. From September 2016, S1B satellite images were 

also available.  

Images from the Sentinel 2 radiometer were acquired at the L1C level and atmos-

pherically corrected with the Sen2Cor tool of the Sentinel Application Platform (SNAP), 

or directly at the L2A level (already corrected). For Landsat 8, the L1TP product was used 

(it is radiometrically calibrated and orthorectified using ground control points and a dig-

ital elevation model), and the dark object subtraction (DOS) method was used for the at-

mospheric correction.  
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2.2. The Proposed Assimilation Approach 

The assimilation approach includes: (1) remote sensing data, (2) the ecohydrological 

model, (3) the EnKF, and (4) the updating procedure of key LSM and VDM parameters 

(Figure 2). Below, each component of the proposed assimilation approach is described.  

 

Figure 2. The scheme of the multiscale assimilation approach: soil moisture (θ) and leaf area index 

(LAI) are the two assimilated and predicted variables by the coupled land surface model (LSM) and 

vegetation dynamic model (VDM); the saturated hydraulic conductivity (ks) and the maintenance 

respiration coefficient (ma) are the dynamically updated parameters through the assimilation ap-

proach; EnKF is the ensemble Kalman filter applied to both LSM and VDM. The timescales of the 

models, ENKF, and parameter updating are reported. The equations for the θ, LAI, ks, and ma ad-

justments are referenced within parenthesis. 

2.2.1. Optical Remote Sensing Data for LAI Estimate 

NDVI is estimated from red and near-infrared spectral reflectance measurements of 

satellite remote sensors. We used mainly the Operational Land Imager (OLI) Landsat 8 

data, and, secondly, the Sentinel 2 radiometer data for increasing the database. Landsat 8 

has a temporal resolution of 16 days and a spatial resolution of 30 m for the optical bands, 

which is coarser than the resolution of Sentinel 2 data (up to 10 m; temporal resolution: 

up to 5 days), and both are freely available.  

From Landsat 8 and Sentinel 2 data, NDVI is estimated at a 30 m spatial resolution. 

LAI is related to NDVI through the ΓN operator using an empirical approach (e.g., 

[18,60,61]): 

LAI = Γ�(NDVI) = �� + ��NDVI��  (1)

where β1, β2, and β3 are coefficients for vegetation species. Note that analogous solutions 

should be derivable from different Γ�(NDVI) relationships.  

The NDVI map was also used for identifying the fv,t fraction of tree cover in the field, 

which was estimated as NDVI/NDVImax following Detto et al. [6], with NDVImax as the 

maximum value of NDVI in the investigated field. 
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2.2.2. Radar Images for Soil Moisture Retrieval 

The dielectric constant of the surface soil, which is related to soil moisture, can be 

detected from radar data. We used the Sentinel 1 radar in VV polarization because VV 

polarization is more sensitive to soil moisture [28,62] and less sensitive to vegetation com-

pared with VH polarization [33,63]. The images were calibrated, noise-corrected, and 

resampled at a 30 m spatial resolution. The temporal resolution was approximately six 

days. Sentinel 1 images provide backscatter data in VV polarization (σ��
� ). 

We used the semi-empirical Dubois et al. [34] model for relating the ε dielectric con-

stant to the backscatter signal. The Dubois et al. [34] model accounts for co-polarized 

backscatter only and was formulated using scatterometer data collected at six frequencies 

between 2.5 and 11 GHz. The validity range is ks < 2.5 (ks is the normalized RMS surface 

roughness), and the incidence angles were greater than 30° and were restricted to co-po-

larization (VV or HH). Here, only the VV empirical relationship was used: 

σ��
� = 10��.��

���� �

��� �
10�.���� ��� �(�������) ��.� �.� (2) 

where λ is the wavelength; k is the wave number equal to 2 π/λ; σ is the surface roughness; 

and β is the local incident angle related to the radar beam angle and the latitude, exposi-

tion, and slope of the site. The inversion of Equation (2) estimates the dielectric constant 

from the VV polarized backscatter coefficient, knowing the soil surface roughness and 

specific radar configuration parameters (wavelength and incidence angle). While the ra-

dar configuration parameters are known, σ is undetermined. We used the approach of 

Montaldo et al. [33], which relates σ with NDVI through an empirical σ (NDVI) relation-

ship, for accounting for the grass growth effect on radar signal, and which was just esti-

mated at the Orroli field site (Figure 4b of Montaldo et al. [33]): 

σ = −11.96 NDVI2 + 11.44 NDVI − 0.5982 (3)

With the objective of simplifying the parameterization of the retrieval models, the 

use of the σ (NDVI) of Montaldo et al. [33] allowed us to integrate vegetation effects in the 

roughness parameter, as previously suggested by Capodici et al. [64]. The use of Equation 

(3) in Equation (2) estimates ε, which is finally related to θ soil moisture through the Γθ 

operator [65]: 

� = Γ�(�) = (−530 + 292� − 5.5�� + 0.043��)10�� (4) 

2.2.3. The Ecohydrological Model  

The ecohydrological model is a three-component coupled land surface–vegetation 

dynamic model (LSM–VDM). The LSM predicts the soil water and energy balances. The 

VDM estimates the LAI evolution through time for two vegetation components (grass and 

trees), which are used by the LSM for computations of the energy exchanges between soil 

and vegetation. The details are given in Montaldo et al. [14] and Montaldo et al. [57]. Here, 

a summary of the main components is provided. 

2.2.4. The Land Surface Model 

The LSM predicts the dynamics of water and energy fluxes at the land surface on a 

half-hour time step (Figure 2). It includes three components of the land surface: bare soil, 

grass, and trees, representing two vegetated components. It is derived from the LSM of 

Montaldo and Albertson [66] and the surface temperature states are estimated through 

the force restore method [67]. The root zone supplies the bare soil and vegetation with soil 

moisture for evapotranspiration and controls the infiltration and runoff mechanisms. The 

base of the root zone represents the lower boundary of the LSM. Equations for surface 

temperature and the components of the energy balance (sensible heat flux, soil heat flux, 
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and net radiation) are applied separately for each land cover component, so that the model 

predicts the energy balance distinctly for each land cover component [14] (Table 1). 

The soil–water balance equation of the root zone is computed by 

��

��
=

1

���
������� + ��,��� + ��,��� − ������ − ��,��� − ��,��� − ��� (5)

where θ is the soil moisture; drz is the root zone depth; Ibs is the infiltration rate on bare 

soil; It and Igr are the throughfall rates infiltrating into the soil covered by trees and grass, 

respectively; qD is the rate of drainage out of the bottom of the root zone; Ebs is the rate of 

bare soil evaporation; Et and Eg are the rates of transpiration of trees and grass, respec-

tively; fv,g is the fraction of grass cover; and fbs is the fraction of bare soil [14].  

