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UPPER AND LOWER DENSITIES HAVE THE

STRONG DARBOUX PROPERTY

PAOLO LEONETTI AND SALVATORE TRINGALI

Abstract. Let P(N) be the power set of N. An upper density (on N) is a nondecreasing

and subadditive function µ⋆ : P(N) → R such that µ⋆(N) = 1 and µ⋆(k ·X + h) = 1

k
µ⋆(X)

for all X ⊆ N and h, k ∈ N
+, where k ·X + h := {kx+ h : x ∈ X}.

The upper asymptotic, upper Banach, upper logarithmic, upper Buck, upper Pólya, and

upper analytic densities are examples of upper densities.

We show that every upper density µ⋆ has the strong Darboux property, and so does the

associated lower density, where a function f : P(N) → R is said to have the strong Darboux

property if, whenever X ⊆ Y ⊆ N and a ∈ [f(X), f(Y )], there is a set A such that X ⊆ A ⊆ Y

and f(A) = a. In fact, we prove the above under the assumption that the monotonicity of

µ⋆ is relaxed to the weaker condition that µ⋆(X) ≤ 1 for every X ⊆ N.

1. Introduction

Recently, the authors have introduced, and studied some fundamental aspects of, an “ax-

iomatic theory of densities” [11], tailored to the integers and built around the properties of

certain (set) functions called “upper [quasi-]densities”. These functions are also the subject of

the present manuscript, as our main goal is to prove that they satisfy a kind of “intermediate

value property” we refer to as the strong Darboux property, see § 2 below.

Throughout, we will let H be either Z, N, or N
+. A function µ⋆ : P(H) → R is said to be

an upper density (on H) if, for all X,Y ⊆ H and h, k ∈ N
+, it holds:

(f1) µ⋆(H) = 1;

(f2) µ⋆(X) ≤ µ⋆(Y ) for X ⊆ Y ;

(f3) µ⋆(X ∪ Y ) ≤ µ⋆(X) + µ⋆(Y );

(f4) µ⋆(k ·X) = 1

k
µ⋆(X), where k ·X := {kx : x ∈ X};

(f5) µ⋆(X + h) = µ⋆(X), where X + h := {x+ h : x ∈ X}.

We regard H as a sort of “parameter” allowing for different scenarios and some flexibility, though

it makes almost no difference for this paper to focus on the case H = N.

For future reference, notice that (f4) and (f5) together are equivalent to the following:

(f4♭) µ⋆(k ·X + h) = 1

k
µ⋆(X) for all X ⊆ H and h, k ∈ N

+.
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To ease the exposition, we will occasionally say that µ⋆ is: monotone if it satisfies (f2); subaddi-

tive if it satisfies (f3); and (finitely) additive if µ⋆(X ∪Y ) = µ⋆(X)+µ⋆(Y ) whenever X,Y ⊆ H

and X ∩ Y is empty. On the other hand, we call µ⋆ an upper quasi-density (on H) if it satisfies

(f1), (f3), (f4♭), and the next condition, which is clearly implied by (f1) and (f2):

(f2♭) µ⋆(X) ≤ 1 for every X ⊆ H.

Note that if µ⋆ is an upper quasi-density, then µ⋆(X) = µ⋆(X ∪ X) ≤ 2µ⋆(X) by (f3), which

together with (f2♭) implies that the image of µ⋆ is contained in the interval [0, 1].

Of course, every upper density is an upper quasi-density, and it can be proved that non-

monotone upper quasi-densities do actually exist, see [11, Theorem 1]. In particular, the upper

asymptotic (or natural), upper Banach (or uniform), upper logarithmic, upper Buck, upper

Pólya, and upper analytic densities, together with the upper α-densities (α ≥ −1), are upper

densities in the sense of the above definitions, see [11, § 3 and Examples 4-6 and 8].

