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Osteopontin facilitates West Nile 
virus neuroinvasion via neutrophil 
“Trojan horse” transport
Amber M. Paul1, Dhiraj Acharya1, Laurel Duty1, E. Ashley Thompson1, Linda Le1, Dobrivoje S. 
Stokic  2, A. Arturo Leis2,3 & Fengwei Bai1

West Nile virus (WNV) can cause severe human neurological diseases including encephalitis and 
meningitis. The mechanisms by which WNV enters the central nervous system (CNS) and host-
factors that are involved in WNV neuroinvasion are not completely understood. The proinflammatory 
chemokine osteopontin (OPN) is induced in multiple neuroinflammatory diseases and is responsible for 
leukocyte recruitment to sites of its expression. In this study, we found that WNV infection induced OPN 
expression in both human and mouse cells. Interestingly, WNV-infected OPN deficient (Opn−/−) mice 
exhibited a higher survival rate (70%) than wild type (WT) control mice (30%), suggesting OPN plays a 
deleterious role in WNV infection. Despite comparable levels of viral load in circulating blood cells and 
peripheral organs in the two groups, WNV-infected polymorphonuclear neutrophil (PMN) infiltration 
and viral burden in brain of Opn−/− mice were significantly lower than in WT mice. Importantly, 
intracerebral administration of recombinant OPN into the brains of Opn−/− mice resulted in increased 
WNV-infected PMN infiltration and viral burden in the brain, which was coupled to increased mortality. 
The overall results suggest that OPN facilitates WNV neuroinvasion by recruiting WNV-infected PMNs 
into the brain.

West Nile virus (WNV) is a single-stranded RNA virus belonging to the flaviviridae family that is primarily 
transmitted to humans by infected mosquitos1, 2. Although the majority of WNV-infected individuals remain 
asymptomatic, some develop symptoms ranging from mild fever and maculopapular rash to severe neuroinvasive 
diseases, including flaccid paralysis, encephalitis, meningitis, and possible death. The pathogenesis of neuroinva-
sive WNV is still not well understood and there is no vaccine or specific antiviral therapeutic available for human 
use.

Osteopontin (OPN) is a multifunctional protein also known as early T-lymphocyte activation-1 (ETA-1) 
and secreted phosphoprotein-1 (SPP-1)3, 4. OPN is produced by a variety of immune cells, including mast cells, 
dendritic cells, macrophages, neutrophils, B lymphocytes and T lymphocytes5, 6. There are two primary protein 
isoforms of OPN, intracellular (iOPN) and secreted (sOPN) OPN, each having a distinct function in the context 
of immunity. For instance, iOPN is involved in amplification of the type I interferon (IFN) response following 
Toll-like receptor (TLR) engagement7, 8, whereas sOPN can recruit leukocytes to sites of its expression9, 10. OPN 
has a wide range of biological functions, such as biomineralization and bone remodeling3, but it is also involved 
in the pathogenesis of many neuroinflammatory diseases, including multiple sclerosis11, Parkinson’s disease12, 
Alzheimer’s disease13 and in cancer cell metastases and brain tumor formation14. OPN expression is also induced 
by various viral infections, including human immunodeficiency virus15, hepatitis C virus16 and Zika virus infec-
tion in human neural progenitor cells17. However, the role of OPN during WNV pathogenesis is not known.

Polymorphonuclear neutrophils (PMN) constitute approximately 50–70% of the total human leukocyte pop-
ulation and are the first immune cells recruited to sites of infection18, 19. PMNs are crucial players in controlling 
bacterial and fungal infections through phagocytosis, degranulation and neutrophil extracellular traps (NETs)18. 
We have previously shown that PMNs were permissive to WNV infection and harbored 75% of WNV in the total 
leukocyte population of mice20, thus it is possible that WNV-infected PMNs play an important role in trans-
porting the virus into the central nervous system (CNS), contributing to neuroinvasive disease. In line with this, 

1Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA. 
2Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS, 39216, USA. 
3Department of Neurology, Mayo Clinic, Scottsdale, AZ, 85259, USA. Correspondence and requests for materials 
should be addressed to F.B. (email: fengwei.bai@usm.edu)

Received: 21 December 2016

Accepted: 22 May 2017

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0002-1891-5730
mailto:fengwei.bai@usm.edu


www.nature.com/scientificreports/

2Scientific RepoRts | 7: 4722  | DOI:10.1038/s41598-017-04839-7

human WNV cases with neurological disease have increased neutrophils in their cerebral spinal fluid (CSF), indi-
cating a possible role for PMNs in the development of the neurological symptoms of WNV infection21, 22. In this 
study, we show that sOPN promotes WNV-infected PMN recruitment into the CNS, enhancing disease severity.

