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Transfer of Energy from Flexural to
Torsional Modes for the Fish-Bone
Suspension Bridge Model

Clelia Marchionna and Stefano Panizzi

Abstract. We consider a conservative coupled oscillators system which arises as
a simplified model of the interaction of flexural and torsional modes of vibration
along the deck of the so-called fish-bone (Berchio and Gazzola in Nonlinear Anal
121:54–72, 2015) model of suspension bridges. The elastic response of the cables is
supposed to be asymptotically linear under traction, and asymptotically constant
when compressed (a generalization of the slackening regime). We show that for
vibrations of sufficiently large amplitude, transfer of energy from flexural modes
to torsional modes may occur provided a certain condition on the parameters is
satisfied. The main result is a non-trivial extension of a theorem in Marchionna
and Panizzi (Nonlinear Anal 140:12–28, 2016) to the case when the frequencies
of the normal modes are no more supposed to be the same. Several numerical
computations of instability diagrams for various slackening models respecting our
assumptions are presented.
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1. Introduction

In this paper, which is a completion of a previous work [15], we face the question of
energy exchange between torsional and longitudinal modes in a generalized energy
conserving suspension bridge model, the so-called fish-bone model, proposed by K.S.
MOORE [21], in which the elastic response of the cables is asymptotically linear
under traction, and asymptotically constant when compressed (a generalization of
the slackening regime).

We follow the line of research carried out by F. GAZZOLA and coworkers in
a series of papers [2,4,10] according to which internal nonlinear resonances may
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occur even when the aeroelastic coupling is disregarded. To analyze the onset of
resonances, the PDEs system (infinite dimensional system) is reduced to a coupled
system of nonlinear ODEs, by projecting the infinite dimensional phase space on a
two dimensional subspace through an approximate Galerkin technique. The ODEs
system is then a simplified model of the interaction of flexural and torsional modes
of vibration along the deck of the bridge.

The same problem was addressed in a previous paper [15], in which only the
interaction between the modes corresponding to the fundamental flexural and tor-
sional frequencies was considered. In the present work, we extend the study to the
more general case in which modes of different frequencies can interact.

The main result is Theorem 2.1 in which we prove that for deflections of suffi-
ciently large amplitude, pure flexural and periodic vibrations are unstable, provided
a certain condition on the structural parameters of the bridge is satisfied, so that
transfer of energy from flexural modes to torsional modes may occur even when no
external forces are applied.

Our technique follows the lines of previous literature: we consider the differen-
tial of the Poincaré map relative to the torsional component of the system, around
a periodic purely flexural solution. As is well-known this leads to a Hill equation;
then, as the energy of the system tends to infinity, we compute the limit equation,
which turns out to be simple enough to allow the analysis of its stability via the
classical Floquet theory.

If the transverse and torsional modes are labeled by j and k respectively, an
unexpected property holds when j is even: the instability condition at large deflec-
tions of Theorem 2.1 is never satisfied, since the limit system is an uncoupled system
of linear, constant coefficients oscillators. Consequently, every solution of the limit
system is periodic thus stable, so that purely flexural solutions are asymptotically
linearly stable.

The extension of the result in [15] is non-trivial because 2 main steps are in-
volved: the quite subtle derivation of the C1-regularity of the projected system under
the relaxed regularity assumption (S0) on the slackening function; the computation
of the limit Hill equation at large energies, which requires several technicalities.

In order to obtain a more general picture of the stability of the flexural com-
ponent, in Sect. 3 we look at the Hill equation relative to the torsional component
as dependent on two parameters. The first natural parameter is the maximum elon-
gation of the purely flexural solution, which in Theorem 2.1 tends to ∞; we note
that the dependence on such parameter is nonlinear. The choice of the second pa-
rameter is motivated by mathematical reasons, as the equation naturally presents a
spectral parameter which, from the structural point of view, essentially corresponds
to the torsional behavior of the bridge. In this way, we can compare the results
related to our problem with the instability diagrams in the literature for classical
two-parameters Hill equations. In particular, we consider a slackening model that
has minimal regularity with respect to our requests, using both academic and real
parameters corresponding to Tacoma narrow bridge; we numerically draw the cor-
responding instability diagrams, pointing out which properties are preserved and
which diverge from the classical ones; some interesting mathematical aspects are
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highlighted, such as the presence of resonance pockets typical of some two parame-
ters Hill equations, e.g. the multi-step Meissner equation.

The remainder of this section is devoted to the presentation of the PDEs model,
and its reduction to the ODEs system. In Sect. 2 we provide the proof of the main
instability result. The work ends with three appendices: in “Appendix A” we prove
the regularity of the ODEs system; the computation of the limit system at large
energies is presented in “Appendix B”; finally, “Appendix C” provides the explicit
computation of the instability discriminant for a piecewise linear system leading to
a multi-step Meissner equation.

1.1. The Bridge Model

We briefly recall the PDEs system. The dynamics of the midline of the deck, modeled
as an Euler–Bernoulli beam of length L and width 2l, is coupled with the elastic
response of the suspension cables acting on the side ends of the deck. The cross
section of the deck is assumed to be a rigid rod with mass density ρ, length 2l
and thickness small with respect to l; Y (x, t) is the vertical downward deflection
of the midline of the deck with respect to the unloaded state, Θ(x, t) is the angle
of rotation of the deck with respect to the horizontal position. The corresponding
PDEs system is given by,{

Ytt + EI
ρS Yxxxx + f(Y + l sin Θ) + f(Y − l sin Θ) = 0,

Θtt − GK
ρJ Θxx + Sl

J cos Θ [f(Y + l sin Θ) − f(Y − l sin Θ)] = 0,
(1)

complemented with hinged boundary conditions:

Y (0, t) = Y (L, t) = Yxx(0, t) = Yxx(L, t) = 0, Θ(0, t) = Θ(L, t) = 0. (2)

The other constant parameters are: S the cross section area, I the planar second
moment of area with respect to the plane Y = 0, J the polar second moment of
area with respect to the x-axis and E and G respectively the Young modulus and
the shear modulus, K the torsional constant.

The restoring force f exerted by the hangers is applied to both extremities of
the deck whose displacements from the unloaded state are given by Y ± l sin Θ. No
external forces, except gravity, are taken in account.

In the classical slackening regime, the hangers behave as linear springs of elastic
constant k > 0 if stretched and do not exert restoring force if compressed. A first
model in which the system (1) acts as a linear, non coupled system for small dis-
placements, was proposed by K.S MOORE and P.J. McKENNA [18,21] (hereforth
MMK model) assuming for f the following expression (g is the gravity),

f(r) = m
[
(r + r0)+ − r0

]
, r0 = ρSg/2k, m =

k
ρS

. (3)

Subsequently many other forms for f have been proposed in [4,15,16,19], some
of these are nonlinear and smooth in a neighborhood of the origin, making instability
feasible even at low energies. Two significant examples are (h is a positive constant):

f(r) = mr +
√

(mr)2 + h2 − h, (4)

f(r) = h(emr/h − 1), (5)
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Throughout the paper we assume that the function f satisfies the following
mild regularity condition:

Assumption (S0)

(a) f is continuous, increasing, and f(0) = 0;
(b) f is piecewise C1, that is its derivative is continuous with the exception of a

finite (eventually empty) set of points r1 < r2 < · · · < rn not including zero
in which there exist the finite limits:

lim
r→r±

i

f ′(r);

(c) m := f ′(0) > 0.