All these densities, along with many others, have been the subject of a great deal of research,

and some of them have played a prominent role in the development of (probabilistic and additive)

number theory and some areas of analysis and ergodic theory. Roughly speaking, one reason for

this is that densities provide an effective alternative to measures in the study of the interrelation

between the “structure” of a set of integers and some kind of information about its “largeness”,

a general principle that is brightly illustrated by the Erdős-Turán conjecture [20, § 35.4] that

any set X of positive integers such that
∑

x∈X
1

x
= ∞ contains arbitrarily long arithmetic

progressions; see also [11] and references therein for other pointers.

Given an upper [quasi-]density µ⋆ on H, we refer to µ⋆ : P(H) → R : X 7→ 1 − µ⋆(Xc) as

the lower [quasi-]density associated to µ⋆. It has been shown in [11, Theorem 2] that the image

of µ⋆, and hence also of µ⋆, is the entire interval [0, 1]. The ultimate goal of the present paper

is to prove that these results can be considerably strengthened.

Before proceeding to details, a remark is in order: While it is arguable that non-monotone

quasi-densities are not very interesting from the point of view of applications, it seems meaningful

to establish if certain properties of a specific class of objects depend or not on a particular

assumption (in the present case of interest, the axiom of monotonicity), as this may provide a

better understanding of the objects themselves. That is basically our motivation for considering

upper quasi-densities, instead of restricting our attention to upper densities.

We refer to [11], and particularly to §§ 2–3 therein, for notation, terminology and conventions

used, but not explained, in this work. Note that measures will always be functions Σ → R for

which Σ is a sigma-algebra, but unless otherwise specified, they do not need to be nonnegative

or countably additive (that is, they may be signed or finitely additive).

We use the letters h, i, and k, with or without subscripts, for nonnegative integers, the letter

n for a positive integer, and the letter s for a positive real. In our notations, 0 ∈ N.

2. Darboux properties

We start this section with a couple more of definitions. Given a set S, we say that a partial

function f : P(S) 7→ R with domain D has:
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(d1) the weak Darboux property if ∅ ∈ D and for every X ∈ D and a ∈ [f(∅), f(X)] there is

a set A ∈ D such that A ⊆ X and f(A) = a;

(d2) the strong Darboux property if for all X,Y ∈ D with X ⊆ Y and every a ∈ [f(X), f(Y )]

there exists a set A ∈ D such that X ⊆ A ⊆ Y and f(A) = a.

Of course, (d1) is implied by (d2) provided that ∅ ∈ D, and the converse is true, e.g., for finitely

additive measures. Notice also that, since f does not need to be monotone in condition (d1), it

may well happen that f(X) < f(∅) for some X ∈ D, in which case [f(∅), f(X)] is empty and

there is nothing to prove; analogous considerations apply to the strong Darboux property.

Some authors, either in measure theory, see, e.g., [10, § V.46.I, Corollary 3′] and [3, § I.2.9,

Definition 4], or in connection to the study of densities in number theory, see, for instance, [17, §

2], [12, p. 217], and [9], refer to (d1) as simply the Darboux property (notice that [17] points to

[3], [12] points to [10], and [9] points to [12] as a source for the terminology). But that does not

sound very fit to us, as (d2) is arguably closer than (d1) to the spirit of the intermediate value

property of real-valued functions of a real variable, so we prefer sticking to our own definitions.

Other terms of common usage to allude to condition (d1) are “full-valued”, see, e.g., [14, p.

174], and “strongly non-atomic”, see, e.g., [2, Definition 5.1.5].

We note that if f has the weak Darboux property, then f(X) ≤ f(∅) for every finite X ⊆ S:

If f(∅) < f(X) for some X ⊆ S, then the interval [f(∅), f(X)] has positive width, so X should

have infinitely many subsets for f to have the weak Darboux property, which, however, is not

the case when X is finite. In addition, we have the following elementary result:

Lemma 1. Let µ⋆ be a function P(H) → R and µ⋆ its conjugate P(H) → R : X 7→ 1−µ⋆(Xc).

Then µ⋆ has the strong (respectively, weak) Darboux property if and only if µ⋆ does.

Proof. Since µ⋆ is the conjugate of µ⋆, it is enough to assume, as we do, that µ⋆ has the strong

(respectively, weak) Darboux property and to prove that the same is true for µ⋆.

