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Abstract: We discuss a Bayesian hierarchical copula model for clusters of financial time series.

A similar approach has been developed in recent paper. However, the prior distributions proposed

there do not always provide a proper posterior. In order to circumvent the problem, we adopt a

proper global–local shrinkage prior, which is also able to account for potential dependence structures

among different clusters. The performance of the proposed model is presented via simulations and a

real data analysis.
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1. Introduction

There is a large body of literature with respect to hierarchical model settings. The
concept to pull the mean of a single group towards the mean across different groups can
be found at least in Kelley [1]. Tiao and Tan [2] and Hill [3] consider the one-way random
effects model and they discuss a Bayesian approach for the analysis of variance because the
frequentist unbiased estimator of the variance of random effects could be negative. For the
same model, Stone and Springer [4] discuss and resolve a paradox that arises with the use
of Jeffreys’ prior. The foundation for the Bayesian hierarchical linear model is established
in Lindley and Smith [5]. More recently, Gelman [6] discuss a review on prior distributions
for variance parameters in the hierarchical model.

More recently, Zhuang et al. [7] introduced a hierarchical model in a copula framework;
they suggest using, for the variance parameters of two different priors, (i) the standard im-
proper prior for scale parameters, which is proportional to σ−2, or (ii) a vaguely informative
prior, say an inverse gamma density with both parameters equal to a small value.

However, both the above proposals might be impractical: in the first case, the posterior
is simply not proper (as we show in the Appendix A); in the second case, the use of small
parameters of the inverse Gamma priors simply hides the problem without actually solving
it; see for example Berger [8].

Hobert and Casella [9] also provide another review on the effect of improper priors in
the Gibbs sampling algorithm.

In this paper, we propose a Bayesian hierarchical copula model using a different prior.
In particular, we adopt a global–local shrinkage prior. These prior distributions naturally
arise in a linear regression framework with high dimensional data and where a sparsity
constraint is necessary for the vector of coefficients. Several different global–local shrinkage
families of priors have been proposed: Park and Casella [10] and Hans [11] discuss the
Bayesian LASSO; Carvalho et al. [12] introduce the Horseshoe prior, Armagan et al. [13]
propose a Generalized Double Pareto prior. Here, we will use a Dirichlet–Laplace prior,
proposed in Bhattacharya et al. [14], with a slight modification; while in a regression
framework, it is natural to adopt a prior that shrinks the parameters towards zero, this
is not the case for our hierarchical copula model, where the zero value does not have a
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particular interpretation in the model. For this reason we need to introduce a further level
of hierarchy, assuming a prior distribution on the location of the shrinkage point.

The rest of this paper is organized as follows: The next section is devoted to illustrat-
ing the statistical model and the prior distribution, highlighting the differences with the
approach described in Zhuang et al. [7]; we conclude the section with a description of
the sampling algorithm. In the third section, we perform a simulation study in order to
compare the mean square error of the estimates produced by our model and compare them
with a standard maximum likelihood approach. Then, we reconsider a dataset discussed
in Zhuang et al. [7] and compare the results of the two approaches. We conclude with
another illustration of the model in the problem of clustering financial time series.

2. Materials and Methods

2.1. The Statistical Model

2.1.1. Likelihood and Priors Distributions

Copula representation is a way to recast a multivariate distribution in such a way that
the dependence structure is not influenced by the shape, the parametrization, and the unit
of measurement of the marginal distributions. Their applications in statistical inferences
and a review on the most popular approaches can be found in Hofert et al. [15]. In this
paper we will consider several different parametric forms of copula functions: In particular,
in the bivariate case, we will use the standard Archimedean families, namely the Joe,
Clayton, Gumbel, and Frank copulae. For more than two dimensions, we will concentrate
on the use of the most popular elliptical versions, namely the Gaussian and Student’s
t copulae. Since the main objective of the paper is the clusterization of the dependence
structure, for the sake of simplicity and without a loss of generality , we will assume that all
marginal distributions are known or, equivalently, their parameters have been previously
estimated. In this way, we can directly work with the transformed variables: Uj = FXj

(xj),

j ∈ {1, . . . , n}.
Let ci(·|ψi) be the generic copula density function associated with the i-th group . The

statistical model can be stated as follows:

(
U1i, U2i, . . . , Udi i

)
|ψi ∼ ci(·|ψi) i ∈ {1, . . . , m}

where m denotes the number of groups or clusters. Set the following:

γi = log

(
ψi − bi

Bi − ψi

)
,

and assume the following.