In most cases the elastic response of the cables is supposed to be asymptoti-
cally linear under traction, and asymptotically constant when compressed, thus it
is natural to assume at least one of the following conditions:

(S1) limr→−∞ f ′(r) = 0
(S2) M := limr→+∞ f ′(r) > 0.

We note that both (3) and (4) satisfy (S0)–(S1)–(S2), unlike the function (5)
which does not satisfies condition (S2).

The problem (1)–(2) is well-posed in appropriate Sobolev spaces [4,8], and en-
joys two properties mostly relevant for our purposes: the total energy is conserved
over time; it admits pure flexural solutions, that is motions in which the cross sec-
tions of the deck remain horizontal at all times so that no torsional vibrations occur.

1.2. The ODEs System

For small torsional angles, it is very convenient to replace the system (1) with a
pre-linearized one, see [4,15]. By the usual approximation: sin Θ ∼ Θ, cos Θ ∼ 1,
and by setting Z = lΘ, the system (1) reduces to{

Ytt + EI
ρS Yxxxx + f(Y + Z) + f(Y − Z) = 0

Ztt − GK
ρJ Zxx + l2S

J [f(Y + Z) − f(Y − Z)] = 0,
(6)

and as far as the scope of this paper is concerned, nothing changes starting from
the system (1) or from (6).

Our ansatz is that, after a suitable rescaling of the space variable, the displace-
ments can be reasonably well approximated by the j − k mode of vibration, that
is,

Y (x, t) � yj(t) sin(jx), Z(x, t) � zk(t) sin(kx), 0 ≤ x ≤ π.

Then, through a Galerkin projection, the PDEs system reduces to a coupled
oscillators system which, dropping the indexes j − k, reads as follows:{

ÿ + αj4y + ψ1(y, z) = 0
z̈ + βk2z + γψ2(y, z) = 0,

(7)
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with structural parameters, α = EIπ4/ρSL4, β = GKπ2/ρJL2, γ = l2S/J , and
nonlinear coupling terms,

ψ1(y, z) =
2
π

∫ π

0

[f(y sin(jx) + z sin(kx)) + f(y sin(jx) − z sin(kx))] sin(jx) dx,

(8)

ψ2(y, z) =
2
π

∫ π

0

[f(y sin(jx) + z sin(kx)) − f(y sin(jx) − z sin(kx))] sin(kx) dx.

(9)

If we define

Ψ(y, z) =
2
π

∫ π

0

[F(y sin(jx) + z sin(kx)) + F(y sin(jx) − z sin(kx))] dx,

where F(r) =
∫ r

0
f(s) ds, we have ψ1 = ∂Ψ/∂y, ψ2 = ∂Ψ/∂z, so that the system

(7) admits a conserved energy,

E(y, ẏ, z, ż) =
ẏ2

2
+

ż2

2γ
+

αj4

2
y2 +

βk2

2γ
z2 + Ψ(y, z). (10)

Note that, under Assumption (S0), Ψ(y, z) is nonnegative. As a consequence
all solutions of (7) are global and bounded.

Since ψ2(y, 0) ≡ 0, the system (7) admits periodic pure flexural solutions, that
is solutions of the form y = u(t), z ≡ 0 with u(t) periodic. We consider such solutions
as parametrized by the initial displacement, and we define u = u(t; q) as the solution
of the initial value problem,

ü + αj4u + 2fj(u) = 0 u(0) = q, u̇(0) = 0. (11)

where

fj(r) :=
1
2

ψ1(r, 0) =
2
π

∫ π

0

f(r sin jx) sin jx dx. (12)

Assuming for the moment that f ∈ C1, the linearization at a fixed energy
level (iso-energetic linearization) of the system around the periodic orbit (u(·, q), 0)
yields, for the torsional component, the Hill equation (see e.g. [6,15] for details),

v̈ +
(
βk2 + 2γgj,k(u(t; q))

)
v = 0, (13)

in which we have set,

gj,k(r) =
1
2

∂ψ2

∂z
(r, 0) =

2
π

∫ π

0

f ′(r sin jx) sin2 kx dx. (14)

The problem we want to address is the stability of solutions of the Hill equation
(13). It is worth noting that in the case j = k, we have gj,j(r) = f ′

j(r), and the
linearized system (11)–(13) is the same as the one studied in [15]. This is no longer
true if j �= k. In [15], under the assumptions (S0)–(S1)–(S2), we established a
condition depending on a set of 3 parameters under which the flexural motions are
unstable provided the energy parameter q is sufficiently large. The next section is
devoted to the main result of the present paper which is a non-trivial extension of
the result in [15] to the case j �= k.
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2. Instability of Pure Flexural j − k Modes at High Energies

The stability analysis of (13) is carried out by means of Floquet’s theorem, see
[7,14]. We recall the definition of the stability discriminant Δ = Δ(q) of the Hill
equation. Let τ(q) be the period of the solution u of the problem (11), and let v0(t),
v1(t) be the solutions of (13) corresponding to initial data

v0(0) = 1, v̇0(0) = 0, v1(0) = 0, v̇1(0) = 1;

then

Δ(q) = v0(τ(q)) + v′
1(τ(q)).

If |Δ| > 2 the non-trivial solutions of the Hill equation are unbounded, if
|Δ| < 2 are all bounded. In the case when Δ = 2 there exists at least a non trivial
τ(q)-periodic solution, when Δ = −2 there exists at least a non-trivial 2τ(q)-periodic
solution.

The main result of this section consists in the the computation of

Δ∞ := lim
q→∞ Δ(q),

in the case when the elastic response of the cables is asymptotically linear, i.e under
assumptions (S1)–(S2). Referring to the characterization of instability |Δ∞| > 2,
we can establish a condition, depending on j, k, and the structural parameters, for
which there is instability for sufficiently high energies. The proof mimics that of
Theorem 1 in [15]. First we are able to compute the limit system of (11)–(13) as q
goes to +∞; it turns out that the Hill equation of the limit system is a two-step
potential (Meissner equation) that can be integrated explicitly; the condition (15)
expresses the instability condition for q sufficiently large through the discriminant
Δ∞ of the limit equation.

Theorem 2.1. Assume that the function f satisfies the conditions (S0)–(S1)–(S2).
Assume that j is odd, and let the constants ω±, A±, φ±, be defined as follows:

ω2
± = αj4 + M

(
1 ± 1

j

)
,

A2
± = βk2 + γM(1 ± εj,k), εj,k =

1
j

− tan(πk/j)
kπ

,

φ± =
A±
ω±

π, a =
A+

A−
.

