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Abstract—Functional connectivity mapping provides informa-
tion about correlated brain areas, useful for many applications
such as on mental disorders. Thereby this work aims to improve
this mapping by using deep metric learning considering the
directionality of information flow and time-domain features.
To deal with the computational cost of a complete pairwise
combination network, we trained a network able to recognize
similar signals and, after training, feed it with all combinations
of signals from each brain area. The labels of similarity or
dissimilarity are determined by agglomerative clustering using
the Jensen-Shannon Distance (JSD) as a metric. To validate
our approach we employed a resting-state eye-open functional
Magnetic Resonance Imaging (fMRI) datasets from ADHD and
healthy subjects. After obtaining the maps from each subject,
and noticing the difference, we perform a feature importance
selection using logistic regression. The ten most promising areas
were extracted, such as the frontal cortex and the limbic system.
These results are in complete agreement with previous literature.
It is well known that the frontal cortex and the limbic system
are mainly involved in attention and impulsivity.

Index Terms—Deep Metric Learning, Deep Learning, ADHD,
functional MRI, Functional Data Analysis

I. INTRODUCTION

Functional connectivity mapping is the process of indi-
viduating brain areas that share a statistical relationship in
time between the measures of activity recorded from them,
hence that areas are presumed to be correlated [1]. It is
assumed that functionally connected areas participate in the
same network and pathway of information flow [1]. This
means that improving the mapping of functional connectivity
could lead to new insights into the role of Central Nervous
System (CNS), specifically its involvement in mental illness.
One of the approaches most commonly used in the clinic is the
seed-based method. In this technique, the correlation between
one brain area and the other voxels is calculated using Pearson
correlation or Mutual Information (MI). This method is fast
and simple, however, it does not provide satisfactory results for
complex problems, such as highly noisy fMRI signals at rest,
and it is heavily dependent on the chosen Region Of Interest
(ROI).
In this project, we aim to improve functional connectivity
mapping methods by using Deep Learning (DL) and Func-
tional Data Analysis (FDA), as preprocessing tool, to evaluate

the directionality of information flow and give more relevance
to features in the time domain. Specifically, we use a metric
learning network, to create a representation of the inputs and
then evaluate the similarity using a distance metric [2]. The
use of DL allows us to process the noise of resting-state fMRIs
through convolutional layers that embed the signal in a more
informative way [3], [4]. Instead, Recurrent Neural Network
(RNN) takes into account time flow thanks to their cyclical
connection that allows them to update the state sample by
sample [5]. To better estimate the average response from each
brain area, we employ FDA, a branch of statistics that analyzes
data in a continuum space by interpolating or smoothing
discrete data and converting them into analytic functions. This
approach is particularly useful because it allows us to analyze
morphological trajectories and time delays as well as shifts
[6], [7]. Specifically, FDA allows us to assess a morphological
distribution of curves, and remove outliers based on the whole
shape of the signal [8]. These will be the inputs used by our
network to compute the directional flow of information. This
approach is validated through the analysis of fMRI data from
healthy and Attention Deficit Hyperactivity Disorder (ADHD)
subjects at rest since altered brain activity and connectivity are
well-studied [9]–[11].

II. MATERIAL & METHODS

A. Dataset

In the present work, we exploit the data from the UCLA
Consortium for Neuropsychiatric Phenomics LA5c Study [12],
a large dataset of partially preprocessed 3T fMRI with a
TR of 2s from 290 subjects between 25 and 50 years of
age. It includes four different subgroups of subjects and
seven experimental protocols. The population includes healthy
subjects (130 sbj.) and three pathological groups: ADHD (43
sbj.), bipolar disorder (49 sbj.), and schizophrenia (50 sbj.).
The performed protocols consist of a resting-state, a balloon
analog risk task, a paired-associate memory task, a spatial
working memory task, a stop-signal task, a task-switching
task, and a breath-holding task. In particular, we consider
5-minute eye-open resting-state fMRI scans of ADHD and
healthy subjects.



B. Registration and Data Preprocessing

The analysis begins with multimodal affine registration on
an asymmetric Hammer atlas that parcellates the brain into
83 regions [13], [14]. This procedure allows the images to be
aligned on the atlas and allows us to locate signals to specific
areas. Since the images and the template comes from different
sources and there is no direct correlation between the gray
levels, MI is used as a nonlinear metric. The affine registration
allows the transformation of the scans with twelve degrees
of freedom by translation, rotation, shear, and scaling. Then,
each signal is filtered between 0.01 and 0.16 Hz to partially
remove noise using a 4th order Butterworth filter forward and
backward. A functional trimmed mean based on the depth
measure is applied to the signals from each area. This method
is an extension of the trimmed mean for functional data based
on the concept of depth in FDA, a measure of outlyingness,
and it consists of calculating the mean function excluding the
least deep curves [15]. Depth measures are indices that assign
a value to each function indicating how far it is from the curve
distribution center, and the maximum depth corresponds to the
median of the distribution [15]. This approach allows us to
consider the distribution of the BOLD signals of a brain region
and produce a reliable summary signal from each subject that
is less biased by noise because outliers are removed.