Results
WNV infection induces OPN expression in both human and mouse cells. OPN is induced in vari-
ous human neuroinflammatory diseases3, 11–14, 17. Here, we found that OPN was also induced in human peripheral 
blood mononuclear cells (PBMC) isolated from healthy human volunteers without a history of WNV infection, 
following WNV infection in vitro (Fig. 1A). In addition, Opn expression was increased in WNV-infected mouse 
bone marrow derived dendritic cells (BMDCs, Fig. 1A). Since WNV is a neurotropic virus23 and sOPN is involved 
in the recruitment of immune cells3, we determined if WNV-infected neurons express OPN. For this, human 
neuroblastoma cells (SH-SY5Y) and murine primary neurons were infected with WNV and Opn gene expression 
was measured by qPCR, and sOPN production in the medium of primary neurons was measured by ELISA. The 
results showed that the expression of Opn was induced in both human and murine neuronal cells (Fig. 1A and B).  
In summary, these results demonstrated that WNV infection induced OPN expression in both human and mouse 
cells.

OPN facilitates WNV infection in mice. To determine the putative role of OPN in the pathogenesis of 
WNV in vivo, we intraperitoneally (i.p.) infected wild type (WT) and OPN deficient (Opn−/−) mice with WNV 
(2,000 PFU). The survival results showed that approximately 70% of Opn−/− mice and 30% of WT control mice 
survived WNV infection, suggesting a detrimental role for OPN during WNV infection (Fig. 2A). To further 
relate the role of OPN to viral burden, we measured OPN levels and viral burden in mice blood, plasma, spleens 
and brain tissues at various time points post-infection (p.i.). Consistent with the in vitro results in Fig. 1A and B,  
OPN levels were increased in WT mouse plasma at day 1 p.i., and in whole brain homogenates at day 2 p.i. 
(Fig. 2B). Since OPN has been suggested to regulate type I interferon production7, 8 and TNF-α has been impli-
cated in blood brain barrier (BBB) compromise24, we measured the expression of Ifn-β and Tnf-α in spleens by 
qPCR. The results showed Ifn-β mRNA level was not significantly altered between WT and Opn−/− mice at D2 
and D4 p.i., but Tnf-α mRNAs were marginally increased at D4 p.i. (Fig. 2C). Since these molecules circulate in 
blood and can interact at the BBB interface, we also measured the levels of IFN-β and TNF-α in plasma isolated 
from WNV-infected WT and Opn−/− mice. Although no significant difference was observed in the levels of 
IFN-β, interestingly TNF-α displayed a biphasic response in expression, whereby TNF-α levels were reduced 
at day 2 p.i. and increased at day 4 p.i. (Fig. 2D and E). WNV-envelope (WNV-E) RNA in blood and spleens 
were comparable between WT and Opn−/− mice at D4 p.i. (Fig. 2F). In contrast, viral RNA in the brain tissues 
of Opn−/− mice was significantly lower than WT mice at D4 and D6 p.i., while WNV-E RNA was marginally 
detected in brain tissues at D2 p.i. with no significant difference between the two groups (Fig. 2G). Viral RNA 
burden in the brain agreed with the survival results (Fig. 2A), suggesting that OPN may contribute to WNV dis-
ease by enhancing infection in the brain. Thus, resistance of Opn−/− mice to WNV infection could be due to two 
possible mechanisms: either Opn−/− mice brain tissue may be resistant to WNV infection, or fewer viruses invade 
Opn−/− mice brain parenchyma. To determine if brain-intrinsic antiviral factors were involved in Opn−/− mice, 
we injected 20 PFU of WNV into the brains of Opn−/− and WT control mice via an intracerebral (i.c) inoculation 

