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SUMS OF MULTIVARIATE POLYNOMIALS IN FINITE SUBGROUPS

PAOLO LEONETTI AND ANDREA MARINO

Abstract. Let R be a commutative ring, f ∈ R[X1, . . . ,Xk] a multivariate polynomial, and

G a finite subgroup of the group of units of R satisfying a certain constraint, which always

holds if R is a field. Then, we evaluate
∑

f(x1, . . . , xk), where the summation is taken over all

pairwise distinct x1, . . . , xk ∈ G. In particular, let ps be a power of an odd prime, n a positive

integer coprime with p− 1, and a1, . . . , ak integers such that ϕ(ps) divides a1 + · · ·+ ak and

p− 1 does not divide
∑

i∈I
ai for all non-empty proper subsets I ⊆ {1, . . . , k}; then

∑
x
a1

1
· · ·x

ak
k

≡
ϕ(ps)

gcd(n, ϕ(ps))
(−1)k−1(k − 1)! mod ps,

where the summation is taken over all pairwise distinct n-th residues x1, . . . , xk modulo ps

coprime with p.

1. Introduction

The aim of this article is to evaluate certain types of symmetric sums of distinct elements taken

in a subgroup of the group of units of a commutative ring (hereafter, rings are always assumed

to be unital and non-trivial). This includes, for instance, the case of sums of multivariate

polynomials taking distinct values in the set of n-th residues modulo a prime. The first result

of this type was obtained by Pierce [9], who proved that an integral symmetric homogeneous

function of degree d of the n-th residues of an odd prime p is divisible by p if d is not divisible

by (p − 1)/gcd(n, p− 1). Here, in particular, we evaluate sums of polynomials of n-th residues

in the remaining case.

Moreover, symmetric sums of functions taking distinct values in a given set have been already

studied in the literature: Ferrers [6] proved the folklore result that an odd prime p divides the sum

of the products of the numbers 1, . . . , p− 1, taken k together, whenever k < p− 1. Afterwards,

this theorem was increasingly generalized by Glaisher [5], Moritz [8], and Ricci [10]. All these

results provide, in turn, generalizations of Wilson’s theorem. Within this context, the proof of

the celebrated Erdős–Ginzburg–Ziv theorem [1] provided by Gao [4] shows a clear connection

between zero-sum problems in additive number theory and the study of sums of symmetric

functions.
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Here below, let R be a commutative ring and G a finite subgroup of invertible elements with

n := |G| and denote by λ the exponent of G. (We refer to § 2 for notations used, but not

defined, here.) Given a multivariate polynomial f ∈ R[X1, . . . , Xk] and k ∈ N+ with k ≤ n, we

provide a method to evaluate symmetric sums of the form
∑

x1,...,xk ∈G
x1,...,xk pairwise distinct

f(x1, . . . , xk),

whenever a certain condition which relates the structure of G and the regular elements of R is

satisfied.

Since f can be written as a finite sum of monomials rXa1

1 · · ·Xak

k for some r ∈ R and

a1, . . . , ak ∈ N, it is enough to evaluate symmetric sums of the form

p(A) :=
∑

x1,...,xk ∈G
x1,...,xk pairwise distinct

xa1

1 · · ·xak

k . (1)

Here, A stands for the multiset of integer exponents {a1, . . . , ak} (note that the order of the

elements of A does not matter since (1) is symmetric in x1, . . . , xn).

It is worth noting that, by Lagrange’s theorem (see e.g. [7]), the order of each elements g ∈ G

divides |G|, hence λ divides |G|. However, if R is the ring Zm of integers modulo m and G its

subgroup of units, then the exponent of G and ϕ(m) (that is |G|) have different normal orders,

see Erdős, Pomerance and Schmutz [2].

2. Notation

Through the paper, Z, N, and N+ stand, respectively, for the set of integers, non-negative

integers, and positive integers. We use Zm for the ring of integers modulo m.

