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Abstract: The present research evaluates the simulation of a system for transforming inland-fisheries
wastewater into sustainable fish feed using Designer® software. The data required were obtained from
the experimental cultivation of Chlorella sp. in wastewater supplemented with N and P. According
to the results, it is possible to produce up to 11,875 kg/year (31.3 kg/d) with a production cost of
up to 18 (USD/kg) for dry biomass and 0.19 (USD/bottle) for concentrated biomass. Similarly, it
was possible to establish the kinetics of growth of substrate-dependent biomass with a maximum
production of 1.25 g/L after 15 days and 98% removal of available N coupled with 20% of P. It is
essential to note the final production efficiency may vary depending on uncontrollable variables such
as climate and quality of wastewater, among others.

Keywords: Oreochromis sp.; biomass; SuperPro; Chlorella sp.; inland fisheries

1. Introduction

Aquaculture is now the world’s fastest-expanding food-production sector, accounting
for more than half of all fish consumed by humans [1], surpassing catch-fisheries production
by 18.32 million tons, with a total value over USD 250 billion [2]. However, once considered
a sustainable solution to fight malnutrition in low-income economies [3,4], its global growth
has increased the demand for feed and water and generated new problems, such as high
levels of untreated liquid and solid wastes [5,6].

Conventional methods for wastewater treatment, such as chemical flocculation, can
generate other compounds in sewage sludge that are not effectively treated, eventually in-
creasing their environmental impact. Therefore, it is essential to identify natural, biodegrad-
able, nontoxic, affordable, and efficient alternatives for wastewater treatment [7]. The
application of algae and cyanobacteria on wastewater treatment systems is one of the most
innovative and sustainable alternatives for the sequestration of hazardous components [8]
and reduction of environmental CO2 [9], which are converted into biomass composed of
industrially relevant metabolites, such as carbohydrates, proteins, lipids, carotenoids, and
others [10]. Over the last ten years, different genera, including Chlorella, Chlamydomonas,
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and Spirulina, have proven effective for the removal of organic matter [11,12], heavy metal
ions [13], and phenolic compounds [14].

The global market for algal biomass and metabolites is expected to reach USD 1.143 bil-
lion by 2024, with a yearly growth rate of 7.39 percent [15]. Due to their natural colors,
antioxidants, and other bioactive chemicals with valuable qualities, these microorganisms
are effectively used in aquaculture hatcheries as animal-feed supplements [16]. However,
their use can increase final-product prices due to species selection and expensive culture
media. Using microalgae in a circular-bioeconomic approach for the aquaculture industry
will deliver a twofold benefit: low-cost wastewater treatment and biomass for animal
feed [17,18]. However, the operating conditions, biomass-production efficiency, and the
effect of the concentration of N, P, and other nutrients on cell growth must be identified
and analyzed.

In recent years, the application of specialized software, such as Aspen Plus, SuperPro,
and MATLAB have made it possible to analyze the different processes of nutrient consump-
tion and their transformation into total biomass and metabolites of interest [19]. Recent
studies, such as the BIO_ALGAE model [20], address critical physical, chemical, and kinetic
parameters governing the production of microalgae and bacteria in wastewater. This model
has proven helpful in simulating bioremediation and microalgal production in aquacul-
tural wastewater in a semicontinuous system with different environmental factors [21].
However, the different works in this field employ data from temperate production systems.
To the best of the authors’ knowledge, there are no available data from tropical areas. The
present work focuses on the simulation analysis of a microalgal-production plant under
different scenarios for transforming inland-fisheries wastewater into sustainable feed with
a circular-economical approach.

2. Materials and Methods
2.1. Strain

Chlorella sp. (CHLO_UFPS010) from INNOValgae collection (Universidad Francisco
de Paula Santander, Cúcuta, Colombia) was used in this study. C. vulgaris was grown in
a 2 L glass flask with a working volume of 1.2 L containing Bold Basal medium [22]. The
medium was mixed through the injection of filtered air with 0.5% (v/v) CO2 at a flow rate
of 0.78 L/min, 25 ◦C, and light–dark cycle of 12:12 h at 100 µmol/m2 s for 30 days.

2.2. Experimental Design

Fisheries wastewater obtained from local Oreochromis sp. farmers (El Zulia, Norte
de Santander, Colombia) was filtered twice and UV-sterilized [23]. After sterilization, the
wastewater was supplemented with a known amount of biofertilizer until a concentration
of NO3 and PO4 was reached (0.1 and 0.24 g/L, respectively). The alga was cultured (by
triplicate) in a 9 L glass flask with a working volume of 7 L of UV-sterile supplemented
wastewater. Each flask was mixed by injection of filtered air at a flow rate of 4.2 L/min
and light–dark cycle of 12:12 h at 100 µmol/m2 s for 40 days. Every five days, 50 mL of
medium were axenically removed, and the biomass was concentrated using electroflotator
equipment [24]. The recovered biomass was dried (50 ◦C, 12 h) and weighed. The cell-free
medium was filtered and used for determination of NO3 (HI 93728-01, HANNA) and
PO4 (HI 93713-01, HANNA). Kinetic constants for biomass production and NO3 and PO4
consumption were obtained from the results. The constants were described by linearizing
the Monod equation:

1
µ
=

1
µmax

+
Ks

µmax
× 1

s
(1)

2.3. Process Description and Plant Simulation

The microalgal-production plant using fisheries wastewater was simulated using
SuperPro Designer® software v8.0. (Intelligen, Inc., Scotch Plains, NJ, USA). In the upstream
stage, Chlorella sp. was grown in Bold Basal Medium with the selected culture variables
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shown in Table 1. Once the desired cell concentration was obtained, the cells (10% v/v)
were transferred to photobioreactors (PBR) with higher working volumes (preinoculum).
Once the PBR reached the optimal cell density, the cells were transferred (10% v/v) into
two 5 m3 raceways (20 d, (30 ± 2) ◦C).

Table 1. Biomass production variables.

Constants Variable Value Units

Xo Initial biomass 0.08 g/L
CO2 CO2 concentration 6 % v/v
No Initial nitrate concentration 0.1 g/L
Po Initial phosphate concentration 0.2 g/L
I Light intensity 100 µmol/m2 s
Q Air inlet 0.6 vvm

In the downstream process, the biomass produced was harvested by centrifugation
and used to produce fish feed in two forms: pelletized biomass (dry) and live feed (liquid),
depicted in Figure 1.
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Figure 1. Process description of algal-based feed.

The production of Chlorella sp. biomass (Equation (2)) its consumption rate of NO3
(Equation (3)), and its consumption rate of PO4 (Equation (4)) were modeled by linearizing
the Monod kinetics equation [25].

X f = Xe∆t.µ (2)

S f = S0 − µ × Y s
x
× ∆t × X0 (3)

µ =
µmax × s

ks + s
(4)

3. Results
3.1. Kinetics Constants for NO3 and PO4 Consumption

A computational model contains many factors that influence the development of the
system to be evaluated. In this case, the simulation of a microalgal cultivation system
using fisheries allows us to understand the behavior of this microorganism. According
to experimental results, it was possible to obtain the NO3− and PO4− consumption con-
stants that can be found in Figure 2, where the slope and intercept refer to ks/µmax and
1/µmax, respectively.
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Table 2 presents the results for the kinetic variables of the experimental culture of
Chlorella sp. in fisheries wastewater. The effect of variables, such as light quality (light
intensity and light–dark cycle) [26], pH [27], temperature [28], and the availability of carbon,
nitrogen, and phosphorus [29,30], play a critical role in the productivity of biomass and
specific metabolites, such as carbohydrates, proteins, and lipids [31,32]. According to
Park et al. [33], the availability of these elements is fundamental in synthesizing diverse
molecules that play an essential role in cellular metabolism.

Table 2. Kinetic variables from the experimental culture of Chlorella sp.

Constants Variable Value

µ Specific growth rate 0.042
YN/X Nitrate-consumption constant 0.23
YP/X Phosphate-consumption constant 0.35

By correctly establishing the critical variables of the microalgal-growth process, it is
possible to improve the precision between the experimental data and the data obtained
through simulation, which establishes a reliable point for the optimization of the different
processes in the cultivation of photosynthetic microorganisms [34,35]. Figure 3 shows
the behavior of biomass production and NO3 and PO4 consumption according to the
equations previously established. The results show the deviation between experimental
and theoretical data is relatively low (0.29, 0.03, and 0.08 for biomass, NO3, and PO4,
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respectively). However, it is worth mentioning that, for this case, inhibition by cell density,
CO2, light, and other variables that can have a positive or negative impact within the
process were not considered.
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3.2. Upstream

Figure 4 presents the upstream process of Chlorella sp.-biomass production using fish-
farming wastewater supplemented with biofertilizer. This system consisted of preparing the
culture medium, adaptation, scaling, and production of the microalgae in raceway reactors
and has an annual production capacity of up to 180 m3. The growth phase comprises seven
reactors (four photobioreactors and three raceways) with residence times of 20 days and a
final concentration of 0.8 g/L. This system was designed to operate in parallel to maintain
a constant biomass production. Each reactor was inoculated using a concentration of 10%
(v/v) of algae, except for the final product, which had an inoculum of 20% (v/v).
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3.3. Downstream

Figure 5 shows the downstream process to produce pelletized biomass and live feed
from Chlorella sp. Biomass harvesting is one of the critical points in microalgal production
since this stage can consume up to 40% of the total production costs [36–39]. The live-feed
process employs a solid-liquid separation system (centrifuge) that removes up to 40% of the
total moisture. The concentrated biomass is then bottled (50 mL per unit) and distributed
as feed for different types of fish requiring live phytoplankton diets. This process generates
up to 64,697 bottles of feed every 20 days. For the dry-feed-production system, a centrifuge
was used to remove up to 60% of the total humidity; the concentrated biomass passes
through a fluidized bed dryer, allowing the relative humidity of the product to be reduced
by up to 6%. Finally, the biomass is pelletized (1mg per pellet), reaching a final production
of 5875 pellets per hour. To improve the impact on the water footprint of these processes,
post-harvest water recirculation (highlighted in blue) was implemented for each system
evaluated. This alternative allows a substantial reduction in production costs since not all
nutrients are completely consumed [40–42].