Then, if the following condition holds true,

|Δ∞|
2

:=
∣∣∣∣cos φ+ cos φ− − a + a−1

2
sin φ+ sin φ−

∣∣∣∣ > 1. (15)

there exists q0 such that, if q > q0, the pure flexural periodic solution (u(t; q), 0) of
the (non-linear) system (7) is unstable.

From the above expression it is not obvious that A2
± are positive constants.

Actually the two quantities 1 ± εj,k result as the two possible values (+ for r > 0,
and − for r < 0) of the positive integral 4

π

∫ π

0
H(r sin jx) sin2 kx dx, see (18), (20)

below, and “Appendix B”.
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Remark 2.2. In Theorem 2.1 the case even j is not considered since the system
decouples and solutions are bounded, hence stable. Indeed, thanks to (19), we can
write explicitly the limit system as follows,{

Ü∞ + (αj4 + M)U∞ = 0
v̈∞ + (βk2 + γM)v∞ = 0.

As consequence of the decoupling, condition (15) is never satisfied.

2.1. Linearized j − k Mode: Technical Tools

First of all we need a regularity result which is crucial for the linearization process
of the system (7) around a pure flexural solution.

Proposition 2.3. If the function f satisfies assumption (S0), then the functions ψ1,
ψ2, as defined in (8)–(9), are of class C1(R2).

The proof of this Proposition is given in “Appendix A”.
Then we list some general facts about the functions fj(r), gj,k(r) defined in (12),

(14). Given any function f , accordingly with [15], we define the integral transform,

f̃(r) :=
2
π

∫ π

0

f(r sin x) sinx dx. (16)

We denote by fe(x) = 1
2 (f(x) + f(−x)), fo(x) = 1

2 (f(x) − f(−x)) even and
odd parts of a function respectively. We have the following,

Lemma 2.4. If the function f satisfies the first two conditions of the assumption
(S0), then fj ∈ C1(R), fj(0) = 0 and f ′

j ≥ 0.
Moreover we have,

fj = f̃o (even j), fj = f̃o +
1
j

f̃e (odd j). (17)

Proof. The regularity and the sign of f ′
j follow from the analogous properties of

f̃ proved in [15], condition (H̃). To prove (17), we use the elementary identity
sin(z + hπ) = (−1)h sin z, to compute∫ π

0

f(r sin jx) sin jx dx =
1
j

∫ jπ

0

f(r sin z) sin z dz

=
1
j

j−1∑
h=0

(−1)h

∫ π

0

f((−1)hr sin z) sin z dz.

By collecting the signs, and by distinguishing the two cases even or odd j, we
obtain (17). �

Lemma 2.5. If j is even, then gj,k(r) is an even function for every k. More precisely,
we have

gj,k(r) =
2
π

∫ π

0

f ′
o(r sin jx) sin2 kx dx.
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Proof. If j is even, f ′(r sin jx)(sin kx)2 has period π, then

gj,k(r) =
2
π

∫ π

0

f ′(r sin jx) sin2 kx dx =
2
π

∫ π/2

−π/2

f ′(r sin jx) sin2 kx dx.

It follows that

gj,k(r) =
2
π

∫ π/2

−π/2

(f ′
e(r sin jx) sin2 kx + f ′

o(r sin jx) sin2 kx ) dx

and the integral of the first term is null since f ′
e is odd. �

We make an observation to highlight some differences that may exist between
even and odd harmonics of the flexural component. If the function f is as in example
(4), its odd part is linear, precisely we have fo(r) = mr. Then, if j is even, the
Eq. (13) reduces to the linear oscillator,

v̈ + (βk2 + 2γm)v = 0.

Since βk2 + 2γm > 0, the j − k modes are always linearly stable. This is no
more true for odd j, see formula (17).

We end this section by introducing the functions which characterize the limit
system as q → ∞ ((·)+ = positive part, H(·) Heaviside function). We set

hj(r) =
2M

π

∫ π

0

(r sin jx)+ sin jx dx, sj,k(r) =
2M

π

∫ π

0

H(r sin jx) sin2 kx dx,

(18)

then, by setting r0 = 0 and θ = 0 in Lemma B.2 in “Appendix B”, we obtain their
explicit expressions:

hj(r) =
M

2
r, sj,k(r) =

M

2
(even j); (19)

hj(r) =
M

2

[
1 +

sign(r)
j

]
r, sj,k(r) =

M

2

[
1 + sign(r)

[
1
j

− tan(kπ/j)
kπ

]]
(odd j).

(20)

2.2. Proof of Theorem 2.1

Proof. In [15] we proved the same facts for the simple mode with j = k = 1,
therefore here we just outline the main points emphasizing a few differences.

Let u be the solution of the problem (11), and v be the solution of Eq. (13)
with fixed initial data v(0) = a, v̇(0) = b.

We rescale u by setting Uq(t) = u(t)/q, then the system becomes⎧⎨
⎩Üq + αj4Uq + 2

fj(qUq)
q

= 0

v̈q + (k2β + 2γgj,k(qUq(t)))vq = 0
(21)

with initial data Uq(0) = 1, U̇q(0) = 0, vq(0) = a, v̇q(0) = b.
Then we introduce the limit system of (21), as q → ∞,{

Ü∞ + αj4U∞ + 2hj(U∞) = 0
v̈∞ + (βk2 + 2γsj,k(U∞(t))v∞ = 0

(22)
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with initial data U∞(0) = 1, U̇∞(0) = 0, v∞(0) = a, v̇∞(0) = b.
We claim that, as q → +∞, the solutions of (21)–(22) satisfy the limit relations:

(i) Uq → U∞ in C0(R);
(ii) vq → v∞ in C1([0, T ]), for every T > 0;
(iii) τq → τ∞, where τq, τ∞ are the periods of Uq, U∞ respectively.

Proof of (i): Let f̃(r) be as in (16), then in [15] we proved that limq→+∞ f̃(qr)/q =
h̃(r), uniformly on compact sets. Thanks to (17), in the same way we obtain
limq→+∞ fj(qr)/q = hj(r), uniformly on compact sets. Owing to a classical con-
tinuous dependence theorem ([11], Th. 3, Ch.XV, p.297), we get that Uq converges
uniformly on R to U∞.

Proof of (ii): Let us consider the Hill equation in (22). By Lemma 5.1 in [15]
(see also [22]), we have to prove that gj,k(qUq(t)) → sj,k(U∞(t)) in L1[0, T ].

In the case when sin jx �= 0, we have U∞(t) �= 0, thus by the uniform conver-
gence of Uq, for q sufficiently large, the sign of qUq sin jx is the same as that of
U∞ sin jx. Thanks to the assumptions (S1)–(S2), it follows that

lim
q→+∞ f ′(qUq(t) sin jx) = MH(U∞(t) sin jx).