For this, fix X,Y ⊆ H with X ⊆ Y and a ∈ [µ⋆(X), µ⋆(Y )], and set X := ∅ if µ⋆ has just

the weak Darboux property. Then Y c ⊆ Xc, and it follows from the hypotheses, and from the

fact that µ⋆(S) + µ⋆(Sc) = 1 for every S ⊆ H, that there exists A ⊆ H such that Y c ⊆ A ⊆ Xc

and 1 − µ⋆(A
c) = µ⋆(A) = 1 − a. Hence µ⋆(A

c) = a, which ultimately yields that µ⋆ has the

strong (respectively, weak) Darboux property, when considering that X ⊆ Ac ⊆ Y . �

With this in mind, here comes the main contribution of the present paper, which is reminiscent

of results of D. Maharam [15, Theorem 2], on finitely additive nonnegative measures1, and G.

Sikorski [19, Problem 12, p. 225], on non-atomic, countably additive, nonnegative measures2.

1: In Maharam’s own words, the result applies to “arbitrary (finite, finitely additive) measures on an arbitrary

field of subsets of an arbitrary set”, see [15, p. 49]. This may sound confusing, as the proof of the theorem uses

that the domain of a measure is closed, in particular, under countable unions, and on the other hand, the term

“field of sets” is now commonly meant for a pair (S,F ), where S is a set and F a subfamily of P(S) that contains

S and is closed under finite unions, finite intersections, and absolute complements. The fact is just that Maharam

uses the term to refer to what we now call a sigma-algebra, as can be argued by previous work of her [13].
2: The latter result is frequently attributed to W. Sierpiński, and in so doing a reference to [18] is often

provided. But it is unclear why this should be correct, as Sierpiński’s paper deals with the convexity of the range
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Theorem 1. Every upper quasi-density has the strong Darboux property.

The theorem, which is proved in § 3, is a major generalization of [11, Theorem 2], and it

leads, together with Lemma 1, to the following results (we omit further details):

Corollary 1. Every lower quasi-density has the strong Darboux property.

In particular, the next corollary is now obvious, but we record it here for future reference:

Corollary 2. Upper and lower quasi-densities have the weak Darboux property.

Special instances of Corollary 2 have already appeared in the literature, the proofs of these

former results being based on ad hoc arguments tailored to the particular densities under con-

sideration (contrary to the proof of Theorem 1). To be more precise, it is known from work of

G. Grekos, see [6, 7], that the upper α-densities (on N
+) have the weak Darboux property for

every real α ≥ −1, and this has been later extended (and in a stronger form) to certain weighted

densities (on N
+), see [9, Proposition 1].

3. Proof of Theorem 1

We will need the following results from [11, § 6], which yield that upper quasi-densities,

though not necessarily monotone, satisfy a kind of “weak monotonicity” (we include some of the

proofs for completeness).

For ease of notation, we denote by Vk,H, for all k ∈ N
+ and H ⊆ N, the set

⋃

h∈H(k ·H+h),

and write Vk in place of Vk,H when H = J0, k − 1K.

Lemma 2. If µ⋆ is an upper quasi-density, then µ⋆(X) = 0 for every finite X ⊆ H.

Proof. If X = ∅, or 0 ∈ H and X = {0}, then k ·X = X for all k ≥ 1, and we have from (f4)

that 2µ⋆(X) = µ⋆(X), i.e. µ⋆(X) = 0. On the other hand, we get by (f4♭) that, for every k ≥ 1,

µ⋆({1}) = µ⋆({1}+ k − 1) = µ⋆({k}) = µ⋆(k · {1}) =
1

k
µ⋆({1}),

which is possible only if µ⋆({1}) = 0. Consequently, µ⋆({k}) = 0 for all k ≥ 0, and in addition,

if H = Z and k ≤ 0, then µ⋆({k}) = µ⋆({k}+ (−k)) = µ⋆({0}) = 0.

