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Abstract. Answer set programming is a form of declarative program-
ming that can be used to elegantly model various systems. When the
available knowledge about these systems is imperfect, however, the re-
sulting programs can be inconsistent. In such cases, it is of interest to
find plausible repairs, i.e. plausible modifications to the original program
that ensure the existence of at least one answer set. Although several ap-
proaches to this end have already been proposed, most of them merely
find a repair which is in some sense minimal. In many applications, how-
ever, expert knowledge is available which could allow us to identify better
repairs. In this paper, we analyze the potential of using expert knowl-
edge in this way, by focusing on a specific case study: gene regulatory
networks. We show how we can identify the repairs that best agree with
insights about such networks that have been reported in the literature,
and experimentally compare this strategy against the baseline strategy
of identifying minimal repairs.

1 Introduction

Answer Set Programming (ASP) is a form of declarative programming mainly
oriented towards NP-hard problems [19]. It enables a form of non-monotonic
reasoning by virtue of a negation-as-failure operator with a purely declarative
semantics [12]. An ASP program is a set of rules that describes a problem [19].
This set of rules is fed to answer set solvers that find stable models (i.e. answer
sets) of the program at hand. These answer sets then directly correspond to
the solutions of the considered problem. Alternatively, answer set programs are
sometimes also used to simulate systems (e.g. for solving planning problems
[17,18]), in which case answer sets typically correspond to sequences of states.

We are interested in the case where ASP programs have no answer sets. We
call these programs inconsistent, and we look for ways to restore their consis-
tency. For example, in a search problem, having no answer sets could mean that
the problem is over-constrained, and we may want to look at ways to relax the
problem. In applications where ASP programs simulate a system, inconsisten-
cies could mean that the rules describing the system being simulated are not in
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agreement with available observations. We may want to find a way to adapt the
description of the system, which amounts to a form of belief revision for answer
set programs [7]. In this paper, we will focus on the latter type of ASP programs.

While different methods exist for repairing ASP programs, most of them
are based on finding some sort of minimal repair, e.g. adding or removing the
smallest number of facts to ensure that the program has at least one answer
set [10],[1,2]. While this is a reasonable principle in the absence of any further
information, in real-world applications, we often have access to some kind of
expert knowledge about the system being modelled that can be exploited to
identify the most plausible repair (which may not necessarily be minimal).

To demonstrate this idea, let us consider the following biological setup: in
Fig.1, we have a table containing time-series observed data about which of three
genes were active at different time points, and a draft of a Gene Regulatory
Network (GRN) which might not be correct. A GRN is a directed graph that
represents the way a group of genes affect one another. GRNs can be modeled
in different ways [13],[6],[4], with one popular model being boolean networks
[24]. Treating a GRN as a boolean network implies that an edge from gene A to
gene B can either represent a positive regulation, which means that A activates
B, or a negative regulation, which means that A inhibits B. If A is active at a
specific time step, and A activates B, B becomes active in the next time step.
Similarly, if A is active and A inhibits B, B becomes inactive in the next time
step. More details about activation rules are provided in Section 3. The GRN
graph might have missing edges and/or erroneous edges due to the complexity
of network generation methods [20],[8], and as a result it might be inconsistent
with the observed experimental data in the table. The task at hand is to repair
the network to make it consistent with the table. A common method of repair
would be to find the smallest number of modifications to the graph that makes
it consistent with the table. Based on the GRN and table in Fig.1, since gene
2 stays active from t=1 to t=2, a minimal repair would be to remove the edge
2 a 2. The repaired network is shown in Fig.2(a).

T gene1 gene2 gene3

t=0 + - -
t=1 - + -
t=2 - + +

Fig. 1: A time-series table which is inconsistent with a given GRN. Edges with
pointed endpoints denote activations. Edges with flat endpoints denote inhibi-
tions. The edge 2 a 2 causes the inconsistency.

