
Thread-level Parallelism in Fault Simulation of
Deep Neural Networks on Multi-Processor Systems
Masoomeh Karami1, Mohammad-Hashem Haghbayan1, Masoumeh Ebrahimi1,2, Antonio Miele3, Juha Plosila1

1Department of Future Technologies, University of Turku, Turku, Finland
2Department of Electronics and Embedded Systems, Royal Institute of Technology (KTH), Kista, Sweden

3Dip. Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
Email: {mkaram, mohhag, juplos}@utu.fi, mebr@kth.se, antonio.miele@polimi.it

Abstract—High-performance fault simulation is one of the
essential and preliminary tasks in the process of online and
offline testing of machine learning (ML) hardware. Deep neural
networks (DNN), as one of the essential parts of ML programs,
are widely used in many critical and non-critical applications in
Systems-on-Chip and ASIC designs. Through fault simulation
for DNNs, by increasing the number of neurons, the fault
simulation time increases exponentially. However, the software
architecture of neural networks and the lack of dependency
between neurons in each inference layer provide significant
opportunity for parallelism of the fault simulation time in a
multi-processor platform. In this paper, a multi-thread technique
for hierarchical fault simulation of neural network is proposed,
targeting both permanent and transient faults. During the process
of fault simulation the neurons for each inference layer will be
distributed among the executing threads. Since in the process
of hierarchical fault simulation, the faulty neuron demands
proportionally enormous computation comparing to behavioural
model of non-faulty neurons, the faulty neuron will be assigned to
one thread while the rest of the neurons will be divided among
the remaining threads. Experimental results confirm the time
efficiency of the proposed fault simulation technique on multi-
processor architectures.

Index Terms—Multi-threading Fault Simulation, Neural Net-
work, Reliability

I. INTRODUCTION

Neural networks (NNs) has shown potential in solving
various problems such as classification tasks in different
domains. To achieve high accuracy in complex applications,
NNs are getting deeper, so-called Deep Neural Networks
(DNNs), which extend their applications to critical domains
such as surgery robots and rescue drones [1]–[3]. Considering
safety-critical applications, the neural network computations
should satisfy three main requirements as high accuracy, short
execution time and reliable operation [4]. Higher accuracy
is usually obtained by designing new DNN architectures. To
achieve short response time, recently large amount of effort has
been devoted to accelerate DNNs in software and hardware,
including specialized hardware and ASIC design [3]–[5]. To
ensure the reliability in the hardware level, the whole network
has to be simulated and the impact of hardware faults should
be analyzed. For this purpose, first all possible faults, either
at design or run time, should be identified and then modeled

properly. Then faults have to be injected into the simulator to
analyze fault propagation, observe their impact on different
elements of the neural network, and most importantly the
impact on the final accuracy. This process of evaluating the
behaviour of the hardware with regard to the injected faults
is called fault simulation. Considering all possible locations
that a fault may occur in a DNN, simulation of these faults
using traditional methods is practically infeasible, and thus a
specifically-designed fault simulation procedure is demanded.

There has been a massive amount of research trying to
improve the fault simulation time on single-core [6], [7]
and multi-core systems [8], [9]. Beside the ideas to improve
the simulation of circuit, e.g., event-driven and multi-thread
simulation techniques, there has been several ideas that exploit
the independent effect of different faults on the circuit to
increase the parallelization of fault simulation, e.g., parallel
fault simulation [8], [9] and concurrent fault simulation [10].
In the fault simulation process, besides the general behaviour
of the fault’s effects on the circuit, the structure of the circuit
under test (CUT) also helps significantly to improve the fault
simulation time. Unfortunately, most of the proposed ideas are
focused on a general-purpose circuit architectures, improving
the average fault simulation time, where the structure of the
circuit is not usually considered. We argue that for the fault
simulation of DNNs, their special repetitive and hierarchical
structure provides a great opportunity to significantly reduce
the fault simulation time.

In this paper, we propose a multi-threading hierarchical
fault simulation which is specifically designed for DNNs. In
proposed approach, all operations in the DNN is divided into
two categories as faulty and non-faulty. Faulty operations are
simulated in the hardware level while non-faulty operations are
simulated using higher abstraction models (e.g., C++ level).
Based on being faulty or non-faulty module the neurons are
mapped to the suitable thread for processing.

