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Abstract: Long duration spaceflight poses potential health risks to astronauts during flight and
re-adaptation after return to Earth. There is an emerging need for NASA to provide successful
and reliable therapeutics for long duration missions when capability for medical intervention will
be limited. Clinically relevant, human placenta-derived therapeutic stromal cells (PLX-PAD) are a
promising therapeutic alternative. We found that treatment of adult female mice with PLX-PAD near
the onset of simulated weightlessness by hindlimb unloading (HU, 30 d) was well-tolerated and
partially mitigated decrements caused by HU. Specifically, PLX-PAD treatment rescued HU-induced
thymic atrophy, and mitigated HU-induced changes in percentages of circulating neutrophils, but
did not rescue changes in the percentages of lymphocytes, monocytes, natural killer (NK) cells,
T-cells and splenic atrophy. Further, PLX-PAD partially mitigated HU effects on the expression
of select cytokines in the hippocampus. In contrast, PLX-PAD failed to protect bone and muscle
from HU-induced effects, suggesting that the mechanisms which regulate the structure of these
mechanosensitive tissues in response to disuse are discrete from those that regulate the immune- and
central nervous system (CNS). These findings support the therapeutic potential of placenta-derived
stromal cells for select physiological deficits during simulated spaceflight. Multiple countermeasures
are likely needed for comprehensive protection from the deleterious effects of prolonged spaceflight.

Keywords: spaceflight; hindlimb unloading; PLX-PAD cells; placenta; cell therapy; immune system;
bone loss; muscle atrophy; cytokines; hippocampus; CNS

1. Introduction

Spaceflight causes rapid changes in organs and tissues that may pose health risks
to mission crew during long duration space travel. These risks arise from the physical
environment of spaceflight, which includes a combination of unique factors such as mi-
crogravity, ionizing radiation, and social isolation, amongst others. Microgravity during
spaceflight causes a cephalad fluid shift and musculoskeletal disuse, which can lead to bone
loss, muscle atrophy and cardiovascular and neurovestibular changes [1–9]. In addition,
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spaceflight results in immune dysregulation and viral reactivation [10,11]. Crewmembers
on a six-month mission to the International Space Station (ISS) display elevated levels
of inflammatory cytokines and impaired T/NK cell function [12], while shorter duration
missions (9–15 days) result in humoral and monocytic immune impairments, and low-
grade inflammation [13,14]. We previously showed that long duration HU combined with
isolation (30 days) reduces spleen mass and the percentages of circulating CD4+ T cells
and neutrophils [3]. HU also elevates the neutrophil to lymphocyte ratio (NLR), as does
spaceflight [15], indicative of increased inflammation.

Placental stromal cells have demonstrated therapeutic efficacy in various tissue injury
models [16–20]. In this study, we sought to determine whether human PLacenta eXpanded
mesenchymal-like stromal cells (PLX-PAD) can mitigate the adverse effects of simulated mi-
crogravity in several physiological systems known to be adversely affected by spaceflight,
including the musculoskeletal, immune, and central nervous systems (CNS). PLX-PAD
cells are derived from the maternal component of the full-term placenta. PLX-PAD cells
secrete cytokines and other factors that modulate the immune system, promote tissue
regeneration, angiogenesis, hematopoiesis, and neurogenesis [20–23]. In addition, they do
not trigger major host immune responses, enabling allogeneic use and direct testing in
animals that have intact immune systems [24]. PLX-PAD also promotes the growth of
collateral blood vessels in damaged tissue, tissue regeneration, and immune system modu-
lation in response to injury by the secretion of pro-angiogenic factors, such as angiogenin
and angiopoietin-1 [20]. In a rodent model of critical limb ischemia, the administration
of PLX-PAD was shown to improve blood flow, capillary density, and limb function, as
well as reducing oxidative stress [20]. PLX-PAD also improves recovery following tendon
injuries, possibly through the formation of new collagen [25]. In a clinical setting, PLX-PAD
induced significant recovery of muscle strength and volume in a phase II clinical trial in
patients undergoing total hip replacement [26]. We selected PLX-PAD as the principal
cell line for testing therapeutic efficacy based on its well-established ability to improve
healing of mesenchymal tissues. Here, we show that PLX-PAD cells prevent HU-induced
thymic atrophy, as well as changes in the percentage of select circulating immune cell
populations. Further, PLX-PAD cells partially prevent the effect of HU on the expression of
select hippocampal cytokines. However, PLX-PAD cells did not protect from HU-induced
musculoskeletal deficits.

