ON THE NUMBER OF DISTINCT PRIME FACTORS OF A SUM OF SUPER-POWERS

PAOLO LEONETTI AND SALVATORE TRINGALI

Abstract

Given $k, \ell \in \mathbf{N}^{+}$, let $x_{i, j}$ be, for $1 \leq i \leq k$ and $0 \leq j \leq \ell$, some fixed integers, and define, for every $n \in \mathbf{N}^{+}, s_{n}:=\sum_{i=1}^{k} \prod_{j=0}^{\ell} x_{i, j}^{n^{j}}$. We prove that the following are equivalent: (a) There are a real $\theta>1$ and infinitely many indices n for which the number of distinct prime factors of s_{n} is greater than the super-logarithm of n to base θ. (b) There do not exist non-zero integers $a_{0}, b_{0}, \ldots, a_{\ell}, b_{\ell}$ such that $s_{2 n}=\prod_{i=0}^{\ell} a_{i}^{(2 n)^{i}}$ and $s_{2 n-1}=\prod_{i=0}^{\ell} b_{i}^{(2 n-1)^{i}}$ for all n. We will give two different proofs of this result, one based on a theorem of Evertse (yielding, for a fixed finite set of primes \mathcal{S}, an effective bound on the number of non-degenerate solutions of an \mathcal{S}-unit equation in k variables over the rationals) and the other using only elementary methods.

As a corollary, we find that, for fixed $c_{1}, x_{1}, \ldots, c_{k}, x_{k} \in \mathbf{N}^{+}$, the number of distinct prime factors of $c_{1} x_{1}^{n}+\cdots+c_{k} x_{k}^{n}$ is bounded, as n ranges over \mathbf{N}^{+}, if and only if $x_{1}=\cdots=x_{k}$.

1. Introduction

Given $k, \ell \in \mathbf{N}^{+}$, let $x_{i, j}$ be, for $1 \leq i \leq k$ and $0 \leq j \leq \ell$, some fixed rationals. Then, consider the \mathbf{Q}-valued sequence $\left(s_{n}\right)_{n \geq 1}$ obtained by taking

$$
\begin{equation*}
s_{n}:=\sum_{i=1}^{k} \prod_{j=0}^{\ell} x_{i, j}^{n^{j}} \tag{1}
\end{equation*}
$$

for every $n \in \mathbf{N}^{+}$(notations and terminology, if not explained, are standard or should be clear from the context); we refer to s_{n} as a sum of super-powers of degree ℓ. Notice that $\left(s_{n}\right)_{n \geq 1}$ includes as a special case any \mathbf{Q}-valued sequence of general term

$$
\begin{equation*}
\sum_{i=1}^{k} \prod_{j=1}^{\ell_{i}} y_{i, j}^{f_{i, j}(n)} \tag{2}
\end{equation*}
$$

where, for each $i=1, \ldots, k$, we let $\ell_{i} \in \mathbf{N}^{+}$and $y_{i, 1}, \ldots, y_{1, \ell_{i}} \in \mathbf{Q} \backslash\{0\}$, while $f_{i, 1}, \ldots, f_{i, \ell_{i}}$ are polynomials in one variable with integral coefficients. Conversely, sequences of the form (1)

[^0]can be viewed as sequences of the form (2), the latter being prototypical of scenarios where polynomials are replaced with more general functions $\mathbf{N}^{+} \rightarrow \mathbf{Z}$ (see also §4).

Now, let $\omega(x)$ denote, for each $x \in \mathbf{Z} \backslash\{0\}$, the number of distinct prime divisors of x, and define $\omega(0):=\infty$. Then, for $x \in \mathbf{Z}$ and $y \in \mathbf{N}^{+}$we set $\omega\left(x y^{-1}\right):=\omega\left(\delta^{-1} x\right)+\omega\left(\delta^{-1} y\right)$, where δ is the greatest common divisor of x and y.

In addition, given $n \geq 2$ and $\theta>1$, we write $\operatorname{slog}_{\theta}(n)$ for the super-logarithm of n to base θ, that is, the largest integer $\kappa \geq 0$ for which $\theta^{\otimes \kappa} \leq n$, where $\theta^{\otimes 0}:=1$ and $\theta^{\otimes \kappa}:=\theta^{\theta^{\otimes(\kappa-1)}}$ for $\kappa \geq 1$; note that $\operatorname{slog}_{\theta}(n) \rightarrow \infty$ as $n \rightarrow \infty$.

The main goal of this paper is to provide necessary and sufficient conditions for the boundedness of the sequence $\left(\omega\left(s_{n}\right)\right)_{n \geq 1}$. More precisely, we have:

Theorem 1. The following are equivalent:
(a) There is a base $\theta>1$ such that $\omega\left(s_{n}\right)>\operatorname{slog}_{\theta}(n)$ for infinitely many n.
(b) $\lim \sup _{n \rightarrow \infty} \omega\left(s_{n}\right)=\infty$.
(c) There do not exist non-zero rationals $a_{0}, b_{0}, \ldots, a_{\ell}, b_{\ell}$ such that $s_{2 n}=\prod_{j=0}^{\ell} a_{j}^{(2 n)^{j}}$ and $s_{2 n-1}=\prod_{j=0}^{\ell} b_{j}^{(2 n-1)^{j}}$ for all n.
We will give two proofs of Theorem 1 in § 2, one based on a theorem of Evertse (yielding, for a fixed finite set of primes \mathcal{S}, an effective bound on the number of non-degenerate solutions of an \mathcal{S}-unit equation in k variables over the rationals), and the other using only elementary methods: It is, in fact, in the second proof that there lies, we hope, the added value of this work.

Results in the spirit of Theorem 1 have been obtained by various authors in the special case of Z-valued sequences raising from the solution of non-degenerate linear homogeneous recurrence equations with (constant) integer coefficients of order ≥ 2, namely, in relation to a sequence $\left(u_{n}\right)_{n \geq 1}$ of general term

$$
\begin{equation*}
u_{n}:=\alpha_{1}^{n} f_{1}(n)+\cdots+\alpha_{h}^{n} f_{h}(n) \tag{3}
\end{equation*}
$$

where $\alpha_{1}, \ldots, \alpha_{h}$ are the non-zero (and pairwise distinct) roots of the characteristic polynomial of the recurrence under consideration, and f_{1}, \ldots, f_{h} are non-zero polynomials in one variable with coefficients in the smallest field extension of the rational field containing $\alpha_{1}, \ldots, \alpha_{h}$, see [9, Theorem C.1]. (A recurrence is non-degenerate if its characteristic polynomial has at least two distinct non-zero complex roots and the ratio of any two distinct non-zero characteristic roots is not a root of unity.) More specifically, it was shown by van der Poorten and Schlickewei [14] and, independently, by Evertse [4, Corollary 3], using Schlickewei's p-adic analogue of Schmidt's Subspace Theorem [7], that the greatest prime factor of u_{n} tends to ∞ as $n \rightarrow \infty$.