The throughfall rate is modeled through a balance equation of the intercepted water 

by the canopy reservoir (a function of the LAI), which produces throughfall when the 

reservoir is saturated [66,67]. An infiltration excess mechanism, based on the Philip’s in-

filtration equation [68], was used for the infiltration. In unsaturated soil, the Clapp and 

Hornberger [69] relationships were used to describe the nonlinear dependencies of volu-

metric soil moisture and hydraulic conductivity on the matric potential. The qD rate was 

estimated using the unit head gradient assumption (Table 1; [11,14]). 

Et and Eg were estimated distinctly using the Penman–Monteith equation (e.g., [70], 

p. 224) for each vegetation component. Canopy resistances, accounting for environmental 

stresses, were estimated using a typical Jarvis [71] approach (Table 1). The actual rate of 

bare soil evaporation was determined as �(�)��, where α(θ) is a rate-limiting function, 

estimated by the polynomial function of Parlange et al. [72], and PE is the potential evap-

oration estimated by the Penman equation (e.g., [70], Equations 10.15, 10.16, and 10.19). 

Hence, the total evapotranspiration was estimated as: 

�� = ������ + ��,��� + ��,��� (6)

Paralleling the approach for ET estimation, a three-component approach was imple-

mented for estimating the total net CO2 flux [57]: 

�� = ��,���,� + ��,���,� + ��� (7)

where Fc,t and Fc,g are the carbon exchange of trees and grass, respectively, and Rbs is the 

soil respiration. Carbon exchange rates for each PFT (i.e., Fc,t, Fc,g) were computed as the 

difference between photosynthesis and growth respiration (Table 2). Soil respiration was 

estimated as a function of the temperature (Table 2, [57,73–75]). The model parameters are 

presented in Table 3. 

 

 

 

 

 

 

Table 1. Equations of drainage (qD), canopy resistance (rc) with stress functions of soil moisture (θ), 

air temperature (Ta) and vapor pressure deficit (VPD), sensible heat flux (H), net radiation (Rn), soil 

heat flux (G), and surface temperature (Ts) in the LSM. Parameters are defined in Table 3. 

Equations Source 

Drainage 

�� = �� �
�

��

�
����

 
[11] 

Canopy resistance [69] 
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�� =
��,���

���[��(�)��(��)��(���)]��
 

��(�) = �

0
� − ���

���� − ���

1

      

�� � ≤ ���

�� ��� < � < ����

�� � ≥ ����

 

 

























max,,

,min,

min,,

,

max,min,

2

for1

for1

andfor0

aaopta

optaaa

aopta

aopta

aaaa

a

TTT

TTT
TT

TT

TTTT

Tf  

f3= 1 – ω log(VPD) 

[74] 

Sensible heat flux 

� = �������(�� − ��), 

where CH the heat transfer coefficient  

[14] 

Net radiation 

�� = �����(1 − �) + ������� − ���
��, 

with shortwave incoming ration, Rswin; longwave incoming ration, 

Rlwin, estimated based on Equation 6.10 in Brutsaert (1982); α—albedo; 

ε—emissivity; σ—the Stefan–Boltzmann constant 

[14] 

Soil heat flux 

G=Rn-H-LE 
[14] 

Surface temperature 

���

��
= ��� −

��

�
(�� − ��), 

where T2 is the mean Ts value over one day, τ, and CT is the soil ther-

mal coefficient 

���

��
=

1

�
(�� − ��) 

[14] 

Table 2. Equations of the vegetation dynamic model components. Parameters are defined in Table 

3. 

Ecophysiological Term Equations Source 

Photosynthesis 

�ℎ = ��(���)�������
1.37�� + 1.6��,���

1.37�� + 1.6��

 

��(���) = �� + ����� + ������ 

���� = 1 − ������� 

[76] 

Allocation 

For the tree cover: 

�� =
��

1 + �[2 − � − ��(�)]
 

�� =
�� + �(1 − �)

1 + �[2 − � − ��(�)]
 

�� =
�� + ��1 − ��(�)�

1 + �[2 − � − ��(�)]
 

�� + �� + �� = 1; � = ������� 

[14] 
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For grass cover: 

�� =
�� + ��

1 + �[1 + � − ��(�)]
 

�� =
�� + ��1 − ��(�)�

1 + �[1 + � − ��(�)]
 

�� + �� = 1 

[14] 

Respiration 

Maintenance and growth respirations of biomass 

components: 

��,� = ����(�)�� ; ��,� = ������ 

��,� = ����(�)��; ��,� = ������ 

��,� = ����(�)�� ; ��,� = ������ 

[77] 

��(�) = ���

��
��      with Tm = mean daily tempera-

ture 
[76] 

Soil respiration 

��� = �����

��
��  

whereR10 is the reference respiration rate at 10°C 

and QN is the soil respiration sensitivity to temper-

ature 

[57] 

Senescence 
�� = ����  
�� = ���� 
�� = ����  

[14,77] 

Litterfall �� = ����  [14,77] 

 

Table 3. Model parameters of the coupled LSM–VDM and their values for the Orroli site. 

Parameter Description 
Value 

Grass Tree 

LSM–VDM parameters 

rs,min [s m−1] Minimum stomatal resistance 100 300 

Tmin [°K] Minimum temperature 272.15 272.15 

Topt [°K] Optimal temperature 295.15 285.15 

Tmax [°K] Maximum temperature 313.15 318.15 

θwp [–] Wilting point  0.08 0.04 

θlim, [-] Limiting soil moisture for vegetation  0.20 0.17 

ω [KPa−1] Slope of the f3 relation 0.6 0.6 

Only VDM parameters 

cl [m2 gDM−1] Specific leaf areas of the green biomass in growing season 0.01 0.005 

cd [m2 gDM−1] Specific leaf areas of the dead biomass 0.01 0.003 

ke [-] PAR extinction coefficient  0.5 0.5 

ξa [-] Parameter controlling allocation to leaves 0.6 0.55 

ξs [-] Parameter controlling allocation to stem - 0.1 

ξr [-] Parameter controlling allocation to roots 0.4 0.35 

Ω [-] Allocation parameter 0.8 0.8 

ma [d−1] Maintenance respiration coefficients for aboveground biomass 0.032 0.001 

ga [-] Growth respiration coefficients for aboveground biomass 0.28 0.69 

mr [d−1] Maintenance respiration coefficients for root biomass 0.007 0.002 

gr [-] Growth respiration coefficients for root biomass 0.1 0.1 

Q10 [-] Temperature coefficient in the respiration process 2.45 2.42 
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da [d−1] Death rate of aboveground biomass 0.05 0.0045 

dr [d−1] Death rate of root biomass 0.003 0.005 

ka [d−1] Rate of standing biomass pushed down 0.05 0.35 

Only LSM parameters 

zom,v [m] Vegetation momentum roughness length 0.05 0.5 

zov,v [m] Vegetation water vapor roughness length zom/7.4 zom/2.5 

zom,bs [m] Bare soil momentum roughness length 0.015 

zov,bs [m] Bare soil water vapor roughness length zom/10 

θs [-] Saturated soil moisture  0.53 

b [-] Slope of the retention curve  8 

ks [m/s] Saturated hydraulic conductivity  5 × 10−6 

|ψs| [m] Air entry suction head  0.79 

drz [m] Root zone depth  0.19 

2.2.5. The Vegetation Dynamic Model 

The VDM computes the change in biomass over time from the difference between 

the rates of biomass production (photosynthesis) and loss, mainly respiration (e.g., 

[10,75]). The VDM distinguishes tree and grass components and was adapted from Mon-

taldo et al. [76], who derived a VDM for grass species starting from the Nouvellon et al. 