Since upper quasi-densities are non-negative functions (as was noted in the introduction), it

follows that if X ⊆ H is finite then 0 ≤ µ⋆(X) ≤
∑

x∈X µ⋆({x}) = 0, hence µ⋆(X) = 0. �

Lemma 3. Let µ⋆ be an upper quasi-density, and for a fixed k ∈ N
+ let h1, . . . , hn ∈ N be such

that hi 6≡ hj mod k for 1 ≤ i < j ≤ n. Then, µ⋆(Vk,H ∪ V) = n
k

and µ⋆(Vk,H \ V) ≥ n
k

for every

finite V ⊆ H, where H := {h1, . . . , hn}.

of certain finitely additive measures P(S) → R for which S is a bounded subset of Rn. The (alleged) mistake

may have originated from an incorrect interpretation of a footnote on the very same page of Sikorski’s book [19],

where the reader is addressed to [18] and [4], though most likely for the sake of comparison.
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Proof. Let li be, for each i = 1, . . . , n, the remainder of the integer division of hi by k (in such

a way that 0 ≤ li < k), and set Hc := J0, k − 1K \ {l1, . . . , ln}.
Clearly, H = Vk,H ∪ Vk,Hc ∪ S for some finite S ⊆ H. Thus, we get by (f1), (f3), and (f4♭)

and Lemma 2 that, however we choose a finite V ⊆ H,

1 = µ⋆(H) ≤ µ⋆(Vk,H ∪ V) + µ⋆(Vk,Hc ∪ S) ≤ µ⋆(Vk,H) + µ⋆(Vk,Hc) + µ⋆(S) + µ⋆(V)

= µ⋆(Vk,H) + µ⋆(Vk,Hc) ≤ nµ⋆(k ·H) + (k − n)µ⋆(k ·H) = kµ⋆(k ·H) = 1,

which is possible only if µ⋆(Vk,H ∪ V) = µ⋆(Vk,H) = nµ⋆(k ·H) = n
k
.

As for the rest, we now have from (f5), Lemma 2, and the above that, for every finite V ⊆ H,
n
k
= µ⋆(Vk,H) ≤ µ⋆(Vk,H \ V) + µ⋆(V) = µ⋆(Vk,H \ V), which completes the proof. �

Lemma 4. Let µ⋆ be an upper quasi-density on H, and pick X,Y ⊆ H such that X ⊆ Y and

Y is a finite union of arithmetic progressions of H, or differs from a set of this form by finitely

many integers. Then µ⋆(X) ≤ µ⋆(Y ).

Proof. By hypothesis, there exist k ∈ N
+ and H ⊆ J0, k−1K such that the symmetric difference

of Y and Vk,H is finite. Using that X ⊆ Y , this yields that the relative complement of
⋃

h∈HXh

in X , where Xh := X ∩ (k ·H+ h) ⊆ X for each h ∈ H, is finite too. Therefore, we obtain that

µ⋆(X) ≤
∑

h∈H µ⋆(Xh) by Lemma 2 and (f3), and µ⋆(Y ) ≥ 1

k
|H| by Lemma 3.

On the other hand, we have that, however we choose h ∈ H, there is a set Sh ⊆ H for which

Xh = k · Sh + h, so we get from the above, (f4♭) and the fact that Im(µ⋆) ⊆ [0, 1] that

µ⋆(X) ≤
∑

h∈H

µ⋆(Xh) =
∑

h∈H

µ⋆(k · Sh + h) =
1

k

∑

h∈H

µ⋆(Sh) ≤ µ⋆(Y ),

which completes the proof. �

We use Lemma 4 in the proof of the next result, which may be of independent interest, insofar

as it can be adapted to prove other statements along the lines of Theorem 1, but for different

classes of “densities” than the ones picked up in this work.

Lemma 5. Let µ⋆ be an upper quasi-density on H, pick A,B ⊆ H with A ⊆ B and µ⋆(A) <

µ⋆(B), and fix a, b ∈ R such that µ⋆(A) ≤ a < b ≤ µ⋆(B). Then, for every k > (b− a)−1 there

exist H0 ⊆ J0, k − 1K and h0 ∈ J0, k − 1K with the property that

a < µ⋆(A ∪ (B ∩ Vk,H0
)) < b ≤ µ⋆(A ∪ (B ∩ Vk,H0∪{h0})).