In a similar note, effective lower bounds on the greatest prime divisor and on the greatest square-free factor of a sequence of type (3) were obtained under mild assumptions by Shparlinski [10] and Stewart [11-13], based on variants of Baker's theorem on linear forms in the logarithms of algebraic numbers [2]. Further results in the same spirit can be found in [3, § 6.2].

On the other hand, Luca has shown in [6] that if $\left(v_{n}\right)_{n \geq 1}$ is a sequence of rational numbers satisfying a recurrence of the form

$$
g_{0}(n) v_{n+2}+g_{1}(n) v_{n+1}+g_{2}(n) v_{n}=0, \quad \text { for all } n \in \mathbf{N}^{+}
$$

where g_{0}, g_{1} and g_{2} are univariate polynomials over the rational field and not all zero, and $\left(v_{n}\right)_{n \geq n_{0}}$ is not binary recurrent (viz., a solution of a linear homogeneous second-order recurrence equation with integer coefficients) for some $n_{0} \in \mathbf{N}^{+}$, then there exists a real constant $c>0$ such that the product of the numerators and denominators (in the reduced fraction) of the non-zero rational terms of the finite sequence $\left(v_{i}\right)_{1 \leq i \leq n}$ has at least $c \log n$ prime factors as $n \rightarrow \infty$.

Lastly, it seems worth noting that Theorem 1 can be significantly improved in special cases. E.g., given $a, b \in \mathbf{N}^{+}$with $a \neq b$, we have by Zsigmondy's theorem [15] that $\omega(n) \geq d(n)-2$ for all n, where $d(n)$ is the number of (positive integer) divisors of n. Now, it is known, e.g., from [8] that $\frac{1}{n} \sum_{i=1}^{n} d(i)$ is asymptotic to $\log n$ as $n \rightarrow \infty$. So, it follows that there exist a constant $c \in \mathbf{R}^{+}$and infinitely many n for which $\omega\left(a^{n}-b^{n}\right)>c \log n$.

Corollary 2. The sequence $\left(\omega\left(s_{n}\right)\right)_{n \geq 1}$ is bounded if and only if there exist non-zero rationals $a_{0}, b_{0}, \ldots, a_{\ell}, b_{\ell}$ such that $s_{2 n}=\prod_{j=0}^{\ell} a_{j}^{(2 n)^{j}}$ and $s_{2 n-1}=\prod_{j=0}^{\ell} b_{j}^{(2 n-1)^{j}}$ for all n.
Corollary 3. Let $c_{1}, \ldots, c_{k} \in \mathbf{Q}^{+}$and $x_{1}, \ldots, x_{k} \in \mathbf{Q} \backslash\{0\}$. Then, $\left(\omega\left(c_{1} x_{1}^{n}+\cdots+c_{k} x_{k}^{n}\right)\right)_{n \geq 1}$ is a bounded sequence only if $\left|x_{1}\right|=\cdots=\left|x_{k}\right|$, and this condition is also sufficient provided that $\sum_{i=1}^{k} \varepsilon_{i} c_{i} \neq 0$, where, for each $i \in \llbracket 1, k \rrbracket, \varepsilon_{i}:=x_{i} \cdot\left|x_{i}\right|^{-1}$ is the sign of x_{i}.

The proof of Corollary 3 is postponed to $\S 3$, while Corollary 2 is trivial by Theorem 1 .
Notations. We reserve the letters h, i, j, and κ (with or without subscripts) for non-negative integers, the letters m and n for positive integers, the letters p and q for (positive rational) primes, and the letters A, B, and θ for real numbers. We denote by \mathbf{P} the set of all (positive rational) primes and by $v_{p}(x)$, for $p \in \mathbf{P}$ and a non-zero $x \in \mathbf{Z}$, the p-adic valuation of x, viz., the exponent of the largest power of p dividing x. Given $X \subseteq \mathbf{R}$, we take $\left.X^{+}:=X \cap\right] 0, \infty[$. Further notations, if not explained, are standard or should be clear from the context.

2. Proof of Theorem 1

The implications $(\mathrm{a}) \Rightarrow(\mathrm{b})$ and $(\mathrm{b}) \Rightarrow(\mathrm{c})$ are straightforward, and $(\mathrm{c}) \Rightarrow(\mathrm{a})$ is trivial if at least one of the sequences $\left(s_{2 n}\right)_{n \geq 1}$ and $\left(s_{2 n-1}\right)_{n \geq 1}$ is eventually zero.

Therefore, we can just focus on the two cases below, in each of which we have to prove that there exists a base $\theta>1$ such that $\omega\left(s_{n}\right)>\operatorname{slog}_{\theta}(n)$ for infinitely many n.

Case (i): There do not exist $a_{0}, \ldots, a_{\ell} \in \mathbf{Q}$ such that $s_{2 n}=\prod_{j=0}^{\ell} a_{j}^{(2 n)^{j}}$ for all n. Then $k \geq 2$, $s_{n} \neq 0$ for infinitely many n, and $\left|x_{i, j}\right| \neq 1$ for some $(i, j) \in \llbracket 1, k \rrbracket \times \llbracket 1, \ell \rrbracket$ (otherwise we would have $s_{2 n}=\sum_{i=1}^{k} x_{i, 0}$, a contradiction).

Without loss of generality, we can suppose that $x_{i, j} \neq 0$ for all $(i, j) \in \llbracket 1, k \rrbracket \times \llbracket 0, \ell \rrbracket$ (otherwise we end up with a sum of super-powers with fewer than k summands), and actually that $x_{i, j}>0$ for $j \neq 0$: This is because $\prod_{j=0}^{\ell} x_{i, j}^{(2 n)^{j}}=x_{i, 0} \cdot \prod_{j=1}^{\ell}\left|x_{i, j}\right|^{(2 n)^{j}}$ for all n, and, insofar as we deal with Case (i), we can replace $\left(s_{n}\right)_{n \geq 1}$ with the subsequence $\left(s_{2 n}\right)_{n \geq 1}$, after noticing that $\omega\left(s_{2 n}\right)>\operatorname{slog}_{\theta}(n)$, for some $\theta>1$, only if $\omega\left(s_{2 n}\right)>\operatorname{slog}_{2 \theta}(2 n)$, which is easily proved by induction (we omit details). Accordingly, we may also assume

$$
\begin{equation*}
\left(x_{1,1}, \ldots, x_{1, \ell}\right) \prec \cdots \prec\left(x_{k, 1}, \ldots, x_{k, \ell}\right), \tag{4}
\end{equation*}
$$

where \prec denotes the binary relation on \mathbf{R}^{ℓ} defined by taking $\left(u_{1}, \ldots, u_{\ell}\right) \prec\left(v_{1}, \ldots, v_{\ell}\right)$ if and only if $\left|u_{i}\right|<\left|v_{i}\right|$ for some $i \in \llbracket 1, \ell \rrbracket$ and $\left|u_{j}\right|=\left|v_{j}\right|$ for $i<j \leq \ell$ (the ℓ-tuples $\left(x_{i, 1}, \ldots, x_{i, \ell}\right)$ cannot be equal to each other for all $i \in \llbracket 1, k \rrbracket$, and on the other hand, if two of these tuples are equal, then we can add up some terms in (1) so as to obtain a sum of super-powers of degree ℓ, but again with fewer summands). It follows by (4) that there exists $N \in \mathbf{N}^{+}$such that

$$
\begin{equation*}
\sum_{i \in I} \prod_{j=0}^{\ell} x_{i, j}^{n^{j}} \neq 0, \quad \text { for all } n \geq N \text { and } \emptyset \neq I \subseteq \llbracket 1, k \rrbracket . \tag{5}
\end{equation*}
$$