2. Materials and Methods

Animals and experimental design. All animal studies were conducted with prior
approval from the NASA Ames Institutional Animal Care and Use Committee (IACUC).
Three days prior to HU, 16-week-old female C57BL/6NJ mice (Jackson Laboratories) were
single-housed in the HU caging system [8,27]. Normally loaded (NL) controls were housed
in vivarium cages and were handled the same as HU mice, except for application of traction
tape and tail suspension. Room temperature was maintained at 25–27 ◦C and animals
were supplied fresh nestlets (Ancare, Cat# NES3600) daily, as enrichment. HU for 30 days
was conducted as described previously [3]. One day after the onset of HU, all mice were
injected with 50 µL of PLX-PAD (1 × 106 cells) or PlasmaLyte 148 (Baxter) in each quadri-
cep. A second injection (as above) was given on day 7 of HU. PlasmaLyte is referred
to as a Sham treatment (the carrier for PLX-PAD, containing 5% human serum albumin
and 10% dimethylsulfoxide (DMSO)). Animals were euthanized 30 days after the onset
of HU via CO2 inhalation and cervical dislocation followed by blood collection from the
vena cava and removal of tissues. All tissues were weighed shortly thereafter. Peripheral
blood was collected in K3 EDTA tubes (Sarstedt, Cat# 41.1395.105). Centrifugation was
performed at 1000× g at room temperature for 10 min. Plasma was collected and immedi-
ately flash frozen. Cellular components were used for flow cytometry analyses. Refer to
Figure 1 for groups and experimental timeline. Sample sizes are n = 12 per group unless
otherwise noted.



Cells 2021, 10, 940 3 of 14

Cells 2021, 10, x FOR PEER REVIEW 3 of 14 
 

 

1 for groups and experimental timeline. Sample sizes are n = 12 per group unless otherwise 
noted. 

 
Figure 1. Study design and timing of procedures. (a) Timeline of treatments and procedures in this 
study. Hindlimb unloading (HU) and normally loaded (NL, control) groups received two intra-
muscular injections of PLX-PAD or PlasmaLyte (Sham) and euthanized 30 days after onset of HU. 
(b) Summary of experimental groups. 

PLX cell preparation. The details of the PLX production process and phenotypic char-
acterization of the cells have been described previously [28,29]. In brief, placentae were 
collected from healthy women undergoing an elective caesarean section and processed at 
Pluristem Ltd., Haifa (Israel). Adherent cells were first selected and grown in two-dimen-
sional culture flasks for approximately one month and later expanded in a dedicated bio-
reactor system on a fibrous carrier material for one week. Cells were shipped frozen, 
thawed immediately prior to the experiment, and injected in vivo without further cultiva-
tion steps as described previously [24]. 

Flow cytometry. Preparation and flow cytometric analysis of peripheral WBCs were 
performed as described previously [3]. Antibodies utilized for analysis were as follows: 
anti-CD45 (11-0451-82), anti-Ly6g (12-9668-82), anti-CD11b (25-0112-82), anti-CD3 (11-
0031-85), anti-CD4 (12-0041-85), anti-CD8 (MCD0831), anti-NK1.1 (17-5941-82), and anti-
CD69 (48-0691-82). Unstained and single-stained compensation controls were used, and 
all antibodies were purchased from Thermo Fisher Scientific. Data was acquired using a 
BD FACSMelody and FlowJo software (version 10.3.0) was used for cytometric analysis, 
both from BD Biosciences. 

Cytokine analysis. The left hemisphere of the brain was microdissected immediately 
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for 10 min at 4 °C. Supernatants were collected, aliquots created and then frozen at −80 °C 
until analysis. Cytokine protein levels in hippocampal homogenates were measured using 
a 44-Plex MD44 Mouse Cytokine Array/Chemokine Array (Eve Technologies). Concen-
tration standards were included for each cytokine. Hippocampal cytokine levels were nor-
malized to total protein content as measured by BCA assay (Thermo Fisher). Undiluted 
plasma was analyzed for cytokine protein abundance using the same cytokine array. 