γi|ξ, τ, αi
ind∼ Laplace(ξ, ταi) i ∈ {1, . . . , m} ,

τ ∼ Gamma

(
ma,

1

2

)
,

(α1, α2, . . . , αm) ∼ Dirichlet(a, a, . . . , a) ,

ξ ∼ Logistic(0, 1).

In the previous expressions, bi and Bi, respectively, denote the lower and the upper
bound of the parameter space of the corresponding ψi, and γi is the mapping of ψi into
the real axis; di is the dimension of i-th group, and a is a hyperparameter, which we
typically set to 1, although different values can be used. In general, the Archimedean
copulae are parametrized in terms of Kendall’s Tau, for which its range of values has been
restricted to (0, 1) for the Clayton, Joe, and Gumbel copulae, while it is set to (−1, 1) for
the Frank copula. In the elliptical case, the Gaussian copula is parametrized in terms of
the correlation coefficient ρ, which ranges in (−1, 1); finally, Student’s t copula has the
additional parameter ν, and that is the number of degrees of freedom: A discrete uniform
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prior on {1, 2, . . . , 35} has been used here. When dimension d of the specific group is larger
than two, we restrict the analysis to elliptical copulae with an equi-correlation matrix: in
that case, it is well known that the range of the correlation parameter is (−1/(d − 1), 1).

Let U be entire observed sample and let Uijk be the k-th observation of i-th component
in the j-th group, and let nj be the number of observation in the j-th group. The posterior
distribution on the parameter vector (γ, ξ, α, τ) is then described as follows:

p
(
γ, ξ, α, τ|U

)
∝

m

∏
i=1

[ ni

∏
j=1

[
ci(U1ij, U2ij, . . . , Udi ij|γi)

]
p(γi|ξ, τ, αi)

]
p(ξ)p(τ)p(α),

where γ = (γ1, γ2, . . . , γm) and α = (α1, α2, . . . , αm).
The complex form of the posterior distribution requires the use of simulation based

methods of inference. In particular, we will adapt the algorithm of Bhattacharya et al. [14]
with a minor modification for the updates of γ and the shrinkage location ξ. Follow-
ing,Bhattacharya et al. [14], we introduce a vector β =

(
β1, β2, . . . , βm

)
∈ Rm in order to

have a latent variable representation of the γ prior; then, the following is obtained.

γi|ξ, τ, αi, βi
ind∼Normal(ξ, βiτ

2α2
i ) ∀ i ∈ {1, . . . , m} ,

βi
iid∼Exp

(
1

2

)
i ∈ {1, . . . , m}.

Here, we briefly describe the algorithm. Start the chain at time 0 by drawing a sample from
the prior. At time t, we use the following updating procedure:

1. Update γ|ξ, τ, α, β:

(a) Sample γ̃i from a proposal Cauchy(γit, δγ) i ∈ {1, . . . , m};
(b) Set γ̃ = (γ̃1, γ̃2, . . . , γ̃m) and compute the following.

q =

∏
m
i=1

[
∏

ni
j=1

[
ci(U1ij, U2ij, . . . , Udi ij|γ̃i)

]
p(γ̃i|ξt, τt, αit, βit)

]

∏
m
i=1

[
∏

ni
j=1

[
ci(U1ij, U2ij, . . . , Udi ij|γit)

]
p(γit|ξt, τt, αit, βit)

]

(c) Sample u ∼ U(0, 1),
(d) Set γt+1 = γ̃ if u ≤ q; otherwise, γt+1 = γt.

2. Update ξ|γ, τ, α, β:

(a) Sample ξ̃ from a proposal Cauchy(ξt, δξ);
(b) Compute the following.

q =
∏

m
i=1

[
p(γi t+1|ξ̃, τt, αit, βit)

]
p(ξ̃)

∏
m
i=1

[
p(γi t+1|ξt, τt, αit, βit)

]
p(ξt)

(c) Sample u ∼ U(0, 1);
(d) Set ξt+1 = ξ̃ if u ≤ q; otherwise, ξt+1 = ξt.