Now, for each $(i, j) \in \llbracket 1, k \rrbracket \times \llbracket 0, \ell \rrbracket$ pick $\alpha_{i, j}, \beta_{i, j} \in \mathbf{Z}$ such that $\alpha_{i, j}>0$ and $x_{i, j}=\alpha_{i, j}^{-1} \beta_{i, j}$, and consequently set $\tilde{x}_{i, j}:=\alpha_{j} x_{i, j}$, where $\alpha_{j}:=\alpha_{1, j} \cdots \alpha_{k, j}$; note that $\tilde{x}_{i, j}$ is a non-zero integer, and $\tilde{x}_{i, j}>0$ for $j \neq 0$. Then, let $u_{n}:=\sum_{i=1}^{k} \prod_{j=0}^{\ell} \tilde{x}_{i, j}^{n^{j}}$ and $v_{n}:=\prod_{j=0}^{\ell} \alpha_{j}^{n^{j}}$, so that $s_{n}=u_{n} v_{n}^{-1}$.

Clearly, $\left(u_{n}\right)_{n \geq 1}$ and $\left(v_{n}\right)_{n \geq 1}$ are integer sequences, and $\left(\tilde{x}_{i, 1}, \ldots, \tilde{x}_{i, \ell}\right) \prec\left(\tilde{x}_{j, 1}, \ldots, \tilde{x}_{j, \ell}\right)$ for $1 \leq i<j \leq k$. Moreover, $\omega\left(s_{n}\right) \geq \omega\left(u_{n}\right)-\omega\left(v_{n}\right)=\omega\left(u_{n}\right)-\omega\left(v_{1}\right)$ for all n. This shows that it is sufficient to prove the existence of a base $\theta>1$ such that $\omega\left(u_{n}\right)>\operatorname{slog}_{\theta}(n)$ for infinitely many n, and it entails, along with the rest, that we can further assume that $x_{i, j}$ is a non-zero integer for every $(i, j) \in \llbracket 1, k \rrbracket \times \llbracket 0, \ell \rrbracket$.

We claim that it is also enough to assume $\delta_{0}=\cdots=\delta_{\ell}=1$, where for each $j \in \llbracket 0, \ell \rrbracket$ we let $\delta_{j}:=\operatorname{gcd}\left(x_{1, j}, \ldots, x_{k, j}\right)$. In fact, define, for $1 \leq i \leq k$ and $0 \leq j \leq \ell, \xi_{i, j}:=\delta_{j}^{-1} x_{i, j}$, and let $\left(w_{n}\right)_{n \geq 1}$ and $\left(\tilde{s}_{n}\right)_{n \geq 1}$ be the integer sequences of general term $\prod_{j=0}^{\ell} \delta_{j}^{n^{j}}$ and $\sum_{i=1}^{k} \prod_{j=0}^{\ell} \xi_{i, j}^{n^{j}}$, respectively. Then $s_{n}=w_{n} \tilde{s}_{n}$, and hence $\omega\left(s_{n}\right) \geq \omega\left(\tilde{s}_{n}\right)$. On the other hand, there cannot exist $\tilde{a}_{0}, \ldots, \tilde{a}_{\ell} \in \mathbf{Z}$ such that $\tilde{s}_{2 n}=\prod_{j=0}^{\ell} \tilde{a}_{j}^{(2 n)^{j}}$ for all n, or else we would have $s_{2 n}=\prod_{j=0}^{\ell}\left(\delta_{j} \tilde{a}_{j}\right)^{(2 n)^{j}}$ for every n (which is impossible). This leads to the claim.

With the above in mind, let \mathcal{P} be the set of all (positive) prime divisors of $\mathfrak{z}:=\prod_{i=1}^{k} \prod_{j=1}^{\ell} x_{i, j}$; observe that \mathcal{P} is finite and non-empty, as the preceding considerations yield $|\mathfrak{z}| \geq 2$. Then

$$
\begin{equation*}
s_{n}=\sum_{i=1}^{k}\left(x_{i, 0} \prod_{p \in \mathcal{P}} p^{e_{p}^{(i)}(n)}\right), \quad \text { for every } n \in \mathbf{N}^{+} \tag{6}
\end{equation*}
$$

where $e_{p}^{(i)}$ denotes, for all $p \in \mathbf{P}$ and $i \in \llbracket 1, k \rrbracket$, the function $\mathbf{N}^{+} \rightarrow \mathbf{N}: n \mapsto \sum_{j=1}^{\ell} n^{j} v_{p}\left(x_{i, j}\right)$.
Since $\delta_{0}=\cdots=\delta_{\ell}=1$, it is easily seen that for every $p \in \mathbf{P}$ there are $i, j \in \llbracket 1, k \rrbracket$ for which $e_{p}^{(i)} \neq e_{p}^{(j)}$, and there exist $i_{p} \in \llbracket 1, k \rrbracket$ and $n_{p} \geq N$ such that $e_{p}^{\left(i_{p}\right)}(n)<e_{p}^{(i)}(n)$ for all $n \geq n_{p}$ and $i \in \llbracket 1, k \rrbracket$ for which $e_{p}^{(i)} \neq e_{p}^{\left(i_{p}\right)}$. Let $n_{\mathcal{P}}:=\max _{p \in \mathcal{P}} n_{p}$ (recall that \mathcal{P} is a non-empty finite set), and for each $p \in \mathcal{P}$ and $i \in \llbracket 1, k \rrbracket$ define $\Delta e_{p}^{(i)}:=e_{p}^{(i)}-e_{p}^{\left(i_{p}\right)}$. Then set

$$
\begin{equation*}
\pi_{n}:=\prod_{p \in \mathcal{P}} p^{e_{p}^{\left(i_{p}\right)}(n)} \quad \text { and } \quad \sigma_{n}:=\sum_{i=1}^{k}\left(x_{i, 0} \prod_{p \in \mathcal{P}} p^{\Delta e_{p}^{(i)}(n)}\right) \tag{7}
\end{equation*}
$$