Unless stated otherwise, R stands always for a (non-trivial) commutative ring with a (non-

zero) multiplicative identity, denoted by 1. In this respect, let D be the set of non-regular

elements of R (we recall that r ∈ R is said to be non-regular if there exists a non-zero t ∈ R

such that rt = 0; in particular, 0 ∈ D).

Then, G denotes a (non-empty) finite subgroup of the group of units of R. The order of each

g ∈ G is ord(g) := min{n ∈ N+ : gn = 1}, while the exponent of G, denoted by λ, is the least

common multiple of {ord(g) : g ∈ G} (however, it is easy to see that, since G is a finite abelian

group, then there exists g ∈ G such that λ = ord(g)).

We assume by convention that empty sums are equal to 0. Given a finite non-empty multiset

X of integers (that is, a set where repetitions are allowed), we define the sum of its elements by

s(X) :=
∑

x∈X x. Accordingly, given the multiset of integer exponents A and a subset B ⊆ A,

let P(B) represent the collection of the partitions P of B such that λ divides s(P ) for all P ∈ P

(in particular, P(B) = ∅ if λ does not divide s(B)). Lastly, define the characteristic number

of B by

χ(B) := |G|(−1)|B|−1(|B| − 1)!.
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We refer to [7] for basic aspects of algebra and number theory (including notation and terms

not defined here).

3. Main results

Theorem 1. Let R be a ring, G = {x1, . . . , xn} a finite subgroup of its group of units, and

f : Gn → R a symmetric homogeneous function of degree d such that there exists g ∈ G for

which gd − 1 is regular. Then f(x1, . . . , xn) = 0.

Proof. Since G is a group, it is then clear that the function G → G : x 7→ gx is bijective, hence

{gx1, . . . , gxn} = G. Therefore, using that f is symmetric and homogeneous of degree d, we

have

0 = gdf(x1, . . . , xn)− gdf(x1, . . . , xn) = gdf(x1, . . . , xn)− f(gx1, . . . , gxn)

= gdf(x1, . . . , xn)− f(x1, . . . , xn)

= (gd − 1)f(x1, . . . , xn).

The claim follows from the hypothesis that gd − 1 is regular. �

We state the following corollary, mainly for future references:

Corollary 1. Let R be a commutative ring, G a finite subgroup of its group of units, and

A = {a1, . . . , ak} a non-empty multiset of integers for which there exists g ∈ G such that

gs(A) − 1 is regular. Then p(A) = 0.

Proof. Let Φ : Gn → R be the map defined by

(g1, . . . , gn) 7→
∑

x1,...,xk ∈{g1,...,gn}
x1,...,xk pairwise distinct

xa1

1 · · ·xak

k ,

where Φ(g1, . . . , gn) = 0 whenever there are no pairwise distinct elements x1 . . . , xk in the

multiset {g1, . . . , gn}, cf. § 2. Then Φ is a symmetric homogeneous function of degree s(A). At

this point, the claim follows from Theorem 1, since there exists g ∈ G such that gs(A) − 1 is

regular. �

In particular, under the assumptions of Corollary 1, λ does not divide s(A) (indeed, in the

opposite case, we would have gs(A) − 1 = 0 for all g ∈ G).

It is also easily seen, as a consequence of Theorem 1, that:

Corollary 2. Let R be an integral domain, G a finite subgroup of its group of units, and

f : Gn → R a symmetric homogeneous function of degree d such that λ does not divide d. Then

f(x1, . . . , xn) = 0.

Proof. It follows by Theorem 1 that it is sufficient to show that there exists g ∈ G for which

gd− 1 is regular. Since λ does not divide d, there exists g ∈ G such that gd 6= 1, i.e., gd− 1 6= 0.

The claim follows from the fact that 0 is the unique non-regular element in R. �
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This provides a generalization of Pierce’s result [9, Theorem 1], which corresponds to the case

where R is the field Zp, for some odd prime p, and G is the cyclic subgroup of non-zero n-th

residues modulo p.

In particular, if R is an integral domain and λ does not divide s(A), then p(A) = 0 (we avoid

further details, cf. Corollary 1).