More specifically, during the fault simulation, only the
places on the CUT where the fault is being injected must
be simulated based on the lowest abstraction levelwhile other
places can be simulated based on the higher possible mod-
eling abstraction level. To enhance the performance of the
simulation, it is important to map neurons efficiently to make978-1-6654-5938-9/22/$31.00 ©2022 IEEE

balance the overhead load of gate-level implementation. The
hierarchical structure consists of different levels of abstraction
where the top level is the behavioural DNN. The lowest level
considered in the hierarchy is the gate-level that is the level
for fault injection. The proposed multi-threading hierarchical
fault simulation could both satisfy fast simulation time and
hardware-level fault simulation.

To further decrease the fault simulation time, the proposed
approach is combined with traditional techniques such as
event-driven and parallel fault simulation. The main contri-
butions of this paper are as follows:
• Implementing a multi-threading for hierarchical fault sim-

ulation of deep neural network architectures.
• Adapting the hierarchical cross-level fault simulation for

DNNs, for multi-threading while utilizing their special
structure.

• Implementing the proposed event-driven multi-thread
simulation on a multi-processor platform.

II. BACKGROUND AND RELATED WORK

A. Fault Simulation

Several studies have tried to decrease the fault simulation
time by utilizing different techniques such as parallelization
[11]–[14], event-driven simulation [15], [16], and the use of
mixed abstraction levels of system presentation [17], [18].

In the parallelization technique, mutually exclusive parts of
the circuit are simulated in parallel [11], [12]. Another form
of the parallelization is to simulate the CUT for different sets
of faults [14] and different test patterns [13]. The former is
called data-parallel fault simulation while the later is known
as pattern-parallel fault simulation.

A event-driven method, only the propagation of occurred
events, e.g., injecting a fault or a change in the wire, are
tracked and processed by the simulator [15], [16]. Using
the event-driven fault simulation, the simulator avoids re-
processing those parts of the CUT that there is no change into
its inputs. The event-driven approach is more efficient than
time-driven method by 1) being faster, 2) using less memory,
and 3) being more flexible [15], [16].

In the fault simulation process, there exists a tight relation-
ship between the fault model and the modeling abstraction
level. The high-level fault models can be simulated via higher
modeling abstract of the CUT. This results in low simulation
time. However, high-level fault models usually result in a
low coverage of real failures. The stuck-at-fault model in the
gate-level modeling abstraction level, is considered as one of
the most suitable fault models w.r.t. covering the CUT’s real
failures and simplicity of the model. We assume the stuck-at-
fault model throughout the paper.

The CUT’s modeling abstraction level cannot be higher
than the modeling level envisioned for the fault model. For
example, if the fault model is the stuck-at-fault model, then
the CUT should be modeled in gate-level to able to inject
faults. Therefore, it is not possible to get benefit from the
fast simulation time, offered by the high-level modeling of the

CUT. Mixed-level fault simulation techniques solve this issue
by using the higher abstraction level of CUT for non-faulty
partitions (e.g., the behavioral level [17]) and the low-level
model (i.e., compatible with the fault model) only for the area
of CUT that the fault(s) is intended to be injected [17]. In
fact, mixed-level fault simulation is a technique to combine
the benefits of: 1) low simulation time provided by modelling
in high abstraction levels, and 2) high coverage offered by
low-level fault models [18].

The main drawback of the existing mixed-level fault sim-
ulation methods is that the effectiveness of such techniques
is highly dependant on the structure of the CUT and the
possibility of modelling the CUT in a hierarchical way.
Therefore, before applying fault simulation, the structure of the
CUT in different levels of abstraction should be investigated
carefully. Another issue is the integration of the mixed-level
fault simulation with other fault simulation techniques such
as parallel and/or event-driven fault simulation. For example,
in the case of simulating several faults in parallel while
performing mixed-level fault simulation, it is more efficient
to simulate the nearby faults together. This is due to the fact
that nearby faults on the CUT most probably belong to the
same module, requiring only one low-level instance of that
module to inject faults.