We have $\left|s_{n}\right|=\pi_{n} \cdot\left|\sigma_{n}\right|$, and we obtain from (5) that $\sigma_{n} \in \mathbf{Z} \backslash\{0\}$ for $n \geq n_{\mathcal{P}}$. Furthermore, having assumed $x_{i, j}>0$ for all $(i, j) \in \llbracket 1, k \rrbracket \times \llbracket 1, \ell \rrbracket$ implies, together with (4) and (6), that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \prod_{p \in \mathcal{P}} p^{e_{p}^{(k)}(n)-e_{p}^{(i)}(n)}=\lim _{n \rightarrow \infty} \prod_{j=1}^{\ell}\left(\frac{x_{k, j}}{x_{i, j}}\right)^{n^{j}}=\infty, \quad \text { for each } i \in \llbracket 1, k-1 \rrbracket . \tag{8}
\end{equation*}
$$

Consequently, we find that

$$
\begin{equation*}
\left|s_{n}\right| \sim\left|x_{k, 0}\right| \cdot \prod_{j=1}^{\ell} x_{k, j}^{n^{j}}=\left|x_{k, 0}\right| \cdot \prod_{p \in \mathcal{P}} p^{e_{p}^{(k)}(n)}, \quad \text { as } n \rightarrow \infty \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\sigma_{n}\right|=\frac{\left|s_{n}\right|}{\pi_{n}} \sim\left|x_{k, 0}\right| \cdot \prod_{p \in \mathcal{P}} p^{\Delta e_{p}^{(k)}(n)}, \quad \text { as } n \rightarrow \infty \tag{10}
\end{equation*}
$$

We want to show that the sequence $\left(\left|\sigma_{n}\right|\right)_{n \geq 1}$ is eventually (strictly) increasing.
Lemma 1. There exists $p \in \mathcal{P}$ such that $\Delta e_{p}^{(k)}(n) \rightarrow \infty$ as $n \rightarrow \infty$.
Proof. Suppose the contrary is true. Then, for each $p \in \mathcal{P}$ we have $e_{p}^{(k)}=e_{p}^{\left(i_{p}\right)}$, since $\Delta e_{p}^{(k)}(n)$ is basically a polynomial with integral coefficients in the variable n and $\Delta e_{p}^{(k)}(n)=e_{p}^{(k)}(n)-$ $e_{p}^{\left(i_{p}\right)}(n) \geq 0$ for $n \geq n_{\mathcal{P}}$. Therefore, we get from (8) that

$$
\prod_{p \in \mathcal{P}} p^{e_{p}^{\left(i_{p}\right)}(n)} \leq \prod_{p \in \mathcal{P}} p^{e_{p}^{(i)}(n)} \leq \prod_{p \in \mathcal{P}} p^{e_{p}^{(k)}(n)}=\prod_{p \in \mathcal{P}} p^{e_{p}^{\left(i_{p}\right)}(n)}
$$

for all $n \geq n_{\mathcal{P}}$ and $i \in \llbracket 1, k \rrbracket$. But this is impossible, as it implies that $e_{p}^{(i)}=e_{p}^{\left(i_{p}\right)}$ for all $p \in \mathcal{P}$ and $i \in \llbracket 1, k \rrbracket$, and hence, in view of (6), $s_{n}=\left(x_{1,0}+\cdots+x_{k, 0}\right) \cdot \prod_{p \in \mathcal{P}} p^{e_{p}^{\left(i_{p}\right)}(n)}$ for all n.

Now, let $A:=2 \mathfrak{z}^{2}$ (this is just a convenient value for A : We make no effort to try to optimize it, and the same is true for other constants later on). Since $\Delta e_{p}^{(k)}$ is eventually non-decreasing for every $p \in \mathbf{P}$ (recall that $\Delta e_{p}^{(k)}$ is a polynomial function and $\Delta e_{p}^{(k)}(n) \geq 0$ for all large n), we obtain from (5), (9), (10), and Lemma 1 that there exists $n_{0} \geq \max \left(2, n_{\mathcal{P}}\right)$ such that

$$
\begin{equation*}
\sigma_{n}^{2} \leq s_{n}^{2}<A^{n^{\ell}} \quad \text { and } \quad 0 \neq\left|\sigma_{n}\right|<\left|\sigma_{n+1}\right|, \quad \text { for } n \geq n_{0} \tag{11}
\end{equation*}
$$

From here on, the proof of Case (i) splits, as we present two different approaches that can be used to finish it, the first of them relying on a theorem of Evertse from [5], and the second using only elementary methods (as anticipated in the introduction).

1ST APPROACH: Let $\mathfrak{y}:=\mathfrak{z} \cdot \prod_{i=1}^{k}\left|x_{i, 0}\right|$ and $B:=\max \left(n_{0}^{\ell},\left(2^{35} k^{2}\right)^{2 k^{3} \mathfrak{y} \ell \log A}\right)$. We will need the following:

Lemma 2. There is a sequence $\left(r_{\kappa}\right)_{\kappa \geq 0}$ of integers $\geq n_{0}$ such that $r_{\kappa}^{\ell} \leq B^{\otimes(\kappa+1)}$ and $\omega\left(s_{r_{\kappa}}\right) \geq \kappa$ for every $\kappa \in \mathbf{N}$.

Proof. Set $r_{0}:=n_{0}$, fix $\kappa \in \mathbf{N}^{+}$, and suppose we have already found an integer $r_{\kappa-1} \geq n_{0}$ such that $r_{\kappa-1}^{\ell} \leq B^{\otimes \kappa}$ and $\omega\left(s_{r_{\kappa-1}}\right) \geq \kappa-1$: Notice how these conditions are trivially satisfied for $\kappa=1$, because $r_{0}^{\ell}=n_{0}^{\ell} \leq B=B^{\otimes 1}$ and $\omega(x) \geq 0$ for all $x \in \mathbf{Z}$.

Accordingly, denote by \mathcal{S}_{κ} the set of prime divisors of $\mathfrak{y} \cdot s_{r_{k-1}}$, and for all $n \geq n_{0}$ and $i \in \llbracket 1, k \rrbracket$ let $X_{i}(n):=s_{n}^{-1} \cdot \prod_{j=0}^{\ell} x_{i, j}^{n^{j}}$ (note that these quantities are well defined, since we have by (5) that $s_{n} \neq 0$ for $n \geq n_{0}$). A few remarks are in order.

Firstly, it is easy to check that, for every $n \geq n_{0}$, the k-tuple $\boldsymbol{X}_{n}:=\left(X_{1}(n), \ldots, X_{k}(n)\right) \in \mathbf{Q}^{k}$ is a solution to the following equation (over the additive group of the rational field):

$$
\begin{equation*}
Y_{1}+\cdots+Y_{k}=1 \tag{12}
\end{equation*}
$$

and we derive from (5) that it is actually a non-degenerate solution, where a solution $\left(Y_{1}, \ldots, Y_{k}\right)$ of (12) is called non-degenerate if $\sum_{i \in I} Y_{i} \neq 0$ for every non-empty $I \subseteq \llbracket 1, k \rrbracket$.