On the other hand, Corollary 2 does not say anything related to the case where the exponent

of G divides s(A). In this regard, we state our main result:

Theorem 2. Let R be a commutative ring, G a finite subgroup of its group of units, and

A = {a1, . . . , ak} a non-empty multiset of integers such that, for every B ⊆ A for which λ does

not divide s(B), there exists g ∈ G such that gs(B) − 1 is regular. Then
∑

x1,...,xk ∈G
x1,...,xk pairwise distinct

xa1

1 · · ·xak

k =
∑

P∈P(A)

∏

P∈P

χ(P ). (2)

Note that the result simplifies if R is actually a field:

Corollary 3. Let R be a field, G a finite subgroup of its group of units, and A = {a1, . . . , ak}

a non-empty multiset of integers. Then the identity (2) holds.

Moreover, hypotheses of Theorem 2 are verified in the following case:

Corollary 4. Let R be a commutative ring with finitely many non-regular elements, G a finite

subgroup of its group of units, and A = {a1, . . . , ak} a non-empty multiset of integers such that

λ divides s(A) and, for each B ⊆ A for which λ does not divide s(B), there exists g ∈ G such

that
ord(g)

gcd(s(B), ord(g))
≥ |D|+ 1. (3)

Then the identity (2) holds.

However, it follows from [3, Theorem I] that any commutative ring having finitely many

non-regular elements and which is not an integral domain is necessarily finite.

Corollary 5. Let R be a commutative ring, G a finite subgroup of its group of units, and

A = {a1, . . . , ak} a non-empty multiset of integers. Let also P1, . . . , Pm be prime ideals of R

and suppose that:

(c1) P1 ∩ · · · ∩ Pm = {0};

(c2) Pi + Pj = R for all 1 ≤ i < j ≤ m;

(c3) |G| = |G/P1| · · · |G/Pm|;

(c4) the exponent of G/Pi is equal to λ for all i = 1, . . . ,m.

Then the identity (2) holds.

The proof of Theorem 2 follow in § 4, while Corollaries 3 – 5 are proved in § 5. Some

applications and concluding remarks follow in § 6.
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4. Proof of Theorem 2

The core of the proof of Theorem 2 is to reduce the problem from sums over distinct entries

to sums over single entries. This will be achieved with the aid of convolution and inversion

formula in partially ordered sets. Then, sums over free entries will be factorized and reduced

sums over a single entry, which will be worked out with the help of Theorem 1.

Proof of Theorem 2. Let Part be the collection of partitions of {1, . . . , k} partially ordered by

refinement, that is, P ≤ Q for some P ,Q ∈ Part if and only if for each P ∈ P there exists

Q ∈ Q such that P ⊆ Q. We denote by 0 and 1 its minimum and maximum element, i.e.,

0 = {{1}, . . . , {k}} and 1 = {1, . . . , k}.

We refer to [11, § 3.10] for a thorough account of basic properties of Part.

Let Int represent the set of pairs (P ,Q) ∈ Part×Part such that P ≤ Q. In other words, the

order interval [P ,Q] is non-empty if and only if (P ,Q) ∈ Int. Lastly, let ζ denote the indicator

function of Int, that is, ζ(P ,Q) = 1 whenever P ≤ Q, otherwise ζ(P ,Q) = 0.

At this point, let F be the set of functions Int → R, equipped with the convolution product

∗ defined by

(f ∗ g)(P ,Q) =
∑

P≤R≤Q

f(P ,R) g(R,Q).

for all f, g ∈ F and P ,Q ∈ Part with P ≤ Q (in particular, the sum is non-empty).

For each x = (x1, . . . , xk) ∈ Gk, we write Px for the partition induced by the equivalence

relation ∼ on {1, . . . , k} for which i ∼ j if and only if xi = xj . Accordingly, define the functions

α, β ∈ F such that

α(P ,Q) =
∑

x∈Gk,P≤Px≤Q

xa1

1 · · ·xak

k

and

β(P ,Q) =
∑

x∈Gk,Px=P

xa1

1 · · ·xak

k

for each (P ,Q) ∈ Int. In this respect, note that p(A) = α(0,0) and α(P ,P) = β(P ,Q) for all

P ,Q ∈ Part with P ≤ Q.