However, there is a known property about GRNs that states that the diame-
ter (i.e. the length of the longest of the shortest paths between two nodes in the



graph) of a GRN tends to be very small. Considering this information leads to
another repair, which is shown in Fig.2(b). Notice that this repair is not mini-
mal (we removed the edge 2 a 2 and added the edge 3 a 1), but the diameter
of this new graph (diameter=1) is smaller than the one in the previous repair
(diameter=2). We have thus generated a repair, which could be more plausible
than the minimal repair.

(a) (b)

Fig. 2: Two possible repairs for the GRN from Fig.1. (a) A minimal repair (di-
ameter=2). (b) A repair that minimizes the diameter of the graph (diameter=1).

The aim of this paper is to assess the viability of using informal, expert-
provided rules of thumb for repairing inconsistent ASP programs, focusing on
the specific use case of GRNs. In particular, we show how expert knowledge
about GRNs found in the biological literature can be formalized in ASP and
we experimentally compare the quality of the resulting repairs against baseline
methods. Note that while we only consider GRNs in our experiments, the pro-
posed method is entirely generic, being applicable to any setting where expert
knowledge can be formalized in ASP.

This paper is structured as follows. First, in Section 2 we provide some back-
ground on answer set programming. In Section 3, we describe the considered use
case of gene regulatory networks, summarizing in particular the available expert
knowledge from the biological literature. Section 4 then shows how this expert
knowledge can be encoded in ASP and how these encodings can be used to iden-
tify plausible repairs. Subsequently, in Section 5, we discuss our experimental
results where we apply our approach on five known gene regulatory networks.
Finally, we conclude in Section 6.

2 Answer Set Programming

Answer Set Programming (ASP) is a declarative problem solving language [12],
[19], which requires users to describe a problem as a set of rules. ASP solvers
can then find the answer sets (see below), which correspond to the solutions of
the encoded problem. An ASP rule has the form



h← a1, . . . , aj ,not bj+1, . . . ,not bk. (1)

where h, a1, . . . , aj and bj+1, . . . , bk are called atoms. Let r be an ASP rule of
form (1). head(r) = h is the head of r and body(r) = {a1, . . . , aj ,not bj+1, . . . ,not
bk} is the body of r. Let body+(r) = {a1, . . . , aj} and body−(r) = {bj+1, . . . , bk}.
The “,” in body(r) represents a conjunction. If body(r) = ∅, then r is called a
fact. For convenience, often the symbol← is omitted when writing facts in ASP.
If head(r) = ∅, then r is called a constraint. Constraints act as filters on the
possible answer sets. Indeed, answer set programs will follow a generate-and-test
methodology, in which a set of rules is used to generate candidate solutions and
constraints are then used to filter these candidates. The keyword not represents
negation-as-failure in ASP, where not a intuitively holds whenever we cannot
derive that a holds. An answer set program Π is a set of ASP rules of the form r.
A set of atoms X is closed under Π if for any rule r ∈ Π, head(r) ∈ X whenever
body+(r) ⊆ X. The smallest set of atoms closed under Π is denoted by Cn(Π).
The reduct ΠX of Π relative to X is defined by

ΠX = {head(r)← body+(r) | r ∈ Π and body−(r) ∩X = ∅} .

A set X of atoms is called an answer set (i.e. stable model) of Π if Cn(ΠX) = X.
For example, let Π be the answer set program formed by the rule c← not b and
the fact a. This program has one answer set {a, c}.

In practice, it is often easier to encode ASP programs using first-order rules
like R(X1, X2, X3)← Q(X1, X2), not S(X3). Such rules should be seen as a com-
pact representation of a set of ASP rules, called the groundings of the first-order
rule, which are obtained by considering all possible instantiations of the variables
by constants appearing in the program. There are ASP grounders (e.g. gringo)
that combine a set of constant (ground) facts and ungrounded rules to give us an
equivalent ground program. These programs are then solved using an ASP solver
(e.g. clasp) to give us answer sets that correspond to solutions of our problem.