Proof. Fix an integer k > (b− a)−1 and let Lk be the set of all subsets H of J0, k− 1K for which

µ⋆(A ∪ (B ∩ Vk,H)) > a. We have that H = S ∪ Vk for some finite set S; in fact, S = J1, k − 1K
if H = N

+, and S = ∅ otherwise. So it follows from (f3) and Lemma 4 that

a < µ⋆(B) = µ⋆(A ∪B) = µ⋆(A ∪ (B ∩ (S ∪ Vk))) = µ⋆(A ∪ (B ∩ Vk) ∪ (B ∩ S))

≤ µ⋆(A ∪ (B ∩ Vk)) + µ⋆(B ∩ S) = µ⋆(A ∪ (B ∩ Vk)).
(1)

This implies that J0, k − 1K ∈ Lk. Let Ha be a set of minimal cardinality in Lk (which exists

since Lk is finite and nonempty), and observe that Ha is nonempty, otherwise we would have

that Vk,Ha
= ∅, and hence a < µ⋆(A ∪ (B ∩ Vk,Ha

)) = µ⋆(A) ≤ a, which is absurd.
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Now, suppose for the sake of a contradiction that µ⋆(A ∪ (B ∩ Vk,Ha
)) ≥ b, and using that

Ha 6= ∅, fix h ∈ Ha. Since |Ha \ {h}| < |Ha| and Ha is, by construction, an element of minimal

cardinality in Lk, we must have that µ⋆(A ∪ (B ∩ Vk,Ha\{h})) ≤ a. But it holds that

A ∪ (B ∩ Vk,Ha
) = A ∪ (B ∩ Vk,Ha\{h}) ∪ (B ∩ (k ·H+ h)),

and so we get from (f3), (f4♭), and Lemma 4 that

b ≤ µ⋆(A ∪ (B ∩ Vk,Ha
)) ≤ µ⋆(A ∪ (B ∩ Vk,Ha\{h})) + µ⋆(B ∩ (k ·H+ h))

≤ a+ µ⋆(k ·H+ h) = a+
1

k
< a+ b− a = b,

which is a contradiction. It follows that a < µ⋆(A ∪ (B ∩ Vk,Ha
)) < b.

At this point, denote by Mk the set of all subsets H of J0, k−1K containing Ha and such that

a < µ⋆(A ∪ (B ∩ Vk,H)) < b; we know from the above that Ha ∈ Mk. Then, let H0 be a set of

maximal cardinality in Mk (which exists since Mk, too, is finite and nonempty), and Sk the set

of all subsets H of J0, k− 1K containing H0 and such that µ⋆(A∪ (B ∩Vk,H)) ≥ b; we have from

(1) that J0, k − 1K ∈ Sk, as µ⋆(A ∪ (B ∩ Vk)) ≥ µ⋆(B) ≥ b. Accordingly, let Hb be an element

of minimal cardinality in Sk (which exists, once again, since Sk is finite and nonempty).

It is clear that |Hb| ≥ 1+ |H0|, because H0 ⊆ Hb and µ⋆(H0) < b ≤ µ⋆(Hb), and consequently

H0 ( Hb; we claim that |Hb| = |H0|+ 1. In fact, suppose to the contrary that |Hb| ≥ 2 + |H0|,

and pick h ∈ Hb\H0. Then H0 ( Hb\{h} ( Hb, so H0 being an element of maximal cardinality

in Mk and Hb an element of minimal cardinality in Sk entail that Hb \ {h} /∈ Mk ∪ Sk.

Thus µ⋆(A ∪ (B ∩ Vk,Hb\{h})) ≤ a, which is however impossible by the same argument used

above to prove that µ⋆(A ∪ (B ∩ Vk,Ha
)) < b, as it would imply (we omit some details) that

b ≤ µ⋆(A ∪ (B ∩ Vk,Hb
)) ≤ µ⋆(A ∪ (B ∩ Vk,Hb\{h})) + µ⋆(B ∩ (k ·H+ h)) < b.