Claim 1. ζ ∗ β = α.

Proof. It is enough to observe that, for all P ,Q ∈ Part with P ≤ Q, it holds

(ζ ∗ β)(P ,Q) =
∑

P≤R≤Q

β(R,Q)

=
∑

P≤R≤Q

∑

x∈Gk,Px=R

xa1

1 · · ·xak

k

=
∑

x∈Gk,P≤Px≤Q

xa1

1 · · ·xak

k = α(P ,Q).

�
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Let µ denote the Mőbius function (in F ), that is, the inverse of ζ with respect to the

convolution ∗. (The existence of µ follows by [11, Proposition 3.6.2], which however deals with

field-valued functions. On the other hand, the proof of the mentioned result relies only on the

invertibility of ζ(P ,P) = 1. Hence, µ exists also if we consider ring-valued functions.)

Claim 2. p(A) =
∑

P∈Part µ(0,P)α(P ,1).

Proof. It follows from Claim 1 and the associativity of the convolution ∗ that

µ ∗ α = µ ∗ (ζ ∗ β) = (µ ∗ ζ) ∗ β = β.

In particular, we obtain

p(A) = α(0,0) = β(0,1) =
∑

x∈Gk, 0≤P≤1

µ(0,P)α(P ,1),

which is equivalent to the required identity. �

At this point, it follows by [11, Example 3.10.4] that

µ(0,P) =
∏

P∈P

(−1)|P |−1(|P | − 1)!. (4)

Moreover, for each P ∈ Part, define

PA := {{ai : i ∈ P} : P ∈ P}.

Then, we can show that:

Claim 3. α(P ,1) = |G||P| if PA ∈ P(A), and α(P ,1) = 0 otherwise.

Proof. Let us say that P = {P1, . . . , Ps}. In addition, for each i = 1, . . . , s, denote by yi the

common value of the xjs for which j ∈ Pi and define bi :=
∑

j∈Pi
aj (hence {b1, . . . , bs} =

{s(B) : B ∈ PA}. Grouping together these xjs, it follows that

α(P ,1) =
∑

x∈Gk,P≤Px

xa1

1 · · ·xak

k =
∑

y∈Gs

yb11 · · · ybss =

s
∏

i=1

∑

g∈G

gbi .

Suppose that λ does not divide bi for some i = 1, . . . , s. By hypothesis, there exists g ∈ G

such that gbi − 1 is regular, and it follows by Theorem 1 that
∑

g∈G gbi = 0, hence α(P ,1) = 0.

Otherwise, λ divides each bi, that is, PA ∈ P(A). Since gbi = 1 for each i = 1, . . . , s and

g ∈ G, we conclude that α(P ,1) =
∏s

i=1

∑

g∈G 1 = |G|s. �
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It follows from Claim 2, (4), and Claim 3, respectively, that

p(A) =
∑

P∈Part

µ(0,P)α(P ,1)

=
∑

P∈Part

(

∏

P∈P

(−1)|P |−1(|P | − 1)!

)

α(P ,1)

=
∑

P∈Part,PA∈P(A)

(

∏

P∈P

(−1)|P |−1(|P | − 1)!

)

|G||P|.

By the fact that |P| = |PA| for each P ∈ Part, we conclude that

p(A) =
∑

P∈Part,PA∈P(A)

∏

P∈P

|G|(−1)|P |−1(|P | − 1)! =
∑

P∈P(A)

∏

P∈P

χ(P ).