B. DNN Fault Simulation

Various studies implement the fault simulation of DNNs
[4], [19] by injecting faults and analyzing the results. Xun
et. al. [5] assesses the vulnerability of DNNs in hardware
by injecting timing errors into the network during inference.
However, most of these works cannot be generalized as they
focus on specific fault models or DNN model. There are also
some frameworks which provide the possibility of injecting
and analyzing faults. Among these frameworks is TensorFI
which can be used for DNNs supported by TensorFlow [20].
In TensorFI, computations are presented by a data-flow graph
where faults can be injected into them. Although TensorFI
provides the fault injection and fault analysis features at a high
speed, it does not support fault models in lower abstraction
levels such as stuck-at fault models in the gate level. This
implies that the fault coverage of TensorFI is low and limited
to the faults that occur in higher abstraction levels. Li et al.
[21] implements a fault injector simulator by using the tiny-
CNN framework. The simulator maps each line of the code in
the framework to the corresponding hardware component for
injecting faults. This work considers transient faults with the
bit-flip fault model.

III. MULTI-THREADING HIERARCHICAL FAULT
SIMULATION OF DNN

Figure 1 shows a sample of DNN and a neuron structure.
The neuron structure follows a repetitive architecture, which
includes multiply and accumulate (MAC) units that can be
computed in parallel. In our proposed fault simulation method,
we first define different abstraction levels from the DNN top-
level down to the gate level as shown in Figure 1. This figure

illustrates a feed-forward network where the network level is
composed of several computational layers that are cascaded
horizontally from the DNN inputs towards the DNN outputs.
Each layer contains several neurons that are connected, via
edges, to the neurons of the preceding and subsequent layers.
A neuron comprises several multiplication units and accumu-
lation. The lowest abstraction level, considered in this paper, is
the gate level where stuck-at fault models can be implemented
and evaluated. More details of the abstraction level of DNN
can be found in [22]. These four abstraction levels are the ones
that are used in our proposed fault simulation. However, with
a marginal change, the algorithm can be adapted for a design
with other granularities and different number of abstraction
levels.

NN Top-level

NN Layer-level

Neuron-level

Gate-level

Wn INm

B

Wj INiW1 IN1

+

∑

× × ×

Input output
Injecting

Fault
Path

Replacing
code
Path

Stuck@ Fault

Target Netlist

Target Neuron

Target Layer

Target Wire

Injecting fault into MAC

Creating new thread
 for gate-level fault

injection

Multi-threading:
k neurons are maped to

one thread

Starting inference/train
with one thread

. . .

. . .

Figure 1. Simulation abstraction levels [22] and new added multithreading
approach

Hierarchical fault model: We use a top-down approach in
the fault-injection process. At the highest level (NN top-level),
the impact of the fault can be observed from the output of the
whole DNN network. In the level of NN layer, the output of
the layer is the indicator on whether a fault has occurred or
not. The fault model in the neuron level concerns the output
of the neuron to see whether it is deviated from the expected
value or not. The fault model in the lowest level is stuck-
at fault which is injected based on the fault pattern. By this
hierarchical approach, the location of a fault is positioned from
the highest to the lowest level while the the fault propagation
can be observed and evaluated from the lowest level to the
highest level. This allows us to analyze whether stuck-at faults
are masked at higher levels and also at which abstraction level.

Event-driven fault simulation: In the hierarchical fault
simulation of DNNs, an event is defined as a change in the
input(s) of a gate, a neuron, a layer, or the whole DNN.
Thereby, in each hierarchical level, if an event is observed in
the input, the related module and all its subsequent modules
will be simulated.

Stuck-at faults embedded in gate-level: As was mentioned
earlier, our finest granularity level to inject faults is the gate
level with the fault model defined as stuck-at faults. To enable
the injection of stuck-at fault models, the main operators in
a DNN model, including multiplication and addition, will be
equipped with the stuck-at fault injection capabilities. There
are two implementations of an operator, one is the behavioral
description in C++ and the other one is the fault-injectable
gate-level description in C++. In case no event is triggered, the

behavioral description of an operator will be used, otherwise,
the operator is replaced with its equivalent fault-injectable
operator.

Multi-thread fault simulation: As Figure 1 shows, in the
first abstraction level, the simulation execution starts with one
thread. Then, simulation is executed layer by layer, since each
layer needs the output of previous layer. In each layer, threads
process their mapped neurons. Consider in each layer we have
N neurons and T threads. So, k neurons are assigned to
T threads, where each thread executes k (= T

N) neurons. If
a neuron is the target neuron (faulty neuron), a new thread
is added to take care of the execution of the injected gate-
level faults. Figure 2 shows how neurons’ computation in
each layer is split into different threads. The thread where
a fault is injected is called faulty thread. Behavioral threads
refer to the threads that execute non-faulty neurons which are
implemented at the behavioral abstraction level.