Secondly, it is plain from our definitions that $\boldsymbol{X}_{m}=\boldsymbol{X}_{n}$, for some $m, n \geq n_{0}$, only if

$$
\begin{equation*}
v_{p}\left(X_{i}(m)\right)=v_{p}\left(X_{i}(n)\right), \quad \text { for all } p \in \mathbf{P} \text { and } i \in \llbracket 1, k \rrbracket, \tag{13}
\end{equation*}
$$

and we want to show that this, in turn, is possible only if $\left|\sigma_{m}\right|=\left|\sigma_{n}\right|$.
Indeed, let $p \in \mathbf{P}$ and $n \geq n_{0}$. By construction, the p-adic valuation of $\prod_{j=1}^{\ell} x_{i_{p}, j}^{n^{j}}$ is equal to $e_{p}^{\left(i_{p}\right)}(n)$, with $e_{p}^{\left(i_{p}\right)}(n)$ being zero if $p \notin \mathcal{P}$. Thus, we obtain from (7) that

$$
v_{p}\left(X_{i_{p}}(n)\right)=v_{p}\left(x_{i_{p}, 0}\right)+e_{p}^{\left(i_{p}\right)}(n)-v_{p}\left(s_{n}\right)=v_{p}\left(x_{i_{p}, 0}\right)-v_{p}\left(\sigma_{n}\right)
$$

It follows that, for $m, n \geq n_{0}$, (13) holds true only if $v_{p}\left(\sigma_{m}\right)=v_{p}\left(\sigma_{n}\right)$ for all $p \in \mathbf{P}$, which is equivalent to $\left|\sigma_{m}\right|=\left|\sigma_{n}\right|$. Accordingly, we conclude from (11) and the above that, for $m, n \geq n_{0}$ and $m \neq n, \boldsymbol{X}_{m}$ and \boldsymbol{X}_{n} are distinct non-degenerate solutions of (12).

Thirdly, let N_{κ} be the number of non-degenerate solutions $\left(Y_{1}, \ldots, Y_{k}\right)$ to (12) for which each Y_{i} is an \mathcal{S}_{κ}-unit (i.e., lies in the subgroup of the multiplicative group of \mathbf{Q} generated by \mathcal{S}_{κ}). We obtain from [5, Theorem 3] that $N_{\kappa} \leq\left(2^{35} k^{2}\right)^{k^{3} g_{\kappa}}$, where

$$
g_{\kappa}:=\left|\mathcal{S}_{\kappa}\right| \leq \omega(\mathfrak{y})+\omega\left(s_{r_{\kappa-1}}\right) \leq \mathfrak{y}+\log \left|s_{r_{\kappa-1}}\right| \stackrel{(11)}{\leq} \mathfrak{y}+r_{\kappa-1}^{\ell} \log A \leq \mathfrak{y} \cdot r_{\kappa-1}^{\ell} \log A .
$$

Using that $r_{\kappa-1}^{\ell} \leq B^{\otimes \kappa}$ (by the inductive hypothesis), we thus conclude that

$$
\begin{equation*}
N_{\kappa} \leq\left(2^{35} k^{2}\right)^{B^{\otimes \kappa} k^{3} \mathfrak{y} \log A} \leq B^{B^{\otimes \kappa} /(2 \ell)} \tag{14}
\end{equation*}
$$

With this in hand, define $\wp:=\prod_{p \mid s_{r_{\kappa-1}}}(p-1)$ and let $\left(t_{h}\right)_{h \geq 0}$ be the subsequence of $\left(s_{n}\right)_{n \geq 1}$ of general term $t_{h}:=s_{h \wp+r_{\kappa-1}}$. We know from the above that there exists $h_{\kappa} \in \llbracket 0, N_{\kappa} \rrbracket$ such that $t_{h_{\kappa}}$ is not an \mathcal{S}_{κ}-unit (note that $h_{\wp}+r_{\kappa-1} \geq r_{\kappa-1} \geq n_{0}$ for all h), with the result that at least one prime divisor of $t_{h_{\kappa}}$ does not divide $s_{r_{\kappa-1}}$. On the other hand, a straightforward application of Fermat's little theorem shows that $p \mid t_{h_{\kappa}}$ for every $p \in \mathbf{P}$ such that $p \mid s_{r_{\kappa-1}}$. So, putting it all together, we find $\omega\left(s_{r_{\kappa}}\right) \geq 1+\omega\left(s_{r_{\kappa-1}}\right) \geq \kappa$, where

$$
\begin{aligned}
r_{\kappa} & :=h_{\kappa} \wp+r_{\kappa-1} \leq N_{\kappa} s_{r_{\kappa-1}}+r_{\kappa-1} \leq N_{\kappa} s_{r_{\kappa-1}} r_{\kappa-1} \stackrel{(11)}{\leq} A^{r_{\kappa-1}^{\ell}} N_{\kappa} r_{\kappa-1} \leq A^{2 r_{\kappa-1}^{\ell}} N_{\kappa} \\
& \stackrel{(14)}{\leq} A^{2 r_{\kappa-1}^{\ell}} B^{B^{\otimes \kappa} /(2 \ell)} \leq A^{2 B^{\otimes \kappa}} B^{B^{\otimes \kappa} /(2 \ell)} \leq B^{B^{\otimes \kappa} /(2 \ell)} B^{B^{\otimes \kappa} /(2 \ell)}
\end{aligned}
$$

(recall from the above that $r_{\kappa-1}^{\ell} \leq B^{\otimes \kappa}$). This completes the induction step (and hence the proof of the lemma), since it implies $r_{\kappa}^{\ell} \leq B^{\frac{3}{4} B^{\otimes \kappa}} B^{\otimes \kappa} \leq B^{\otimes(\kappa+1)}$.

So to conclude, let $\left(r_{\kappa}\right)_{\kappa \geq 0}$ be the sequence of Lemma 2 and take $\theta:=B^{\otimes 3}$. Then $\theta>1$ and $\omega\left(s_{r_{\kappa}}\right) \geq \kappa>\operatorname{slog}_{\theta}\left(r_{\kappa}\right)$ for all $\kappa \in \mathbf{N}^{+}$, because $r_{\kappa} \leq r_{\kappa}^{\ell} \leq B^{\otimes(\kappa+1)}$.