�

5. Proof of Corollaries

Proof of Corollary 3. According to Theorem 2, it is enough to verify that, for each subset B ⊆ A

such that λ does not divide s(B), there exists g ∈ G such that gs(B) − 1 is regular. Note that

the subgroup of units gs(B), with g ∈ G, contains at least two elements. Since 0 is the unique

non-regular element in R, it follows that there exists g ∈ G such that gs(B) − 1 is invertible,

hence regular. �

Proof of Corollary 4. Again, it is enough to check the hypotheses of Theorem 2 hold true. To

this aim, note that the subgroup of units gs(B), with g ∈ G, contains

max
g∈G

ord(g)

gcd(s(B), ord(g))

distinct elements. In turn, according to (3), this is strictly greater than the number of non-

regular elements in R. It follows that, for each subset B ⊆ A such that λ does not divide s(B),

there exists g ∈ G such that gs(B) − 1 is regular. �

Proof of Corollary 5. Define Gi := G/Pi for each i = 1, . . . ,m, denote by λi the exponent of

each Gi, and note that, since the Pis are prime ideals, each factor ring R/Pi is an integral

domain (hence, Gi stands for the projection of G in R/Pi). According to Chinese Remainder

theorem (and using hypotheses (c1) – (c3)), we obtain the (surjective) isomorphism

R ≃
R

P1 ∩ · · · ∩ Pm

≃
R

P1
× · · · ×

R

Pm

. (5)

At this point, fix a subset B ⊆ A such that λ does not divide s(B). Note that, according to

Theorem 2, it would be enough to verify that there exists g ∈ G such that gs(B) − 1 is regular.

Using (5), we have G ≃ G1 × · · · ×Gm. Hence, denoting by (g1, . . . , gm) ∈ G1 × · · · ×Gm the

isomorphic element of g ∈ G, we have equivalently to prove that there exist g1 ∈ G1, . . . , gm ∈

Gm such that g
s(B)
i − 1 is regular in Gi for each i = 1, . . . ,m.
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Thanks to (c4), each λi does not divide s(B). In particular, the subgroup {g
s(B)
i : gi ∈ Gi}

is not a singleton. To conclude, it is enough to observe that 0 is the unique non-regular element

in the integral domain R/Pi, therefore there exists gi ∈ Gi such that g
s(B)
i − 1 is regular. �

6. Applications and Concluding Remarks

In this section, we provide some concrete applications of our previous results. At first, we

obtain a result of Pierce [9]:

Corollary 6. Let p be an odd prime and n, k ∈ N+ such that there are exactly 2k non-zero n-th

residues modulo p. Then

∑

{x1,...,xk} pairwise distinct n-th residues mod p

x2
1 · · ·x

2
k ≡ 2(−1)k−1 mod p. (6)

Proof. Set R = Zp and G equals to its subgroup of non-zero n-th residues. Note that, by

hypothesis, it holds

|G| = λ =
p− 1

gcd(n, p− 1)
= 2k.

In addition, by the fact the permutations of a tuple (x1, . . . , xk) are not counted in (6), we have

∑

{x1,...,xk} pairwise distinct n-th residues mod p

x2
1 · · ·x

2
k =

1

k!
p(A)

Here, A is the multiset {2, . . . , 2}, where the 2 repeats k times. The claim follows by Corollary

3, indeed P(A) = {{A}} so that

p(A) ≡ χ(A) = |G|(−1)k−1(k − 1)! = 2(−1)k−1k! mod p. (7)

�

However, the above proof reveals that congruence (7) holds even if that the multiset of

exponents {2, . . . , 2} is replaced by a multiset of positive integers A = {a1, . . . , ak} such that

s(A) = 2k.

We conclude with the following two applications of the ring Zm with m prime power and m

squarefree, respectively.