3. Update τ|γ, ξ, α, β: sample τt+1 ∼ GIG
(
0, 1, 2 ∑

n
i=1

|γi t+1−ξt+1|
αit

)
.

4. Update α|γ, ξ, τ, β: sample α̃i ∼ GIG(0, 1, 2|γi t+1 − ξt+1|) i ∈ {1, . . . , m}, and set
the following.

αi t+1 =
α̃i

∑
m
j=1 α̃j

i ∈ {1, . . . , m}
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5. Update βi|γ, ξ, τ, α i ∈ {1, . . . , m}: sample β̃i ∼ IG(
τt+1αi t+1

|γi t+1−ξt+1| , 1) and set the

following.

βi t+1 =
1

β̃i

i ∈ {1, . . . , m} .

In previous statements, Cauchy(a, b) denotes a one-dimensional Cauchy distribution with
location a and scale b, while GIG(p, a, b) is the generalized inverse Gaussian distribution
with the following density function.

f (x) ∝ xp−1 exp

(
−1

2
ax − 1

2

b

x

)
.

Notice that IG(a, b) is the inverse Gaussian distribution, and it is known that X ∼ IG(a, b) ⇒
X ∼ GIG

(
− 1

2 , b
a2 , b

)
. Finally, δγ and δξ are scalar tuning parameters.

In the case of the Student’s t copula, we need to add another step between stride 1 and
2 in order to update ν = (ν1, ν2, . . . , νm):

• Update νi|γ, ξ, τ, α, β ∀ i ∈ {1, . . . , m}:

(a) Sample ν̃ from discrete uniform distribution in {1, 2, . . . , 35};
(b) Compute the following.

q =
∏

ni
j=1

[
c(U1ij, U2ij, . . . , Udi ij|γi t+1, ν̃)

]

∏
ni
j=1

[
c(U1ij, U2ij, . . . , Udi ij|γi t+1, νit)

]

(c) Sample u ∼ U(0, 1);
(d) Set νi,t+1 = ν̃ if u ≤ q; otherwise, νi,t+1 = νit.

2.1.2. Prior Distribution of ξ

The choice of the prior distribution for the shrinkage location ξ needs some explanation.
First of all, notice that, according to our prior specification,

P(γi ≤ ξ) =
1

2
i ∈ {1, . . . , m};

however γi = log

(
ψi−bi
Bi−ψi

)
, so otherwise is the case.

P

(
ψi ≤

Bie
ξ + bi

1 + eξ

)
=

1

2
.

Therefore, given ξ, the median of ψi is Yi = (Bie
ξ + bi)/(1 + eξ) ∀i ∈ {1, . . . , m}.

Then, it is easy to show that the natural choice of a uniform prior on Yi ∼ U(bi, Bi) for all
i ∈ {1, . . . , m} implies a standard logistic density for ξ.

2.1.3. Previous Work

Apart form the prior specification, the model described in previous sections is the one
proposed by Zhuang et al. [7]. We restrict our discussion to the case where each copula
expression has one parameter only. Their prior can be stated as follows.

γi|µi, σ2
i

ind∼N(µi, σ2
i ) i ∈ {1, . . . , m} ,

µi|λ, δ2 iid∼N(λ, δ2) i ∈ {1, . . . , m} ,

σ2
i

iid∼πσ2(·) i ∈ {1, . . . , m} ,

λ ∼ πλ(·) , δ2 ∼ πδ2(·) .
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There is no unique choice for the distributions of (σ2, λ, δ), although the authors suggest
using weakly informative priors, for example, inverse gamma densities with small hyperpa-
rameters values or, as an alternative, an objective prior: for example, an improper uniform
prior. However, one can prove that, in the second case, the posterior distribution cannot
be proper no matter what the sample size is. We show this result in Appendix A. When
the posterior distribution is improper, the resulting summary statistics are meaningless. In
fact, the Markov Chain implied by the MCMC does not have a limiting distribution so the
Ergodic theorem does not hold and the posterior is completely useless. Moreover, even
the first solution is not feasible. In fact, when an improper prior produces an improper
posterior, using a vague proper prior can typically hide—not solve—the problem. In these
cases, in fact, as shown in Berger [8] (p. 398), the use of a vague prior approximating
an improper prior typically concentrates the posterior mass on some boundary of the
parameter space.