3 Case Study: Biological Networks

Biological networks are an established application of ASP [11],[9]. Such networks
offer a good opportunity for assessing how expert knowledge can help with re-
pairing inconsistencies, as several rules of thumb that could be derived about
such networks have been described in the biological literature. In this section,
we briefly recall what Gene Regulatory Networks are, and present a setup where
inconsistencies arise. We also provide a summary of the relevant properties found
in the literature that we can formulate into rules of thumb.

A Gene Regulatory Network (GRN) is a network that represents the inter-
actions between a group of cell genes. The nodes of the network are the genes,
whereas the edges of the network encode the interactions between the genes.
There are two types of possible interactions between a pair of genes: a gene ei-
ther activates another gene, or inhibits another gene. This means that if gene A



activates gene B, and A is active at time step t, then B becomes active at time
step t+1. Likewise, if gene A inhibits gene B, and A is active at time step t, then
B becomes inactive at time step t+1. In the case where a gene is activated and
inhibited simultaneously, different activation rules may be applied to determine
its subsequent state [23]. Different kinds of experimental observations can be
used to automatically construct GRNs [20],[8].

Our setup consists of the following. We have an automatically generated
GRN describing a cell cycle. Since it has been automatically constructed, it is
likely to be imperfect, in the sense that we may obtain observations that are
inconsistent with the behaviour predicted by the network, which would mean
that it needs to be revised. We also have a time-series table that lists the state
of the corresponding genes in this GRN at consecutive time steps. At every
time step, a given gene can either be active or inactive. The table we have at our
disposal corresponds to data that has been experimentally observed, but was not
available during the GRN generation process. Our problem then comes down to
checking whether the GRN is inconsistent with the data from the time-series
table, i.e. whether it fails to correctly predict how the states of the genes evolve,
and in that case, repair it.

Several methods have been developed that use ASP to repair inconsisten-
cies found in GRNs [10,11],[22]. These methods often consist of finding some
kind of minimal repair. However, expert knowledge about GRNs can be used
to derive rules of thumb that help in finding more plausible repairs, which are
not necessarily minimal. In [16], it is stated that every gene network converges
to a final stable state (Property 1). This allows us to create an extra check to
find whether the GRN we are trying to repair converges to a stable state that
indeed corresponds to the final time step in the table. In [13], Kauffman found
that a genetic network will behave chaotically unless there is a restriction on
the number of regulatory inputs and outputs per node (Property 2). This can
be encoded as a rule of thumb where the number of input and output edges of
every node should be limited. Another rule of thumb can be derived from the
fact that various biological properties in a gene network depend on the number
of non-zero interactions between the nodes of this network, as is discussed in [14]
(Property 3). This allows us to derive that similar gene networks would more
likely have a similar number of total interactions. Also in [14], it is observed
that nodes tend to be positively regulated by nodes that are active at earlier
states of a cell cycle and negatively regulated by nodes that are active later in
the process (Property 4). In [5], it is stated that the diameter (i.e. the length of
the shortest path between the two nodes that are furthest apart in the network)
of GRN graphs tend to be very small (Property 5). In [15], the idea of dominant
motifs (i.e. sub-graphs) is discussed, where these motifs tend to occur frequently
in multiple kinds of GRNs. This allows us to formulate a rule of thumb that
similar networks are likely to share the same dominant motifs (Property 6). Fi-
nally, [27] states that the size of the basin of attractors (i.e. the stable states to
which most initial states of the network converge to) in a GRN is a vital quantity
in terms of understanding network behaviour and may relate to other network



properties such as stability (Property 7). This allows us to check whether the
state of the repaired network with the largest basin size corresponds indeed to
the final stable state in the time-series table.

4 Repairing ASP Programs Using Rules of Thumb

In this section, we show how inconsistent ASP programs can be repaired. In
Section 4.1, we encode the facts of our program, which correspond in our case
to a GRN and a table with observed data, and show the rule that checks our
program’s consistency. We then recall in Section 4.2 how a minimal repair of an
inconsistent ASP program can be found, using the meta-programming technique
proposed in [10]. Finally, in Section 4.3 we improve the baseline method from
Section 4.2 by taking into account rules of thumb. We illustrate the main idea by
focusing on the biological properties of GRNs that we discussed in the previous
section.