Corollary 7. Let ps be a power of an odd prime, fix n ∈ N+ coprime with p − 1, and fix

a1, . . . , ak ∈ Z such that ϕ(ps) divides a1 + · · · + ak and p − 1 does not divide
∑

i∈I ai for all

non-empty proper subsets I ⊆ {1, . . . , k}. Then

∑

xa1

1 · · ·xak

k ≡
ϕ(ps)

gcd(n, ϕ(ps))
(−1)k−1(k − 1)! mod ps,

where the summation is taken over all pairwise distinct n-th residues x1, . . . , xk modulo ps

coprime with p.
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Proof. Set R = Zps and let G be equal to the cyclic subgroup of R of (non-zero) n-th residues

coprime with p. Let q be a primitive root modulo ps so that G is the subgroup generated by qn

and

|G| = λ =
ϕ(ps)

gcd(n, ϕ(ps))
=

ps−1

gcd(n, ps−1)
(p− 1).

Therefore, p−1 divides λ which, in turn, divides ϕ(ps). It follows by the standing assumptions

that λ divides s(B), for some B ⊆ A, if and only if B = ∅ or B = A. In particular, this implies

that P(A) = {{A}}.

Lastly, fix a non-empty proper subset B ⊆ A. We claim that there exists g ∈ G such that

gs(B) − 1 is not multiple of p, hence regular. Indeed, we obtain in Zps that

{gs(B) − 1 : g ∈ G} = {qs(B)nr − 1 : r = 1, . . . , λ}

Since n is coprime with p−1 and p−1 does not divide s(B), then p−1 does not divide s(B)n. It

follows that there exists a non-zero n-th residues modulo ps which has not remainder 1 modulo

p. The claim follows by Theorem 2, indeed p(A) ≡ χ(A) = λ(−1)k−1(k − 1)! mod ps. �

Corollary 8. Let p1, . . . , pr be pairwise distinct odd primes, define d := gcd(p1 − 1, . . . , pr − 1),

and fix a1, . . . , ak ∈ N+ such that a1 + · · ·+ ak = d. Then

∑

xa1

1 · · ·xak

k ≡
ϕ(p1 · · · pr)

dr
(−1)k−1(k − 1)! mod p1 · · · pr,

where the summation is taken over all pairwise distinct x1, . . . , xk modulo p1 · · · pr coprime with

p1 · · · pr such that each xi is a
pj−1
d

-th residue modulo pj for all j = 1, . . . , r.

Proof. We will verify that the hypotheses of Corollary 5 hold. In this regard, set R = Zp1···pr
and

G its subgroup of (non-zero) d-th residues modulo p1 · · · pr coprime with p1 · · · pr. Moreover,

denote by Pi the prime ideal piZ for each i = 1, . . . , r. It is straighforward to check the

conditions (c1) – (c3) hold. In addition, we have λ = d, indeed xd ≡ 1 (mod pi) for each x ∈ G

and i = 1, . . . , r. On the other hand, λi = d for each i = 1, . . . , r, hence (c4) is also verified.

Lastly, note that P(A) = {{A}}, which allows us to conclude that

p(A) ≡ χ(A) = |G|(−1)k−1(k − 1)!

= |G1| · · · |Gr |(−1)k−1(k − 1)! =
ϕ(p1 · · · pr)

dr
(−1)k−1(k − 1)! mod p1 · · · pr.

�

To conclude the section, define

A♮ := {a ∈ A : λ does not divide a} and ℓ := |A♮|.

Claim 4. If A♮ 6= ∅ then p(A) = (n− ℓ)(n− ℓ− 1) · · · (n− k + 1)p(A♮).

Proof. It is enough to note that, if A♮ = {a1, . . . , aℓ} and ℓ ∈ N+, then each summand xa1

1 · · ·xaℓ

ℓ

in p(A♮) appears in (1) exactly (n− ℓ)!/(n− k)! times. �
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Accordingly, if the assumptions the Theorem 2 hold and A♮ 6= ∅, then

p(A) =
(n− ℓ)!

(n− k)!

∑

P∈P(A♮)

∏

P∈P

χ(P )

=
(n− ℓ)!

(n− k)!

∑

P∈P(A♮)

n|P|
∏

P∈P

(−1)|P |−1(|P | − 1)!

= (−1)k
(n− ℓ)!

(n− k)!

∑

P∈P(A♮)

(−n)|P|
∏

P∈P

(|P | − 1)!.
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