Since U∞(t) �= 0 almost everywhere in [0, T ], and sj,k is bounded, we get the
required convergence of gj,k(qUq) to sj,k(U∞).

The proof of (iii) is the same as in Proposition 5.2 of [15].
Finally, we come to the computation of the limit period τ∞ and discriminant

Δ∞. Recall that j is odd, then the limit system is a coupled (nonlinear) system with
step coefficients hj(r), sj,k(r) defined by formula (20). It turns out that the limit Hill
equation (22) is a two-step Meissner equation that can be integrated explicitly. First
of all we note that the function U∞(t) is even, so that we can fix our attention only
on the half period. If we divide the interval [0, τ/2] in two subintervals I+ = [0, t0],
where U∞ ≥ 0, and I− = [t0, t1], where U∞ ≤ 0, we easily obtain

t0 =
π

2ω+
, t1 =

π

2ω−
, τ = 2(t0 + t1).

It follows that the coefficient of the Eq. (22) is given by (here 1I(t) denotes the
indicator function of I),

βk2 + 2γsj,k(U∞(t)) = A2
+1I+(t) + A2

−1I−(t) (0 ≤ t ≤ τ/2).

A straightforward computation (see e.g. [15] or “Appendix C”), shows that

Δ∞
2

= v∞(τ) = cos φ+ cos φ− − a + a−1

2
sin φ+ sin φ−.

By the instability characterization of Hill equations, if |Δ∞| > 2, then the pure
flexural solutions u(t; q) are linearly unstable (thus unstable) for sufficiently large
q. �
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3. The MMK Model: Instability Tongues and Some Numerical
Results

A classical problem in the theory of Hill equations consists in studying the para-
metric resonance of equations of the type

v̈ + (β + qp(t)))v = 0. (23)

Here p(t) is a periodic function of period π (just for fixing one), and β, q are real
parameters. The general picture is well known and can be briefly described as follows
[14, ch. II, Th. 2.1] [7, ch. 2, Th. 2.3.1]. In the (q, β)-plane a sequence of separated
regions of instability (instability tongues, Arnold’s tongues) emerge from the points
(0, n2), n = 1, 2, . . . on the β−axis which are bounded by two curves β = β±

n (q). For
values (q, β) in the interior of the tongues, i.e for β−

n (q) < β < β+
n (q), all solutions

of (23) are unstable, while outside are stable. At the boundaries, β = β±
n (q), we

have at least a non-trivial π-periodic or π-anti-periodic solution. For some p(t), and
for some exceptional values of q, the curves β±(q) may intersect (co-existence of
periodic solutions) and form the so-called resonance pockets, as in the case of the
square wave case p(t) = sign cos(2t).

The classical, and most studied, example is the Mathieu equation, p(t) =
cos(2t), whose instability diagram was first drawn by Van Der Pol and Strutt [25]
and can be found on many books [3,20]. In this case we know the order of the in-
stability tongues as q → 0, the asymptotic behavior of their width as n → ∞, and
many other features, such as the fact that the width of the stability bands shrinks
to zero as q → ∞, so that the areas of instability invade the whole plane, see [13,26].

Another case extensively studied is when p(t) is a two-step function in the
interval [0, π] (Meissner equation). The papers [12,24] provide very detailed results
on the existence of resonance pockets and on the asymptotical behavior of the
stability boundaries.

In [17] we studied a generalization of the Mathieu equation,

v̈ + (β + g(u(t; q)))v = 0, (24)

in which the periodic coefficient g(u(t; q)) depends on the solution u = u(t; q) of an
initial-value problem for a conservative second order differential equation,

ü + 4u + f(u) = 0, u(0) = q, u̇(0) = 0, (25)

where f(r) = O(r2), r → 0. Note that the Mathieu equation corresponds to the case
f = 0 in (25), and g(u) = u in (24). The Eq. (24) is again a Hill equation with two
parameters that shares some aspects with the Mathieu equation. Indeed the main
result in [17] concerns the order of tangency at q = 0 of the instability tongues:

β+
n (q) − β−

n (q) = O(qn), q → 0, (26)

which is the same as that of the Mathieu equation, at least if f and g are real
analytic functions near the origin. However, two features make its analysis different
(and more difficult): its period depends on the parameter q, as it is half the period
of u(t; q) if g is an even function, and is the same otherwise; the dependence on q
in (24) is no more linear.
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The system (11)–(13) has the same structure of (25)–(24), then for regular
f , g the asymptotic formula (26) applies. Having at our disposal a result for high
energies (Theorem 2.1) and another one for low energies (formula (26)), it would
be interesting to have a general picture at least in the significant case of the MMK
restoring force (3), which is a simple non-trivial model satisfying the Assumptions
(S0)-(S1)-(S2), being not smooth in a single point r0.

We now come to the presentation of the models adopted in our numerical
simulations. We focus only on the system (11)–(13) in the case when function f is
the MMK function (3), and on the system (29)–(30) below, which is a non smooth
variation of it in the case j = k. We performed our simulations both with a simple
set of parameters with the same order of magnitude (Fig. 1), and with the set as in
[8,9] where the mechanical parameters of the Tacoma narrow bridge (TNB) and of
other significant bridge models are listed, including the MMK model, and several
numerical experiments are performed.

The analytic expression of the functions fj , owing to (17) in Lemma 2.4, is
known once we provide the projected form f̃ of f in (3). This was already done in
our previous paper [15], and its closed form is given by,

f̃(r) = mr, r ≥ −r0, f̃(r) = − 2
π

mr0

[
r

r0
asin

(r0
r

)
+

√
1 −

(r0
r

)2
]

, r ≤ −r0.

(27)

As a consequence, for j = k, also the the functions gj,j = f ′
j (see Lemma 2.4)

have a simple closed form. Much more complicated is the derivation of the functions
gj,k in (14) when j �= k. Their complete computation is provided in “Appendix B”.

In order to compare different functions, modeling the same slackening regime,
we introduce only for the case j = k a non smooth variation of fj , and f ′

j which
maintains the same shape as the original MMK model but which is adjusted in a
way to have the same asymptotic behavior of fj , that is limr→−∞ f̃(r) = − 4

πmr0.
More precisely, we replace the function f̃ in (27) with the function

f̄(r) = m
[
(r + 4r0/π)+ − 4r0/π

]
(28)

Then fj can be approximated, according to Lemma 2.4, with

f̄j(r) =
1
2

f̄o(r), (even j), f̄j(r) =
1
2
(f̄o(r) +

1
j
f̄e(r)), (odd j),

and we introduce the system,

ü + αj4u + 2f̄j(u) = 0, u(0) = q, u̇(0) = 0 (29)

v̈ + (βj2 + 2γf̄ ′
j(u))v = 0, (30)

Both u and v can be calculated explicitly and in “Appendix C” we provide
the formula for the instability discriminant Δ for every (q, β). The expression of
Δ(q, β) is very complicated and is actually of little help from the analytical point
of view, but it can be used to represent very quickly, using Matlab, the instability
diagram in order to make a comparison with the numerical results regarding the
system (11)–(13).
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Figure 1 Instability diagrams of systems (29)–(30), first line, and
(11, 13), second line. The fixed parameters are: α = 1, γ = 3, m = 3,
r0 = 1/3. Δ(q, β) > 2 in t he light grey zones, and Δ(q, β) < −2
in the dark grey zones. Note that on the right column the tongues
corresponding to odd index vanish.