4.1 Encoding GRNs in ASP

In this section, we recall how a GRN and corresponding time-series table can be
encoded in ASP, as presented in [11],[22,23],[9]. This includes the observed time-
series table data, as well as the GRN graph that might be inconsistent with the
table. For every gene i, we introduce the fact gene(i). For every edge from gene i
to gene j, we introduce the fact activates(i, j) if i activates j, or inhibits(i, j) if
i inhibits j. As for the time-series table, we include facts of the form active(i, t)
and inactive(i, t) which indicate that gene i is active at time t and that gene i
is inactive at time t respectively. We also represent every time step with the fact
time(i) with 0 ≤ i ≤ tfinal, with tfinal representing the final time step that the
gene regulatory network converge to.

Then, to check for consistency between the graph and the table, three things
need to be done. First, we write activation and inhibition rules for the graph
that determine whether a gene is activated or inhibited (or neither) at each time
step. We use the following activation rule: if a gene is positively regulated by at
least one other gene, and it is not negatively regulated by any other gene, then
it is activated. A similar rule is used to determine when a gene is inhibited. This
is shown in (2). Second, we determine the state for every gene at every time step
based on its state given by the table, and on the activation and inhibition rules
from the graph. This is shown in (3). Third, we check if the states of the genes
generated by the activation and inhibition rules of the graph correspond with
the states of the genes in the time-series table, shown in (4),

receivesAct(Y, T )← activates(X,Y ), active(X,T ).

receivesInh(Y, T )← inhibits(X,Y ), active(X,T ).

activated(Y, T )← receivesAct(Y, T − 1), not receivesInh(Y, T − 1).

inhibited(Y, T )← receivesInh(Y, T − 1), not receivesAct(Y, T − 1).

← activated(Y, T ), inhibited(Y, T ).

(2)



inactive(Y, T )← active(Y, T − 1), inhibited(Y, T ).

active(Y, T )← active(Y, T − 1), not inhibited(Y, T ).

active(Y, T )← inactive(Y, T − 1), activated(Y, T ).

inactive(Y, T )← inactive(Y, T − 1), not activated(Y, T ).

(3)

← active(Y, T ), inactive(Y, T ). (4)

resulting in an inconsistent program if and only if the data from the graph and
the time-series table do not correspond to one another.

4.2 Minimal Repair

The repair operations consist of either adding or removing an edge between two
genes. Thus, we generate four possible repair choices for every pair of nodes:
add a new activation edge, add a new inhibition edge, remove an existing edge
or do nothing. This introduces the facts addActEdge(U, V ), addInhEdge(U, V )
and removeEdge(U, V, S) respectively. Then, to take the generated repair into
account, we create the facts activates(i, j) and inhibits(i, j) using the following

activates(U, V )← edge(U, V, 1), not removeEdge(U, V, 1).

activates(U, V )← addActEdge(U, V ).

inhibits(U, V )← edge(U, V,−1), not removeEdge(U, V,−1).

inhibits(U, V )← addInhEdge(U, V ).

(5)

The ASP program constructed so far has one answer set for each possible repair
of the original GRN that will make it consistent with the table. To consider
minimal repairs only, we first define the cost of a repair, using the following
rules

addEdge(U, V, 1)← addActEdge(U, V ).

addEdge(U, V,−1)← addInhEdge(U, V ).

costAdding(X)← X = #count{addEdge(U, V, S)}.
costRemoving(Y )← Y = #count{removeEdge(U, V, S)}.

repairCost(Z)← costAdding(X), costRemoving(Y ), Z = X + Y.

#minimize[repairCost(Z) = Z].