Input Output

X

Thread
Neuron

Behaviour threads

Faulty thread

.

.

.

Step 1 Step 2 Step L-1 Step L

X Faulty Neuron

Figure 2. Multi-threading in the layer abstraction level

Algorithm 1 illustrates multi-threading fault-injection
method. The inputs are: DNN that is the specification of the
DNN module based on the abstraction level; FN which defines
the fault number in that DNN; and T that is the number of
threads. For each layer of the DNN, if the fault is targeted
a neuron, the algorithm dedicates a single thread to simulate
that neuron, Line (2-5). For the remaining neurons that are
not faulty, i.e., that will be simulated in behavioural level
of abstraction, the algorithm splits them equally among the
remaining T − 1 threads, Line 5-6. This process step by step
proceeds until simulating all the DNN’s layers.

Algorithm 1 The multi-threading fault-injection algorithm
Inputs: FN , DNN , T ;
Body:
1: for All layers L of DNN do
2: N ← Neurons(L);
3: for The faulty neuron n ∈ L do
4: Assign neuron to faulty thread;
5: for The set of non-faulty neurons N = L− n do
6: Assign |N|

(T−1)
neurons to T − 1 behavioural thread(s);

IV. EXPERIMENTAL SETUP AND RESULT

To evaluate the proposed technique, we adopt the well-
known LeNet-5 neural network model, coded in C++ program-
ming language, simulated on the tiny-DNN simulation envi-
ronment, and based on Ubuntu OS. The CPU specifications
for processing the simulation is: the total cores is 20, the total
threads is 40. The architecture of the neural network consists
of six layers of neurons, including three convolution layers,
two average pooling layers, and a fully connected layer. The
output layer of the neural network composed of ten neurons,
representing the associated label for the given input. In this
neural network model, the total number of MAC modules is

341k modules. The fault simulation input is selected from the
MNIST benchmark [23].

We select 32-bit variables (i.e., 10-bit fraction, 21-bit inte-
ger, and 1-bit sign) as precision levels. For gate-level imple-
mentation of the neural network, fixed-point number represen-
tation is used while for modeling the high-level specification of
the neural network, floating-point variable in C++ is used. The
reason is that compared to floating point, fixed-point variable
consumes smaller hardware area while the loss of precision is
negligible, specially when the bit-width of the fixed point is
high.

Figure 3 shows the obtained fault simulation time for the
LeNET. The simulation time for double thread compared to
one thread 56% decreases. It means while using two threads,
the simulation time goes below the half. The reason is that
using two threads not only utilize two processing elements for
simulation, but also it provides a opportunity for utilizing the
memory hierarchy of the system in more efficient way. While
using single thread, the high miss rate in first-level private
caches of the core, cause noticeable latency in the simulation
process. This is revealed when using two threads. Another
fact also that supports this result is the weak dependency of
data in each layer of the neural network that makes less time
consuming memory access from different location of memory
hierarchy.

By increasing the number of threads from two to three and
four, the simulation time 24% and 28% becomes better re-
spectively. As it can be seen, the simulation time improvement
saturates and becomes less while the number of threads are
increasing which is due to overhead of multi-threading. In
some cases, this overhead slightly worsens the simulation time
with respect the obtained results of fewer number of threads.
The best obtained simulation time is for 10 threads that reduces
the time by 81%.

1 2 3 4 5 6 7 8 9 10

50

100

150

200

250

Number of threads

Fa
ul

t
si

m
ul

at
io

n
tim

e
(s

) Multi-thread Single-thread [22]

Figure 3. Multi-thread hierarchical fault simulation time for LeNET versus
the number of executing threads.

V. CONCLUSION

In this paper, a multi-thread hierarchical fault simulation for
deep neural networks (DNNs) is presented. The faulty module
in this model that is modeled in netlist is assigned to one thread
to be executed while the other computing parts are divided
between the remaining threads. To increase the performance
and avoid unnecessary simulations, different event models in
gate-level and neuron-level are defined. The events in gate-
level are defined as any changes in the gates’ inputs, i.e., bit-
flip, while the events in the neuron level are the changes in the
neuron’s inputs. Concurrency in different levels are accelerated
via pipelining. Experimental results shows that the proposed

technique decreases the fault simulation time in comparison
with traditional single-thread fault simulation techniques.

