A CHARACTERIZATION OF CESÀRO CONVERGENCE

PAOLO LEONETTI

ABSTRACT. We show that a real bounded sequence (x_n) is Cesàro convergent to ℓ if and only if the sequence of averages with indices in $[\alpha^k, \alpha^{k+1})$ converges to ℓ for all $\alpha > 1$. If, in addition, the sequence (x_n) is nonnegative, then it is Cesàro convergent to 0 if and only if the same condition holds for some $\alpha > 1$.

1. INTRODUCTION.

A real sequence $x = (x_n)_{n \ge 1}$ is said to be *Cesàro convergent* to $\ell \in \mathbf{R}$ if

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} x_n = \ell$$

This is a weaker notion than ordinary convergence: indeed, it involves a kind of smoothing of the original sequence by computing its partial averages. The detailed theory of Cesàro convergence is discussed in Hardy's classic textbook [5]. The vector space w_1 of strongly Cesàro convergent sequences x (i.e., the sequences such that $\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^{n} |x_n - \ell| = 0$ for some $\ell \in \mathbf{R}$), endowed with the norm

$$||x|| = \sup_{n \ge 1} \frac{1}{2^n} \sum_{2^n \le k \le 2^{n+1}} |x_k|,$$

turns out to be a Banach space; see [7]. A characterization of strong Cesàro convergence for bounded sequences with statistical convergence can be found, for example, in [2, Theorem 2.1]; see [3] for extensions with summability methods.

In a different context, it is known that a set A of positive integers has asymptotic density 0, that is, $\lim_{n\to\infty} \frac{1}{n} \#(A \cap [1,n]) = 0$ (see, e.g., [6]), if and only if

$$\lim_{n \to \infty} \frac{1}{2^n} \# (A \cap [2^n, 2^{n+1})) = 0;$$

see [1, Lemma 3.1] and compare with the proof of [4, Theorem 1.13.3(a)]. Here, #S stands for the cardinality of a set S. Identifying A with the sequence $(x_n)_{n\geq 1}$ such that $x_n = 1$ if $n \in A$ and $x_n = 0$ otherwise, as in [8], the latter result can be

²⁰¹⁰ Mathematics Subject Classification. Primary: 40D25. Secondary: 40A05, 40G15.

Key words and phrases. Cesàro convergence; strong Cesàro convergence.

rephrased as follows: a $\{0,1\}$ -valued sequence $(x_n)_{n\geq 1}$ is Cesàro convergent to 0 if and only if

$$\lim_{n \to \infty} \frac{1}{2^n} \sum_{2^n \le k < 2^{n+1}} x_k = 0.$$
 (1)

This happens, for example, if $(x_n)_{n\geq 1}$ is the sequence associated with $A = \bigcup_{n\geq 1} \{2^n + 1, \ldots, 2^n + n\}$. First of all, we note that the condition that the sequence is $\{0, 1\}$ -valued cannot be omitted: indeed, the sequence $(x_n)_{n\geq 1}$ defined by

$$x_n = \begin{cases} 1 & \text{if } 2^k \le n < 3 \cdot 2^{k-1} \text{ for some } k \ge 1 \\ -1 & \text{otherwise,} \end{cases}$$
(2)

satisfies the limit (1) and, on the other hand, $\limsup_{n\to\infty} \frac{1}{n} \sum_{k=1}^{n} x_k = \frac{1}{4}$ (computed along the subsequence $(3 \cdot 2^k)_{k\geq 1}$). This example implies that, even for bounded sequences, (1) need not be equivalent to Cesàro convergence.

However, replacing the base 2 in condition (1) with *all* bases $\alpha > 1$, gives a characterization of Cesàro convergence for bounded sequences, which is the content of our main result:

Theorem 1.1. A bounded sequence (x_n) is Cesàro convergent to ℓ if and only if

$$\lim_{k \to \infty} \frac{1}{\alpha^{k+1} - \alpha^k} \sum_{\alpha^k \le i < \alpha^{k+1}} x_i = \ell \quad \text{for all } \alpha > 1.$$

However, Theorem 1.1 does not explain why only the base $\alpha = 2$ appears in (1). In this regard, note that a *nonnegative* sequence $(x_n)_{n\geq 1}$ is Cesàro convergent to 0 if and only if it is strongly Cesàro convergent to 0. Hence, condition (1) is justified by the following:

Theorem 1.2. A bounded nonnegative sequence (x_n) is Cesàro convergent to 0 (hence, strongly Cesàro convergent to 0) if and only if

$$\lim_{k \to \infty} \frac{1}{\alpha^{k+1} - \alpha^k} \sum_{\alpha^k \le i < \alpha^{k+1}} x_i = 0 \quad \text{for some } \alpha > 1$$

Of course, Theorem 1.2 holds by replacing 0 with an arbitrary ℓ and using the hypothesis that $x_n \ge 0$ with $x_n \ge \ell$ for all n. We chose $\ell = 0$ to ease the exposition.