2ND APPROACH: Denote by \mathcal{Q}_{n} the set of all prime divisors of σ_{n} and let $\mathcal{Q}_{n}^{\star}:=\mathcal{Q}_{n} \backslash \mathcal{P}$. It is clear that \mathcal{Q}_{n} is finite for $n \geq n_{0}$ (recall that $\sigma_{n} \neq 0$ for $n \geq n_{\mathcal{P}}$). Thus, let

$$
\lambda:=\max _{p \in \mathcal{P}} v_{p}\left(\sigma_{n_{0}}\right)+\max _{p \in \mathcal{P}} \max _{1 \leq i \leq k} \Delta e_{p}^{(i)}\left(n_{0}\right)
$$

and then

$$
\alpha:=k \cdot \max _{1 \leq i \leq k}\left|x_{i, 0}\right| \cdot \prod_{p \in \mathcal{P}} p^{\lambda}, \quad \beta:=\prod_{p \in \mathcal{P}} p^{\alpha-1}(p-1), \quad \text { and } \quad B:=A^{2} \beta .
$$

Lastly, suppose that, for a fixed $\kappa \in \mathbf{N}$, we have already found $r_{0}, \ldots, r_{\kappa} \in \mathbf{N}^{+}$with $n_{0} \leq r_{0} \leq$ $\cdots \leq r_{\kappa}$, and define $\beta_{\kappa}:=\beta \cdot \prod_{p \in \mathcal{Q}_{r_{\kappa}^{*}}} p^{v_{p}\left(\sigma_{r_{k}}\right)}(p-1)$.

By taking $r_{0}:=n_{0}$ and $r_{\kappa+1}:=\beta_{\kappa}+r_{\kappa}$, we obtain an increasing sequence $\left(r_{\kappa}\right)_{\kappa \geq 0}$ of integers $\geq n_{0}$ with the property that, however we choose a prime $p \in \mathcal{P}$ and an index $i \in \llbracket 1, k \rrbracket$,

$$
\begin{equation*}
\Delta e_{p}^{(i)}\left(r_{\kappa+1}\right) \equiv \Delta e_{p}^{(i)}\left(r_{\kappa}\right) \bmod q^{\alpha-1}(q-1), \quad \text { for all } q \in \mathcal{P} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta e_{p}^{(i)}\left(r_{\kappa+1}\right) \equiv \Delta e_{p}^{(i)}\left(r_{\kappa}\right) \bmod q^{v_{q}\left(\sigma_{r_{k}}\right)}(q-1), \quad \text { for all } q \in \mathcal{Q}_{r_{\kappa}}^{\star}, \tag{16}
\end{equation*}
$$

where we use that $\Delta e_{p}^{(i)}$ is essentially a polynomial with integral coefficients, and $r_{\kappa+1} \equiv r_{\kappa} \bmod$ m whenever $m \mid \beta_{\kappa}$. In particular, (15) and a routine induction imply

$$
\begin{equation*}
\Delta e_{p}^{(i)}\left(r_{\kappa}\right) \equiv \Delta e_{p}^{(i)}\left(n_{0}\right) \bmod q^{\alpha-1}(q-1), \quad \text { for all } p, q \in \mathcal{P}, i \in \llbracket 1, k \rrbracket \text {, and } \kappa \in \mathbf{N} . \tag{17}
\end{equation*}
$$

Also, since $r_{\kappa} \geq n_{0}$, there exists $B>A$ such that, for all κ,

$$
\begin{equation*}
r_{\kappa+1} \leq r_{\kappa}+\beta \cdot \prod_{p \in \mathcal{Q}_{r_{\kappa}}} p^{v_{p}\left(\sigma_{r_{\kappa}}\right)}(p-1) \leq r_{\kappa}+\beta \sigma_{r_{\kappa}}^{2}<r_{\kappa}+\beta A^{r_{\kappa}^{\ell}} \leq \beta r_{\kappa} A^{r_{\kappa}^{\ell}(11)}<B^{r_{\kappa}^{\ell}} \tag{18}
\end{equation*}
$$

Based on these premises, we prove a series of three lemmas. To ease notation, we denote by I_{p}, for each $p \in \mathcal{P}$, the set of all $i \in \llbracket 1, k \rrbracket$ such that $e_{p}^{(i)} \neq e_{p}^{\left(i_{p}\right)}$, and we let $I_{p}^{\star}:=\llbracket 1, k \rrbracket \backslash I_{p}$.

Lemma 3. $\mathcal{Q}_{r_{\kappa}} \subseteq \mathcal{Q}_{r_{\kappa+1}}$ for every κ.
Proof. Pick $\kappa \in \mathbf{N}$ and $q \in \mathcal{Q}_{r_{\kappa}}$. If $i \in I_{p}$, then $\Delta e_{p}^{(i)}(n)=0$ for all n, and hence $p^{\Delta e_{p}^{(i)}(n)}=1$. If, on the other hand, $i \in I_{p}^{\star}$, then $\Delta e_{p}^{(i)}(n)>0$ for $n \geq n_{\mathcal{P}}$, and we conclude from Fermat's little theorem that $p^{\Delta e_{p}^{(i)}(n)} \equiv 0 \bmod q$ if $q=p$, and $p^{\Delta e_{p}^{(i)}(n)} \equiv p^{m} \bmod q$ if $p \neq q$ and $\Delta e_{p}^{(i)}(n) \equiv$ $m \bmod (q-1)$. So we get from (15), (16), and $r_{\kappa+1}>r_{\kappa} \geq n_{0}>n_{\mathcal{P}}$ that

$$
p^{\Delta e_{p}^{(i)}\left(r_{\kappa+1}\right)} \equiv p^{\Delta e_{p}^{(i)}\left(r_{k}\right)} \bmod q, \quad \text { for all } p \in \mathcal{P} \text { and } i \in \llbracket 1, k \rrbracket,
$$

which in turn implies

$$
\sigma_{r_{k+1}} \equiv \sum_{i=1}^{k}\left(x_{i, 0} \prod_{p \in \mathcal{P}} p^{\Delta e_{p}^{(i)}\left(r_{\kappa+1}\right)}\right) \equiv \sum_{i=1}^{k}\left(x_{i, 0} \prod_{p \in \mathcal{P}} p^{\Delta e_{p}^{(i)}\left(r_{k}\right)}\right) \equiv \sigma_{r_{k}} \equiv 0 \bmod q .
$$

This finishes the proof, since $\kappa \in \mathbf{N}$ and $q \in \mathcal{Q}_{r_{\kappa}}$ were arbitrary.
Lemma 4. Let $q \in \mathcal{P}$ and $\kappa \in \mathbf{N}$. Then $v_{q}\left(\sigma_{r_{\kappa}}\right) \leq \alpha-1$.
Proof. The claim is straightforward if $\kappa=0$, since $r_{0}=n_{0}$ and $v_{q}\left(\sigma_{n_{0}}\right) \leq \lambda<\alpha$. So assume for the rest of the proof that $\kappa \geq 1$. Then, we have from (7) that

$$
\begin{equation*}
\sigma_{n}=\sum_{i \in I_{q}}\left(x_{i, 0} \prod_{p \in \mathcal{P}} p^{\Delta e_{p}^{(i)}(n)}\right)+\sum_{i \in I_{\dot{q}}}\left(x_{i, 0} \prod_{q \neq p \in \mathcal{P}} p^{\Delta e_{p}^{(i)}(n)}\right), \quad \text { for all } n . \tag{19}
\end{equation*}
$$

If $i \in I_{q}, n>n_{0}$ and $n \equiv n_{0} \bmod \beta$, then q^{α} divides $\prod_{p \in \mathcal{P}} p^{\Delta e_{p}^{(i)}(n)}$, because $n \mid \Delta e_{p}^{(i)}(n)$ and $\Delta e_{p}^{(i)}(n) \neq 0$, hence $\alpha<\beta<\beta+n_{0} \leq n \leq \Delta e_{p}^{(i)}(n)$.