Before proceeding with the discussion of the numerical results, let us fix the
starting points β+

N (0) = β−
N (0) of the instability tongues for our equations. Recall

that we use β as spectral parameter.

Proposition 3.1. Let us suppose that the function f satisfies the assumption (S0).
Then instability tongues for the Hill equation (13) stem from the values of βN (0),
N = 1, 2 . . ., in the β-axis, given by

βN (0) =
αj4 + 2m

4k2
N2 − 2γm

k2
.

If j is even the tongues corresponding to an odd index N disappear, since the
actual period is half the period of u(t; q).

We skip the proof which, after a translation of the spectral parameter β, follows
from the fact that, if τ(q) is the period of u(t; q), then its limit as q → 0, is given
by τ0 = 2π/

√
αj4 + 2m. The different behavior for even or odd j arises from the

fact that for even j, gj,k(u(t)) is an even function and the minimal period of the
Eq. (13) is half the period τ(q) of u(t; q).

In the first line of Fig. 1 we show the diagram of the instability tongues for
the “irregular approximation” (29)–(30) when j = 1 (left), j = 2 (right). In the
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Figure 2 Instability diagrams of system (11)–(13) for the MMK
function, and j �= k. The fixed parameters (TNB) are: α = 8.0353 ·
10−4, m = 185.1, r0 = 0.0265. The actual value β = 8.1833 · 10−5 of
the TNB is highlighted.

second line of Fig. 1 the diagrams of the corresponding instability tongues for the
system (11)–(13), (f̃ as in (27)), with j = k and with the same parameters, in order
to compare the diagrams with the first line. It is worth noting that both systems
are linear decoupled systems for low values of q, then we have a trivial case of
coexistence of periodic orbits, since all solutions are periodic.

Coming to the specific features of the system (29)–(30), the true instability
tongues split from the points ( 4

πr0, βN (0)), where βN (0) is as in Proposition (3.1).
We note the persistence of areas of stability even for large values of q, so that their
widths do not shrink to 0, as q → ∞. In this regard, it is worth comparing the
instability diagram in Fig. 1, and the one when p(t) is a step function in problem
(23), see [24]. In both cases β has the same meaning, but in the first case the
parameter q acts both on the period and the width of the steps of the Meissner
equation, while in the second case, the parameters q in (23) acts only on the height
of the steps, as the period and width of the steps are fixed. Then we note that
the width at the splitting points ( 4

πr0, βN (0)), unlike (26), is O(q), q → 0. This is
due to the singularity of f̄j in r = 4π/r0. Finally we observe the onset of the so
called resonance pockets, that are typical of some Hill equations of Meissner type,
see [12,24].

The diagrams in the second line of Fig. 1 are obtained by the numerical solutions
of the system (11)–(13). We used the Matlab solver ode23t with a quite high reltol
and absTol setting. Even though we used the closed formulas for fj , gj,k provided
in “Appendix B”, a very long computation time was needed to obtain an accurate
value of Δ(q, β), and a reasonably good quality diagram. Indeed, at every step in
the grid value of q, a precise evaluation of the period of u(t; q) was necessary.

Figure 2 shows two instability diagrams of the system (11)–(13) respectively
for j = 3, k = 2 on the left, and j = 10, k = 2 on the right. In this case j �= k, so
that the approximated system (29)–(30) is no more available.

More precisely, we decided to use the set of structural parameters of the Tacoma
Narrow bridge (TNB) reported in [8] that are derived from the Technical Report
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(1941) of AMMANN et al. [1]. The mechanical parameters of the TNB are charac-
terized by very different orders of magnitude. Nonetheless the general picture of the
instability tongues (behavior at the splitting points and resonance pockets) remains
the same and seems to be a constant feature of the MMK model.

The reports about the failure of the TNB show that the transfer from flexural
to torsional energy regarded most probably the 9 − 2 or the 10 − 2 modes (see
for example [10] for an extensive owerwiew). We checked all the modes j-2, for
2 ≤ j ≤ 10, and 0 < q ≤ 1.6 m (flexural oscillations of amplitude of about one and a
half meters were reported by witness, see for example again [8], “Appendix A”). For
our simplified model the tongues corresponding to an even N are relatively thick in
the given interval for q, but stay far away from the significant value of β. Whereas
the tongues related to an odd N get very thin as j grows, and also such modes do
not present any instability near the significant value of β. We point out that the
fish-bone model does not take into account the dynamics of the suspension cables
and their mechanical parameters, then our simulations are interesting only from a
mathematical point of view.
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Appendix A. Regularity of ψ1 and ψ2

Lemma A.1. Let f be a real valued function such that f ∈ C0(R), f ∈ C1(R\{r0}),
and sup

R\{r0} |f ′(x)| < ∞, r0 ∈ R. Let I be the closed interval [a, b], u ∈ C1(Rn+1),
w ∈ L∞(I), and define

G(p) =
∫

I

f(u(x, p))w(x) dx, (p ∈ R
n).

http://creativecommons.org/licenses/by/4.0/
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If, for each p ∈ R
n,

u(x, p) = r0, has (at most) a finite number of solutions x ∈ I, (31)

then G ∈ C1(Rn), and the following differentiation formula holds for every p ∈ R
n,

�G(p) =
∫

I

f ′(u(x, p)) �p u(x, p)w(x) dx.

Proof. For simplicity we assume n = 1. The general case n ≥ 1 follows exactly in
the same way.

We set

Γ = {(x, p) ∈ R
2 : u(x, p) = r0}, Ω = R

2 \ Γ,

and let p0 ∈ R be a number such that there exists a finite number of points (xj , p0) ∈
Γ, j = 0, 1, . . . , m. Possibly by decomposing the interval I into a finite union of
intervals Ij in which u(x, p) = r0 has a single solution, we may assume that there
exists a unique point (x0, p0) ∈ Γ.

Let us fix ε > 0 and define

K0
ε = {(x, p0) : x ∈ I, |x − x0| ≥ ε}.

Since K0
ε is compact, its distance from the closed set Γ is strictly positive. Then

there exists δ = δ(ε), such that

Kδ
ε = {(x, p) : x ∈ I, |x − x0| ≥ ε, |p − p0| ≤ δ} ⊆ Ω.

By the continuity of u, we have either u < r0 or u > r0 on each connected
component of Kδ

ε , thus f ◦ u ∈ C1(Kδ
ε ).