Corticosterone analysis. Plasma was diluted to 1:100 and analyzed using a corti-
costerone ELISA kit (Abcam, ab108821) per manufacturer’s recommendations. 

Microcomputed tomography (μCT). The Skyscan 1272 system and associated soft-
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Figure 1. Study design and timing of procedures. (a) Timeline of treatments and procedures in
this study. Hindlimb unloading (HU) and normally loaded (NL, control) groups received two
intramuscular injections of PLX-PAD or PlasmaLyte (Sham) and euthanized 30 days after onset of
HU. (b) Summary of experimental groups.

PLX cell preparation. The details of the PLX production process and phenotypic
characterization of the cells have been described previously [28,29]. In brief, placentae
were collected from healthy women undergoing an elective caesarean section and pro-
cessed at Pluristem Ltd., Haifa (Israel). Adherent cells were first selected and grown in
two-dimensional culture flasks for approximately one month and later expanded in a
dedicated bioreactor system on a fibrous carrier material for one week. Cells were shipped
frozen, thawed immediately prior to the experiment, and injected in vivo without further
cultivation steps as described previously [24].

Flow cytometry. Preparation and flow cytometric analysis of peripheral WBCs were
performed as described previously [3]. Antibodies utilized for analysis were as follows:
anti-CD45 (11-0451-82), anti-Ly6g (12-9668-82), anti-CD11b (25-0112-82), anti-CD3 (11-0031-
85), anti-CD4 (12-0041-85), anti-CD8 (MCD0831), anti-NK1.1 (17-5941-82), and anti-CD69
(48-0691-82). Unstained and single-stained compensation controls were used, and all
antibodies were purchased from Thermo Fisher Scientific. Data was acquired using a
BD FACSMelody and FlowJo software (version 10.3.0) was used for cytometric analysis,
both from BD Biosciences.

Cytokine analysis. The left hemisphere of the brain was microdissected immediately
after euthanasia. The hippocampus was flash frozen and stored at −80 ◦C. Hippocampal
tissue was homogenized in cold mild lysis buffer (Tris 50 mM, NaCl 150 mM, Igepal 1%,
Protease Inhibitors all from Millipore-Sigma). Centrifugation was performed at 1000× g for
10 min at 4 ◦C. Supernatants were collected, aliquots created and then frozen at −80 ◦C until
analysis. Cytokine protein levels in hippocampal homogenates were measured using a 44-
Plex MD44 Mouse Cytokine Array/Chemokine Array (Eve Technologies). Concentration
standards were included for each cytokine. Hippocampal cytokine levels were normalized
to total protein content as measured by BCA assay (Thermo Fisher). Undiluted plasma was
analyzed for cytokine protein abundance using the same cytokine array.

Corticosterone analysis. Plasma was diluted to 1:100 and analyzed using a corticos-
terone ELISA kit (Abcam, ab108821) per manufacturer’s recommendations.

Microcomputed tomography (µCT). The Skyscan 1272 system and associated software
(Bruker) were used to generate images and analyze cortical and cancellous compartments
of the tibia. To assess cancellous bone microarchitecture, the proximal tibia was scanned at
a resolution of 3.5 µm. A 399 µm region of interest (ROI) was used, located 350 µm distal to
the growth plate. Cancellous parameters analyzed included percent bone volume (BV/TV,
%), trabecular thickness (Tb.Th, mm), trabecular spacing (Tb.Sp, mm), trabecular number
(Tb.N., 1/mm), and connectivity density (Conn.Dn.). A 300 µm ROI located 2304 µm
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proximal to the tibio-fibular junction was used to analyze cortical bone microarchitec-
ture. Parameters examined included cortical thickness (Ct.Th, mm), cortical area (Ct.Ar.,
mm2), and cortical volume (Ct.Vol., mm3), periosteal perimeter (Ps.Pm., mm), endosteal
perimeter (Es.Pm, mm), polar moment of inertia (pMOI, mm4), and tissue mineral density
(TMD, g·cm3).