[77] model. In the VDM of trees, four separate biomass states were considered: green 

leaves (Bl), stem (Bs), living root (Br), and standing dead (Bd). The VDM of grass only dis-

tinguishes three biomass states (green leaves, roots, and standing dead). The biomass [g 

DM m−2] components were simulated using the approach of Montaldo et al. [76], which 

consists of a balance between biomass production (related to photosynthesis for green 

leaves, stem, and roots biomass) and biomass destruction (respiration and senescence for 

green leaves, stem, and roots biomass), through ordinary differential equations, inte-

grated numerically at a daily time step.  

���

��
= ���ℎ − ��,� − ��,� − �� (8)

���

��
= ���ℎ − ��,� − ��,� − �� (9)

���

��
= ���ℎ − ��,� − ��,� − �� (10)

���

��
= �� − �� (11)

where �ℎ is the gross photosynthesis; aa, as and ar are the allocation (partitioning) coeffi-

cients for leaves, stem, and root states, respectively; Rl,μ, Rs,μ, and Rr,μ are the maintenance 

respiration rates from leaves, stem, and root biomass, respectively; Rl,γ, Rs,γ, and Rr,γ are 

the growth respiration rates from leaves, stem, and root biomass, respectively; Sg, Ss, and 

Sr are the senescence rates of leaves, stem, and root biomass, respectively; La is the litterfall. 

The model equations are given in Table 2 and the parameters are presented in Table 3. 

The leaf area index was estimated from the biomass by a linear relationship [13,76–

78]: 

LAI = �� �� (12)

where cl is the specific leaf area of the green biomass. The VDM provides estimates of daily 

values of leaf biomass and, thus, the LAI of the tree and grass was used by the LSM to 
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estimate evapotranspiration, energy flux, rainfall interception, carbon assimilation, and 

the soil water content at a half-hour time step [14]. The LSM provides soil moisture and 

aerodynamic resistances to the VDM. The coupled model was calibrated and validated in 

Montaldo et al. [14] and Montaldo et al. [57]. The details are given in Montaldo et al. [76], 

Montaldo et al. [14], and Montaldo et al. [57]. 

2.2.6. The Ensemble Kalman Filter 

Using the EnKF, we assimilated observations of 1) NDVI, which is related to LAI 

through Equation (1) in the VDM that describes the evolution of the leaf biomass through 

(8) that is related to LAI through (12); and 2) the radar-derived dielectric constant of the 

ground, which is related to θ through (4), in the LSM that describes the evolution of θ 

using (5). Hence, in the proposed approach, the EnKF is applied distinctly to the LSM and 

the VDM of both grass and tree components (Figure 2). In general, in the Kalman filters, 

��⃗  is a vector of surface state variables (i.e., θ or LAI). The equation describing the evolu-

tion of these states (Equation (5) for θ and Equations (8) and (12) for LAI), as determined 

by a nonlinear model (�⃗), can be written in general as (e.g., [79]): 

���⃗

��
= �⃗(��⃗ , ���⃗ ) (13)

where �→ relates errors in model physics, parameterization, and/or forcing data, and is 

taken to be with mean zero and covariance ��⃗ . �
→

 is the operator that represents the ob-

servation process that relates ��⃗  to the �
→

���� actual measurements available at the time, 

tj, as follows: 

�
→

���� = �
→

��→ ����� + �⃗���� (14)

where �⃗ represents the vector of measurement errors, assuming a probabilistic distribu-

tion with a zero mean and covariance �
→

. 

In the EnKF [39,40], an ensemble of ��  (ζ= 1, …, Ne, with Ne the size of the ensemble) 

is predicted in parallel, using (13). The EnKF updates each ensemble member separately, 

using the �
→

���� observation and the diagnosed state error covariance ����
���� (e.g., [39], 

Equation 6b). The superscripts “–” and “+” refer to the state estimates before and after the 

update at time tj, respectively. Ensemble members are updated using a combination of 

forecast model states and the observations [39], as follows: 

���
�⎯�

= ���
�⎯�

+ �
→

� �
→

− �
→

����
�⎯�

� + ��
��

� (15)

where �
→

 is the Kalman gain, which depends on ����
; ��

��
 is a random realization of the 

measurement error, which should have the same statistical properties as the error in-

cluded in (14) [80]. The mean of the ensemble members, �
�

����, is the state estimate of the 

variables (i.e., �
�

 or ���
�

). 

Model errors in the EnKF are included through errors in the model initial conditions, 

physical parameters, and forcing data. In the assimilation of radar backscatter data in the 

LSM we included errors in (1) soil moisture initial conditions, (2) precipitation (whose 

uncertainty is expected to have significant impacts on the distribution of soil moisture, 

e.g., [80]), and (3) a key parameter—the saturated hydraulic conductivity (ks)—following 

Montaldo et al. [38]. The ensemble of soil moisture initial values is generated by altering 

a particular value of soil moisture through the addition of a normally distributed pertur-

bation with a zero mean and SDθ (standard deviation). At each time step, the ensemble of 

precipitation is generated by multiplying the recorded precipitation value by a normally 

distributed random variable. An ensemble of saturated hydraulic conductivity values (��
�
) 

is generated as being log10 normally distributed with a mean of ���( ���) (indicating with 
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���  the base (i.e., best guess) value of the ��
�
 ensemble) and the standard deviation of 

SDlogks. In this way, an ensemble of �� , which includes model errors, is generated and 

evolves in time according to (5). 