Figure 1. Osteopontin (OPN) is induced following WNV infection in human and mouse cells. (A) PBMCs 
isolated from healthy human volunteers (1 × 105 cells/ml, n = 4) were infected with WNV (MOI = 1) for 
24 hr, human neuroblastoma cells (1 × 106 cells/ml, SHSY5Y, n = 3), primary mouse neurons (1 × 104 cells/ml, 
neurons, n = 3) and mouse bone marrow derived dendritic cells (3 × 105 cells/ml, BMDCs, n = 3) were infected 
with WNV at MOI of 1 or 5 for 24 hr, and the relative fold change (RFC) of Opn expression was measured by 
qPCR, and (B) OPN production in the cell medium of primary mouse neurons was measured by ELISA (n = 3). 
All experiments were performed twice and analyzed using a two-tailed, Student’s t-test (*denotes p < 0.05).
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Figure 2. Opn−/− mice infected with WNV have increased survival and reduced viral burden in brain.  
(A) WT and Opn−/− mice were infected with 2,000 PFU of WNV (i.p.) and survival was monitored for 30 days. 
(B) Plasma (left) was collected from WT mice (n = 3) before infection (Ctrl) and on 1 day post infection (d.p.i.) 
and whole brain homogenates (right) were prepared on 1 and 2 d.p.i. to measure OPN by an ELISA. (C) RFC 
expression of Ifn-β and Tnf-α in spleens were measured by qPCR (n = 7–11) normalized to β-actin. (D and E) 
Plasma collected from WT and Opn−/− mice on days 2 (D2) and 4 (D4) p.i. to measure the levels of IFN-β and 
TNF-α by an ELISA (n = 3). WNV-E were quantified in blood (n = 16–21) and spleens (n = 18–22) (F), and (G) 
brains (n = 10–36) at selected time points (p.i.), and in WT (n = 8) and Opn−/− mice (n = 11) brains that were 
intracerebrally (i.c.) infected with 20 PFU of WNV on day 6 (D6) p.i. The survival data were analyzed using a 
Kaplan-Meier log-rank test. All remaining experiments were performed twice and analyzed using a two-tailed, 
Student’s t-test (*denotes p < 0.05).
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route, and measured viral RNA in brain tissue on D6 p.i. (Fig. 2G). The results showed there was slightly more 
viral RNA in the brains of Opn−/− mice than WT controls, excluding the possibility that brain tissue of Opn−/− 
mice might be intrinsically resistant to WNV replication. In contrast, these results suggest that OPN may facilitate 
WNV brain invasion.

Opn−/− mice have a tighter BBB following WNV infection. The BBB is an important physiological 
barrier for protecting the brain against various insults, including WNV and other neuroinvasive pathogens23, 25.  
We next sought to determine if the BBB is tighter in Opn−/− mice than WT mice without or with WNV infection 
with an Evans blue assay. Similar levels of Evans blue dye was observed in brain tissues from uninfected Opn−/− 
and WT controls, which suggests that OPN does not contribute to BBB compromise. However, following WNV 
infection, Opn−/− mice had reduced Evans blue dye brain tissue integration as compared to WT controls (Fig. 3A), 
suggesting Opn−/− mice have a tighter BBB following infection. To determine if there were any changes in inflam-
matory or antiviral responses between WT and Opn−/− brain tissues, we used qPCR to measure the expression 
of Tnf-α, Il-1β, Il-6 and Ifn-β with the results indicating no significant difference in the expression of these genes 
(Fig. 3B). Interestingly, the gene expression of an endothelial cell marker involved in leukocyte extravasation, 
intracellular adhesion molecule-1 (Icam-1), was significantly reduced in the brain tissues of Opn−/− mice at 2 
d.p.i., suggesting defective leukocyte extravasation into the brain of Opn−/− mice at the early stage of infection 
(Fig. 3B). In addition, we also evaluated mRNA expression of BBB tight junction related genes Zo-1, Claudin 5, 
Occludin, Connexin 43 and Laminin α5 and found Zo-1 and Claudin 5 were significantly higher in brain tissues 
of Opn−/− mice on D4 p.i., with a trend in higher expression of Occludin, Connexin 43 and Laminin α5 (Fig. 3C). 
We also confirmed the expression of Claudin 5 at the protein level by immunofluorescence of whole brain tissue 
sections, which showed increased mean fluorescent intensity (MFI) of Claudin 5 localized to blood vessels that 
innervated cortical brain parenchyma in Opn−/− mice compared to WT controls (Fig. 3D). Collectively, these 
results indicated that Opn−/− mice have a tighter BBB than WT control mice following WNV infection.