Statistical analysis. Statistical analyses were performed using JMP software version
13.1.0 (SAS Institute Inc., Cary, NC, USA). Tests for equal variance and normality were
conducted using Levene’s test and Shapiro-Wilk goodness of fit test, respectively. If the
variances were equal and normality confirmed, a one-way analysis of variance (ANOVA)
was performed across NL Sham, HU Sham, NL PLX-PAD and HU PLX-PAD groups. If
unequal variance or non-normal distribution was observed, a nonparametric Wilcoxon all
pairs test was conducted. Unless otherwise stated, data shown are mean +/− standard
deviation. GraphPad Prism software (version 9.0.1) was used to generate figures.

3. Results

We first assessed the effects of PLX-PAD cell administration on select measures of
stress response. Consistent with our previous observations [3], the HU Sham group had
~6% decrement in body weight compared to NL Sham controls from day 3 of unloading
(except for day 21) (Figure 2a). PLX-PAD had a mild effect in mitigating body weight
decrements due to HU on days 3, 24, 28 and 30 (Figure 2a). HU increased circulating
corticosterone levels in the Sham group compared to NL Sham controls, and HU caused
similar increases in PLX-PAD treated mice, compared to their corresponding controls
(Figure 2b). Adrenal weights normalized to body weights were comparable across all
experimental groups (Figure 2c). Collectively, these results indicate that treatment with
PLX-PAD did not exacerbate the effects of HU on these indices of stress.

We next assessed whether PLX-PAD can protect from HU-induced musculoskeletal
deficits. HU caused the anticipated deficits in cancellous and cortical bone parameters,
as measured by microcomputed tomography (µCT). It also reduced cancellous bone pa-
rameters including bone volume (Figure 3a), trabecular thickness, trabecular number,
connectivity density, and structural model index (SMI) (Supplementary Figure S1a–d),
and increased trabecular spacing (Supplementary Figure S1e), with no changes in degree
of anisotropy (DA) (Supplementary Figure S1f). In cortical tissue, HU decreased cortical
thickness (Figure 3b), polar moment of inertia (MOI), and tissue mineral density (TMD)
(Supplementary Figure S2a,b respectively). HU also increased endosteal perimeter and
periosteal perimeter (Supplementary Figure S2c,d respectively). Administration of PLX-
PAD did not prevent HU-induced changes in both cortical and cancellous bone structural
parameters. Additionally, HU led to the expected decrement in soleus weight (normalized
to body weight) in the sham groups, while PLX-PAD did not mitigate this effect (Figure 3c).
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Figure 2. Body weights of experimental groups and measures of neuroendocrine stress. (a) Body
weights from acclimation (Day −3) to Day 30 of hindlimb unloaded (HU) mice and normally loaded
(NL) controls. Repeated measures ANOVA was performed. + Statistically significant difference
between NL Sham vs. HU Sham at p < 0.05; * Statistically significant difference between NL Sham vs.
HU Sham and NL PAD vs. HU PAD at p < 0.05. Sample sizes are: NL Sham (n = 12), NL PAD (n = 12),
HU Sham (n = 11), and HU PAD (n = 9). Statistically significant at p < 0.05 by one-way ANOVA
with Tukey post-hoc test. (b) Plasma corticosterone levels at Day 30 post-HU. NL Sham (n = 11), NL
PAD (n = 12), HU Sham (n = 11), and HU PAD (n = 10). A nonparametric Wilcoxon all pairs test was
performed; statistically significant at p < 0.05. (c) Total weights of left and right adrenals normalized
to body weight. ‘PAD’ denotes PLX-PAD administration. Sample sizes are: NL Sham (n = 12), NL
PAD (n = 12), HU Sham (n = 9), and HU PAD (n = 9). Statistically significant at p < 0.05 by one-way
ANOVA with Tukey post-hoc test.
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(c) Right soleus weight normalized to body weight. NL Sham (n = 12), NL PAD (n = 12), HU Sham (n = 11), and HU PAD
(n = 9). * Statistically significant at p < 0.05 by one-way ANOVA with Tukey post-hoc test.
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We also sought to determine the effects of PLX-PAD on osteogenic bone marrow
stromal cells by measuring colony counts and mineralization in ex vivo cell culture (os-
teoblastogenesis) (Supplementary Figure S3, Supplementary Methods). We found that
colony counts during the growth phase (days 5 and 9, Supplementary Figure S3a,b) and
percent mineralization at the fully differentiated phase (day 22, Supplementary Figure S3c)
were comparable across all four experimental groups.

