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A CHARACTERIZATION OF CESÀRO CONVERGENCE

PAOLO LEONETTI

Abstract. We show that a real bounded sequence (xn) is Cesàro convergent
to ℓ if and only if the sequence of averages with indices in [αk, αk+1) converges
to ℓ for all α > 1. If, in addition, the sequence (xn) is nonnegative, then it is
Cesàro convergent to 0 if and only if the same condition holds for some α > 1.

1. Introduction.

A real sequence x = (xn)n≥1 is said to be Cesàro convergent to ℓ ∈ R if

lim
n→∞

1

n

n
∑

k=1

xn = ℓ.

This is a weaker notion than ordinary convergence: indeed, it involves a kind
of smoothing of the original sequence by computing its partial averages. The
detailed theory of Cesàro convergence is discussed in Hardy’s classic textbook [5].
The vector space w1 of strongly Cesàro convergent sequences x (i.e., the sequences
such that limn→∞

1
n

∑n
i=1 |xn − ℓ| = 0 for some ℓ ∈ R), endowed with the norm

‖x‖ = sup
n≥1

1

2n

∑

2n≤k<2n+1

|xk|,

turns out to be a Banach space; see [7]. A characterization of strong Cesàro
convergence for bounded sequences with statistical convergence can be found, for
example, in [2, Theorem 2.1]; see [3] for extensions with summability methods.

In a different context, it is known that a set A of positive integers has asymptotic

density 0, that is, limn→∞
1
n
#(A ∩ [1, n]) = 0 (see, e.g., [6]), if and only if

lim
n→∞

1

2n
#(A ∩ [2n, 2n+1)) = 0;

see [1, Lemma 3.1] and compare with the proof of [4, Theorem 1.13.3(a)]. Here,
#S stands for the cardinality of a set S. Identifying A with the sequence (xn)n≥1

such that xn = 1 if n ∈ A and xn = 0 otherwise, as in [8], the latter result can be
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rephrased as follows: a {0, 1}-valued sequence (xn)n≥1 is Cesàro convergent to 0
if and only if

lim
n→∞

1

2n

∑

2n≤k<2n+1

xk = 0. (1)

This happens, for example, if (xn)n≥1 is the sequence associated with A =
⋃

n≥1{2
n+

1, . . . , 2n+n}. First of all, we note that the condition that the sequence is {0, 1}-
valued cannot be omitted: indeed, the sequence (xn)n≥1 defined by

xn =

{

1 if 2k ≤ n < 3 · 2k−1 for some k ≥ 1

−1 otherwise,
(2)

satisfies the limit (1) and, on the other hand, lim supn→∞
1
n

∑n
k=1 xk = 1

4
(com-

puted along the subsequence (3 · 2k)k≥1). This example implies that, even for
bounded sequences, (1) need not be equivalent to Cesàro convergence.

However, replacing the base 2 in condition (1) with all bases α > 1, gives
a characterization of Cesàro convergence for bounded sequences, which is the
content of our main result:

Theorem 1.1. A bounded sequence (xn) is Cesàro convergent to ℓ if and only if

lim
k→∞

1

αk+1 − αk

∑

αk≤i<αk+1

xi = ℓ for all α > 1.

However, Theorem 1.1 does not explain why only the base α = 2 appears in
(1). In this regard, note that a nonnegative sequence (xn)n≥1 is Cesàro convergent
to 0 if and only if it is strongly Cesàro convergent to 0. Hence, condition (1) is
justified by the following:

Theorem 1.2. A bounded nonnegative sequence (xn) is Cesàro convergent to 0
(hence, strongly Cesàro convergent to 0) if and only if

lim
k→∞

1

αk+1 − αk

∑

αk≤i<αk+1

xi = 0 for some α > 1.

Of course, Theorem 1.2 holds by replacing 0 with an arbitrary ℓ and using
the hypothesis that xn ≥ 0 with xn ≥ ℓ for all n. We chose ℓ = 0 to ease the
exposition.

The proofs, which are completely elementary, follow in the next sections.

2. Proof of Theorem 1.1.

For each α > 1 and j ∈ N, define

Iα,j := [αj−1, αj) ∩N.
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Assume by convention that 1
#Iα,j

:= 0 if Iα,j is empty. Thus, for each α > 1, we

have limj→∞
1

#Iα,j
· (αj − αj−1) = 1. Moreover, for each n, j ∈ N

+, set

an :=
1

n

n
∑

i=1

xi and bj :=
1

#Iα,j

∑

i∈Iα,j

xi.

Finally, note that we can suppose without loss of generality that ℓ = 0.