Opn−/− mice have less PMN-brain infiltration following WNV infection. To further investigate the 
contributing role of OPN during WNV-mediated BBB permeability, we examined immune cell infiltration and 
WNV-E antigens in the brains of Opn−/− and WT control mice by flow cytometry. The results showed that among 
all the measured brain-infiltrating leukocytes, PMNs were the predominant cell type that were reduced (approx-
imately 70%) in Opn−/− mice compared to WT mice (Fig. 4A and Supplemental Fig. 1). To further determine if 
OPN recruits PMNs carrying WNV into the brain, we infected WT and Opn−/− mice with WNV (2,000 PFU, 
i.p.) and isolated their brains on D3 and D4 p.i. for flow cytometric analysis. We found that the percentages of 
WNV-infected PMNs were reduced in the brains of Opn−/− mice during the early infection course compared 
to WT controls (Fig. 4B). Since chemokines are responsible for PMN recruitment26, we measured expression 
of chemokines in brain tissues of WT and Opn−/− mice. We found that PMN chemoattractant genes Cxcl2 and 
another chemokine Cxcl10, had significantly reduced expression in Opn−/− mice compared to WT controls at 4 
d.p.i. (Fig. 4C), which may be attributed to milder viral infection in the brain. In summary, these results suggest 
that PMN infiltration is reduced in the brains of Opn−/− mice, which may be in part due to reduced PMN che-
moattractant gene expression.

sOPN recruits WNV-infected PMNs into the brain enhancing disease severity. OPN has been 
shown to recruit PMNs in vitro9. In our study, we confirmed that recombinant OPN (rOPN) could attract PMNs 
in a transwell migration assay (Fig. 5A), suggesting that along with reduced expression of Cxcl2, reduced PMN 
infiltration in brains of Opn−/− mice may also be due to lack of sOPN. In addition, we confirmed that deficiency 
of OPN did not alter PMN permissiveness to WNV infection by qPCR (Fig. 5B). We have previously demon-
strated that PMNs were very permissive to WNV infection20, 27. In agreement with these reports, here we also 
identified PMNs as the primary carriers of WNV during neuroinvasive infection in mice, as approximately 75% 
of total infiltrated PMNs were WNV+ within both WT and Opn−/− mice (Fig. 5C). Therefore, it is possible that 
sOPN might recruit WNV-infected PMNs into brain, enhancing WNV neuroinvasion. To test this hypothe-
sis in vivo, we injected rOPN (50 ng, i.c.) or an equal volume of PBS into the brains of Opn−/− mice and 1 hr 
later infected them with WNV (2,000 PFU, i.p.). Mice were euthanized and brains were isolated on D4 p.i., a 
time point when the BBB was largely compromised as indicated by the Evans blue assay (Fig. 3A) and total 
brain infiltrated leukocytes were quantified by flow cytometry. We found that infiltrated PMNs were considerably 
increased following rOPN supplement in Opn−/− mice brains, while the infiltration of CD4+ cells, CD8+ cells, 
and macrophages were not significantly altered (Fig. 5D–G), suggesting that rOPN can selectively recruit PMNs 
into brain following WNV infection. In complement with this, rOPN-supplemented Opn−/− mice had increased 
percentage of WNV-infected PMN infiltration into their brains (Fig. 5H) and WNV burden was significantly 
higher in brains of rOPN-supplemented Opn−/− mice (Fig. 5I), which resulted in dramatically reduced survival 
of rOPN-supplemented Opn−/− mice compared to PBS-supplemented Opn−/− mice (Fig. 5J). Collectively, our 
results suggested that sOPN could recruit WNV-infected PMNs into the brain, facilitating WNV neuroinvasive 
disease.

Discussion
Understanding the mechanisms by which WNV invades the CNS is a prerequisite for developing specific antiviral 
therapeutics to combat WNV neuroinvasive disease and associated long-term sequelae1, 2. In theory, WNV can 
enter the brain through multiple routes, including diffusion through endothelial tight junctions, direct infection 
of endothelial cells, infected leukocytes that ‘Trojan horse’ WNV into the CNS, infection of olfactory neurons, 
and/or direct axonal retrograde transport from infected peripheral neurons23, 28–31. Infected T cells and mac-
rophages have been suggested as ‘Trojan horse’ WNV carriers into the CNS29, 32, 33, while our previous report 
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demonstrated that WNV replicates more efficiently in human and mouse PMNs20. In addition, both clinical and 
experimental mouse data show that PMNs are the predominant infiltrating leukocyte subpopulation in the CNS 