We next determined the effects of PLX-PAD on select immune responses to HU. HU
Sham animals had reduced thymus weights (normalized to body weight) compared to
NL Sham controls, while there were no statistically significant differences between HU
PLX-PAD and NL PLX-PAD animals (Figure 4a). HU led to a reduction in spleen weights
(normalized to body weights) compared to NL controls in both Sham and PLX-PAD treated
animals (Figure 4b). Neutrophils were elevated in HU Sham versus NL Sham groups,
as well as HU PLX-PAD versus NL PLX-PAD groups. However, HU PLX-PAD mice had
reduced neutrophils compared to the HU Sham group (Figure 4c). Percent lymphocytes in
HU Sham animals was also decreased modestly compared to Sham NL controls, whereas
PLX-PAD-treated mice had comparable percentages (Figure 4d). An elevated neutrophil to
lymphocyte ratio (NLR) is associated with subclinical inflammation [30] during both space-
flight and HU [15,31]. We found that HU of sham animals led to a higher NLR compared
to NL Sham controls (Figure 4e), as we previously described [15,31]. PLX-PAD conferred
a 30% protective effect against changes in NLR (Figure 4e). Monocyte and NK/NKT cell
percentages were elevated in HU Sham animals compared to NL Sham controls (Figure 4f
and Supplementary Figure S4a, respectively). However, HU mice treated with PLX-PAD
had comparable percentages of monocytes and NK/NKT cells to the Sham HU mice,
suggesting no effect of PLX-PAD treatment on these cell populations (Figure 4f and Sup-
plementary Figure S4a, respectively). HU Sham animals had decreased % T helper cells
versus NL Sham, and PLX-PAD administration had no effect (Supplementary Figure S4b).
Percentages of T cytotoxic and activated T cells were comparable across the four groups
(Supplementary Figure S4c,d).
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Figure 4. Immune organ weight and cell profiling at day 30 post-HU. (a) Thymus and (b) spleen weights normalized to
body weights at day 30 post-HU. (c–f) Results from flow cytometry of whole blood collected from mice at day 30 post-HU.
(c) Neutrophil within leukocytes population percentages (%, Ly6g+CD11b+/CD45+), (d) Lymphocytes within leukocyte
population percentage (%, CD11b−/CD45+), (e) Neutrophil to lymphocyte ratio (NLR), and (f) Total monocyte to leukocyte
population percentage (%, CD11b+/CD45+). NL Sham (n = 12), NL PAD (n = 12), HU Sham (n = 11), and HU PAD (n = 9).
* Statistically significant at p < 0.05 by one-way ANOVA with Tukey post-hoc test.
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Since cytokines regulate the immune system, a 44-cytokine protein panel was used
to analyze cytokine expression levels in plasma following 30 days of HU (Supplementary
Tables S1 and S2). HU downregulated two cytokines, i.e., TIMP-1 and IL-6, compared to
NL controls. PLX-PAD prevented HU effects only in IL-6 and not in TIMP-1. IL-5 protein
levels were unchanged by HU in the Sham group; however, PLX-PAD treatment in NL
mice led to increased IL-5 levels compared to the corresponding Sham-treated group. In
addition, PLX-PAD treatment in HU mice reduced IL-5 levels relative to NL PLX-PAD
controls (Supplementary Table S1).