3. Results

3.1. Simulation Study

We compare the performance of our approach with the results based on a maximum
likelihood approach in a simulation study. We will use a Student’s t copula with an
equi-correlation matrix and set the number of groups m equal to five. We repeat the
procedure 100 times; at iteration j for the i-th group, we sample the true value γT

ij from

a standard normal distribution, the degrees of freedom νT
ij are sampled from the prior

distribution, and the dimensions dij of the groups are sampled from the uniform discrete
distribution in {1, 2, . . . , 5}. Given the parameters and dimensions of the groups, we sample
20 observations for each group. In the maximum likelihood framework, we estimate the
following:

(γ̂mle
ij , ν̂mle

ij ) = arg max
20

∏
j=1

[
c(U1ij, U2ij, . . . , Udi ij|γi, νi

]
i ∈ {1, . . . , 5} ,

and compute the standard errors.

ŜE
mle
ij =

(
γT

ij − γ̂mle
ij

)2
i ∈ {1, . . . , 5} .

In a Bayesian framework, we use the posterior mean as a point estimate, obtained from the
use of the MCMC algorithm described above. We ran six independent chains of 2.5 × 105

scans, discarded the first 5 × 104 as a burn-in, and finally computed the γ̂
Bay
ij via the sample

mean of simulation outputs for all i ∈ {1, . . . , 5}. As a tuning parameters, we set δγ = 10−3

and δξ = 10−1. Then, we compute the following.

ŜE
Bay
ij =

(
γT

ij − γ̂
Bay
ij

)2
i ∈ {1, . . . , 5} .

Comparison are performed in terms of the corresponding mean square errors.

M̂SE
mle

i =
1

100

100

∑
j=1

ŜE
mle
ij , M̂SE

Bay

i
1

100

100

∑
j=1

ŜE
Bay
ij ,

Table 1 reports values M̂SE
mle

i against M̂SE
Bay

i for all groups based on 100 simulations.
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Table 1. MSE of the proposed Bayesian Hierarchical Model and of the likelihood-based one.

1 2 3 4 5 Mean

Bayes 0.1449 0.1514 0.1104 0.1106 0.1283 0.1291
MLE 0.1861 0.1832 0.1251 0.1477 0.1854 0.1655

3.2. Real Data Applications

This section is devoted to the implementation of the method in two different applica-
tions. The first one is the same as in Zhuang et al. [7] and we include it for comparative
purposes; to this end, we quantify the goodness of fit of the model using a predictive
approach based on the conditional version of the Widely Applicable Information Criterion,
WAIC, in a hierarchical setting, as discussed in Millar [16]. The second one deals with
clustering financial time series.

3.2.1. Column Vertebral Data

We apply our model to the Column Vertebral Data, available at the UCI Machine
Learning Repository. It consists of 60 patients with disk hernia, 150 subjects with spondy-
lolisthesis, and 100 healthy individuals; data are available for the following variables: angle
of pelvic incidence (PI), angle of pelvic tilt (PT), lumbar lordosis angle (LL), sacral slope
(SS), pelvic radius (PR), and the degree of spondylolisthesis (DS). As in Zhuang et al. [7],
we adopt the generalized skew-t distribution for the marginals, use a maximum likelihood
estimator in order to calibrate the parameters and then transform data via the fitted cu-
mulative distribution function. Computations were performed using the R package sgt

available on CRAN. Table 2 reports the values of fitted parameters for the marginals.

Table 2. Fitted parameters for each margin distribution.