Let us set

g(p) =
∫

I

f ′(u(x, p))
∂u

∂p
(x, p)w(x) dx,

and split the function G in the following way:

G(p) = G1,ε(p) + G2,ε(p) (|p − p0| ≤ δ),

where

G1,ε(p) =

∫
x∈I,|x−x0|≥ε

f(u(x, p))w(x) dx, G2,ε(p) =

∫
x∈I,|x−x0|<ε

f(u(x, p))w(x) dx,

so that G1,ε ∈ C1([p0 − δ, p0 + δ]) by the standard rule for differentiation under the
integral sign. As for the second term we have,

∣∣∣∣∣G2,ε(p0 + h) − G2,ε(p0)

h
−

∫
x∈I,|x−x0|<ε

f ′(u(x, p0))
∂u

∂p
(x, p0)w(x)dx

∣∣∣∣∣
≤

∫
x∈I,|x−x0|<ε

∣∣∣∣f(u(x, p0 + h)) − f(u(x, p0))

h
w(x)

∣∣∣∣ +
∣∣∣∣f ′(u(x, p0))

∂u

∂p
(x, p0)w(x)

∣∣∣∣ dx

Since f has bounded derivative (thus Lipschitz continuous), w ∈ L∞, and
u ∈ C1, the sum of both terms in the last integral is bounded above by some
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positive constant M . In conclusion, by considering the incremental ratio of both
G1,ε, and G2,ε we get

lim sup
h→0

∣∣∣∣G(p0 + h) − G(p0)
h

− g(p0)
∣∣∣∣ ≤ 2Mε,

for every ε > 0, which proves that G′(p0) = g(p0).
Now we prove the continuity of g(p). With the same notations as before, for

any fixed ε > 0, we have

g(p) = G′
1,ε(p) +

∫
x∈I,|x−x0|<ε

f ′(u(x, p))
∂u

∂p
(x, p)w(x) dx (|p − p0| ≤ δ),

where G′
1,ε ∈ C0([p0 − δ, p0 + δ]). As for the other term, as before the boundedness

of f ′, and the regularity of u, yield∫
x∈I,|x−x0|<ε

∣∣∣∣f ′(u(x, p))
∂u

∂p
(x, p)w(x)

∣∣∣∣ dx ≤ 2Mε (|p − p0| ≤ δ).

Therefore we infer that

|g(p) − g(p0)| ≤ |G′
1,ε(p) − G′

1,ε(p0)| + 4Mε,

so that

lim sup
p→p0

|g(p) − g(p0)| ≤ 4Mε,

which concludes the proof of the Lemma. �
Proof of Proposition 2.3. We apply Lemma A.1 to f satisfying (S0), I = [0, π],
p = (y, z) ∈ R

2, u(x, p) = y sin(jx) ± z sin(kx), w(x) = sin(jx) or w(x) = sin(kx).
The lemma has a local character and it is enough to verify the hypotheses in a
neighborhood of each point p0 = (y0, z0) ∈ R

2, therefore we may assume that the
function f is not differentiable at a single point r0, and that has bounded derivative
elsewhere. The regularity of u, and w being obvious, we must verify the assumption
(31) for r0 �= 0 (recall that this was required in (S0)). By contradiction, if for a fixed
(y, z) ∈ R

2, the equation u(x, y, z) = r0 were satisfied for an infinite set of x ∈ I,
since x �→ u(x, y, z) then u(x, y, z) = r0 for every x ∈ R. This follows by the unique
continuation principle applied to the analytic function x �→ u(x, y, z). In particular
we would have u(0, y, z) = 0 = r0, which is a contradiction.

We conclude this Appendix with a few remarks on the differentiation Lemma A.1.
The lemma, in spite of its simplicity, cannot be derived from the traditional

Lebesgue theorem of differentiation under integral, as one can easily verify. A simple
example is provided by the function G(p) =

∫ 1

0
|x − p| dx, which is differentiable

everywhere, and of class C1. As a matter of fact, Lemma A.1 is more a regularity
result than a sufficient condition to differentiate under integral sign.

The condition (31) serves to our purposes but can be easily relaxed, for exam-
ple by assuming that the set {x ∈ I : u(x, p) = r0} has (at most) a finite number of
accumulation points for any fixed p. A trivial example in which this last condition
is violated, for p = 0, is given by G(p) =

∫ 1

0
|p| dx, which of course is not differen-

tiable at p = 0. In this regard, we point out the relevance in the application of the
Lemma to the functions ψ1, and ψ2, in which u(x, p) = y sin(jx) ± z sin(kx), to the
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assumption r0 �= 0. On the other hand, any relaxed version of condition (31) is far
from being necessary, as the simple example G(p) =

∫ 1

0
|p3| dx shows. In literature

there are other more or less classical differentiation results, see e.g. [23], but we
have found that for our purposes the verification of the hypotheses would have been
more difficult than the direct proof of the lemma. �

Appendix B. Explicit Formulas for the MMK Function

The non-linear terms of the system (7) and the periodic coefficient of the Hill equa-
tion (13) are both defined as an integral. This fact becomes very time consuming
when it comes to drawing the instability tongues with Matlab, as the solution of
some ten thousands of systems is needed. So, in the case of the MMK slackening
model (3), we decided to provide the explicit computation of gj,k(r) in (13), for
every choice of j and k. The result in Lemma B.2 for r0 = 0 is necessary for the
computation of the limit system in Sect. 2.

We need a simple computational lemma.

Lemma B.1. Let j, k be two positive integers, then

q(j, k) :=
j∑

n=1

cos
(

2k

j
nπ

)
=

{
j if k/j ∈ N,

0 otherwise.
(32)

p(j, k) :=
j∑

n=1

(−1)n sin
(

2k

j
nπ

)
=

{
0 if j even ,

− tan
(

k
j π

)
otherwise.

. (33)

Proof. Let us prove (32). In the case when k/j ∈ N, we obviously have q(j, k) = j;
otherwise we get (i =

√−1, Re = real part),

q(j, k) =
j−1∑
n=0

cos
(

2k

j
nπ

)
= Re

j−1∑
n=0

e
2kπi

j n = Re
1 − e2kπi

1 − e2kπi/j
= 0.

In order to prove (32), we observe that, if 2k
j ∈ N, then p(j, k) = 0. Otherwise,

we have (Im = imaginary part),

p(j, k) =
j−1∑
n=0

(−1)n sin
(

k

j
2nπ

)
= Im

j−1∑
n=0

(
−e

k
j 2πi

)n

= Im
1 − (−1)j

1 + e
k
j 2πi

,

thus p(j, k) = 0 for j even. When j is odd, we get

p(j, k) = −
sin

(
k
j 2π

)
1 + cos

(
k
j 2π

) = − tan
(

k

j
π

)
.

�

The closed form of the function gj,k , in the case of MMK function (3), is given
by 2m/π times the function Hj,k(r) defined here below.
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Lemma B.2. Let j, k be positive integers, r0 ≥ 0, and let Hj,k(r) be the function
defined as (H[·] = Heaviside step function),

Hj,k(r) :=
∫ π

0

H(r sin jx + r0) sin2 kx dx (r ∈ R).