To determine effects of PLX-PAD treatment in the CNS, we performed the same 44-
cytokine protein expression panel on the hippocampus. Similar to our findings in plasma,
there was an overall trend for lower cytokine levels in HU Sham compared to both NL
groups and to HU PLX-PAD treated mice (Supplementary Tables S1 and S2). Compared to
NL Sham controls, HU Sham animals showed downregulation of IL-2, IL-6, M-CSF, CXCL9
(Figure 5a–d respectively), IL-7, IL-13, IL-5, MCP-1 and EPO (Supplementary Tables S1 and
S2). These HU effects were mitigated by PLX treatment in all these cytokines except for
EPO. Examples of this mitigation include IL-2, IL-6, M-CSF and CXCL-9 (Figure 5a–d).
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Figure 5. Protein levels of representative cytokines in hippocampus normalized to total protein
content at day 30 post-HU. (a) IL-2, (b) IL-6 and (c) M-CSF and (d) CXCL-9. NL Sham (n = 8), NL PAD
(n = 6), HU Sham (n = 8), and HU PAD (n = 8). * Statistically significant by one-way ANOVA and
Tukey post-hoc test at p < 0.05.

4. Discussion

The purpose of this study was to assess the efficacy of human placenta derived stromal
cells, PLX-PAD, in mitigating various tissue deficits caused by simulated microgravity. We
found that treatment with PLX-PAD was well tolerated both in NL and HU mice, as indi-
cated by body weight measurements, corticosterone values, and immune cell profiling. HU
in sham-treated mice led to expected musculoskeletal deficits, shifts in select immune cell
populations, and changes in levels of cytokines in the plasma and hippocampus, while PLX-
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PAD reversed HU-induced changes in select immune and hippocampus measurements
without mitigating musculoskeletal system deficits.

HU causes substantial decrements in bone structure and muscle mass [3,6], similar
to findings from spaceflight [32,33]. For instance, the HU-induced decrease in soleus
muscle weight observed in this study is consistent with previous reports from spaceflight
and HU experiments [27,34,35], although muscle fiber typing was not performed in our
study. Despite the regenerative effects of PLX-PAD in humans following injury [26],
decrements in muscle and bone mass were not affected by PLX-PAD treatment, although
there was a marginal improvement of bone volume per total volume in HU mice that
received PLX-PAD. Treatment with PLX-PAD did not protect from HU-induced soleus
muscle loss. In our hands, prolonged HU did not result in any impairments in colony
formation and mineralization as evaluated using osteoblastogenesis assays. However,
others report that long duration HU can cause a persistent decrement in these measures
of osteoblastogenesis [36–38]. Differences in the results obtained in our study and theirs
may be attributable to differences in species, sex, strain animal age, and/or osteogenic cell
culture conditions.

Simulated weightlessness by HU caused atrophy of the spleen and thymus in sham-
treated animals, consistent with other reports [3,39,40]. As mammals age, their thymus
naturally atrophies; however, 30 days of HU caused enhanced atrophy, possibly in part due
to activation of the hypothalamic-pituitary-adrenal (HPA) axis and concomitant elevated
corticosterone [41,42]. In addition, it is also possible that neutrophil populations may
accumulate in the spleen, which may concomitantly reduce T and B cell populations, as
described in aging mice [43]. Although the mechanisms of thymic or splenic atrophy due
to HU were not fully investigated in this study, reduced diversity of the peripheral T cell
repertoire and number are possible, which could subsequently impact splenic weight and
immune responses. Furthermore, it is possible that neutrophils associated with the spleen,
thymus, and blood may have differing effector functions, since the location of immune
cells directs immune function [44,45]. Therefore, phenotyping primary and secondary
immune organs are needed to gain a better understanding of the immune profile of HU
and corresponding PLX-PAD treated mice. Importantly, PLX-PAD treatment rescued
thymic atrophy in HU mice, suggesting that PLX-PAD treatment may either delay or
repair T-cell deficits, thereby providing immune support. Effective adaptive immunity
is particularly important during extended duration spaceflight. Thus, more studies are
needed to comprehensively evaluate the effects of PLX cells on adaptive immune responses
in spaceflight models.

Immune cell phenotyping revealed that HU Sham animals had elevated neutrophils,
monocytes, and NK cells; decreased T-helper cell and lymphocyte populations; and no
change in T-cytotoxic and activated T-cells at 30 days post-HU compared to NL Sham
controls. Results from immune cell profiling were generally consistent with our previous
findings from a 30-day HU study involving similarly aged animals [3,15]. Interestingly,
the administration of PLX-PAD partially mitigated some HU-induced changes in immune
cell populations. Neutrophils were significantly reduced compared to HU Sham mice,
suggesting that inflammation may have been suppressed in PLX-PAD treated HU mice. Ele-
vated neutrophils in blood circulation may result from increased expression of chemokines
related to neutrophil recruitment or a deficit in neutrophil apoptosis during HU. Nonethe-
less, neutrophilia or elevated neutrophils in blood are a marker for inflammatory disease
development [46].