Group Feature µ σ λ p q

Disk Hernia

PI 50.2874 13.9408 0.9992 104.9370 50.7792
PT 17.3686 6.9609 0.3137 1.8070 68.7768
LL 32.8948 11.7179 1.0000 5.2906 364.8091
SS 30.4401 7.8546 −0.1599 3.5617 1.4520
PR 116.5142 12.9605 −0.1742 5.9304 0.4001
DS 2.4849 5.4948 −0.1557 1.7725 358.2803

Spondylolisthesis

PI 71.6191 15.0308 −0.0261 1.6375 67.3817
PT 20.7980 11.4766 0.2862 1.9411 44.5023
LL 64.0920 16.3405 0.2633 2.1057 73.7317
SS 49.5130 13.1427 0.3057 46.4772 0.0649
PR 114.6216 15.5666 0.0259 1.4962 32.5924
DS 51.6375 52.3930 0.5757 42.0584 0.0520

Healthy

PI 51.5086 12.4646 0.6837 2.5388 24.2468
PT 12.8140 6.7551 −0.1121 1.7036 71.8428
LL 44.9715 187.1274 0.3583 28.3301 0.0707
SS 38.8785 9.6135 0.2867 1.9040 17.9808
PR 124.0712 53.4395 0.1274 55.3812 0.0364
DS 2.1427 6.1430 0.3069 1.2030 7.8901

Following Zhuang et al. [7], we consider the same parametric copulae for the bivariate
distributions of the features of interest, and for each of these, we construct our Bayesian
hierarchical copula model for three groups of subjects. We run six independent chains of
2.5 × 106 simulations and discard the first 5 × 105. We also set δγ = 10−3 and δξ = 10−1.
We did not report any convergence issues, and the multiple Gelman–Rubin test scores for
each of the six implemented models Gelman [17] were very close to the optimal value 1. In
terms of the goodness of fit, we have computed the WAIC index for all six models. Our
findings is that the most significant relation is the one between PI and PT. Table 3 compares
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the results of Zhuang et al. [7] (model A) with our ones (model B). The main difference
between the results obtained with the two methods is related to the posterior uncertainty
quantification. Credible intervals obtained with model B are systemically larger than those
obtianed with model A. Our feeling is that it depends on the fact that results in model A
are obtained by running a chain where some hyperparameters are fixed to some estimated
values, as explained in Zhuang et al. [7]. Fixing values of the hyperparameters eliminates a
critical source of variation, inducing shrinkage in credible intervals size.

For the ease of comparisons, we follow Zhuang et al. [7] and report the results not in
terms of parameter γ but rather according the natural parameter of each copula, that is, ρ

for the Gaussian copula and θ for the Archimedean ones.

3.2.2. Financial Data Application

Grouping financial time series is important for diversification purposes; a portfolio
manager should avoid investing in instruments with a high degree of positive dependence,
and clustering procedures allow the construction of groups according to some specific risk
measure. In this way, financial instruments that belong to the same group will show a
certain degree of association; however, the strength of dependence within groups may well
be different in different groups. It is then important to assess the strength of the association
for each single cluster, and a method to perform this is to use a hierarchical structure, such
as the one discussed in this paper.

As a risk measure, we consider the so-called tail index, which measures the strength
of dependence between two variables when one of them takes extremely low values.
Following De Luca and Zuccolotto [18], we construct a dissimilarity measure based on the
lower tail coefficient. Let (Y1, Y2) be a bivariate random vector; the lower tail coefficient λL

of (Y1, Y2) is defined as follow:

λL = lim
u→0+

P(FY1
(Y1) ≤ u|FY2

(Y2) ≤ u),

or, equivalently,

λL = lim
u→0+

C(u, u)

u
,

where C(·, ·) is the cumulative distribution function of the copula associated to (Y1, Y2). In
order to estimate λL, we use the empirical estimator discussed in [19]:

λ̂L =
Ĉ(

√
n

n ,
√

n
n )

√
n

n

,

where Ĉ(·, ·) is the empirical copula, and n is the sample size. The dissimilarity measure is
then defined as follows.

d(Y1, Y2) = 1 − λL(Y1, Y2) ,

The preliminary clustering procedure has been implemented using a complete linkage
method. Notice that a bivariate lower tail coefficient is not the unique method for modeling
dependence on extreme low values: Durante et al. [20] proposed a conditioned corre-
lation coefficient estimated using a nonparametric approach; Fuchs et al. [21] analyzed
dissimilarity measure applicable to a multivariate lower tail coefficient.
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Table 3. Fitted parameters of copulae.