We also assimilated grass and tree NDVI data in the VDM, including errors of (i) LAI 

initial conditions; (ii) incoming short-wave solar radiation (Rswin), and the photosyntheti-

cally active radiation (PAR); and (iii) model parameters—the maintenance respiration co-

efficients for the aboveground biomass (ma) of grass and trees (Table 2). We chose ma as 

the VDM parameter for data assimilation after a sensitivity analysis of LAI to VDM pa-

rameters, which proved the high sensitivity of grass and trees LAI to ma [56]. The ensemble 

of LAI initial values was generated by altering a particular value of LAI through the ad-

dition of a normally distributed perturbation with a zero mean and SDLAI standard devi-

ation. At each time step, the ensembles of Rswin and PAR were generated by multiplying 

the recorded Rswin and PAR values by normally distributed random variables. The ensem-

bles of grass and tree maintenance respiration coefficients (��,�
�

 for grass and ��,�
�

 for 

trees), were generated as being normally distributed with means of ���,� and ���,� and 

standard deviations of SDmag and SDmat, respectively. In this way, ensembles of LAIζ of 

grass and trees, which include model errors, were generated and evolved in time accord-

ing to (8) and (12). The time steps of models and observations are shown in Figure 2. 

The radar �
→

 observations available at time tj,θ were obtained including the �����⃗  ran-

dom error in the ε observations derived from Sentinel 1 according to (14), where the op-

erator �
→

 is the inverse of Γ�  in (4). Similarly, the NDVI observations available at time tj,L 

derived from Landsat 8 (or Sentinel 2) were altered randomly according to (14), where the 

operator �
→

 is the inverse of Γ� in (1). 

When observations from Sentinel 1 are available, the ensemble of ��  (i.e., ������,��) 

is replaced by (e.g., updated to) the ensemble ������,�� that is optimally estimated by (15) 

using the radar backscatter observations. When observations from Landsat 8 (or Sentinel 

2) are available, the ensemble of ����  (i.e., ��������,��) is replaced by (or updated to) the 

ensemble ��������,��, which is optimally estimated by (15) using the NDVI observations. 

2.2.7. The Updating of Model Parameters through the Assimilation 

The EnKF approach compensates for both inaccurate initial conditions and moderate 

model parameter errors. In presence of high inaccuracy of model parameters, they can be 

adjusted dynamically through the assimilation process. The assimilation procedure in-

cludes an update of the ks parameter of the LSM, and the grass and tree maintenance res-

piration coefficients of the VDM. 

The ks parameter is updated using the approach of Montaldo et al. [38], based on an 

expression derived by Montaldo and Albertson [81], that estimates the biased error in ks 

from analysis of the persistent-state variable bias (as defined by a longer time average). 

Each component of the ��
�
 ensemble is updated over an appropriate averaging time in-

terval (Δt5; Figure 2), which coincides with time steps tξ,θ, through 

��
��

���,�� = ��
��

���,�� − �����
�

− (2� + 3)��
��

���,����
�

 (16)

��
�

= �
��

��
���,��

��,�
�

������
���

��
���,�� − ��

��
���,��� − ���

��
���,�����

� − ��
��

���,�����
��

���

����������������������������������������������������������������������������������������������

 (17)

��
�

=
��

��
���,�� − ��

��
���,��

��
��

���,��

��������������������������

 (18)

where Δt3 is the radar observation time steps (Figure 2). The overbar in (17) and (18) pro-

vides an averaging in the Δt5 time steps (≥Δt3) for capturing an estimate of the “persistent” 
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moisture bias estimating the required change in the saturated conductivity. In this way, 

the biased model error can be removed after a learning (calibration) period, and the Kal-

man filter assumption, the zero mean model error, can be recovered. 

The maintenance respiration coefficient for the aboveground biomass of the VDM is 

updated using the approach of Montaldo and Gaspa [56] (Appendix A), which updates 

(i.e., dynamically adjusts) the ma based on observations of persistent bias in the modeled 

biomass (i.e., LAI). The proposed procedure derives the required ma adjustment from the 

conservation equation of the biomass (i.e., LAI), and we applied it for both grass and tree 

LAI. Each component of the ��,�
�

 and ��,�
�

 ensembles was updated over the Δt6 time in-

terval, which coincides with time steps tξ,L (Appendix A), as follows: 

��
��

���,�� = ��
��

���,�� − �� − �� (19)

�� =
��

��
(��,�)

LAI��(��,�)
�LAI�����,�� − LAI�����,���

������������������������������������������������

 (20)

�� =
�LAI�����,�� − LAI�����,��� − �LAI�����,�����

� − LAI�����,�����
��

�����,��LAI�����,��∆��

�������������������������������������������������������������������������������
 (21)

where Δt4 is the NDVI observation time steps (Figure 2), and the overbar in (20) and (21) 

provides an averaging in the Δt6 time steps (≥Δt4). In this way, an estimate of the “persis-

tent” LAI bias is used for evaluating the necessary change in ma. Thereby, after a learning 

(calibration) period, the error of the model can be eliminated. We used the same solution 

for grass (��,�
��

) and tree (��,�
��

) maintenance respiration coefficients. 

2.2.8. The Multiscale Assimilation Approach 

In summary, the multiscale assimilation scheme includes the following elements 

(Figure 2): 

1. A land surface model that predicts the ensemble of soil moisture states through (5) 

at the half-hourly timescale (Δt1); 

2. A vegetation dynamic model that predicts the ensembles of grass and tree LAI 

through (8) and (12) at a daily timescale (Δt2); 

3. EnKF filters of the ε observations (4), which are available every 6 days on average 

(Δt3); these account for moderate LSM errors and provide optimal updates of the en-

semble of �
��

���� through (15) to arrive at �
��

; 

4. EnKF filters of the NDVI remote data (1) of grass and trees, available over the weekly 

timescale on average (Δt4), which optimally update the ensembles of ����� of grass 

and trees through (15) to arrive at �����; 

5. An ensemble of the key LSM parameter, ��
�
, which is updated through (16) over the 

weekly timescale (Δt5); 

6. Finally, the ��
�

 ensembles of grass and trees that are updated through (19) at > 

weekly (e.g., 3 weeks) timescale (Δt6). 

Note that the time step of ��
�
 updating was lower than ��

�
 updating because the 

dynamics of the water in the soil layer, especially in the case of thin soil layers, are faster 

than the slow vegetation change dynamics. Note also that the assimilation procedure of 

radar backscatter data (step 3) is independent to the assimilation of optical image data 

(step 4), so that the timing of ε observations and NDVI remote data can be different. 

Hereafter, we indicate the ensemble open loop without assimilation (i.e., only steps 

1 and 2) as “EnOL”. “EnKF” indicates the assimilation approach that includes the ensem-

ble Kalman filter only (i.e., steps 1, 2, 3, and 4), and “EnKFdc” indicates the assimilation 

approach that includes the six steps described above. 
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We proved the performance of the assimilation approach for increasing the uncer-

tainty of the model (given the observation errors) so that the proposed assimilation ap-

proach will be tested for increasing prescribed errors in ks and the grass and tree ma model 

parameters (compared with the calibrated values), comparing EnOL, EnKF, and EnKFdc 

performances. 