(6)

These rules contain aggregates and conditions supported by the ASP solver clasp.
Aggregates behave like built-in functions in the ASP solver. For example, in
(6), the aggregate #count intuitively counts the number of instances of the
literals addEdge and removeEdge, and stores the results in variables X and



Y respectively. Whereas the aggregate #minimize adds an optimization value
that minimizes the number held by the variable Z in the literal repairCost(Z).
This intuitively minimizes the cost of the repair. In addition, the 5th rule in (6)
contains the condition Z = X + Y . This condition can be added to the body of
a rule, and has to be satisfied for the rule to be satisfied.

4.3 Using Rules of Thumb for Identifying Plausible Repairs

While the idea of finding a minimal repair, as explained for GRNs in Section
4.2, is defensible in cases where we have no further information, it is far from
optimal. First, there is no reason why the correct repair has to be minimal; as
we will see in Section 5, in the case of GRNs the correct repair is actually rarely
minimal. Second, there can be exponentially many minimal repairs, and with-
out further knowledge we would have to select one arbitrarily. We assume that
in most real-world applications, however, we have access to some kind of back-
ground knowledge that could help us identify plausible repairs. Such background
knowledge usually comes in the form of rules of thumb. In this section, we will
consider the seven principles about GRNs that we found in the literature (see
Section 3). We will briefly explain how each of these principles can be encoded as
some kind of soft constraint in ASP. These soft constraints will introduce penalty
weights if they are not satisfied by correct repairs. These individual penalties are
then added up and included in the repair cost that already contains the cost of
adding and removing an edge. The repair that makes the graph consistent with
the time-series table and has the lowest overall cost will be selected as the best
repair. Note that we cannot realistically expect any training data to be available
to learn weights (e.g. reflecting the importance of each principle), making our
approach quite different from e.g. approaches for repairing using soft constraints
in Markov logic [25],[21]. Therefore, we instead set the weights in a uniform man-
ner, i.e. they are chosen such that each principle roughly has the same impact
on the choice of repair. In other words, our approach is only based on a direct
encoding of available expert knowledge. The effectiveness of such a strategy will
be experimentally analyzed in Section 5.

Property 1: Last Time Step as Fixed State. We create a new time step
(tfinal+1) in the table with the state of the genes identical to their states at
(tfinal). Then, we perform a similar consistency check as we did in rules (2)-(4).
If the repair is still correct, i.e. if the graph is still consistent with the table after
the addition of the time step (tfinal+1), then the time step (tfinal) is indeed a
fixed state, and no cost is added to the repair. Otherwise, we increase the cost
of the repair by a constant value equal to the total number of initial edges in the
network. Since we are repairing by adding and removing edges, we choose the
maximum penalty for every property to be equal to the total number of initial
edges in the network.

Property 2: Degree of a Gene. We need to find the degree of a gene, given by
k = kin +kout with kin being the number of incoming edges and kout the number



of outgoing edges of the gene. We then need to make sure that these degrees
fall within a certain range. We explain how we obtain this range in Section 5.
We then call kBadGenes the number of genes that have a k degree that falls
outside the range limits. The penalty from this property is then multiplied by
the ratio of initial edges per gene for every “bad gene” found. This makes sure
that the maximum penalty is equal to the total number of initial edges in the
network (if all the genes of the network are “bad genes”, the maximum penalty is
penaltymax = (genestotal)× (edgesinitial/genestotal) = edgesinitial). This property
is added using the following rules:

edgeAfterRepair(U, V )← activates(U, V ).

edgeAfterRepair(U, V )← inhibits(U, V ).

kOut(C,X)← X = #count{edgeAfterRepair(C,D)}, gene(C).

kIn(C,X)← X = #count{edgeAfterRepair(D,C)}, gene(C).

kDegree(C,Z)← kIn(C,X), kOut(C, Y ), Z = X + Y.

kBadGene(C)← kDegree(C,Z), Z < kmin.

kBadGene(C)← kDegree(C,Z), Z > kmax.

kBadGenes(X)← X = #count{kBadGene(C)}.