Interestingly however, when we survey the cytokine profile in the plasma, neutrophil-
specific chemokine and pro-inflammatory cytokine were not observed to be elevated at
30 days post-HU, which may be due to the late timepoint of sample collection. Plasma
chemokine/cytokines may have been significantly induced earlier during HU. Plasma
cytokine findings were consistent with a previous report, where no changes due to HU
were observed in protein levels of circulating GM-CSF, IFN-γ, IL-1α, IL-2, IL-4, IL-5, IL-
6, IL-10, IL-17 and TNF-α, although the duration of HU was shorter (three weeks) and
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the experiment was performed on males that were skeletally immature (two months of
age) [47].

DMSO was shown in prior PLX studies to have no effect (data not shown), while in
other reports (not PLX-PAD), it was shown to have an immunomodulatory effect when
administered to mice. Several studies have shown that DMSO administration decreases
the populations of CD4+, CD8+, and IFN-γ-producing CD4+ and CD8+ T cells in the
spleen [48], and reduces cytokine production [49]. Moreover, others have shown that
DMSO treatment can decrease thymus weight by inducing apoptosis of thymocytes [50,51].
Based on the aforementioned studies and our observed results, the elevation in thymus
weight and cytokine production in the HU model following PLX treatment is not likely to
be attributed to DMSO administration.

The neutrophil to lymphocyte ratio (NLR) was recently characterized by our group as
a marker for inflammation due to HU [15,31] and is also used as a marker for subclinical
inflammation in a number of inflammatory diseases [52]. In our study, NLR was elevated
in HU Sham mice; this effect was partially rescued by PLX-PAD treatment, suggesting
therapeutic stromal cells may suppress inflammation during simulated weightlessness.
Interestingly, a significant upregulation of IL-5 was displayed in PLX-PAD NL mice com-
pared to Sham NL mice, suggesting that PLX-PAD treatment may enhance B-cell division,
plasma cell formation, IgG secretion, and eosinophil activation [53].

For some of the cytokines tested, PLX-PAD treatment of the NL group induced
an up regulation of cytokine levels. Injection of xenogenic human cells such as PLX
cells to mice can induce an immune response that could explain such results. However,
our previous data show that serum cytokines are only transiently elevated in some of the
PLX-injected mice, and are reduced to normal levels after several days. Moreover, PLX-PAD
administration in mice was shown to reduce cytokine levels and to decrease pathogenesis
under inflammatory conditions, such as LPS-induced acute respiratory distress syndrome
(ARDS model), Experimental Autoimmune Encephalomyelitis (EAE), and Graft vs. Host
Disease (GvHD) model (data not shown). Hence, it is unlikely that a xenogenic response
explains the obtained results.

Immune cells are important for the maintenance of the CNS, and play a central role in
neurogenesis and in hippocampal-dependent spatial learning and memory [54]. Cytokines
are produced by glial cells, T cells, and macrophages [55,56], and within meningeal layers
and the choroid plexus of the brain. These cells interact within the CNS to determine
the outcome of the inflammatory reaction [57,58]. It would be worthwhile to assess the
effects of the experimental treatments in cytokine production in each of these cells. This,
in turn, may provide insight into whether specific immune cell types can be targeted for
countermeasure development.