2.2.9. Application of the Assimilation Approach to the Case Study 

In total, Sentinel 1 data were collected for 153 days from January 2016 to August 2018, 

for which σ0vv backscattering coefficients were available. Data were collected, analyzed, 

and corrected to include the vegetation growth effect on the radar backscatter in Montaldo 

et al. [33], so that we used the ε time series produced by Montaldo et al. [33]. 

A total of 124 images of optical sensors were acquired (75 images from Landsat 8 and 

49 images from Sentinel 2, see Figure 1c for the 2016–2018 period), from which the NDVI 

was derived at a 30 m spatial resolution. The coefficients of (1) were estimated using sim-

ultaneous NDVI data from remote sensors and LAI observations in the field (a total of 24 

simultaneous days) distinguishing grass and trees (β1 = −0.435, β2 = 1.014 and β3 = 0.4029 

for grass in the autumn–winter period; β1 = −0.141, β2 = 1.720, and β3 = 1.674 for grass in 

the spring–summer period; β1 = 0, β2 =5.392 and β3 = 0.486 for trees). 

In this case study, the LSM time step was half an hour (Δt1), the VDM time step was 

one day (Δt2), the assimilation time step of grass and tree NDVI data (Δt4) was variable 

according to data availability, ranging from 2 days to 20 days with an average of 6 days, 

and the time step of the ��,�
�

 and ��,�
�

 updating was 3 weeks for both grass and trees 

(Δt6, Figure 2). Note that, because the VDM was applied distinctly for grass and tree in the 

Sardinian heterogeneous ecosystem, the grass and tree cells need to be selected in the field 

as representatives of the two main vegetation components for distinctly assimilating grass 

and tree NDVI, which were estimated in those cells in the VDM. The assimilation time 

step of the Sentinel 1 dielectric constant was ≤6 days (Δt3), and ��
�
 was updated every 6 

days (Δt5). In the EnKF, Ne was 100, which is a sufficiently large number for accurate pre-

dictions [38,39,79]. 

We assumed the measurement errors to be with zero mean with a standard deviation 

of 0.025 for both grass and tree NDVI. The measurement error ε was assumed to be a zero 

mean with a standard deviation of 0.1, which corresponded to an error of about 5% in the 

θ observations. In the VDM, we generated the ensembles of the initial LAI values for grass 

(LAIg) and tree (LAIt) from a Gaussian distribution with means of 0.5 and 5.5, respectively, 

intentionally different from the observations, and a standard deviation ����  of 0.2 for 

both grass and tree LAI. In the LSM, the ensembles of initial ��  were generated from a 

Gaussian distribution with a mean of 0.2; this was intentionally lower (20%) than the ob-

served value, with a standard deviation of 0.05. At each time step, we generated the en-

sembles of the following: (i) the precipitation, by multiplying the recorded precipitation 

value by a normally distributed random variable with a zero mean and a standard devia-

tion equal to 20%; (ii) the incoming solar radiation; (iii) the PAR by multiplying the meas-

ured values by a normally distributed random variable with mean zero and a standard 

deviation equal to 10%. It should be noted that the errors of the initial model states and 

parameters were uncorrelated. 

The proposed assimilation approach was tested by comparing the EnOL, EnKF, and 

EnKFdc approaches for seven initial ��,�
�

 and ��,�
�

 ensembles at most, generated with 

seven different initial ���,� and ���,� values (0.0032, 0.009, 0.015, 0.032, 0.045, 0.07, and 

0.12 d−1 for grass; 0.0001, 0.0003, 0.0006, 0.001, 0.004, 0.006, and 0.01 d−1 for trees) with the 

same SDmag and SDmat (5% of the initial value), and for five initial ��
�
 at most, generated 

for five different initial ��� (5 × 10−8, 5 × 10−7, 5 × 10−6, 5 × 10−5, and 5 × 10−4 m/s) with the 

same SDlogks of 0.98. 
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3. Results 

Aerial photography on a dry summer day (July 2016; Figure 1b) successfully depicts 

the heterogeneity of the field site—a typical Mediterranean landscape, with open areas 

covered in grass or bare soil depending on the season, and surrounded by trees (in this 

case, wild olive trees) (Figure 1a). The 30 m spatial resolution of the NDVI map estimated 

by the Landsat 8 image of a close day (26 July 2016; Figure 1c) was enough to identify the 

spatial variability of the vegetation cover (differences of 5% of the fraction of tree cover in 

the footprint). We identified the two representative cells of grass and tree from the NDVI 

map: the tree cell was the cell with the highest NDVI, while the grass cell, in which the 

vegetation contribution was absent in the dry summer because bare soil was predominant, 

was the cell with the lowest NDVI (Figure 1c). During the year, tree NDVI values were 

always high ranging between ~0.6 (in summer) and ~0.8 (in spring), while grass NDVI 

changed widely with the seasons from ~0.2 (in summer) to ~0.8 (in spring) (Figure 1c). The 

NDVI data of these representative cells were assimilated in the coupled LSM–VDM model 

as representative of the two main vegetation components. 

 We tested the proposed assimilation approach for the case of extremely biased model 

parameters. In the following, the θ, grass, and tree LAI observations are those estimated 

from remote sensing data (i.e., using (4) and (1), respectively). We generated initial ��
�
, 

��,�
�

, and ��,�
�

 ensembles with initial ���, ���,�, and �� �,� values (= 5 × 10−4 m/s, 0.12 d−1, 

and 0.01 d−1, respectively), which were greatly higher than the corresponding calibrated 

values (Figure 3). The use of the EnKF was not enough for guiding the models, because 

grass LAI was still underpredicted during the growing seasons, similar to the results with 

the EnOL configuration; RMSE values were still high, up to 0.8; and observed grass LAI 

was higher than 1 (Figure 3d,g). The predicted tree LAI using the EnKF was even worse, 

with values lower than 0.3, while the observed tree LAI from remote data was around 4, 

and RMSE became close to 4 after 8 months of simulation when the initial model condi-

tions were lost (Figure 3e,h). The results for θ predictions using the EnKF configuration 

were slightly better when compared with those using the EnOL configuration (Figure 3f,i); 

however, the model was still underpredicting the soil moisture during the wet months 

(up to 50% in autumn 2017) when the hydraulic conductivity greatly affected the soil 

moisture budget predictions due to the prescribed errors in ks. The EnKFdc approach dy-

namically calibrated the three key model parameters, which converged to values close to 

the calibrated values after 8–13 months (Figure 3), becoming the coupled model recali-

brated for the 2017 and 2018 predictions. In 2016, the model was not yet recalibrated and 

the RMSE was still high, because the approach requires time for capturing and correcting 

the persistent model errors. Thanks to the model parameter updating, after almost one 

year, the RMSE of tree LAI became almost negligible (Figure 3h), and the RMSE of grass 

LAI decreased to values lower than 0.3 (Figure 3g). Soil moisture was better predicted 

using the EnKFdc configuration (Figure 3f), with values close to the radar-observed soil 

moisture during the wet months due to the correction of the hydraulic conductivity. 