The proofs, which are completely elementary, follow in the next sections.

2. PROOF OF THEOREM 1.1.

For each $\alpha > 1$ and $j \in \mathbf{N}$, define

$$I_{\alpha,j} := [\alpha^{j-1}, \alpha^j) \cap \mathbf{N}.$$

Assume by convention that $\frac{1}{\#I_{\alpha,j}} := 0$ if $I_{\alpha,j}$ is empty. Thus, for each $\alpha > 1$, we have $\lim_{j\to\infty} \frac{1}{\#I_{\alpha,j}} \cdot (\alpha^j - \alpha^{j-1}) = 1$. Moreover, for each $n, j \in \mathbf{N}^+$, set

$$a_n := \frac{1}{n} \sum_{i=1}^n x_i$$
 and $b_j := \frac{1}{\# I_{\alpha,j}} \sum_{i \in I_{\alpha,j}} x_i.$

Finally, note that we can suppose without loss of generality that $\ell = 0$.

IF PART. Suppose that $\lim_{j\to\infty} b_j = 0$. Fix $\varepsilon > 0$, so that there exists $t_0 \in \mathbf{N}^+$ such that $|b_t| < \varepsilon$ for all $t \ge t_0$. Define $\theta := \sup_n |x_n|$ and assume that $\theta > 0$; otherwise the statement is trivially true. Also fix $\alpha > \max\{1, \frac{2\theta}{\varepsilon}\}$, and $n, k \in \mathbf{N}^+$ such that $n \ge \alpha^{t_0} \max\{1, \frac{\theta}{\varepsilon}, \frac{1}{\theta}\}$ and $n \in I_{\alpha,k}$. Then

$$na_n = \sum_{i=1}^n x_i = \sum_{j=1}^{k-1} w_j b_j + \sum_{i \in I_{\alpha,k} \cap [1,n]} x_i,$$
(3)

where $w_j := \#I_{\alpha,j}$ for each $j \in \mathbf{N}^+$. Note that $\sum_{j \le t-1} w_j \le \alpha^t$ for all $t \in \mathbf{N}^+$. Since $n \ge \alpha^{t_0}$, we have $k - 1 \ge t_0$, so that

$$a_n = \frac{1}{n} \left(\sum_{j=1}^{t_0 - 1} w_j b_j + \sum_{j=t_0}^{k-1} w_j b_j + \sum_{i \in I_{\alpha,k} \cap [1,n]} x_i \right)$$

Considering that a_n is the average of all b_j (with $j \leq k-1$), each repeated w_j times, and the remaining x_i (with $i \in I_{\alpha,k} \cap [1,n]$), we obtain that

$$\begin{aligned} |a_n| &\leq \frac{1}{n} \left(\sum_{j=1}^{t_0-1} w_j |b_j| + \sum_{j=t_0}^{k-1} w_j |b_j| + \sum_{i \in I_{\alpha,k} \cap [1,n]} |x_i| \right) \\ &\leq \frac{1}{n} \left(\sum_{j=1}^{t_0-1} w_j \theta + \sum_{j=t_0}^{k-1} w_j \varepsilon + \sum_{i \in [n(1-1/\alpha),n]} \theta \right) \\ &\leq \frac{1}{n} \left(\theta \alpha^{t_0} + n\varepsilon + \#[n(1-1/\alpha),n] \cdot \theta \right) \\ &\leq \frac{\theta \alpha^{t_0}}{n} + \varepsilon + \frac{\theta}{\alpha} + \frac{1}{n} \leq \frac{\theta \alpha^{t_0}}{n} + \varepsilon + \frac{2\theta}{\alpha} \leq \varepsilon + \varepsilon + \varepsilon. \end{aligned}$$

$$(4)$$

In the second line, we used that $I_{\alpha,k} \cap [1,n]$ is contained in $[\alpha^{k-1}, \alpha^k] \cap [1,n]$, which is, in turn, contained in $[n(1-\frac{1}{\alpha}), n]$; also, in the last line, we used the inequalities $n \ge \alpha^{t_0} \frac{\theta}{\varepsilon}, \ \frac{1}{n} \le \frac{\theta}{\alpha^{t_0}} \le \frac{\theta}{\alpha}, \ \text{and} \ \alpha \ge \frac{2\theta}{\varepsilon}.$ By the arbitrariness of ε , we conclude that $\lim_{n\to\infty} a_n = 0.$

ONLY IF PART. Suppose that $\lim_{n\to\infty} a_n = 0$ and fix $\alpha > 1$. For each $j \in \mathbf{N}$, define $\iota_j := \lceil \alpha^{j-1} \rceil$ and note that $\iota_j = \min I_{\alpha,j}$ if j is sufficiently large. Reasoning

as in (3), we obtain that

$$(\iota_{k+1} - \iota_k)b_k = \sum_{i \in I_{\alpha,k}} x_i = \sum_{i < \iota_{k+1}} x_i - \sum_{i < \iota_k} x_i = a_{\iota_{k+1} - 1}(\iota_{k+1} - 1) - a_{\iota_k - 1}(\iota_k - 1)$$

whenever k is sufficiently large. This implies that

$$\lim_{k \to \infty} b_k = \lim_{k \to \infty} a_{\iota_{k+1}-1} \cdot \lim_{k \to \infty} \frac{\iota_{k+1}-1}{\iota_{k+1}-\iota_k} - \lim_{k \to \infty} a_{\iota_k-1} \cdot \lim_{k \to \infty} \frac{\iota_k-1}{\iota_{k+1}-\iota_k} = 0,$$

completing the proof.