On the other hand, it is seen by induction that $r_{\kappa} \equiv n_{0} \bmod \beta\left(\right.$ recall that $\left.r_{\kappa} \equiv r_{\kappa-1} \bmod \beta\right)$. Thus, we get from the above, equations (19) and (17), [1, Theorem 2.5(a)], and Euler's totient theorem that

$$
\begin{equation*}
\sigma_{r_{\kappa}} \equiv \sum_{i \in I_{q}^{*}}\left(x_{i, 0} \prod_{q \neq p \in \mathcal{P}} p^{\Delta e_{p}^{(i)}\left(r_{\kappa}\right)}\right) \equiv \sum_{i \in I_{q}^{*}}\left(x_{i, 0} \prod_{q \neq p \in \mathcal{P}} p^{\Delta e_{p}^{(i)}\left(n_{0}\right)}\right) \bmod q^{\alpha} . \tag{20}
\end{equation*}
$$

But $\emptyset \neq I_{q}^{\star} \subseteq \llbracket 1, k \rrbracket$, so it follows from (5) that

$$
\begin{aligned}
0 & <\left|\frac{1}{\pi_{n_{0}}} \sum_{i \in I_{q}^{+}} \prod_{j=0}^{\ell} x_{i, j}^{\left(n_{0}\right)^{j}}\right|=\left|\sum_{i \in I_{q}^{\star}}\left(x_{i, 0} \prod_{q \neq p \in \mathcal{P}} p^{\Delta e_{p}^{(i)}\left(n_{0}\right)}\right)\right| \\
& \leq \max _{1 \leq i \leq k}\left|x_{i, 0}\right| \cdot \sum_{i \in I_{q}^{\star}} \prod_{q \neq p \in \mathcal{P}} p^{\Delta e_{p}^{(i)}\left(n_{0}\right)} \leq k \cdot \max _{1 \leq i \leq k}\left|x_{i, 0}\right| \cdot \prod_{p \in \mathcal{P}} p^{\lambda}=\alpha<q^{\alpha},
\end{aligned}
$$

which, together with (20), yields $v_{q}\left(\sigma_{r_{k}}\right)<\alpha$.
Lemma 5. Let $\kappa \in \mathbf{N}^{+}$and $q \in \mathcal{Q}_{r_{\kappa}}$. Then $v_{q}\left(\sigma_{r_{\kappa}}\right)=v_{q}\left(\sigma_{r_{\kappa+1}}\right)$.
Proof. If $q \notin \mathcal{P}$, then we infer from (7) and (16), [1, Theorem 2.5(a)], and Euler's totient theorem that $\sigma_{r_{\kappa+1}} \equiv \sigma_{r_{k}} \bmod q^{v_{q}\left(\sigma_{r_{k}}\right)+1}$, and we are done.

If, on the other hand, $q \in \mathcal{P}$, then we get from Lemma 4 that $v_{q}\left(\sigma_{r_{1}}\right) \leq \alpha-1$, which, along with (20), gives $\sigma_{r_{\kappa}} \equiv \sigma_{r_{1}} \bmod q^{v_{q}\left(\sigma_{r_{1}}\right)+1}$, and consequently $v_{q}\left(\sigma_{r_{\kappa}}\right)=v_{q}\left(\sigma_{r_{1}}\right)$.

At this point, since $\left(\left|\sigma_{n}\right|\right)_{n \geq n_{0}}$ is an increasing sequence by (11) and $r_{\kappa} \geq n_{0}$ for all $\kappa \in \mathbf{N}^{+}$, we see from Lemmas 3-5 that $\emptyset \neq \mathcal{Q}_{r_{\kappa}} \subsetneq \mathcal{Q}_{r_{\kappa+1}}$, and hence $\omega\left(\sigma_{r_{k}}\right)<\omega\left(\sigma_{r_{\kappa+1}}\right)$. By induction, this implies $\omega\left(\sigma_{r_{k}}\right) \geq \kappa$ for every κ.

On the other hand, if we let $\theta:=\max \left(B^{\ell} \ell, r_{1}^{\ell}\right)$, then we get from (18) and another induction that $r_{\kappa}^{\ell}<\theta^{\otimes \kappa}$ for all $\kappa \in \mathbf{N}^{+}$, which, together with the above considerations, leads to $\omega\left(\sigma_{r_{\kappa}}\right) \geq$ $\kappa>\operatorname{slog}_{\theta}\left(r_{\kappa}\right)$ and the desired conclusion.

Case (ii): There do not exist $b_{0}, \ldots, b_{\ell} \in \mathbf{Q}$ such that $s_{2 n-1}=\prod_{j=0}^{\ell} b_{j}^{(2 n-1)^{j}}$ for all n. Then, we are reduced to Case (i) by taking

$$
y_{i, j}:=\prod_{h=j}^{\ell} x_{i, h}^{(-1)^{h-j}\binom{h}{j}}, \quad \text { for } 1 \leq i \leq k \text { and } 0 \leq j \leq \ell,
$$

and by noting that for every $n \in \mathbf{N}^{+}$we have $s_{2 n-1}=t_{2 n}$, where $\left(t_{n}\right)_{n \geq 1}$ is the integer sequence of general term $\sum_{i=1}^{k} \prod_{j=0}^{\ell} y_{i, j}^{n_{j}^{j}}$ (we omit further details).

3. Proof of Corollary 3

Suppose for a contradiction that there are $c_{1}, \ldots, c_{k} \in \mathbf{Q}^{+}$and $x_{1}, \ldots, x_{k} \in \mathbf{Q} \backslash\{0\}$ such that $\left|x_{i}\right| \neq\left|x_{j}\right|$ for some $i, j \in \llbracket 1, k \rrbracket$ and $\left(\omega\left(u_{n}\right)\right)_{n \geq 1}$ is bounded, where $u_{n}:=\sum_{i=1}^{k} c_{i} x_{i}^{n}$ for all n, and let k the minimal positive integer for which this is pretended to be true.