Similar supportive results were obtained generating ��
�
, ��,�

�
, and ��,�

�
 ensembles 

with initial ���, ���,�, and ���,� values, respectively (= 5 × 10−8 m/s, 0.0032 d−1, and 0.0001 

d−1, respectively). These were greatly lower than the corresponding calibrated values (Fig-

ure 4). Again, while the EnKF configuration was not enough to guide the model, the use 

of the EnKFdc approach updated the three model parameters, which reached values close 

to the corresponding calibrated values after almost one year (Figure 4a–c). Using the 

EnKFdc approach, the errors of grass and tree LAI predictions when compared to satellite 

observations were almost negligible (RMSE < 0.15 for grass LAI and RMSE < 0.1 for tree 

LAI in the 2017 and 2018 years; Figure 4g,h). These also decreased for the soil moisture 

predictions, especially during the unusually wet 2018 (Figure 4i). 
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Figure 3. Assimilation results for soil moisture, grass, and tree LAI predictions at the Sardinian site 

using initial high ���, �� �,� (for grass), and �� �,� (for trees) values of 5 × 10-4 m/s, 0.12 d-1, and 0.01 

d-1, respectively: (a), (b), and (c) show the evolutions of the ��
�
, ��,�

�
, and ��,�

�
 ensembles, respec-

tively, using the EnKFdc approach (the means of the ensembles are in black thick lines; for reference, 

the calibrated values of ks, ma,g, and ma,t are reported in dotted horizontal lines); (d), (e), and (f) show 

the comparison between LAI and soil moisture observations derived from assimilated remote data 

(obs.) and the ensemble means predicted using the EnOL, EnKF, and EnKFdc approaches, respec-

tively; (g), (h), and (i) show the evolutions of the RMSE of the ensemble mean of soil moisture and 

LAI predicted using the EnOL, EnKF, and EnKFdc approaches concerning the observed soil mois-

ture and LAI (derived from remote sensing data) using a 60-day window, translated in 10-day in-

crements. 

 

Figure 4. Same as Figure 3 but for initial low ���, ���,� (for grass), and ���,� (for trees) values of 5 × 

10-8 m/s, 0.0032 d-1, and 0.0001 d-1, respectively. 
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For fully evaluating the proposed assimilation approach, we compared the perfor-

mance of the EnKFdc, EnKF, and EnOL approaches on soil moisture and grass and tree 

LAI predictions for all the ranges of initial �� �,�, ���,�, and ��� values, which vary inde-

pendently (Figures 5 and 6). For assessing the contribution of radar backscatter and NDVI 

assimilations separately, we compared the assimilation results in the cases of (i) assimila-

tion of radar backscatter only; (ii) assimilation of grass and tree NDVI only; and (iii) as-

similation of both radar backscatter and grass and tree NDVI (Figures 5 and 6). Compared 

to the EnOL-based results, when radar backscatter was assimilated using the EnKF ap-

proach, the soil moisture predictions improved for the whole range of parameters (RMSE 

< 0.06 for most of the parameter ranges; Figure 5b). These results were improved com-

pared with those assimilating NDVI data only, while still in the EnKF configuration 

(RMSE was still high, up to 0.12, for high ���,� and ���,�; Figure 5c). However, the use of 

the EnKFdc approach further improved the model performance, which was again better 

when radar backscatter was assimilated. The assimilation of both radar backscatter and 

grass and tree NDVI enabled us to guide and correct the model for the full range of pa-

rameters, with the RMSE of soil moisture always lower than 0.045 (Figure 5g), which is a 

sort of minimum RMSE value due to the intrinsic errors of the model and observations 

themselves in soil moisture estimates. 

 

 

Figure 5. The root mean square error (rmse) of soil moisture (θ) predictions using the (a) EnOL, 

EnKF, and EnKFdc approaches with the assimilation of the radar backscatter (related to θ) only (b 

and e), the assimilation of grass and tree NDVI (related to LAI) only (c and f), and the assimilation 

of both radar backscatter and grass and tree NDVI (d and g), while varying the initial ���,�, �� �,�, 

and ��� values (low ma,g and ma,t values correspond to 0.0032 d−1 and 0.0001 d−1, respectively, while 

high ma,g and ma,t values correspond to 0.12 d−1 and 0.01 d−1, respectively; cal—calibrated values of 

Table 3). 

Although the EnKF-based assimilation of NDVI only was already able to sufficiently 

predict the grass LAI for most parameter ranges with RMSE lower than 1.1 (Figure 6c), 

the use of the proposed EnKFdc approach—by assimilating both radar backscatter and 
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NDVI—enabled us to make very good predictions of the grass LAI with RMSEs lower 

than 0.14 (Figure 6g). Instead, the assimilation of only radar backscatter was not enough 

for successfully predicting grass LAI using both EnKF and EnKFdc for ���,� and ���,� val-

ues lower than the calibrated values (Figure 6b,e). Similarly, the use of the proposed 

EnKFdc assimilation approach predicted the tree LAI well (Figure 6n), with RMSEs lower 

than 0.1 for the full ranges of parameter values. Instead, again, the use of only the EnKF 

led to a large misestimate of the tree LAI for ���,� and ���,� values higher than the cali-

brated values (Figure 6k). 

 

 

Figure 6. Same as Figure 5 but (a–g) for the root mean square error (RMSE) of the grass leaf area 

index (LAI), and (h–n) the root mean square error (RMSE) of the tree leaf area index (LAI). 

The accuracy of the proposed assimilation approach when both radar backscatter and 

grass and tree NDVI were assimilated was tested seasonally, comparing model predic-

tions of soil moisture and grass and tree LAI using EnOL, EnKF, and EnKFdc approaches 

in the four seasons for the last two investigated years and using all the combinations of 
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initial ���, ���,�, and �� �,� values (Figure 7). The errors in the soil moisture predictions 

were removed partially using the EnKF in fall and summer, with a low variability range 

of RMSE—nearby to the mean RMSE value of ~0.06 (Figure 7a); meanwhile, errors were 

still high and highly variable in winter and spring (with RMSE values ranging between 

0.03 and 0.06). The use of the EnKFdc removed the model bias for the soil moisture pre-

dictions in all the seasons, where the RMSE values were always coincidental with the sea-

sonal mean RMSE values (~0.04 in winter and spring and ~0.05 in fall and summer; Figure 

7a). In a similar way, in all seasons, the bias in the tree LAI predictions was only corrected 

using the EnKFdc, with RMSE becoming close to 0 and with negligible variability in RMSE 

using all parameter combinations (Figure 7b). Instead, using the EnKF approach, the bias 

in the grass LAI predictions was large in the spring—the key season for grass growth—

when the EnKF-based approach was not able to guide the model sufficiently well and 

when the RMSE still reached high values of up to 2 (Figure 8c). Again, only the use of the 

proposed EnKFdc approach enabled us to completely remove the model bias, which de-

creased the RMSE values to 0.1 in spring, and showed negligible variability of RMSE val-

ues for all parameter combinations (Figure 7c). Note that the statistics of the model per-

formance were computed for the October 2016–September 2018 period—that is, a period 

after the calibration period of ks, mag, and mat (e.g., Figure 3). 