Model A Model B
Group Features Copula Posterior Mean Posterior s.d. Posterior CI (95%) Posterior Mean Posterior s.d. Posterior CI (95%)

Disk Hernia

PI vs. PT Gaussian 0.696 0.046 (0.599, 0.775) 0.632 0.073 (0.469, 0.751)
PI vs. SS Gaussian 0.726 0.040 (0.633, 0.793) 0.680 0.076 (0.506, 0.789)
DS vs. PI Gaussian 0.161 0.098 (−0.031, 0.339) 0.229 0.126 (−0.041, 0.450)
DS vs. PT Frank −0.511 0.577 (−1.489, 0.522) −0.245 0.820 (−1.858, 1.340)
DS vs. LL Gaussian 0.244 0.103 (0.031, 0.435) 0.265 0.109 (0.037, 0.462)
DS vs. PR Gaussian −0.055 0.113 (−0.263, 0.175) −0.075 0.126 (−0.315, 0.174)

Spondylolisthesis

PI vs. PT Frank 5.718 0.505 (0.599, 0.775) 5.719 0.756 (4.383, 7.138)
PI vs. SS Gumbel 1.729 0.099 (1.554, 1.943) 1.725 0.128 (1.490, 1.984)
DS vs. PI Frank 3.427 0.431 (2.552, 4.245) 3.674 0.867 (2.447, 4.897)

DS vs. PT
Survival
Clayton

0.887 0.143 (0.608, 1.174) 1.036 0.193 (0.679, 1.422)

DS vs. LL Frank 3.230 0.426 (2.437, 4.104) 3.191 0.801 (2.016, 4.370)
DS vs. PR Joe 1.466 0.115 (1.265, 1.698) 1.421 0.154 (1.121, 1.734)

Healthy

PI vs. PT Gaussian 0.633 0.038 (0.555, 0.699) 0.621 0.057 (0.496, 0.717)
PI vs. SS Gumbel 2.574 0.178 (2.239, 2.910) 2.552 0.235 (2.115, 3.023)
DS vs. PI Frank 1.822 0.430 (0.936, 2.632) 1.794 1.100 (0.465, 3.139)
DS vs. PT Gaussian 0.242 0.080 (0.085, 0.401) 0.210 0.102 (−0.000, 0.394)
DS vs. LL Frank 1.409 0.570 (0.335, 2.538) 1.661 0.680 (0.362, 2.970)
DS vs. PR Gaussian −0.111 0.093 (−0.289, 0.065) −0.076 0.123 (−0.310, 0.169)
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We consider the “S&P 500 Full Dataset” available at Kaggle: It contains more relevant
information for the components of S&P 500. We take the daily closing prices from 5 June
2000 to 5 June 2020 and discard instruments without a complete record for this period. Then,
we restrict our analysis to 379 components. For all of them, we computed the log-returns
by taking log-differences and filter data by fitting; for each time series, an ARMA(1,1)GJR-
GARCH(1,1) model with Student’s t innovations was used; then, we extracted residuals
and transformed them via the fitted cumulative distribution function in order to obtain
pseudo-data. Computations were performed using the CRAN package rugarch. Hence,
we compute the empirical estimator of the lower tail coefficient for any possible pair and
the dissimilarity measure associated and use them to feed the clustering algorithm. Due to
computational complexities, we used the coarsest partition under the constraint that the
largest group must have at most 10 components. We obtained 30 groups with dimensions of
more than one and discarded instruments that belong to groups with only one component.
The final number of instruments was thus reduced to 93.

We ran the MCMC algorithm described above for the 30 clusters, performing 12
independent chains of 105 scans and discarding the first 1.5× 104 as they burned in. Tuning
parameters were set to δγ = 10−6, δξ = 10−3. Moreover, in this example, we did not report
any convergence issues, and the Gelman–Rubin test score was 1.02. For each scan and for
any group, we compute the lower tail coefficient via the following formula:

λL = 2Tν+1

(
−
√

(ν + 1)(1 − ρ)

1 + ρ

)
,

where Tν(·) is the univariate cumulative distribution function of a Student’s t random
variable with ν degrees of freedom. The copula used in this example was a Student’s t
copula with an equi-correlation matrix: As a consequence, we obtained a single value
for the lower tail coefficient for each cluster. Table 4 reports the results for each pair that
belongs to the same group. Finally, we report the estimation results.