C. Hierarchical Clustering

A naive idea could be to train a single classification network
that can combine the inputs from each brain in pairs and then
classify the subject according to its group based on the bidi-
rectional neighboring matrix. However, from a computational
point of view, this approach is impractical, since the problem
scales quadratically with inputs (83 inputs regions imply 6889
pairwise branches). To reduce the computational complexity,
we train a network capable of classifying similarities between
a pair of signals and extracting a bidirectional score. To train
this type of network, we use similarity labels. We compute
them through hierarchical agglomerative clustering with the
Jensen-Shannon Distance (JSD) to extract the 1000 most
correlated signals without considering the location in the brain.

This metric is defined as: JSD(p, q) =
√

D(p∥m)+D(q∥m)
2

where D(...) is the Kullback-Leibler divergence with respect
to the pointwise mean of the distribution p and q. It allows
us to compute a nonlinear correlation between areas since the
distance is calculated on distributions and not on the signal
[16]. Before the clustering process, a robust scaler is applied
to make the samples comparable and improve the clustering
performance. Thus, each point is scaled by subtracting the
median of the point and dividing by the interquartile range.

D. The Network

The network aims at extracting the directional flow of
information between two different inputs. Thus, it must be able
to distinguish the information from the first input to the second
and vice versa. Our system consists of three blocks: encoding
block, similarity block, and classification block. The network’s

Fig. 1. Complete overview of our network. After the encoding and the
similarity block, where weights are shared as in a metric learning approach,
a distance between representations is computed. The distance is then used to
classify the similarity between the input signals or not.

parameters are optimized through a Bayesian optimization
tuner [17]. It is important to highlight that the first two blocks
share weights, as in a metric learning approach, to create
a joint representation of the two inputs. These joint repre-
sentations are needed to compute the distance between them
and estimate the similarity. Figure II-D displays a graphical
representation of the network. A detailed explanation of each
block is provided below.

1) Encoding block: Encoding the inputs allows extracting
features to be inserted into the following block. After a simple
feed-forward layer to increase the initial depth, the input first
passes through 2 encoding blocks. Each block encodes time
through a Gated Recurrent Unit (GRU) [18] bidirectional
layer [19], then features are extracted with a ResNet-like
[20] structure built by a causal convolution layer [21]. Causal
convolution is a type of convolution that preserves the order
of sample, which can be seen as a convolution previously
multiplied by a triangular filter [21]. Since this layer cannot
violate the time-flow direction, features are expected to be
more sensitive to time. Finally, the result undergoes layer
normalization [22], and max-pooling is applied to increase the
field of view of the network and decrease the width. Figure 2
shows in detail the architecture and the parameters used.

2) Similarity block: This block represents the core of our
network. It aims at computing the distance between representa-
tions, as in metric learning. By using the Multi-Head attention
layer [23], we can construct four different representations: one
for each combination of the two inputs. Two of these are called
self-representation because the query and key entries in the
Multi-Head attention layer are the same, and the remaining
two are called cross-representations because the query and key
are different. Using Euclidean distance, the network calculates
the distance between similar self- and cross-representations.
Since only the query value changes between representations
(the weights are shared between similar layers), we can assume



that the information flowing in a given direction from one
signal to the other is proportional to the distance between
the generated self and cross representations. In this way, the
calculated attention becomes an index of directional similarity.
An overview of this block, with all the parameters, is reported
in Figure 2.

Fig. 2. Overview of encoding and similarity block of the net. Feedforward
layer encodes the inputs (shape: [152,1] each) with 64 neurons. The results
pass through 2 blocks of encoding, the parameters are reported in the figure.
Before the similarity block, a bidirectional layer with 32 neurons fix the
channel dimension, also for the following layers. Multi-Head attention layers
with a key dimension of 80 and 24 heads compute the similitude between key
and query. All activation functions are ReLU, except for bidirectional layers
that use tanh and sigmoid.

3) Classification block: The distances between representa-
tions are the inputs of the classification layer once they are
concatenated. Then a feed-forward layer with two neurons
with a linear activation mixes the results and finally, a single
neuron with a sigmoidal activation classifies the signal by
similarity or not. This last block is removed after the training,
once its purpose is fulfilled. Namely, our goal is to create an
adjacency matrix that is filled by the distance between the
representations that represent the flow of information.