Let us set θ(r) = asin(r0/|r|), for |r| ≥ r0.
Then, for every j, k, we have

Hj,k(r) =
π

2
for |r| ≤ r0,

while for |r| > r0 (note that for even j the second row vanishes),

Hj,k(r) =
π

4
+

θ(r)

2
− q(j, k)

4k
sin

(
2kθ(r)

j

)

+
1 − (−1)j

2

r

|r|
[

π

4j
− θ(r)

2j
+

p(j, k)

4k
cos

(
2kθ(r)

j

)
+

1

4k
sin

(
2kθ(r)

j

)]
. (34)

Proof. If |r| ≤ r0, we have r sin jx + r0 ≥ 0, thus Hj,k(r) =
∫ π

0
sin2 kx dx = π/2.

The other cases are much more involved. First of all, by changing the integration
variable, we write

Hj,k(r) =
1
j

∫ jπ

0

H(r sin z + r0) sin2(kz/j) dz;

and observe that, for z ∈ [0, 2π], we have

r sin z + r0 ≥ 0 iff z ∈ B+
0 (r) := [0, π + θ(r)] ∪ [2π − θ(r), 2π] (r > r0),

r sin z + r0 ≥ 0 iff z ∈ B−
0 (r) := [0, θ(r)] ∪ [π − θ(r), 2π] (r < −r0);

then we set B±
n (r) = B±

0 (r) + 2nπ (the translated sets).
We begin with r > r0, and j even. We get

Hj,k(r) =
1
j

j/2−1∑
n=0

∫
B+

n (r)

sin2(kz/j) dz;

by direct computation of the integrals, we obtain

1
j

j/2−1∑
n=0

∫
B+

n (r)

sin2(kz/j) dz=
π

4
+

θ

2
+

1
4k

j/2−1∑
n=0

(sin(4knπ/j) − sin(4k(n + 1)π/j))

+
1
4k

j/2−1∑
n=0

(sin
(

2k

j
((2n + 2)π − θ)

)
− sin

(
2k

j
((2n + 1)π + θ)

)
.

The first summation on the right hand side is telescopic and cancels out. The
last summation, by using the trigonometric addition formula, may be written as

1
4k

(
j∑

n=1

(−1)n sin
(

2k

j
nπ

))
cos

(
2k

j
θ

)
− 1

4k

(
j∑

n=1

cos
(

2k

j
nπ

))
sin

(
2k

j
θ

)
.

Owing to (32), and (33), and putting together the various contributions, this
concludes the proof in the case j even and r > r0.

If j is even and r < −r0, we replace B+
n (r) with B−

n (r) and follow the same
procedure, to obtain
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Hj,k(r) =
π

4
+

θ

2
− p(j, k)

4k
cos

(
2k

j
θ

)
− q(j, k)

4k
sin

(
2k

j
θ

)
=

π

4
+

θ

2
− q(j, k)

4k
sin

(
2k

j
θ

)
.

Let us now consider the case when j is odd. In the simple case j = 1, the direct
computation of Hj,k(r) is trivial, and yields

H1,k(r) =
π

2
, if r > −r0; H1,k(r) = θ(r) − sin(2kθ(r))

2k
if r < −r0,

which coincides with the formula (34) (although its verification is somehow hidden).
For j odd, and j ≥ 3, and r > r0, we get, again by following the same procedure

as above,

Hj,k(r) =
1

j

(j−3)/2∑
n=0

∫
B+

n (r)

sin2

(
k

j
z

)
dz +

1

j

∫ jπ

(j−1)π

sin2

(
k

j
z

)
dz

=

(
1 +

1

j

)
π

4
+

(
1 − 1

j

)
θ

2
+

p(j, k)

4k
cos

(
2k

j
θ

)
− 1

4k
(q(j, k) − 1) sin

(
2k

j
θ

)
;

while, for r < −r0,

Hj,k(r) =
1

j

(j−1)/2∑
n=0

∫
B−

n (r)

sin2

(
k

j
z

)
dz − 1

j

∫ (j+1)π

jπ

sin2

(
k

j
z

)
dz

=

(
1 − 1

j

)
π

4
+

(
1 +

1

j

)
θ

2
− p(j, k)

4k
cos

(
2k

j
θ

)
− 1

4k
(q(j, k) + 1) sin

(
2k

j
θ

)
.

Again owing to (32), and (33), this concludes the proof of the lemma. �

If f(r) is the MMK function in (3), where r0 > 0, then gj,k(r) = 2m
π Hj,k(r). We

can verify by direct inspection in (34) that this is a continuous function, as expected,
because Proposition 2.3 says that ∂ψ2

∂z (y, 0) = 2gj,k(y) must be continuous. If we set
instead r0 = 0, (34) gives us the explicit formula for sj,k(r) = 2M

π Hj,k(r), that is
needed for defining the limit system in Theorem 2.1. This function is not continuous
in r = 0 if j is odd.

This makes clear again that, if we weaken the condition b) in the assump-
tion (S0), substituting the MMK function with the similar one f(r) = Mr+, the
respective functions ψ1, ψ2 in (7) are no more smooth.

Appendix C. The Discriminant for the Approximation (28)

In this section we provide the computation of the instability discriminant Δ for
each fixed value of β and q for the Hill equation (30). We find the explicit solution
u(t; q) of the Eq. (29), and its period τ = τ(q). The periodic coefficient in (30) is
affected only by the slope of the piecewise linear function f̄j(r) whose values change
at some transition points of u(t; q). It turns out that, at any fixed value of q, (30)
is a multi-step Hill equation or Meissner equation [5,14].

We recall how to compute the discriminant of a Hill equation with a positive,
multi-step potential. Let the interval [0, τ ] = ∪n

i=0Ii be the union of disjoint intervals,
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each having length Δti. Let us consider a potential Q(t) which is τ -periodic positive
and constant on each subinterval Ii, that is,

Q(t) =
n∑

i=0

A2
i 1Ii

(t) 0 ≤ t ≤ τ.

The monodromy matrix, and the discriminant of the Hill equation v̈(t) +
Q(t)v(t) = 0, are computed as follows, see [5] p. 12. If the Li’s are the transition
matrices

Li =
[

cos(AiΔti) 1
Ai

sin(AiΔti)
−Ai sin(AiΔti) cos(AiΔti)

]
, i = 0, 1, . . . n,

then we get

M = Ln Ln−1 . . . L1 L0, Δ = trM.

To simplify some calculations, it is important to note that the discriminant is
invariant with respect to any cyclic permutation of the transition matrices, so for
instance M = L2 L1 L0, and M ′ = L1 L0 L2 are in general different matrices having
the same trace. In fact, they correspond to different translations in time of Q(t),
which of course leave the discriminant unchanged.