This completes the proof of the lemma, as it shows that, letting h0 be the unique element in

Hb \ H0, we have a < µ⋆(A ∪ (B ∩ Vk,H0
)) < b ≤ µ⋆(A ∪ (B ∩ Vk,H0∪{h0})). �

We are now ready to prove the main result of the paper.

Proof of Theorem 1. Let µ⋆ be an upper quasi-density on H, and fix X,Y ∈ P(H), X ⊆ Y . If

µ⋆(Y ) ≤ µ⋆(X), the conclusion is trivial, so assume in what follows that µ⋆(X) < µ⋆(Y ) and

let a ∈ ]µ⋆(X), µ⋆(Y )[ (the boundary cases are obvious).

Claim. There exist two sequences (An)n≥1 and (Bn)n≥1 of subsets of H for which:

(i) X ⊆ A1 ⊆ · · · ⊆ An ⊆ · · · ⊆ Bn ⊆ · · · ⊆ B1 ⊆ Y ;

(ii) µ⋆(An) < a ≤ µ⋆(Bn) for all n ∈ N
+;

(iii) Given n ∈ N
+, there exist h, k ∈ N such that k ≥ n and Bn \An ⊆ k ·H+ h.

Proof of the claim. To begin, set A1 := X and B1 := Y , by noting that µ⋆(X) < a ≤ µ⋆(Y ) ≤

1 ≤ 1 + µ⋆(X) and Y \X ⊆ 1 ·H+ 0. Next, fix v ∈ N
+ and suppose for the sake of induction

that we have already found subsets A1, . . . , Av and B1, . . . , Bv of H such that A1 ⊆ · · · ⊆ Av ⊆

Bv ⊆ · · · ⊆ B1 and conditions (ii) and (iii) hold true for 1 ≤ n ≤ v.
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Let k > (a−µ⋆(Av))
−1. Our assumptions give that µ⋆(Av) < µ⋆(Bv) and Bv \Av ⊆ q ·H+ r

for some q ∈ N
+ and r ∈ N such that q ≥ v. Accordingly, we get from axioms (f3)-(f4♭) and

Lemma 4 that

µ⋆(Bv) ≤ µ⋆(Av) + µ⋆(Bv \Av) ≤ µ⋆(Av) + µ⋆(q ·H+ r) = µ⋆(Av) +
1

q
≤ µ⋆(Av) +

1

v
,

which in turn implies that k > (µ⋆(Bv)− µ⋆(Av))
−1 ≥ v, i.e. k ≥ v + 1. On the other hand, it

follows from Lemma 5 that there exist H0 ⊆ J0, k − 1K and h0 ∈ N such that

µ⋆(Av ∪ (Bv ∩ Vk,H0
)) < a ≤ µ⋆(Av ∪ (Bv ∩ Vk,H0∪{h0})). (2)

Therefore, set Av+1 := Av ∪ (Bv ∩Vk,H0
) and Bv+1 := Av ∪ (Bv ∩Vk,H0∪{h0}). Then, it is clear

that Av ⊆ Av+1 ⊆ Bv+1 ⊆ Bv and Bv+1 \ Av+1 ⊆ k ·H+ h0, which, putting it all together, is

enough (by induction) to conclude, since X ⊆ A1, B1 ⊆ Y and k ≥ v + 1. �

Now, let (An)n≥1 and (Bn)n≥1 be as in the above claim, and set A :=
⋃

n≥1
An. For a fixed

n ∈ N
+, both A \ An and Bn \ A are then subsets of Bn \ An, which, by condition (iii), is in

turn contained in k ·H+ h for some h ∈ N and k ≥ n.