Figure 3. Opn−/− mice have tighter blood brain barriers following WNV infection. WT (n = 21) and Opn−/− 
(n = 27) mice were infected with WNV (2,000 PFU i.p.) and uninfected WT (n = 12) and Opn−/− (n = 15) mice 
(PBS i.p., 100 μl) mice were used as absorbance controls. (A) Brain infiltrated Evans blue dye was measured 
with a spectrophotometer on day 4 p.i. (B) RFC of Tnf-α, Il-1β, Il-6, Ifn-β and Icam-1 normalized to β-Actin in 
brains of Opn−/− mice compared to WT controls (horizontal green line) on 2 and 4 d.p.i (n = 4–12). (C) RFC 
of Opn−/− whole brains were analyzed for the expression of tight junction genes Zo-1, Claudin 5, Occludin, 
Connexin 43 and Laminin α5 normalized to β-actin and compared to WT controls (horizontal green line) on 
2, 4, and 6 d.p.i (n = 4–12). (D) (i) Immunofluorescence of Claudin 5 (green) and DAPI (blue) in cortical brain 
sections of WT and Opn−/− mice at 4 d.p.i. following WNV (2,000 PFU) infection, and (ii) mean fluorescent 
intensity (MFI) of Claudin 5. All experiments were performed twice and analyzed using a two-tailed, Student’s 
t-test (*denotes p < 0.05). Scale bar = 10 μm.
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during the early-stage of WNV infection22, 34, 35. Therefore, it is possible that a small number of viral particles enter 
the brain and infect neuronal cells and immune cells to produce chemoattractant molecules that could trigger an 
influx of WNV-infected PMNs into the brain, paradoxically making infection more severe. Understanding the 
host factors necessary for the regulation of PMN recruitment into the CNS and whether infiltrating PMNs carry 
WNV into the CNS becomes essential to elucidate the contribution of PMNs in WNV neuroinvasion.

In this study, we found that the expression of OPN was induced following WNV infection in human and 
mouse neuronal cells in vitro. In line with this, neurons have been described to be major producers of OPN in 
HIV-associated neurocognitive disorders36, while other CNS-resident cells including astrocytes37 and microglia38 
induce OPN expression following glioma-associated activation, suggesting OPN may be involved in the patho-
genesis of other neurodiseases. Here, we revealed a novel role for OPN in enhancing WNV neuroinvasion in mice, 
as shown by reduced viral burden in the brain and increased survival of WNV-infected Opn−/− mice compared 
to WT controls. Consistent with the previously reported role of sOPN in PMN recruitment9, we found that PMN 
infiltration was significantly reduced in the brains of Opn−/− mice compared to WT mice. By using a transwell 
migration assay and supplementing rOPN into the brains of Opn−/− mice, we further confirmed that OPN could 
recruit WNV-infected PMNs into the brain, resulting in a higher viral burden and reduced survival. Therefore, we 
concluded that OPN facilitates WNV neuroinvasive infection through the recruitment of WNV-infected PMNs.