E. Results evaluation

After training, an adjacency matrix is generated combining
the 83 inputs in pairs, one for each region. We could not
evaluate by classification between healthy and ADHD patients
could not be performed due to the curse of dimensionality
[24]. Indeed, the number of features is much higher than the
number of samples. Therefore, we perform feature selection
using logistic regression. We select the 10 most promising
features and evaluate our results by comparing them with
previous literature.

III. RESULTS

The network is trained as a classification task, with binary
cross-entropy as loss and accuracy as metric, using Adam [25]
with an initial learning rate of 10−5. The training also involves
an early stopping to prevent overfitting and a learning rate

TABLE I
FEATURE IMPORTANCE SELECTION BASED ON LOGISTIC REGRESSION

RESULTS.

MOST CORRELATED AREAS
From: To:
Anterior temporal lobe, lateral part, S → Parahippocampal and ambient gyri, D
Anterior temporal lobe, lateral part, S → Middle and inferior temporal gyrus, S
Middle and inferior temporal gyrus, S → Hippocampus, S
Hippocampus, S → Parahippocampal and ambient gyri, D

Positive

Hippocampus, S → Middle and inferior temporal gyrus, S
From: To:
Pre-subgenual frontal cortex, S → Lateral orbital gyrus, D
Pre-subgenual frontal cortex, S → Lateral orbital gyrus, S
Putamen, D → Cerebellum, S
Precentral gyrus, D → Lateral ventricle (excluding temporal horn), S

Negative

Cuneus, D → Pre-subgenual frontal cortex, D

reduction when a plateau of the metric is reached. As result,
the 98% accuracy is reached in 167 epochs.
Once the network is trained, the classification block is removed
and the two distances are extracted from each pair of signals.
In this way, we obtain a connectivity map for each patient
from both healthy and ADHD subjects. To be comparable,
we apply a within-subjects min-max scaling; hence, each map
is scaled according to the minimum and maximum of each
subject. Then, we average together the maps following the
group they belong. Figure 3 summarizes the average results.
As previously explained, a classification task on the maps

Fig. 3. Average correlation map for both ADHD and healthy subjects. On
both axes, the number of each Hammer’s area is reported. Colorbar displays
the similarity score which ranges from 0 to 1.

cannot be performed due to the curse of dimensionality [24].
For this reason, the ten most correlated features, five positives,
and five negatives are extracted. Table I summarize these areas.
Positively correlated features are mostly related to ADHD
subjects while negative to CTR subjects since in our analysis
ADHD is coded as class (1) while healthy to class (-1).

IV. DISCUSSION

In the present work, we use DL for mapping the connectivity
between brain areas through the recognition of similar signals,
one from each area due to the distribution of curves extracted
with FDA methods. As shown in Figure 3, the average out-
comes of the two groups after normalization are quite different.
A different activation pattern can be seen in the top right and
the bottom left area of the map. These findings are confirmed
by the results of the feature selection applied through logistic
regression. The areas involved, as reported in Table I, belong
to four main sites: the frontal cortex, the limbic system,



the cerebellum, and the basal ganglia. According to previous
literature, these areas are among the most involved in the
ADHD disturb [26]. The frontal cortex is related to attention
mechanisms and organization [26], [27] suggests that this area
is impaired in subjects affected by ADHD. Conversely, the
limbic system, cerebellum, and basal ganglia are associated
with behavior, emotions, and impulsivity. An impairment of
these areas could explain the symptoms of ADHD subject [26],
[28]. Subjects affected by ADHD are characterized by, apart
from the concentrating issues, restlessness, and impulsivity.
The main limitation of our approach is the computational
cost concerning the gold standard. On contrary, our method
is highly non-linear and includes a preprocessing part. No
noise reduction is manually performed on data, except for
the initial filtering. The network is freely left to learn a
latent representation useful for similarity recognition. Another
main advantage is the complete model-agnosticism since no
assumptions about the model itself are made.

V. CONCLUSION

In this work, we present a method for investigating func-
tional connectivity based on DL supported by FDA. The
developed network, inspired by metric learning, aims at
evaluating the similarity and directionality between regions
using a distance metric. In addition, the network is built
to give more relevance to time features through the use of
bidirectional layers and causal convolution. Results on ADHD
and healthy subjects suggest an initial step in that direction.
The most involved areas, extracted through logistic regression
feature selection, are the ones correlated with the pathology
considered. Further investigation of this approach could lead
to a new way of looking at functional connectivity; not only
for the evaluation of the directionality of the information but
also for its robustness due to the encoding with a convolutional
layer.
Future works will include a more detailed investigation of the
method such as an evaluation of other distance metrics, as
well as an application of the method to another subgroup of
the same dataset such as bipolar disorder. Another interesting
point could be the implementation of graph deep learning
methods to extract only the informative network from the
generated adjacency matrix. Finally, due to the intrinsic model-
agnosticism of the method, we could try to adapt the domain
to other signals such as EEG.
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