Table 4. Posterior distributions for lower tail coefficients.

Group Components Posterior Mean Posterior s.d. Posterior CI (95%)

1
NTRS

0.5001 0.0592 (0.4153, 0.5918)
STT

2
CVX

0.4833 0.0592 (0.4061, 0.5715)
XOM

3
AMAT

0.4499 0.0633 (0.3648, 0.5573)
LRCX

4
BEN

0.4259 0.0649 (0.3457, 0.5359)
TROW

5
CMS

0.4256 0.0661 (0.3347, 0.5296)
PNW

6
APD

0.4198 0.0655 (0.3389, 0.5274)
LIN

7
PEAK

0.4170 0.0636 (0.3538, 0.5097)VTR
WELL

8
DHI

0.3942 0.0643 (0.3137, 0.4895)LEN
PHM

9
MLM

0.3827 0.0678 (0.2881, 0.4963)
VMC
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Table 4. Cont.

Group Components Posterior Mean Posterior s.d. Posterior CI (95%)

10
HD

0.3757 0.0675 (0.2828, 0.4851)
LOW

11
COP

0.3685 0.0681 (0.2765, 0.4880)
MRO

12
ADP

0.3532 0.0692 (0.2663, 0.4704)
PAYX

13
CSX

0.3395 0.0674 (0.2672, 0.4535)NSC
UNP

14
T

0.3338 0.0699 (0.2368, 0.4509)
VZ

15
CAH

0.3337 0.0691 (0.2414, 0.4401)
MCK

16

BAC

0.3235 0.0671 (0.2590, 0.4203)
C

JMP
MS

17

AIV

0.3221 0.0668 (0.2593, 0.4187)
AVB
EQR
ESS

UDR

18
RSG

0.3168 0.0694 (0.2275, 0.4255)
WM

19
DVN

0.2979 0.0682 (0.2166, 0.4103)EOG
NBL

20
D

0.2932 0.0708 (0.1953, 0.4113)
SO

21
NI

0.2920 0.0700 (0.2022, 0.4032)
SRE

22
IP

0.2914 0.0713 (0.1957, 0.4145)
PKG

23
CB

0.2839 0.0715 (0.1815, 0.4132)
TRV

24

GL

0.2818 0.0677 (0.2177, 0.3804)
LNC
MET
UNM

25

CMA

0.2294 0.0666 (0.1526, 0.3273)

FITB
HBAN

KEY
MTB
PNC
RF

TFC
USB

26
ATO

0.2201 0.0692 (0.1256, 0.3412)
EVRG
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Table 4. Cont.

Group Components Posterior Mean Posterior s.d. Posterior CI (95%)

27
ETR

0.1923 0.0652 (0.1175, 0.2953)NEE
PEG

28

AEE

0.1768 0.0633 (0.1174, 0.2855)

AEP
DTE
DUK
ED
ES

LNT
WEC
XEL

29

ARE

0.1522 0.0605 (0.0874, 0.2439)

BXP
DRE
FRT
KIM
MAA
PLD
REG
SPG

30
EW

0.0008 0.0011 (0.0000, 0.0028)
SYK

4. Conclusions

We discussed and improved a fully Bayesian analysis for a hierarchical copula model
proposed in Zhuang et al. [7]. We proposed the use of a proper prior, which is able to induce
shrinkage and, at the same time, dependence among different clusters of observations. This
prior does not mimic the behavior of an improper prior and is better suited for objectively
representing information coming from the data. Our prior belongs to the large family of
globa–local shrinkage densities, with an extra stage in the hierarchy, due to the absence
of a significant shrinkage value; we experienced that this approach is very effective and
useful in the case of parametric copulae depending on a single parameter. In a more general
situation, this approach needs to be modified, and this can be easily accommodated.

Finally, we presented an application in a financial context, where the goal was to
estimate the lower tail coefficient of several financial time series in a parametric way using
the Student’s t copula.
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Abbreviations

The following abbreviations are used in this manuscript:

S&P Standard and Poor’s 500 stock exchange index;

mle or MLE Maximum likelihood estimator;

MSE Mean squared error;

MCMC Markov chain Monte Carlo.