Figure 4. Opn−/− mice have reduced PMN-brain infiltration following WNV infection. WT and Opn−/− mice 
were infected with 2,000 PFU (i.p.). (A) Brain infiltrating leukocytes were quantified by flow cytometry on 
day 4 p.i., including total infiltrating leukocytes (CD45high), CD4+ cells (CD4+/CD45high), CD8+ cells (CD8+/
CD45high), CD19+ cells (CD19+/CD45high), PMNs (Ly6G+CD11b+/CD45high) and myeloid cells (Ly6G-CD11b+/
CD45high); n = 5–7 per group. (B) Brain-infiltrating WNV+ PMN (% WNV+Ly6G+/CD45high) were quantified 
on days 3 (D3) and 4 (D4) p.i. (n = 5–7). Brains were collected (2 and 4 d.p.i.), subjected to qPCR and the 
RFC of Opn−/− compared to WT controls (horizontal black line, n = 6–12) for Cxcl1, Cxcl2 and Cxcl10 were 
normalized to β-actin. Experiments were performed at least twice and analyzed using a two-tailed, Student’s t-
test (*denotes p < 0.05).
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Figure 5. Recombinant OPN recruits PMNs in vitro and in vivo and increases WNV infection in Opn−/− 
mice. (A) Transwell migration assay using bone marrow derived PMNs isolated from WT mice (n = 3) and 
recombinant mouse OPN (rOPN, 2 μg/ml). (B) Bone-marrow derived PMNs isolated from WT and Opn−/−  
mice (n = 4) were infected in vitro with WNV for 24 hr, followed by qPCR analysis to measure WNV-E relative 
to β-Actin. (C) WT and Opn−/− mice were infected with WNV (2,000 PFU) and the percentage (%) of WNV+ 
expressing brain infiltrating leukocytes were profiled for total populations of CD4+ cells (CD4+/CD45high), 
CD8+ cells (CD8+/CD45high), CD19+ cells (CD19+/CD45high), PMNs (CD11b+Ly6G+/CD45high) and myeloid 
cells (CD11b+Ly6G−/CD45high); n = 5–7 per group. Opn−/− mice were pretreated with rOPN (50 ng, i.c.) or 
a PBS-vehicle control and 1 hr later were infected with WNV (2,000 PFU, i.p.). Brain-infiltrating leukocytes 
(n = 6–11) were quantified by flow cytometry on day 4 p.i.; (D) PMNs (Ly6G+CD11b+/CD45high), (E) CD4+ 
cells (CD4+/CD45high), (F) CD8+ cells (CD8+/CD45high), and (G) macrophages (F4/80+/CD45high). Brains 
were collected on day 4 p.i. for flow cytometric analysis and qPCR measurement of WNV. (H) Percent (%) 
population of WNV+PMNs (WNV+Ly6G+) in total infiltrating leukocytes (CD45high) by flow cytometric 
analysis (n = 7–8). (I) WNV-E relative to β-Actin was analyzed by qPCR in brains of Opn−/− mice with PBS 
(n = 6) or rOPN (n = 7) i.c. supplement. (J) Survival of Opn−/− mice either pretreated i.c. with rOPN (n = 21) 
or PBS (n = 16) for 1 hr, followed by infection with 2,000 PFU of WNV (i.p.). The survival data were analyzed 
using a Kaplan-Meier log-rank test. All remaining experiments were performed twice and analyzed using a two-
tailed, Student’s t-test (*denotes p < 0.05).
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Reduced leukocyte infiltration in particular with WNV-infected PMNs in the brains of Opn−/− mice following 
WNV infection, was negatively correlated with viral burden in brain tissue during an early stage of infection (D4 
p.i.). Although antiviral functions of PMNs, such as NETs and reactive oxygen species (ROS) production were 
not studied in this report, PMNs isolated from WT and Opn−/− mice were both susceptible to equal viral loads 
and had similar capacity to transport WNV into the brain, which rules out defective immunity in Opn−/− PMNs. 
Our results confirmed that WNV induced OPN expression in neuronal cells, which indicates sOPN produced by 
WNV-infected neurons could play an important role in recruiting WNV-infected PMNs into the brain tissue fol-
lowing initial WNV brain entry. In support of this, i.c. rOPN supplement significantly increased WNV-infected 
PMN infiltration into the brains of Opn−/− mice compared to i.c. PBS supplemented controls. In addition, the 
expression of the PMN-attracting chemokine Cxcl2 was also diminished in the brains of WNV-infected Opn−/− 
mice, suggesting OPN may not be the sole factor responsible for reduced PMN infiltration in Opn−/− mice fol-
lowing WNV infection.

Although PMNs are necessary to combat WNV infection during a later time point of neuroinvasive WNV 
infection20, viral load was substantially reduced in Opn−/− mice early during infection (D4), which may be due 
to reduced PMN brain influx, contributing to enhanced survival. Indeed, the BBB was tighter in Opn−/− than 
WT mice following WNV infection, possibly due to the reduced influx of leukocytes and neuroinflammation, 
as robust immune cell infiltration could also interrupt the integrity of the BBB25, 39, 40. Furthermore, OPN did 
not appear to contribute to BBB compromise directly in our mouse model, while Opn−/− mice had reduced gene 
expression of Icam-1 and TNF-α levels early in the course of infection (D2 p.i.). ICAM-1 has been shown to reg-
ulate the integrity of the BBB in the mouse model of WNV infection41, which suggests other pathways that affect 
the integrity of the BBB may be also inhibited in Opn−/− mice directly or indirectly following infection. In addi-
tion, other than contributing to BBB compromise24, TNF-α has also been shown to be involved in the promotion 
of WNV clearance42 and to protect against WNV-induced neuronal apoptosis43, indicating multiple functions of 
TNF-α in the immune response that can support or inhibit viral-induced neurodisease, which requires further 
studies.