3.4. Fixed Capital

The production costs (DFC) define the economic destiny of any production plant; they
include the necessary expenses for the processing guidelines and functionality of each
system involved [43]. Consequently, it defines the technical-economic feasibility of the
process. Within the DFC, we can find the direct costs (TPDC), which refer to the acquisition,
equipment, and functionality of the plant; the indirect costs (TPIC), which are the variables
related to the construction; and, finally, the CFC, which are responsible for the safety and
assurance of the project. Table 3 shows an increase in costs due to the inclusion of the
medium recirculation. This increase is due to adding new equipment, which requires new
spaces, materials, and trained personnel for its correct operation. In each process, other
equipment is used, resulting in space, materials, and operational consumption demands.

Table 3. Fixed capital estimate for two scenarios of biomass production using Chlorella sp.

Fixed Capital Estimate Pelletized Biomass Live Feed
Normal Optimized Normal Optimized

Total plant direct cost (TPDC) (physical cost) 118,639 128,955 102,577 116,059
Total plant indirect cost (TPIC) 75,373 81,928 71,523 73,735

Total plant cost (TPC = TPDC + TPIC) 194,012 210,883 174,100 189,794
Contractor’s fee and contingency (CFC) 14,603 15,872 13,856 14,285

Direct fixed capital cost (DFC = TPC + CFC) 208,615 226,756 197,957 204,080
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4. Discussion

The growth of the microalgae maintained a sigmoidal behavior typical of the imple-
mentation of kinetics with limited resources. The stationary phase took place between
0 and 120 h, at which time the cells had a process of adaptation to the available resources
within the medium established in the experiment. Once this stage was completed, expo-
nential growth began with approximately 360 h, reaching its maximum doubling rate of
1.2 g/L of biomass. Due to depletion of available nutrients and high cell density in the late
exponential growth phase, the algal-growth rate reduced to a linear function, stabilizing at
0.8 g/L and reaching its stationary phase [32].

The application of simulations on industrial processes is an efficient solution for
modeling and optimizing specific routes [44,45]. These techniques are based on predicting
the behavior of the desired process through the calculation of the mass and energy balance
of each section of the system [46]. By analyzing the different processes and their respective
optimization, it is possible to develop new and better products that are economically
competitive, as seen in Figure 6, where the optimization of the recirculation of the culture
medium provides substantial improvement in its production of up to 20% for pelletized
biomass and up to 80% for live feed. A significant result is a slight increase in TPDC for each
process. This increase occurs because nutrients are still available in the culture medium,
which decreases the production cost per cubic meter and improves the conversion rate of
the nutrients present in the medium into usable biomass.
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According to Ruiz et al. [47], the most critical variable that favors the profitability of
products derived from microalgal biomass is the scale of the system, since increasing the
capacity of the plant reduces the costs associated with production. Figure 7 summarizes
the cost per kg/unit of biomass processed. Scaling defines the system’s profitability for the
two evaluated scenarios (pelletized biomass and live feed) using five different production
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capacities (10, 50, 100, 200, and 500 m3). The production cost was calculated according to
Equation (5).

Biomass cost =
Production cost in USD

Biomass production in kg
(5)
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According to the results, in low scale systems (<50 m3), the production costs are very
high for pelletized-biomass- and live-feed-production systems (up to 338 USD/kg and
0.26 USD/unit, respectively) compared to those with operating volumes up to 500 m3,
of which biomass cost can be a fraction (18 USD/kg and 0.019 USD/unit, respectively).
Finally, it is essential to highlight that other factors, such as pH, temperature, and light
scattering in the reactor will affect the final productivity of the system [48–50].

5. Conclusions

The application of microalgae as a biotechnological tool for pollutant removal and
water reuse in fish-farming systems is an essential strategy to increase the industrial sector’s
sustainability. According to the results of the SuperPro Designer software, by cultivating
Chlorella sp. in fish-farming wastewater supplemented with N and P, it is possible to
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produce up to 11,875 kg/yr (31.3 kg/d) with a production cost of up to 18 (USD/kg) for
dry biomass and 0.19 (USD/bottle) for concentrated biomass. Similarly, it was possible to
establish the kinetics of growth of substrate-dependent biomass with a maximum produc-
tion of 1.25 g/L after 15 days and partial consumption of 98% of N and 20% of P. However,
it is essential to note the final production efficiency may vary depending on uncontrollable
variables, such as climate and quality of wastewater.
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