(7)

Property 3: Total Number of Edges. To encode this property, we count the
total number of interactions between the genes and check whether this number
falls within a certain range limit (see Section 5). If the number is outside the
range we set, a penalty equal to the total number of initial edges is added to the
repair cost. Otherwise, the penalty is zero.

Property 4: Likely Interactions Based on Gene State. For this property,
we divide the genes into likely activators and likely inhibitors based on whether
they are active during the first half or the second half of the cycle respectively.
The same gene can be both a likely activator and a likely inhibitor. We then
check the outgoing edges of every gene, and increase the cost of the repair every
time a likely activator (that is not also a likely inhibitor) inhibits another gene,
or a likely inhibitor (that is not also a likely activator) activates another gene.
The penalty is increased by 1 for every “bad” edge found, with the maximum
penalty being the total number of initial edges in the network. We encode this
property using the following rules:

likelyAct(C)← active(C, T ), T <= thalf .

likelyInh(C)← active(C, T ), T > thalf .

badEdge(C,D)← likelyAct(C), inhibits(C,D), not likelyInh(C), C ! = D.

badEdge(C,D)← likelyInh(C), activates(C,D), not likelyAct(C), C ! = D.

badEdges(X)← X = #count{badEdge(C,D)}. (8)



Property 5: Network Diameter. To encode this property, we first need to
make sure that every gene of the network is reachable, using the following rules:

link(X,Y )← edgeAfterRepair(X,Y ), X ! = Y.

link(Y,X)← edgeAfterRepair(X,Y ), Y ! = X.

reachable(X)← link(1, X).

reachable(Y )← reachable(X), link(X,Y ).

← gene(X), not reachable(X).

(9)

Then, we find the shortest distance between every pair of genes by finding all
the possible paths between them, and minimizing the number of path links. The
greatest value of these shortest distances is the diameter of the network.

dist(X,Y, 1)← link(X,Y ), X ! = Y.

dist(X,Y, 2)← link(X,A), link(A, Y ), X ! = Y.

dist(X,Y, 3)← link(X,A), link(A,B), link(B, Y ), X ! = Y.

. . . (10)

smallestDist(X,Y,D)← D = #min[dist(X,Y,C) = C], dist(X,Y, Z).

diameter(D)← D = #max[smallestDist(X,Y,C) = C].

The penalty cost that is added depends on the diameter that was found. Again,
if the diameter falls within a certain range limit (see Section 5), no penalty is
added to the repair cost. Otherwise, the cost is increased by a penalty equal to
the total number of initial edges in the network.

Property 6: Dominant Motifs. A motif is a small pattern with usually 3 or
4 nodes that is found repeatedly in a network graph. It does not matter which
genes these nodes correspond to, or the type of the edges between the nodes. For
this property, we use an external program described in [26] to find the dominant
motifs of popular GRNs in the literature. The GRN that we are repairing is
not used during this step. We then encode these motifs in our program and try
to maximize the number of their instances in the repaired network. For every
instance of dominant motif that we find in the repaired network, we decrease
the penalty of this property by 1, starting with the maximum penalty equal to
the total number of initial edges in the network (the minimum penalty is zero).

Property 7: Size of Basin of Attractors. To use this property, we need
to find the final state of every possible initial state of a network. To do this,
we use a standalone program described in [3]. We then need to make sure that
the most popular final state of the network given by the output of this program
corresponds indeed to its state at the final time step (tfinal) given by the time-
series table. To apply this property, we adapt the answer sets of our program in



the following way. For each repaired network (i.e. for each answer set), we add
a penalty equal to the total number of initial edges in the network if its most
popular final state does not correspond to the state at the final time step (tfinal)
given by the table. Otherwise, we do not add any penalty.

5 Experimental Results

To test our approach, we use the following 5 GRNs: Budding Yeast, Fission
Yeast, C. Elegans, Arabidopsis and Mammalian Cell Cycle. We corrupt each
of these GRNs by adding and removing edges, and then try to repair them.
Every time we corrupt a network, we remove R randomly chosen edges, and
subsequently add N randomly chosen edges (choosing between activation and
inhibition edges with equal probability). We set N and R as percentages of
the initial number of edges for each network that we are corrupting. For our
experiments, we consider 7 corruption setups by varying the percentages N and
R in the following way: N=20%/R=80%, N=30%/R=70%, N=40%/R=60%,
N=50%/R=50%, N=60%/R=40%, N=70%/R=30% and N=80%/R=20%.