3. PROOF OF THEOREM 1.2.

IF PART. The proof proceeds along the same lines as the previous result. Here, we let $\alpha > 1$ be any fixed number (in particular, not necessarily greater than $2\theta/\varepsilon$) and $n, k \in \mathbb{N}^+$ are still taken such that $n \ge \alpha^{t_0} \max\{1, \frac{\theta}{\varepsilon}, \frac{1}{\theta}\}$ and $n \in I_{\alpha,k}$. In addition, we have the following upper estimate:

$$\sum_{i \in I_{\alpha,k} \cap [1,n]} |x_i| \le \sum_{i \in I_{\alpha,k}} x_i = b_k \le \varepsilon(\alpha^k - \alpha^{k-1}) \le \varepsilon \alpha^k \le \varepsilon \alpha n,$$

where the first inequality depends on the fact the sequence has nonnegative terms. Therefore, in place of the chain of inequalities (4), we obtain that

$$|a_n| \le \frac{\theta \alpha^{t_0}}{n} + \varepsilon + \varepsilon$$

which is smaller than $3\alpha\varepsilon$ if n is sufficiently large.

ONLY IF PART. This follows by Theorem 1.1.

4. Concluding Remarks.

In light of Theorem 1.2, one may hope for a characterization of the (upper or lower) asymptotic density of $A \subseteq \mathbf{N}$ in terms of (superior or inferior) limit of the block averages $\frac{1}{2^n} \#(A \cap [2^n, 2^{n+1}))$, which was the original motivation for this work. However, this is not possible: the reason is along the same lines as the example given in (2). Indeed, denote the upper and lower asymptotic density of a set $A \subseteq \mathbf{N}$ by

$$\mathsf{d}^{\star}(A) := \limsup_{n \to \infty} \frac{1}{n} \# (A \cap [1, n]) \quad \text{ and } \quad \mathsf{d}_{\star}(A) := \liminf_{n \to \infty} \frac{1}{n} \# (A \cap [1, n]),$$

respectively, see e.g. [6], and define

$$A_s := \bigcup_{n \ge 1} \{ 2^n + \lfloor s 2^{n-1} \rfloor + t : t = 1, \dots, 2^{n-1} \}$$

for each $s \in [0,1]$. It follows that $\lim_{n \frac{1}{2^n}} \#(A_s \cap [2^n, 2^{n+1})) = \frac{1}{2}$. On the other hand, none of the A_s admits asymptotic density: in fact,

$$\mathsf{d}_{\star}(A_s) = \frac{1}{2+s} < \frac{2}{3+s} = \mathsf{d}^{\star}(A_s)$$

for each $s \in [0, 1]$.

4.1. Acknowledgment. The author is grateful to the editor and the two anonymous referees for their remarks that allowed for a substantial improvement of the presentation.

References

- M. Balcerzak, P. Das, M. Filipczak, and J. Swaczyna, Generalized kinds of density and the associated ideals, Acta Math. Hungar. 147 (2015), no. 1, 97–115.
- J. S. Connor, The statistical and strong p-Cesàro convergence of sequences, Analysis 8 (1988), no. 1-2, 47–63.
- J. S. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 32 (1989), no. 2, 194–198.
- I. Farah, Analytic quotients: theory of liftings for quotients over analytic ideals on the integers, Mem. Amer. Math. Soc. 148 (2000), no. 702, xvi+177.
- G. H. Hardy, *Divergent series*, Éditions Jacques Gabay, Sceaux, 1992, With a preface by J.
 E. Littlewood and a note by L. S. Bosanquet, Reprint of the revised (1963) edition.
- P. Leonetti and S. Tringali, On the notions of upper and lower density, Proc. Edinb. Math. Soc. (2) 63 (2020), no. 1, 139–167.
- 7. I. J. Maddox, On Kuttner's theorem, J. London Math. Soc. 43 (1968), 285-290.
- A. H. Mekler, Finitely additive measures on N and the additive property, Proc. Amer. Math. Soc. 92 (1984), no. 3, 439–444.

Department of Decision Sciences, Università "Luigi Bocconi", via Roentgen 1, 20136 Milan, Italy

Email address: leonetti.paolo@gmail.com URL: https://sites.google.com/site/leonettipaolo/