A CHARACTERIZATION OF CONVEX FUNCTIONS

PAOLO LEONETTI

Abstract

Let D be a convex subset of a real vector space. It is shown that a radially lower semicontinuous function $f: D \rightarrow \mathbf{R} \cup\{+\infty\}$ is convex if and only if for all $x, y \in D$ there exists $\alpha=\alpha(x, y) \in(0,1)$ such that $f(\alpha x+(1-\alpha) y) \leq$ $\alpha f(x)+(1-\alpha) f(y)$.

1. Introduction.

Let X be a vector space over the real field and fix a convex set $D \subseteq X$. A function $f: D \rightarrow \mathbf{R}$ is convex whenever

$$
\begin{equation*}
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) \tag{1}
\end{equation*}
$$

for all $\lambda \in[0,1]$ and for all $x, y \in D$. In addition, f is said to be
(1) α-convex, for some fixed $\alpha \in(0,1)$, if

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)
$$

for all $x, y \in D$;
(2) midconvex if

$$
f\left(\frac{1}{2}(x+y)\right) \leq \frac{1}{2}(f(x)+f(y))
$$

for all $x, y \in D$.
It is clear that convex functions are α-convex. In addition, it easily follows by the Daróczy-Páles identity, see [1, Lemma 1], that α-convex functions are midconvex, see also [2] and [3, Proposition 4]. Finally, we recall that if f is midconvex then inequality (1) holds for all $x, y \in D$ and rationals $\lambda \in[0,1]$.

It is well known that, assuming the axiom of choice, there exist nonconvex functions that are α-convex. On the other hand, a continuous real function f is convex if and only if it is α-convex if and only if it is midconvex. We refer the reader to [4] and references therein for a textbook exposition on convex functions.

In this note we provide another characterization of convexity, assuming that the function f is radially lower semicontinuous, i.e.,

$$
f(x) \leq \liminf _{t \downarrow 0} f(x+t(y-x))
$$

for all $x, y \in D$. Our main result is as follows:
Theorem 1. Let D be a convex subset of a real vector space. Then, a radially lower semicontinuous function $f: D \rightarrow \mathbf{R} \cup\{+\infty\}$ is convex if and only if, for all $x, y \in D$, there exists $\lambda=\lambda(x, y) \in(0,1)$ that satisfies inequality (1).

The following corollary, which has been conjectured by Miroslav Pavlović in the case of real-valued continuous functions, is immediate:

Corollary 2. Let $I \subseteq \mathbf{R}$ be a nonempty interval. Then, a lower semicontinuous function $f: I \rightarrow \mathbf{R} \cup\{+\infty\}$ is convex if and only if, for all $x, y \in I$, there exists $\lambda=\lambda(x, y) \in(0,1)$ that satisfies inequality (1).

It is worth noting that the lower semicontinuous assumption cannot be relaxed too much since there exists a nonconvex function $f: I \rightarrow \mathbf{R} \cup\{+\infty\}$ that is lower semicontinous everywhere in I except at countably many points and such that, for all $x, y \in I$, there exists $\lambda=\lambda(x, y) \in(0,1)$ that satisfies inequality (1). Indeed, it is sufficient to choose $I=\mathbf{R}$ and let f be the indicator function of the rationals, i.e., $f(x)=1$ if x is rational and $f(x)=0$ otherwise.

2. Proof of Theorem 1.

We need only to prove the "if" part. Moreover, the claim is obvious if D is empty, hence let us suppose hereafter that $D \neq \emptyset$.

Fix $x, y \in D$ and define the set

$$
S:=\{\lambda \in[0,1]: f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)\}
$$

Notice that $S=[0,1]$ provided that $f(x)=+\infty$ or $f(y)=+\infty$. Hence, let us assume hereafter that $f(x)<+\infty$ and $f(y)<+\infty$.

Claim 1. S is a nonempty compact subset of $[0,1]$.
Proof. Note that $\{0,1\} \subseteq S \subseteq[0,1]$, hence S is nonempty and bounded.
Let $\left(\lambda_{n}\right)$ be a sequence in S such that $\lambda_{n} \uparrow \lambda>0$. Define the real sequence $\left(t_{n}\right)$ by $t_{n}:=1-\frac{\lambda_{n}}{\lambda}$ for each n and note that $t_{n} \downarrow 0$. Since f is radially lower semicontinuous, it follows that

$$
\begin{aligned}
f(\lambda x+(1-\lambda) y) & \left.\left.\leq \liminf _{n \rightarrow \infty} f(\lambda x+(1-\lambda) y)+t_{n}(y-\lambda x-(1-\lambda) y)\right)\right) \\
& =\liminf _{n \rightarrow \infty} f\left(\lambda_{n} x+\left(1-\lambda_{n}\right) y\right) \\
& \leq \liminf _{n \rightarrow \infty} \lambda_{n} f(x)+\left(1-\lambda_{n}\right) f(y)=\lambda f(x)+(1-\lambda) f(y)
\end{aligned}
$$