In applying the previous formulas to the Eq. (30), the A2
i ’s coefficients are

known, being determined by the constant slopes of the function f̄j(r). It remains to
compute the length of the intervals Ii, and their ordering, modulo cyclic permuta-
tions.

First of all, we observe that, in both cases j even or odd, we have

f̄j(r) = mr, if |r| ≤ r̄ :=
4
π

r0,

therefore when the initial value u(0) = q is less or equal to r̄, the Eq. (29) is linear,
with solution u(t; q) = q cos(ωt), ω =

√
αj4 + 2m. It follows that f̄ ′

j equals to
m, and the Hill equation (30) reduces to a linear oscillator with constant angular
frequency A =

√
βj2 + 2γm. Thus it is stable and Δ is simply the trace of the

matrix L with Δt = 2π/ω, i.e. Δ = 2 cos(2πA/ω).
In the case when q > r̄, we must identify the intervals Ii at whose end points

u(t; q) = ±r̄. We start when j is even. Owing to (17) we have in the Eq. (29),

f̄j(r) =
1
2
(mr + mr̄), if r > r̄, f̄j(r) =

1
2
(mr − mr̄), if r < −r̄,

therefore the two angular frequencies of the Hill equation (30) are

A0 =
√

βj2 + γm, if |u| ≥ r̄, A1 =
√

βj2 + 2γm, if |u| < r̄.

To determine the intervals in which the two cases occur, we note that f̄j(r)
is an odd function, so that the potential for the Eq. (29) is even. Therefore it is
enough to compute u(t; q) for a quarter of a period, starting from t = 0 to the first
positive time t1 = t1(q) when u(t1; q) = 0, so that τ = 4t1.

If we call t0 = t0(q) < t1(q) the first positive time such that u(t0; q) = r̄, then
the cycle [−t0, τ − t0] is the union of disjoint intervals ∪3

i=0Ii, such that

|u| ≥ r̄, t ∈ I0 ∪ I2; |u| ≤ r̄ t ∈ I1 ∪ I3.
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Their length are Δti = 2t0, for i = 0, 2, and Δti = 2(t1 − t0), for i = 1, 3. As a
consequence, the potential of the Eq. (30) is given by

Q(t) = A2
01I0(t) + A2

11I1(t) + A2
01I2(t) + A2

11I3(t), t ∈ [−t0, τ − t0],

and we have 4 transition matrices with L0 = L2, L1 = L3, so that

M = (L1 L0)2, Δ(q) = trM.

As for the computation of t0, t1, we define the 2 angular frequencies of the
Eq. (29),

ω0 =
√

αj4 + m, ω1 =
√

αj4 + 2m,

so that u satisfies the equation ü + ω2
0u = −mr̄ on I0, and ü + ω2

1u = 0 on I1. On
the first interval I0 = [−t0, t0[, we obtain

u(t; q) =
(

q +
mr̄

ω2
0

)
cos ω0t − mr̄

ω2
0

.

By solving the equation u(t; q) = r̄, we get

t0 =
1
ω0

acos
(

ω2
0 r̄ + mr̄

ω2
0q + mr̄

)
.

On the second interval I1, u solves the equation ü + ω2
1u = 0, with initial data

u(t0; q) and u̇(t0; q). Thus

u(t; q) = r̄ cos(ω1(t − t0)) + u̇(t0; q) sin(ω1(t − t0))/ω1.

Since we have

u̇(t0; q) = −ω0

(
q +

mr̄

ω2
0

)√
1 − cos2 ω0t0 = −

√
(q − r̄)[ω2

0(q + r̄) + 2mr̄],

by solving the equation u̇(t; q) = 0, we get

t1 − t0 =
1
ω1

atan
(

ω1r̄

B(q)

)
, B(q) =

√
(q − r̄)[ω2

0(q + r̄) + 2mr̄].

Now we come to the calculations in the case when j is odd. The function f̄j(r)
in (29), for |r| > r̄, is given by

f̄j(r) =
m

2
(1 + 1/j)r +

m

2
(1 − i/j)r̄, r > r̄,

f̄j(r) =
m

2
(1 − 1/j)r − m

2
(1 + 1/j)r̄, r < −r̄.

The procedure is similar to the previous case, only a bit longer, because f̄j(r)
is no more odd, so that we need to compute u(t; q) on a half period. We define t0 the
first positive time such that u(t0; q) = r̄, and again we consider the cycle [−t0, τ −t0]
which is the union ∪3

i=0Ii of disjoint intervals, such that

u ≥ r̄, t ∈ I0; |u| ≤ r̄, t ∈ I1 ∪ I3; u ≤ −r̄, t ∈ I2.

The Hill equation (30) is now a four steps Meissner equation with potential

Q(t) = A2
01I0(t) + A2

11I1(t) + A2
21I2(t) + A2

11I3(t), t ∈ [−t0, τ − t0],
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where

A0 =
√

βj2 + γm(1 + 1/j), A1 = A3 =
√

βj2 + 2γm, A2 =
√

βj2 + γm(1 − 1/j),

then the matrix M becomes M = L1 L2 L1 L0.
We define the 3 angular frequencies for the Eq. (29),

ω0 =
√

αj4 + m(1 + 1/j), ω1 =
√

αj4 + 2m, ω2 =
√

αj4 + m(1 − 1/j),

and the constants

D = m(1 − 1/j)r̄, E = m(1 + 1/j)r̄,

so that u satisfies the equation ü + ω2
0u = −D on I0, the equation ü + ω2

1u = 0 on
I1 ∪ I3, and ü + ω2

2u = E on I2.
Proceeding as above, for t ∈ I0 we have,

u(t; q) =
(

q +
D

ω2
0

)
cos ω0t − D

ω2
0

,

thus, by finding t0, we obtain half the length of I0, that is

Δt0
2

=
1
ω0

acos
(

ω2
0 r̄ + D

ω2
0q + D

)
.

For t ∈ I1, starting with the initial conditions at time t0, we get the expression

u(t; q) = r̄ cos(ω1(t − t0)) − B

ω1
sin(ω1(t − t0)), B = −u(t0; q)

=
√

(q − r̄)[ω2
0(q + r̄) + 2D].

Thus, by finding the first time greater than t0 such that u(t; q) = 0, we obtain
half the length of I1:

Δt1
2

=
1
ω1

atan
(ω1r̄

B

)
.

Finally, for t ∈ I2, we need to solve the third equation ü+ω2
2u = E with initial

data at t∗ = t0 + Δt1, that is u(t∗; q) = −r̄, u̇(t∗; q) = u̇(t0; q) = −B. Therefore, we
have

u(t; q) = −
(

r̄ +
E

ω2
2

)
cos ω2(t − t∗) − B

ω2
sin ω2(t − t∗) +

E

ω2
2

.

By finding the first time greater than t∗ such that u̇(t; q) = 0, we obtain half
the length of I2:

Δt2
2

=
1
ω2

atan
(

ω2B

ω2
2 r̄ + E

)
.
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