ACKNOWLEDGMENT

This work has been financially supported by the Academy of
Finland funded projects 335512 - ADAFI (Adaptive-Fidelity
Digital Twins for Robust and Intelligent Control Systems) and
330493 - AURORA (Autonomous Performance Management
in Digital Manufacturing), and by Nokia Jorma Ollila Grant.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” in Nature, 2015,
p. 436–444.

[2] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing of deep
neural networks: A tutorial and survey,” in IEEE, 2017, pp. 2295–2329.

[3] A. Shawahna, S. M. Sait, and A. El-Maleh, “Fpga-based accelerators
of deep learning networks for learning and classification: A review,” in
IEEE Access, 2019, pp. 7823–7859.

[4] S. Mittal, “A survey on modeling and improving reliability of dnn
algorithms and accelerators,” in Journal of Systems Architecture, 2020.

[5] X. Jiao, M. Luo, J. Lin, and R. K. Gupta, “An assessment of vulnera-
bility of hardware neural networks to dynamic voltage and temperature
variations,” in ICCAD, 2017, pp. 945–950.

[6] N. Bombieri, F. Fummi, and V. Guarnieri, “Accelerating rtl fault simu-
lation through rtl-to-tlm abstraction,” in ETS, 2011, pp. 117–122.

[7] Z. Navabi, Digital System Test and Testable Design: Using HDL Models
and Architectures. Springer Publisher, 2010.

[8] S. Hadjitheophanous, S. N. Neophytou, and M. K. Michael, “Scalable
parallel fault simulation for shared-memory multiprocessor systems,” in
VTS, 2016, pp. 1–6.

[9] M. Gorev, R. Ubar, and S. Devadze, “Fault simulation with parallel exact
critical path tracing in multiple core environment,” in DATE, 2015, pp.
1180–1185.

[10] D. G. Saab, “Parallel-concurrent fault simulation,” in IEEE Transactions
on VLSI Systems, 1993, pp. 356–364.

[11] V. N. et al., “Fault Simulation on Massively Parallel SIMD Machines:
Algorithms, Implementations and Results,” in J. Electron Test, 1992.

[12] S.-E. Tai and D. Bhattacharya, “Pipelined fault simulation on parallel
machines using the circuit flow graph,” in ICCD, 1993, pp. 564–567.

[13] K. Gulati and S. Khatri, “Towards acceleration of fault simulation using
graphics processing units,” in DAC, 2008, pp. 822–827.

[14] R. Mueller-Thuns et al., “VLSI logic and Fault Simulation on General-
purpose Parallel Computers,” in IEEE Trans. on CAD of Integrated
Circuits and Systems, 1993.

[15] E. Gascard and Z. Simeu-Abazi, “Quantitative analysis of dynamic fault
trees by means of monte carlo simulations: Event-driven simulation
approach,” in Reliability Engineering and System Safety, 2018, pp. 487–
504.

[16] J. A. Garrido, R. R. Carrillo, N. R. Luque, and E. Ros, “Event and time
driven hybrid simulation of spiking neural networks,” in Advances in
Computational Intelligence, 2011, pp. 554–561.

[17] S. Mirkhani, M. Lavasani, and Z. Navabi, “Hierarchical fault simulation
using behavioral and gate level hardware models,” in ATS, 2002, pp.
374–379.

[18] M. Karami, A. Abdi, and H. R. Zarandi, “A cross-layer aging-aware
task scheduling approach for multiprocessor embedded systems,” in
Microelectronics Reliability, 2018, pp. 190–197.

[19] C. Torres-Huitzil and B. Girau, “Fault and error tolerance in neural
networks: A review,” in IEEE Access, 2017, pp. 17 322–17 341.

[20] Z. Chen, N. Narayanan, B. Fang, G. Li, K. Pattabiraman, and N. De-
Bardeleben, “Tensorfi: A flexible fault injection framework for tensor-
flow applications,” in arXiv, 2020.

[21] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and
S. W. Keckler, “Understanding error propagation in deep learning neural
network accelerators and applications,” in High Performance Computing,
Networking, Storage and Analysis, 2017, pp. 1–12.

[22] M. Karami, M.-H. Haghbayan, M. Ebrahimi, A. Miele, H. Tenhunen,
and J. Plosila, “Hierarchical fault simulation of deep neural networks
on multi-core systems,” in ETS, 2021, pp. 1–2.

[23] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” in IEEE, 1998, pp. 2278–2324.