Then $k \geq 2$, and we can assume that $\left|x_{1}\right| \leq \cdots \leq\left|x_{k}\right| \neq\left|x_{1}\right|$. Furthermore, we get from Theorem 1 that there must exist $c, x \in \mathbf{Q}^{+}$such that $u_{2 n}=c x^{2 n}$. So now, we have two cases, each of which will lead to a contradiction (the rest is trivial and we may omit details):

Case (i): $x \leq\left|x_{k}\right|$. We have $c y^{2 n}=\sum_{i=1}^{k} c_{i} y_{i}^{2 n}$ for all n, where $y_{i}:=\left|x_{i}\right| \cdot\left|x_{k}\right|^{-1}$ for $1 \leq i \leq k$ and $y:=x \cdot\left|x_{k}\right|^{-1}$. Let h be the maximal index in $\llbracket 2, k \rrbracket$ such that $y_{h-1}<y_{k}$, which exists because $y_{1}<y_{k}$. Since $0<y \leq 1$ and $0<y_{i}<1$ for $1 \leq i<h$, we find that

$$
c \cdot \lim _{n \rightarrow \infty} y^{2 n}=c_{h}+\cdots+c_{k},
$$

which can happen only if $y=1$, as $c_{h}, \ldots, c_{k}>0$. But then $c=c_{1}+\cdots+c_{k}$, and consequently $\sum_{i=1}^{h-1} c_{i} y_{i}^{2 n}=0$ for all n, which is impossible, because $h \geq 2$ and $c_{1}, \ldots, c_{h-1}>0$.

Case (ii): $x>\left|x_{k}\right|$. Then $c=\sum_{i=1}^{k} c_{i} z_{i}^{2 n}$ for all n, where $z_{i}:=\left|x_{i}\right| \cdot x^{-1}$ for $1 \leq i \leq k$. But this is still impossible, since $\left.z_{1}, \ldots, z_{k} \in\right] 0,1\left[\right.$, and hence $\sum_{i=1}^{k} c_{i} z_{i}^{2 n} \rightarrow 0$ as $n \rightarrow \infty$.

4. Closing Remarks

Let τ be an increasing function from \mathbf{N}^{+}into itself. What can be said about the behavior of $\omega\left(s_{\tau(n)}\right)$ as $n \rightarrow \infty$? And what about the asymptotic growth of the average of the function $\mathbf{R}^{+} \rightarrow \mathbf{N}: x \mapsto \#\left\{n \leq x: \omega\left(s_{\tau(n)}\right) \geq h\right\}$ for a fixed $h \in \mathbf{N}^{+}$?

In this paper, we have answered the first question in the case where τ is the identity or, more in general, a polynomial function (by the considerations made in the introduction). It could be interesting as a next step to look at the case where τ is a geometric progression, which however may be hard, when taking into account that it is a longstanding open problem to decide whether there are infinitely many composite Fermat numbers (that is, numbers of the form $2^{2^{n}}+1$).

On the other hand, the basic question addressed in the present manuscript has the following algebraic generalization: Given a unique factorization domain D, let $\alpha_{i, j}$ be, for $1 \leq i \leq k$ and $0 \leq j \leq \ell$, some fixed elements in D, and for $x \in D$ let $\omega_{D}(x)$ denote the number of non-associate primes dividing x. What can be said about the sequence $\left(A_{n}\right)_{n \geq 1}$ of general term $\sum_{i=1}^{k} \prod_{j=0}^{\ell} \alpha_{i, j}^{n^{j}}$ if the sequence $\left(\omega_{D}\left(A_{n}\right)\right)_{n \geq 1}$ is bounded? Does anything along the lines of Theorem 1 hold true?

Acknowledgements

The authors are grateful to Carlo Sanna (Università di Torino, IT) for useful comments. Moreover, they are greatly indebted to an anonymous referee for outlining a proof of Lemma 2 in the case when the numbers $x_{i, j}$ are positive, and most notably for explaining how to use [5, Theorem 3] to bound, in the notations of the same proof, the number of non-degenerate \mathcal{S}_{κ}-unit solutions of equation (12), which is the key step in the first approach ("Approach 1") to the proof of Theorem 1.

References

[1] T. M. Apostol, Introduction to Analytic Number Theory, Undergrad. Texts Math., Springer-Verlag: New York, 1976.
[2] A. Baker and G. Wüstholz, Logarithmic forms and Diophantine geometry, New Mathematical Monographs 9, Cambridge University Press: Cambridge, 2007.
[3] G. Everest, A. van der Poorten, I. Shparlinski, and T. Ward, Recurrence Sequences, Math. Surveys Monogr. 104, Amer. Math. Soc.: Providence (RI), 2003.
[4] J.-H. Evertse, On sums of S-units and linear recurrences, Compositio Math. 53 (1984), No. 2, 225-244.
[5] \qquad The number of solutions of decomposable form equations, Invent. Math. 122 (1995), No. 3, 559-601.
[6] F. Luca, Prime divisors of binary holonomic sequences, Adv. Appl. Math. 40 (2008), No. 2, 168-179.
[7] H. P. Schlickewei, Linearformen mit algebraischen Koeffizienten, Manuscripta Math. 18 (1976), 147-185.
[8] R. A. Smith and M. V. Subbarao, The average number of divisors in an arithmetic progression, Canad. Math. Bull. 24 (1981), No. 1, 37-41.
[9] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge Tracts in Mathematics 87, Cambridge Univ. Press: Cambridge, 1986.
[10] I. E. Shparlinski, Prime divisors of recurrent sequences, Isv. Vyssh. Uchebn. Zaved. Math. 215 (1980), 101-103.
[11] C. L. Stewart, On divisors of terms of linear recurrence sequences, J. reine angew. Math. 333 (1982), 12-31.
[12] \qquad , On the greatest prime factor of terms of a linear recurrence sequence, Rocky Mountain J. Math. 15 (1985), No. 2, 599-608.
[13] __ "On Prime Factors of Terms of Linear Recurrence Sequences", pp. 341-359 in J. M. Borwein, I. Shparlinski, and W. Zudilin (eds.), Number Theory and Related Fields. In Memory of Alf van der Poorten, Springer Proc. Math. Stat. 43, Springer: New York, 2013.
[14] A. J. van der Poorten and H. P. Schlickewei, The growth conditions for recurrence sequences, Macquarie Math. Reports 82-0041 (1982).
[15] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. 3 (1892), 265-284.
Department of Decision Sciences, Università L. Bocconi, via Roentgen 1, 20136 Milano, Italy E-mail address: leonetti.paolo@gmail.com
URL: https://sites.google.com/site/leonettipaolo/
Department of Mathematics, Texas A\&M University at Qatar, PO Box 23874 Doha, Qatar Current address: Institute for Mathematics and Scientific Computing, University of Graz, NAWI Graz | Heinrichstr. 36, 8010 Graz, Austria E-mail address: salvatore.tringali@uni-graz.at $U R L:$ http://imsc.uni-graz.at/tringali

[^0]: 2010 Mathematics Subject Classification. Primary: 11A05, 11A41, 11A51. Secondary: 11R27, 11D99.
 Key words and phrases. Integer sequences; number of distinct prime factors; sum of powers; \mathcal{S}-unit equations; super-logarithm and tetration.
 P.L. was supported by a PhD scholarship from Università "Luigi Bocconi", and S.T. by NPRP grant No. [5-101-1-025] from the Qatar National Research Fund (a member of Qatar Foundation), by the French ANR Project No. ANR-12-BS01-0011, and by the Austrian FWF Project No. M 1900-N39.