In conclusion, our results show that reduced PMN infiltration into the brain partially limits WNV neuroinva-
sion, suggesting OPN might serve as a potential therapeutic target to reduce WNV neuroinvasion.

Methods
Ethics statement and biosafety. Written informed consent was obtained from all human volunteers 
prior to their inclusion in this study. The protocol for human subject has been approved by the University of 
Southern Mississippi (USM) Institutional Review Board. All animal experimental procedures were approved by 
the Institutional Animal Care and Use Committee at USM. All in vitro experiments and animal studies involv-
ing live WNV were performed by certified personnel in biosafety level 3 (BSL3) laboratories following standard 
biosafety protocols approved by the USM Institutional Biosafety Committee.

Viruses and cell culture. WNV isolate (CT2741), kindly provided by John F. Anderson, was propa-
gated one time in Vero cells (ATCC CCL-81) and titered by a Vero cell plaque assay44. Vero (ATCC CCL-131) 
were maintained in Dulbecco’s modified Eagle medium (DMEM) containing 1% L-glutamine (L-glu), 1% 
penicillin-streptomycin (Pen/Strep), and 10% FBS. SHSY5Y cells (ATCC CRL-2266) were maintained in Eagle’s 
minimal essential medium (EMEM) and F12 medium (1:1) containing 10% FBS. Mouse BMDCs were cultured 
in DMEM containing 10% FBS, 2% plasmacytoma cell medium containing GM-CSF (J588L), 1% Pen/Strep, 1% 
L-glu and 50 μM of β-mercaptoethanol. Mouse primary neurons were cultured in DMEM:F12 (1:1) medium 
containing 1% Pen/Strep, 10% FBS, 1% L-glu, and glucose (4.5 g/l) and Neurobasal®-A media (Life Technologies) 
containing 2% B-27, 10% FBS, 1% L-glu and 1% Pen/Strep. Polymorphonuclear neutrophils (PMNs) were cul-
tured in RPMI-1640.

Human peripheral blood mononuclear cells were isolated using Ficoll-Paque PLUS (GE Healthcare Life 
Sciences)20. Murine BMDCs were isolated and cultured from femurs of WT or Opn−/− mice (3 to 6 month-old)45, 
primary neuronal cells were isolated from adult (6–12 month-old) mice, triturated in Papain (2 mg/ml) and 
cultured on poly-ornithine pre-treated plates46, 47, and PMNs were isolated and cultured48, following previously 
published procedures. Purity of isolated PMNs was measured by flow cytometry as gated CD45+CD11b+Ly6G+ 
populations.

Animal Studies. C57BL/6J wild-type (WT) and Opn−/− (C57BL/6J background) mice breeding pairs were 
purchased from The Jackson laboratory (Bar Harbor, ME). Mice were bred in a USM animal facility clean room. 
Seven to nine week-old, sex-matched WT and Opn−/− mice were inoculated intraperitoneally (i.p.) with 2,000 
plaque-forming units (PFUs) of WNV in 100 µl of PBS containing 1% gelatin20. Infected mice were monitored 
daily for morbidity and mortality for 30 days. Blood samples were collected by retro-orbital bleeding on D1–4 
p.i. for viremia and Opn measurement by qPCR and mice were randomly euthanized on D2, D4, and D6 p.i. to 
collect spleen and brain tissues for gene expression and flow cytometric analysis. For intracerebral (i.c.) injec-
tions of WNV (20 PFU/mouse in 20 µl 1% gelatin) and recombinant OPN (rOPN; 50 ng/mouse in 20 µl in PBS) 
were performed on 8-week old, sex-matched mice anesthetized with 30% isoflurane in isopropanol27. For rOPN 
studies, one-hour post rOPN supplement, mice were inoculated with 2,000 PFU of WNV per mouse (i.p.) and 
monitored for 30 days.

