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Introduction Role of CPD and CPDyl

 The CPDyl radical Is a resonance-stabilized, ambident, i.e. containing multiple reactive

- Polycyclic aromatic hydrocarbons (PAHSs) are a group of more than 100 chemicals _ o _
centers, radical that may undergo self-recombination reactions

that can be produced from various anthropogenic sources, such as the incomplete o S _ _
» Due to Its importance significant amount of experimental and theoretical data has been

combustion of heating fuels, oil refining processes and the combustion of diesel fuels _ . _ _
published on the gas phase chemistry involving CPDyl and CPD in the growth of PAHS

*Many PAHS are known to be carcinogenic or mutagenic and important precursors to » This work deals both experimentally and theoretically with the growth of PAHS starting

soot, which has been linked to human morbidity and global warming from CPD and CPDyl
« Among many potential soot precursors’ reactions those involving the
cyclopentadiene (CPD) and its corresponding cyclopentadienyl (CPDyl) radical are -
considered to be one of the most important contributors to PAHs and soot formation — 'O
&

] Coke In a steam cracking coll
Growth of coke deposits from smaller molecules
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Schematic diagram of the experimental set-up indicating process gas EXPerimental conditions: _ TOF-MS o
temperatures (Ti) and pressure measurements (CIP & COP) (1-electronic * CO-pyrolysis of CPD-ethene mixture sampling * Thermo Scientific TRACE
balance; 2-liquid feed reservoir (DCPD); 3-gaseous diluent/internal standard v" Atubular continuous flow reactor (Incoloy 800HT; 1.5mL.; 6 mm 1.D.) rate 30 Hz GCxGC (FID)
(nitrogen/ethene); 4-pressure reducing valve; 5-coriolis flow meter controlled v Treactor= 873 - 1163 K,_nearly lsoth_ermal, COP=1.7 bara, el 70 eV - Thermo Scientific Tempus
oump; 6-coriolis mass flow controller; 7-valve; 8-evaporator/heater; 9-mixer; 10- <« Nitrogen was used as a diluent and primary Internal standard TOE-MS
neater; 11-heated sampling oven; 12-GCxGC-FID/TOF-MS for C5+; 13-outlet v' Dilution of 1 mol CPD/ 1 mol C,H,/ 10 mol N,, Fy cpp=13.6 mg/s Tsource 4r3 K
pressure restriction valve; 14-cyclone separator; 15-c_opq|enser; 16-dehydrator; v Argon was used as additional (as a double-check) internal standard
17-Refinery Gas Analyzer (RGA) for C4-; 18-data acquisition system) »  On-line sampling of the effluent using heated transfer lines (573 K) *Van Geem, Pyl, et al. J. Chromatogr. A. 2010
Djokic et al. Combust. Flame. 2014 v Dedicated analysis section: GCxGC-FID/TOF-MS + RGA(FID, TCD)
Experimental and Kinetic Modeling Results Kinetic Modeling
ONLINE effluent analysis T=023K 2-norbornene Summary of the measured product yields at the reactor outlet « A single-event microkinetic model was generated
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