 

Figure 7. Comparison of seasonal errors in soil moisture (θ) in a), tree, and grass LAI (b and c) 

predictions using the EnOL, EnKF, and EnKFdc approaches and assimilating (in EnKF and EnKFdc 

configurations) radar backscatter and grass and tree NDVI; with varying initial ���,�, ���,�, and ��� 

values. The statistics of all runs obtained varying values, and the initial ���,�, ���,�, and ��� are in 

each estimation box (investigated period: from October 2016 to September 2018). Diamonds indicate 

the means; black lines indicate the median; the box and whisker plots represent the quartiles; outli-

ers are depicted individually. 
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Finally, we evaluated the impact of the use of the proposed assimilation approach on 

the predictions of two main land surface fluxes— evapotranspiration (ET) and carbon ex-

change (Fc)—which are strictly related to soil moisture and vegetation growth. We used 

the eddy-covariance-based ET and Fc observations to evaluate the model. Although it im-

proved the ET predictions when compared with the predictions using the EnOL configu-

ration, the use of the EnKF was not enough to guide the model and predict the ET well for 

the full range of parameter combinations: total ET was underpredicted by up to 70% and 

was overpredicted by up to 10% for high and low ���,� and �� �,�, respectively (Figure 8b). 

The use of the proposed EnKFdc allowed us to remove the model bias, and the ET was 

accurately predicted for the full range of the parameters (misprediction of the total ET was 

lower than 4%, see Figure 8c). 

 

Figure 8. The errors in total evapotranspiration (ET) and carbon exchange (Fc) predictions using the 

EnOL, EnKF, and EnKFdc approaches, with varied initial ���,�, ���,�, and ��� values (low ma,g and 

ma,t values correspond to 0.0032 d−1 and 0.0001 d−1, respectively, while high ma,g and ma,t values cor-

respond to 0.12 d−1 and 0.01 d−1, respectively; cal—calibrated values), compared with ET and Fc 

observations from the eddy-covariance-based tower. 

Similar results were obtained for Fc predictions. Indeed, the use of the EnKF approach 

did not remove the model bias in Fc predictions when extremely high and low �� �,� and 

���,� values were initially assumed: underprediction and overprediction of the total ob-

served Fc occurred by up to 80% and 70%, respectively (Figure 8e). The dynamic calibra-

tion of the key model parameters using the EnKFdc approach allowed us to remove the 

model bias and predict the Fc well for the full ranges of parameters (misprediction of the 

total Fc was lower than 15%, see Figure 8f). 

4. Discussion 

The hydrologic database for the Sardinian site, covering almost 3 years, was very 

useful for testing the proposed assimilation approach, due to the wide range of hydrome-

teorological conditions [33], involving an extremely dry 2017 (the soil dried earlier than 

normal in March, with total precipitation of just 6.9 mm from March to August, see Figure 
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3) and a wet 2018 (soil dried shortly in July only, with total precipitation of 167.9 mm from 

March to August, see Figure 3). 

The Sardinian field is heterogeneous, with the common Mediterranean tree species 

wild olives [82–84] randomly arranged in space (Figure 1). Although the tree cover size of 

these tree species was reduced, the freely available Landsat 8 and Sentinel 2 products cap-

tured the spatial variability of the NDVI and tree cover in the field (Figure 1). Montaldo 

et al. [33] demonstrated that the Sentinel 1 satellite can be used for reliable estimates of 

the soil moisture in the Sardinian site thanks to its fine spatial scale (up to 10 m), as has 

been shown in other Mediterranean ecosystems [85–87]. We demonstrated that the avail-

ability of such satellite observations at adequate high spatial and time resolutions allows 

to monitor the main land surface variables in heterogeneous fields. Furthermore, we have 

showed that they can be used for guiding ecohydrological modeling, enabling researcher 

to reach the final objective of an operative data assimilation approach. The proposed data 

assimilation approach includes the assimilation of both radar backscatter data and NDVI 

optical data. In this context, Pan et al. [47] and Zhuo et al. [48] assimilated radar Sentinel 

1 and optical Sentinel 2 data in the WOFOST model using the EnKF for agricultural land 

at fine spatial resolution (10–30 m). We demonstrated that both tree and grass NDVI can 

be assimilated for tree and grass LAI predictions in a heterogeneous field. 

The proposed multiscale assimilation approach also includes the dynamic updating 

through assimilation of three key model parameters—saturated hydraulic conductivity, 

which is mainly related to soil moisture; and the tree and grass maintenance respiration 

coefficients, which are mainly related to tree and grass LAI. Montaldo et al. [38], using 

field measurements as a proxy for remote sensor observations, highlighted the limits of 

the EnKF model for soil moisture prediction, especially when the key model parameters 

largely differ from the calibrated values. This is a typical problem of operational data as-

similation approaches, which are often used in case studies with limited knowledge of 

model parameters and field properties [88,89]. The dynamic updating of the model pa-

rameters occurs at timescales which are longer than the LSM–VDM timescales, as pro-

posed by Montaldo et al. [38], to capture the persistent bias in soil and biomass budget 

predictions. Our analysis showed that EnKF-based assimilation performed sufficiently 

well when the parameters were moderately different from the calibrated values both for 

soil moisture and for LAI predictions; meanwhile, its performance decreased when the 

parameters largely diverged from the calibrated values, especially for soil moisture and 

tree LAI predictions (Figures 5 and 6). EnKF performed sufficiently well for the grass LAI 

predictions; although, the use of the EnKFdc approach still improved the model’s perfor-

mance for the low initial values of the maintenance respiration coefficients (Figure 6). 