Every time we select a network to corrupt and repair, we learn the relevant
parameters of the rules of thumb from the other four, uncorrupted networks. For
Property 2, we learn the degrees kmin and kmax from the other four networks by
setting kmin as the smallest degree value of the other four networks and kmax as
the largest degree value. The range [diametermin, diametermax] in Property 5 is
learned similarly, where diametermin is the smallest diameter value of the other
four networks, and diametermax is the largest diameter value. For Property 3,
the range of the total number of edges is calculated as follows. We learn from
the other four networks the ratio of number of edges per node, and we keep
the minimum (ratiomin) and maximum (ratiomax) values that we find. Then, we
determine what the expected number of edges should be for the test network by
multiplying these two ratios with the number of nodes in the test network.

To evaluate our results, we use the F1 score and Jaccard index which we
calculate as follows. Let A be the set of edges of the repaired network and B the
set of edges of the original network. We write |A| and |B| for the number of edges
of the repaired and original network respectively. The F1 score is given by F1 =
2× (precision× recall) / (precision + recall), with precision = |A∩B| / |B| and
recall = |A∩B| / |A|. The Jaccard index is given by J(A,B) = |A∩B| / |A∪B|.
We run every experiment (i.e. every corruption setup on every network) 10 times
and report the average F1 score and Jaccard Index of the best repair that was
found. In the case where multiple repairs with the same minimum cost were
found, we select the first repair that we get from the solver as best repair. We
have used the grounder gringo and the solver clasp to run our experiments.

The results of our experiments are shown in Fig.3. Each graph corresponds
to a different GRN. The dashed lines represent the average F1 score and Jaccard
index of the best repair without the addition of rules of thumb (i.e. best minimal
repair), and the solid lines represent the same values after the addition of rules of
thumb. We notice a consistent improvement in both metrics with the addition



of rules of thumb. Instead of only minimizing the number of applied repair
operations, the addition of rules of thumb also focuses on preserving the biggest
number of properties that were found in similar GRNs. This allows the repairing
process to avoid many mistakes. For example, while a minimal repair can have a
node detached from the rest of the graph, a more plausible repair that keeps all
the nodes of a GRN connected can be achieved by simply following a rule that
describes this property.
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(a) Budding Yeast network
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(b) Fission Yeast network
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(c) C. Elegans network

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

Corruption setup

F
1

sc
o
re

/
J
a
cc

a
rd

in
d
ex

(d) Arabidopsis network
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Fig. 3: Average F1 score and Jaccard index for 7 corruption setups of 5 GRNs,
with and without the addition of Rules of Thumb (RoTh).



6 Conclusion and Discussion

In this paper, we have explored how expert knowledge, in the form of rules of
thumb, can be used to find better ways of repairing an inconsistent ASP program.
As a case study, we have focused our experiments on a biological setup where
a GRN and a time-series table are in conflict with each other. Our experiments
have shown that our method of repairing by using rules of thumb leads to a
better performance in terms of F1 score and Jaccard measure. This leads to
more plausible repairs than when simply selecting the minimal one, with only
very limited access to training data.

The idea of adding soft constraints to prefer a model over another is not
new. Many applications of Markov logic strongly utilize this concept [25],[21].
However, combining the idea of rules of thumb with the ease by which ASP can
model systems provides a framework that elegantly takes advantage of both soft
and hard constraints. Compared to Markov logic, ASP offers us more flexibility
in the term of what we optimize, e.g. we are not restricted to minimizing the
sum of penalties, although that is how we used the rules of thumb in this paper.
In the future, it would be interesting to do an experimental comparison between
our ASP approach and its Markov logic counterpart.
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