If part. Suppose that limj→∞ bj = 0. Fix ε > 0, so that there exists t0 ∈ N
+

such that |bt| < ε for all t ≥ t0. Define θ := supn |xn| and assume that θ > 0;
otherwise the statement is trivially true. Also fix α > max{1, 2θ

ε
}, and n, k ∈ N

+

such that n ≥ αt0 max{1, θ
ε
, 1
θ
} and n ∈ Iα,k. Then

nan =

n
∑

i=1

xi =

k−1
∑

j=1

wjbj +
∑

i∈Iα,k∩ [1,n]

xi, (3)

where wj := #Iα,j for each j ∈ N
+. Note that

∑

j≤t−1wj ≤ αt for all t ∈ N
+.

Since n ≥ αt0 , we have k − 1 ≥ t0, so that

an =
1

n





t0−1
∑

j=1

wjbj +

k−1
∑

j=t0

wjbj +
∑

i∈Iα,k∩ [1,n]

xi



 .

Considering that an is the average of all bj (with j ≤ k − 1), each repeated wj

times, and the remaining xi (with i ∈ Iα,k ∩ [1, n]), we obtain that

|an| ≤
1

n





t0−1
∑

j=1

wj|bj |+

k−1
∑

j=t0

wj|bj |+
∑

i∈Iα,k∩ [1,n]

|xi|





≤
1

n





t0−1
∑

j=1

wjθ +
k−1
∑

j=t0

wjε+
∑

i∈[n(1−1/α),n]

θ





≤
1

n

(

θαt0 + nε+#[n(1− 1/α), n] · θ
)

≤
θαt0

n
+ ε+

θ

α
+

1

n
≤

θαt0

n
+ ε+

2θ

α
≤ ε+ ε+ ε.

(4)

In the second line, we used that Iα,k∩ [1, n] is contained in [αk−1, αk]∩ [1, n], which
is, in turn, contained in [n(1− 1

α
), n]; also, in the last line, we used the inequalities

n ≥ αt0 θ
ε
, 1

n
≤ θ

αt0
≤ θ

α
, and α ≥ 2θ

ε
.

By the arbitrariness of ε, we conclude that limn→∞ an = 0.

Only If part. Suppose that limn→∞ an = 0 and fix α > 1. For each j ∈ N,
define ιj := ⌈αj−1⌉ and note that ιj = min Iα,j if j is sufficiently large. Reasoning
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as in (3), we obtain that

(ιk+1 − ιk)bk =
∑

i∈Iα,k

xi =
∑

i<ιk+1

xi −
∑

i<ιk

xi = aιk+1−1(ιk+1 − 1)− aιk−1(ιk − 1)

whenever k is sufficiently large. This implies that

lim
k→∞

bk = lim
k→∞

aιk+1−1 · lim
k→∞

ιk+1 − 1

ιk+1 − ιk
− lim

k→∞
aιk−1 · lim

k→∞

ιk − 1

ιk+1 − ιk
= 0,

completing the proof.

3. Proof of Theorem 1.2.

If part. The proof proceeds along the same lines as the previous result. Here,
we let α > 1 be any fixed number (in particular, not necessarily greater than
2θ/ε) and n, k ∈ N

+ are still taken such that n ≥ αt0 max{1, θ
ε
, 1
θ
} and n ∈ Iα,k.

In addition, we have the following upper estimate:
∑

i∈Iα,k∩ [1,n]

|xi| ≤
∑

i∈Iα,k

xi = bk ≤ ε(αk − αk−1) ≤ εαk ≤ εαn,

where the first inequality depends on the fact the sequence has nonnegative terms.
Therefore, in place of the chain of inequalities (4), we obtain that

|an| ≤
θαt0

n
+ ε+ ε

which is smaller than 3αε if n is sufficiently large.

Only If part. This follows by Theorem 1.1.

4. Concluding Remarks.

In light of Theorem 1.2, one may hope for a characterization of the (upper or
lower) asymptotic density of A ⊆ N in terms of (superior or inferior) limit of
the block averages 1

2n
#(A∩ [2n, 2n+1)), which was the original motivation for this

work. However, this is not possible: the reason is along the same lines as the
example given in (2). Indeed, denote the upper and lower asymptotic density of
a set A ⊆ N by

d
⋆(A) := lim sup

n→∞

1

n
#(A ∩ [1, n]) and d⋆(A) := lim inf

n→∞

1

n
#(A ∩ [1, n]),

respectively, see e.g. [6], and define

As :=
⋃

n≥1
{2n + ⌊s2n−1⌋ + t : t = 1, . . . , 2n−1}
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for each s ∈ [0, 1]. It follows that limn
1
2n
#(As ∩ [2n, 2n+1)) = 1

2
. On the other

hand, none of the As admits asymptotic density: in fact,

d⋆(As) =
1

2 + s
<

2

3 + s
= d

⋆(As)

for each s ∈ [0, 1].

4.1. Acknowledgment. The author is grateful to the editor and the two anony-
mous referees for their remarks that allowed for a substantial improvement of the
presentation.
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