Quantitative PCR (qPCR) and Enzyme-linked Immunosorbant Assays. Mouse tissues and cells 
were collected for total RNA extraction with TRIreagent (Molecular Research Center, Inc.) and converted into 
the first strand cDNA using the iSCRIPTTM cDNA synthesis kit (Bio-Rad). qPCR assays were performed using 
iTAQTM polymerase supermix for probe-based assays (Bio-Rad) or iQ™ SYBR® Green Supermix polymerase 
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(Bio-Rad). WNV-envelope (WNV-E) gene and mouse cellular gene primers and probes sequences were adapted 
according to previous publications: Opn49, 50, WNV-E51, β-Actin20, 52, Zo-153, Claudin 554, Occludin55, Connexin 
4356, Ifnβ57, Tnf-a58, Il-1β59, Il-660 and Icam-160,Cxcl161, Cxcl262, and Cxcl1063. Primers were designed for murine 
Laminin α5, forward 5′-TGGCTCACAGATGGCTCCTA-3′, and reverse 5′-CACTTGGATCGCCTTGCTGG-3′. 
Analyses were performed using either the 2−ΔΔCT method, normalized to β-Actin and represented as relative fold 
change (RFC) or the ratio of the absolute gene copy number of WNV-E to β-Actin. All primers and the WNV-E 
probe were synthesized by Integrated DNA Technologies or Applied Biosystems. Levels of OPN were quantified 
in murine plasma samples and culture media by using a mouse OPN ELISA kit (ENZO Life Sciences) following 
manufactures recommendations.

Evans Blue Assay. WT and Opn−/− mice were mock-infected with PBS or infected with 2,000 PFU of WNV 
(i.p.), and 800 µl of 2% Evans Blue dye (EBD) in PBS was injected (i.p.) on day 4 p.i. One hour after EBD injection, 
mice were transcardially perfused with ice-cold PBS. EBD in whole brain tissue was quantified using a spectro-
photometer after DMSO homogenization (Bio-Rad Smart Spec 3000TM). All samples were normalized to control 
brains (with EBD, without WNV infection) for each genotype group (WT or Opn−/−).

Migration Assays. PMN migration assays were performed as previously described9, with additional mod-
ifications. Briefly, WT and Opn−/− PMNs in RPMI-1640 were added to the inserts of transwells (3 μm pore, 
Corning), while RPMI-1640 with or without rOPN (2 μg/ml, R&D Systems) was added to the bottom of each 
well. The cells were incubated for 8 hr in a 37 °C, 5% CO2 incubator. Migrated PMNs were quantified by counting 
the number of DAPI positive cells/magnification field that were 4% PFA fixed in the transwell interface using a 
confocal LSM 510 microscope (Zeiss) at 10× magnification.

Immunofluorescence assay. Mouse brains isolated after ice-cold PBS perfusion were 4% PFA fixed over-
night, dehydrated, and paraffin-embedded for sectioning. Midsagittal sections (10 µm) were cut (American 
Optical Spencer 820 Microtome) and mounted. For immunostaining, sections were dried for 2 hr at 45 °C and 
rehydrated for 5 minutes in 100%, 95%, and 70% ethanol solutions followed by antigen retrieval by boiling in 5% 
sodium citrate for 10 minutes (50% power) in a microwave. Sections were probed with anti-Claudin 5 conjugated 
to flourophore 488 antibody (Thermo Fisher), mounted with Vectashield® mounting medium for fluorescence 
with DAPI, and imaged under a confocal LSM 510 microscope (Zeiss) at 63× magnification. Mean fluorescent 
intensity was quantified using ImageJ software64.

Flow cytometry. Procedures for brain cell preparation followed our previous report51. Cells (1 × 106 cells/
ml) were probed with antibodies against CD45, Ly6G, CD11b, CD4, CD19, CD8 and F4/80 and analyzed with a 
flow cytometer (LSRFortessa, BD Bioscience) using version 6.0 FACSDiva™ software (BD Biosciences). All cell 
surface antibodies were purchased from eBioscience. Anti-WNV-Envelope (E) primary antibody (Abcam) and 
FITC-conjugated anti-mouse IgG secondary antibody (eBioscience) were used for viral detection. Unstained and 
single color compensation controls were used in parallel.

Enzyme-linked Immunosorbent Assay. Levels of OPN, IFN-β and TNF-α were measured using ELISA 
kits purchased from ENZO Life Sciences or Thermo Fisher following manufactures recommendations.

Statistical analyses. All data were analyzed using a two-tailed Student’s t-test and survival curves were ana-
lyzed using a Kaplan-Meier analysis. All statistical analyses were done by using GraphPad Prism software (version 
6.0), with p < 0.05 considered statistically significant.
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