Accordingly, we get from here, Lemma 4, and axiom (f4♭) that µ⋆(A \An) ≤
1

n
and µ⋆(Bn \

A) ≤ 1

n
for all n, with the result that

µ⋆(A) ≤ µ⋆(An) + µ⋆(A \An) ≤ µ⋆(An) +
1

n
< a+

1

n

and

µ⋆(A) ≥ µ⋆(Bn)− µ⋆(Bn \A) ≥ µ⋆(Bn)−
1

n
≥ a−

1

n
,

where, along with the subadditivity of µ⋆, we have used that µ⋆(An) < a ≤ µ⋆(Bn) by condition

(ii). Hence, |µ⋆(A) − a| ≤ 1

n
for every n ∈ N

+, which is possible if and only if µ⋆(A) = a, and

completes the proof when considering that X ⊆ A ⊆ Y . �

4. Closing remarks

First, we show that the hypotheses of Theorem 1 are sharp, in the sense that, if we try to

extend the theorem from upper quasi-densities to a larger class C of functions P(H) → R by

dropping either of conditions (f3)-(f5), then the result breaks down in a somewhat dramatic

way, since there exists a function f ∈ C such that its image is “as far as possible” from being

the entire interval [0, 1], even under the additional assumptions that f satisfies axiom (f2) and

f(X) ≤ 1 for each X ⊆ H (in particular, f cannot have the weak Darboux property). This is

the object of the following three examples, where for X ⊆ H we set X+ := X ∩N
+.

Example 1. Let f be the function P(H) → R defined as follows: Given X ⊆ H, we assume

f(X) := 0 if |X+| < ∞, otherwise f(X) := supn≥1(xn+1 − xn)
−1, where (xn)n≥1 is the natural

enumeration of X+. Of course, f(∅) = 0, and it is straightforward that f satisfies conditions

(f1), (f2) and (f4♭), and Im(f) = {0} ∪ {1/k : k ∈ N
+}.
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Example 2. Let f be a monotone and subadditive function P(H) → R such that f(H) = 1

and f(∅) = 0 (e.g., f may be an upper density on H), and let f be the function P(H) → R

mapping a set X ⊆ H to 1 if f(X) > 0, and to 0 otherwise, cf. [11, Example 1].

It is seen that f satisfies axioms (f1)-(f3) and (f5), where we use, in particular, that f(X ∪

Y ) ≤ f(X) + f(Y ) for all X,Y ⊆ H, and hence f(X ∪ Y ) = 0 whenever f(X) = f(Y ) = 0. On

the other hand, it is evident that f(∅) = 0 and the image of f is the 2-element set {0, 1}.

Example 3. Let f be the function f : P(H) → R : X 7→ (inf(X+))−1, where inf(∅) := ∞ and
1

∞ := 0. It is immediate that f satisfies conditions (f1)-(f4), cf. [11, Example 3]. In addition,

f(∅) = 0 and the image of f is the set {0} ∪ {1/k : k ∈ N
+}.

Secondly, we may notice a kind of asymmetry in the definition of the strong Darboux property.

More precisely, we say that f has the symmetric (strong) Darboux property if, for all X,Y ⊆ H

with X ⊆ Y and every a ∈ [0, 1], there exists a set A with X ⊆ A ⊆ Y and f(A) = af(Y ) +

(1− a)f(X); this is the same as the strong Darboux property when f is monotone, but is more

general otherwise, as it does not require any longer that f(X) ≤ f(Y ).

Thus, we question if Theorem 1 can be extended to prove that upper quasi-densities satisfy

the symmetric Darboux property. Yet, that is not the case, as shown by the following example.

Example 4. Let θ⋆ be the function

θ⋆ : P(H) → R : X 7→











d
⋆(X) if ι(X) ≤ 3

3

4
(ι(X)− 1)d⋆(X) if 4 ≤ ι(X) < ∞

0 otherwise

,

where d
⋆ is the upper asymptotic density on Z and ι the function P(H) → N

+ ∪ {∞} taking a

set X ⊆ H to the infimum of the integers n ≥ 1 for which there is Y ⊆ H such that d
⋆(Y ) ≥ 1

n

and |(q · Y + r) \X | < ∞ for some q ∈ N
+ and r ∈ Z, with the convention that inf(∅) := ∞.

We have from [11, Lemmas 2 and 3] that θ⋆ is a non-monotone upper quasi-density, so we

just need to prove that θ⋆ does not have the symmetric Darboux property.