The proposed EnKFdc approach performed well for the full range of parameters and 

hydrometeorological conditions. The EnKF approach was not enough to guide the models 

when the key parameters were largely biased, because when, for instance, the saturated 

hydraulic conductivity is largely over- or underestimated, the root zone soil moisture bal-

ance is not systematically preserved, and only the progressive and systematic correction 

of the key soil parameter—the saturated hydraulic conductivity—can correct and guide 

the model. Lu et al. [52,53] and Nie et al. [50] demonstrated the efficacy of a multiscale 

assimilation approach for soil moisture predictions with the dynamic calibration of soil 

parameters. Here, we included the assimilation of NDVI data through calibrating the 

main VDM model parameters, i.e., the maintenance respiration coefficients. The dynamic 

calibration of the ma parameters can guide the VDM, preserving the biomass balance of 

grass and tree species. The proposed EnKFdc approach for both LSM and VDM was the 

only approach to predict not only the soil moisture and the tree and grass LAI well, but 

was also the only approach to predict the main outputs of the coupled model, the evapo-

transpiration, and the carbon exchanges (Figure 8), which are strictly related to soil mois-

ture and vegetation dynamics [57,90]. The use of the EnKF alone was not enough to obtain 

good predictions of the two key land surface fluxes, with errors up 70% in ET predictions, 

when lower ma values were prescribed; furthermore, the errors were up to 120% in Fc 
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predictions when high initial ma values were prescribed. Such high model bias in ET pre-

dictions affects soil–water balance predictions in these semiarid ecosystems because ET is 

the main loss term of the soil water budget, with a yearly magnitude that may be equal to 

the precipitation [6,91,92]. ET and Fc predictions were good for the full range of model 

parameters when the proposed EnKFdc approach was used, showing the high perfor-

mance of the approach (errors less than 4% and 15% in ET and Fc predictions, respec-

tively). 

In terms of the importance of the proposed assimilation approach in relation to the 

seasons, the EnKFdc approach is essential for tree LAI predictions in all the seasons be-

cause the tree LAI values of the evergreen tree species are almost constant during the year, 

and NDVI assimilation is important for the whole year. For grass LAI predictions, the 

EnKFdc approach is more important in the growing season, when grass achieved maxi-

mum height, impacting evapotranspiration and carbon exchanges [14]. The EnKFdc ap-

proach becomes even more crucial for soil moisture predictions in spring and winter, 

when soil is wetter, and the root zone soil budget is controlled by a key soil parameter— 

saturated hydraulic conductivity [93]. Winter and spring are crucial seasons for water re-

sources management in semiarid Mediterranean ecosystems, when soil moisture and ET 

need to be adequately predicted due to their key roles in water resources. 

5. Conclusions 

This paper proposes a multiscale assimilation approach that assimilates both radar 

backscatter data and grass and tree NDVI data from remote sensors for guiding the pre-

dictions of soil moisture and LAI of coupled vegetation dynamic and land surface models. 

It is suitable for heterogeneous ecosystems, which are typical of semiarid climates, thanks 

to the sufficiently high spatial (10–30 m) and temporal (~weekly) resolutions of the obser-

vations of the Sentinel 1 radar, the Landsat 8 satellite, and the Sentinel 2 satellite. The 

assimilation approach which is based on the ensemble Kalman filter (EnKF) was not suf-

ficient for guiding soil moisture and LAI predictions when the model was largely biased 

due to the values of three key model parameters—the saturated hydraulic conductivity 

and the grass and tree maintenance respiration coefficients—being largely different from 

the calibrated values. The proposed multiscale assimilation approach is not limited to as-

similating remote sensing data for model predictions using the EnKF: it uses assimilated 

data for dynamically updating key model parameters (the ENKFdc approach) at a longer 

timescale. These key model parameters are the saturated hydraulic conductivity and the 

grass and tree maintenance respiration coefficients, which are highly sensitive parameters 

of soil–water balance and biomass budget models, respectively. The use of the proposed 

EnKFdc approach was essential for soil moisture and grass LAI predictions, especially in 

the winter and spring seasons, which are key seasons for the water resources management 

of Mediterranean semiarid ecosystems. We demonstrated that the use of the proposed 

assimilation approach enabled us to predict key land surface fluxes, drastically reducing 

model prediction errors when parameters are wrongly estimated. From these results, we 

can also anticipate that the proposed assimilation approach may be even more important 

in ecosystems under wetter climates, where the model bias effects can be even larger on a 

soil water budget due to misestimates of hydraulic conductivity. 
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Appendix A 

The assimilation method updates ma based on observations of persistent bias in the 

modeled biomass (i.e., LAI). Substituting (12) in (8), the biomass balance for the modeled 

“m” state variables is: 

1

��

�����

��
= ���ℎ� − ��,�

� − ��,�
� − ��

� (A1)

Since the biomass balance must be conserved in both the model and reality, we write 

Equation (A1) for the observed “o” state variables. 

1

��

�����

��
= ���ℎ� − ��,�

� − ��,�
� − ��

� (A2)

Assuming that �ℎ� ≡ �ℎ� , ��,�
� ≡ ��,�

� , and ��
� ≡ ��

�, and subtracting Equation (A2) 

from Equation (A1), 

1

��
�

�����

��
−

�����

��
� =

1

��

�(Δ����,�)

��
= ��,�

� − ��,�
�  (A3)

where ∆����,� is the assimilation correction. From the maintenance respiration equation 

(Table 2) and Equation (12): 

��,�
� = ��,�(����) = ��

� ��(�)� ��
� = ��

�  
 ��(�)�

��
 ����  (A4)

��,�
� = ��,�(����) = ��

�  
 ��(�)�

��
 ���� (A5)

assuming that ��
�(�) ≡ ��

�(�), the first-order Taylor series expansion of the maintenance 

respiration function, concerning the modeled parameter values, connects the modeled 

maintenance respiration to the “real” maintenance respiration. This is in terms of differ-

ences between the modeled and “real” LAI and maintenance coefficient values, as follows: 

��,�(����, ��
�) = ��,�(����, ��

�) +
���,�

���
 ∆��

�,� +
���,�

����
 ∆����,� (A6)

where 

∆��
�,� = ��

� − ��
� (A7)

Substituting Equation (A6) into (A3) relates the difference between the “real” and 

modeled LAI to the difference between the “real” and modeled maintenance coefficient 

values, as follows: 

�(Δ����,�)

��
= −�� �

���,�

���
 ∆��

�,� +
���,�

����
 ∆����,�� (A8)

Differentiating Equation (A4) and substituting into Equation (A8) yields 
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�(Δ����,�)

��
= −�� �

 ��(�)

��
 ���� ∆��

�,� −
 ��(�)

��
 ��

� ∆����,�� (A9)

Solving Equation (A9) for the “real” maintenance respiration coefficient, in terms of 

known quantities, as follows: 

��
� = ��

� −
��

�

����
∆����,� −

1

��(�)����
 
�(Δ����,�)

��
 (A10)

This expression would, theoretically, provide an estimate of the actual ma at each time 

the LAI is updated through NDVI, from knowledge of the change in ∆����,� since the 

last update. By averaging Equation (A10) over an appropriate time interval (Δt6, e.g., 3 

weeks, Figure 2) to capture a reliable estimate of the “persistent” LAI bias, the required 

change in the maintenance respiration coefficient can be estimated with 

��
� = ��

� −
��

�

����
∆����,�

������������������
−

1

��(�)����
 
�(Δ����,�)

��

������������������������������
 (A11)

where the overbar denotes a time-averaged term. This method is presented in Montaldo 

and Gaspa [56]. 
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