Similarly, given a sequence $\left(\lambda_{n}\right)$ in S such that $\lambda_{n} \downarrow \lambda<1$, let $\left(s_{n}\right)$ be the sequence defined by $s_{n}:=1-\frac{1-\lambda_{n}}{1-\lambda}$ for each n and note that $s_{n} \downarrow 0$. Then

$$
\begin{aligned}
f(\lambda x+(1-\lambda) y) & \left.\left.\leq \liminf _{n \rightarrow \infty} f(\lambda x+(1-\lambda) y)+s_{n}(x-\lambda x-(1-\lambda) y)\right)\right) \\
& =\liminf _{n \rightarrow \infty} f\left(\lambda_{n} x+\left(1-\lambda_{n}\right) y\right) \leq \lambda f(x)+(1-\lambda) f(y)
\end{aligned}
$$

Therefore S is also closed, proving the claim.
Claim 2. $\left(\lambda_{1}, \lambda_{2}\right) \cap S \neq \emptyset$ for all $\lambda_{1}, \lambda_{2} \in S$ with $\lambda_{1}<\lambda_{2}$.
Proof. Fix $\lambda_{1}, \lambda_{2} \in S$ with $\lambda_{1}<\lambda_{2}$ (note that this is possible since $\{0,1\} \subseteq S$) and define

$$
a=\lambda_{1} x+\left(1-\lambda_{1}\right) y \quad \text { and } \quad b=\lambda_{2} x+\left(1-\lambda_{2}\right) y
$$

Hence $a, b \in D$ and, by hypothesis, there exists $\lambda=\lambda(a, b) \in(0,1)$ such that

$$
f(\lambda a+(1-\lambda) b) \leq \lambda f(a)+(1-\lambda) f(b)
$$

At this point, define $\lambda^{\prime}:=\lambda \lambda_{1}+(1-\lambda) \lambda_{2}$ and observe that

$$
\begin{aligned}
f\left(\lambda^{\prime} x+\left(1-\lambda^{\prime}\right) y\right) & =f(\lambda a+(1-\lambda) b) \leq \lambda f(a)+(1-\lambda) f(b) \\
& \leq \lambda\left(\lambda_{1} f(x)+\left(1-\lambda_{1}\right) f(y)\right)+(1-\lambda)\left(\lambda_{2} f(x)+\left(1-\lambda_{2}\right) f(y)\right) \\
& =\lambda^{\prime} f(x)+\left(1-\lambda^{\prime}\right) f(y)
\end{aligned}
$$

Therefore $\lambda^{\prime} \in S$. The claim follows by the fact that $\lambda_{1}<\lambda^{\prime}<\lambda_{2}$.
To complete the proof of Theorem 1, let us suppose for the sake of contradiction that

$$
\Lambda:=[0,1] \backslash S \neq \emptyset .
$$

Note that Λ is open since it can be written as $(0,1) \cap S^{c}$ and S^{c} is open by Claim 1 . Fix $\lambda \in \Lambda$. Hence, there is a maximal open interval $\left(\lambda_{1}, \lambda_{2}\right)$ containing λ and contained in Λ. Then $\lambda_{1}, \lambda_{2} \in S$ while $\left(\lambda_{1}, \lambda_{2}\right) \cap S=\emptyset$, contradicting Claim 2.
This shows that f is necessarily convex.
Acknowledgments. The author is grateful to the editor and two anonymous referees for their remarks that allowed a substantial improvement of the presentation.

References

1. Z. Daróczy, Z. Páles, Convexity with given infinite weight sequences, Stochastica 11 no. 1 (1987) 5-12.
2. N. Kuhn, A note on t-convex functions, in General Inequalities, 4 (Oberwolfach, 1983), Internat. Schriftenreihe Numer. Math., vol. 71, Birkhäuser, 1984. 269-276.
3. P. Leonetti, J. Matkowski, S. Tringali, On the commutation of generalized means on probability spaces, Indag. Math. 27 no. 4 (2016) 945-953.
4. A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, New York-London, 1973.

Università "Luigi Bocconi", Department of Statistics, Milan, Italy
E-mail address: leonetti.paolo@gmail.com
URL: https://sites.google.com/site/leonettipaolo/