Dysregulation of cytokine expression levels are associated with various CNS patholo-
gies [59,60] and can alter the blood-brain barrier [61,62]. Indeed, altered cytokine signaling
in the CNS is linked to neuroinflammation and cognitive changes. Cognitive impairment
is a major risk for astronaut performance on long duration missions. Therefore, we sought
to determine the cytokine profile in the hippocampus, as it is responsible for learning
and memory [63]. Indeed, we found that HU downregulated nine out of 44 cytokines,
including IL-2, IL-6, and CXCL-9; eight of these cytokine changes were mitigated by PLX-
PAD treatment. IL-2 deficiency is associated with impaired learning in mice, similar to
Alzheimer’s disease [64], while knockout of IL-2 leads to impaired spatial learning and
memory [65] and morphological changes in the hippocampus [66]. This cytokine may
therefore play a role in the cognitive impairments observed due to HU [67]. Conversely,
elevated IL-6 in the CNS results in neuro-impairment through reduced synaptic plasticity
in the hippocampus [68], while ablation of IL-6 in glial cells reduces exploratory behavior
and decreases anxiety [69]. Although IL-6 is known to affect neurobehavior, the role of
reduced IL-6 during HU in our study is unclear.

HU also reduced CXCL-9, a chemokine involved in monocyte and lymphocyte recruit-
ment, suggesting possible impairment of immune cell infiltration and phagocytosis into
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the brain parenchyma [70]. Importantly, PLX-PAD treatment of HU mice reduced M-CSF
levels compared to PLX-PAD NL controls, although Sham HU animals did not display
significant differences compared to Sham NL. This may indicate that PLX-PAD increased
the recruitment of monocytes which are involved in enhanced phagocytosis and clearance
of dead or damaged cells in the brain.

While downregulation of traditional inflammatory markers in the brain parenchyma
at 30 days post-HU was noted, this was not unexpected, as the brain may compensate or
produce internal protection mediators that could dampen inflammation at this timepoint
of collection. In the literature, there are multiple examples of cytokine downregulation
which correlate with disruption of the immune system [71–74]. Most of these are chronic
inflammatory conditions such as chronic pain or chronic fatigue syndrome. We consider
30 days of HU as a chronic experimental treatment, since a 30-day period corresponds to
about 4.1% of the lifetime of a mouse (~3 years of an average human lifespan). While future
experiments are needed, we posit that the cytokine responses observed likely reflect a
chronic response, consistent with the aforementioned studies. Further, cytokines can
display pleiotropic responses, and different organs can produce vastly different immune
responses [44,45]. Other studies have reported reductions in cytokine levels at a later
timepoint after injury, likely corresponding to the regenerative/repair process in tissues [17].
This possibility could be explored in future HU studies. More studies are required at earlier
timepoints to identify the mechanisms involved. In addition, female mice were selected
for this study. Future investigations are needed to determine the sex-dependence of
experimental outcomes.

The finding that PLX-PAD failed to effectively protect bone structure and muscle mass
from HU suggests that the signaling mechanisms underlying musculoskeletal deficits are
discrete from those of the CNS and immune system. We reason that the molecular pathways
of mechanosensing and signaling in bone and muscle evolved to enable physiological
responses to mechanical loads in order to meet changing needs of the mobile organism.
In contrast, the CNS and immune systems evolved robust and rapid mechanisms for
healing and regeneration in response to injury. The different mechanisms and kinetics of
these two systems probably play an important role in their different responses to PLX-PAD
treatment.

5. Conclusions

In conclusion, we found that PLX-PAD cells partially protected mice from a subset of
HU-induced immune and CNS changes, but did not effectively protect the musculoskeletal
system. To our knowledge, this is the first report on the therapeutic potential of stro-
mal/stem cells against HU-induced deficits. Our finding of partial mitigation in the HU
model warrants further study, along with optimized dose/frequency of administration, and
further assessment of strain- and sex-dependent responses to HU. We speculate that after
additional testing, PLX-PAD treatment may provide a suitable therapeutic for minimizing
injury or inflammation-driven tissue damage during long duration space travel.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells10040940/s1, Table S1: Protein levels of cytokines in hippocampus and plasma per
treatment group, Table S2: Summary of statistical analysis of hippocampal and plasma cytokines,
Figure S1: Microcomputed tomography analysis of cancellous bone of tibia at 30 days post-HU,
Figure S2: Microcomputed tomography analysis of cortical bone of tibiae at 30 days post-HU,
Figure S3: Ex vivo osteoblastogenesis assay from bone marrow stromal cells (BMSCs) of HU and NL
mice, Figure S4: Results from flow cytometry of whole blood collected from mice at day 30 post-HU,
Supplementary Methods.
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