For this, set X :=
⋃

n≥2

q
1

4
(2n− 1)! + 3

4
(2n)! + 1, (2n)! + 1

y
and Y := X ∪ (4 ·H); note that

we are intentionally starting with n = 2 in the definition of X , so as to discard the integers ≤ 3

and have that Y can be written as the union of 4 ·H and
⋃3

h=1
(X ∩ (4 ·H+h)), which otherwise

would be false for H = N
+. Then, using that d

⋆ satisfies (f3) and (f4♭) yields, together with

[11, Lemma 1], that d
⋆(X) = 1

4
and

d
⋆(Y ) ≤ d

⋆(4 ·H) +

3
∑

h=1

d
⋆(X ∪ (4 ·H+ h)) =

1

4
+

3

16
=

7

16
.

On the other hand, it follows from the claim established within the proof of [11, Lemma 3]

and the observation made on the first line of the same that ι(X) = 4 and ι(Y ) = 1.

Now, consider a set A such that X ⊆ A ⊆ Y . By [11, Lemma 3], we have ι(A) ≤ ι(X) = 4,

and so there are two cases: Either ι(A) ≤ 3, and then θ⋆(A) = d
⋆(A) ≤ d

⋆(Y ) ≤ 7

16
< 1

2
, or

ι(A) = 4, and then θ⋆(A) = 9

4
d
⋆(A) ≥ 9

4
d
⋆(X) = 9

16
> 1

2
. This shows that θ⋆(A) cannot attain

the value 1

2
, so θ⋆ does not have the symmetric Darboux property.
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Lastly, suppose µ⋆ is an upper [quasi-]density on H with associated lower [quasi-]density

µ⋆, and denote by µ the partial function P(H) 7→ R obtained by restriction of µ⋆ to the set

{X ⊆ H : µ⋆(X) = µ⋆(X)}. We refer to µ as the [quasi-]density induced by µ⋆.

In the light of our main result, it is natural to ask whether µ must have the strong Darboux

property: It occurs that the answer is affirmative if µ⋆ is additive, as in that case dom(µ) is just

P(H), and µ has the strong Darboux property by Theorem 1. (The existence of additive upper

densities is provable in ZFC, but independent of ZF, see [11, Remark 3].) However, we ignore

what happens in general, so we raise the following question, which has a positive answer in the

case when µ⋆ is either the upper Buck density or the upper Banach density, see [17, Theorem

2.1] and [5, Theorem 4.2] respectively.

Question. Does a [quasi-]density µ need to have the strong Darboux property? If not, what

about the weak Darboux property?

A few more questions along these lines can be found in [11, § 8], see in particular Question

3 therein, and involve a kind of “joint weak Darboux property” in the spirit of [9, Theorem 2],

where the focus is, however, on (upper and lower) weighted densities.
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[16] I. Niven, The asymptotic density of sequences, Bull. Amer. Math. Soc. 57 (1951), No. 6, 420–434.

[17] M. Paštéka and T. Šalát, Buck’s measure density and sets of positive integers containing arithmetic pro-

gression, Math. Slovaca 41 (1991), No. 3, 283–293.

[18] W. Sierpiński, Sur les fonctions d’ensemble additives et continues, Fund. Math. 3 (1922), No. 1, 240–246

(in French).

[19] R. Sikorski, Funkcje rzeczywiste, Tom I, PWN: Warsaw, 1958 (in Polish).

[20] A. Soifer, The Mathematical Coloring Book, Springer-Verlag: New York, 2009.

Università “Luigi Bocconi”, via Sarfatti 25, 20136 Milano, Italy

E-mail address: leonetti.paolo@gmail.com

Department of Mathematics, Texas A&M University at Qatar, PO Box 23874 Doha, Qatar

Current address: Institute for Mathematics and Scientific Computing, University of Graz | Heinrichstr. 36,

8010 Graz, Austria

E-mail address: salvatore.tringali@uni-graz.at

URL: http://imsc.uni-graz.at/tringali

http://arxiv.org/abs/1506.04664

	1. Introduction
	2. Darboux properties
	3. Proof of Theorem ??
	4. Closing remarks
	Acknowledgments
	References