Appendix A

Here, we show that the prior proposed in Zhuang et al. [7] leads to an improper posterior.
The statistical model consists of m d-dimensional copulae governing different sets of

observations. (
U1i, U2i, . . . , Udi i

)
|θi ∼ ci(·|θi) i ∈ {1, . . . , m} .

Let γi = ηigi(θi); here, ηi is a scaling parameter that can be considered known. One-to-one
mapping functions gi(·) are needed to put all dependence parameters on the real line.
Zhuang et al. [7] made the following assumptions.

γi|µi, σ2
i

ind∼N(µi, σ2
i ) i ∈ {1, . . . , m};

µi|λ, δ2 iid∼N(λ, δ2) i ∈ {1, . . . , m}.

Hyper-parameters σi’s, λ, and δ2 are given a suitable prior distribution. For the moment,
we do not specify the priors and set the following.

σ2
i

iid∼ πσ2(·) i ∈ {1, . . . , m}.

λ ∼ πλ(·) , δ2 ∼ πδ2(·) .

Since the gi(θi)’s are one-to-one, we write ci(·|γi) instead of ci(·|θi). Let U be the observed
sample, and let Uijk be the k-th observation of i-th component in the j-th group. Let nj be the
sample size of the j-th group. Furthermore, let γ = (γ1, γ2, . . . , γm), µ = (µ1, µ2, . . . , µm),
and σ2 = (σ2

1 , σ2
2 , . . . , σ2

m). Finally, let S(ω) denote the parameter space of the generic
parameter ω.

The next proposition shows that, using standard noninformative priors for scale
and location parameters, the resulting posterior will be improper independently of the
sample size.

Proposition A1. If πσ2
i
(σ2

i ) ∝ σ−2
i , for i ∈ {1, . . . , m}, and πδ2(δ2) ∝ δ−2, πλ(λ) ∝ 1,

the posterior distribution γ|U is improper for any choice of the copula densities ci(·|γi) and
independently of the sample size.

Proof. For the sake of clarity, set dσ2 = dσ2
1 dσ2

2 . . . dσ2
m and dµ = dµ1dµ2 . . . dµm. We need

to show that the following pseudo-marginal posterior distribution of γ is not integrable:

π(γ|U) =
∫

S(µ)

∫

s(σ2)

∫

S(δ2)

∫

S(λ)
π(γ, µ, σ2, λ, δ2|U)dλdδ2dσ2dµ

∝

∫

S(µ)

∫

s(σ2)

∫

S(δ2)

∫

S(λ)
π(U|γ, µ, σ2, λ, δ2)π(γ, µ, σ2, λ, δ2)dλdδ2dσ2dµ ,

where π(U|γ, µ, σ2, λ, δ2) represents the likelihood function. Then, we obtain the following:
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π(γ|U) ∝

∫

S(µ)

∫

s(σ2)

∫

S(δ2)

∫

S(λ)

m

∏
i=1

[ ni

∏
j=1

(
ci(U1ij, U2ij, . . . Udi ij|γi)

)]
×

π(γ|µ, σ2)π(µ|λ, δ2)π(σ2)π(λ)π(δ2)dλdδ2dσ2dµ

∝
m

∏
i=1

[ ni

∏
j=1

(
ci(U1ij, U2ij, . . . Udi ij|γi)

)] ∫

S(µ)

∫

s(σ2)
π(γ|µ, σ2)π(σ2)×

∫

S(δ2)

∫

S(λ)
π(µ|λ, δ2)π(λ)π(δ2)dλdδ2dσ2dµ

=
m

∏
i=1

[ ni

∏
j=1

(
ci(U1ij, U2ij, . . . Udi ij|γi)

)]
π(γ) ,

with

π(γ) =
∫

S(µ)

∫

s(σ2)
π(γ|µ, σ2)π(σ2)π(µ)dσ2dµ

and

π(µ) =
∫

S(δ2)

∫

S(λ)
π(µ|λ, δ2)π(λ)π(δ2)dλdδ2 .

Consider only the following:

π(µ) =
∫ ∞

0

∫ ∞

−∞
π(µ|λ, δ2)π(λ)π(δ2)dλdδ2

∝

∫ +∞

0

∫ +∞

−∞
(2πδ2)−

m
2 exp

(
− 1

2δ2

m

∑
i=1

(µi − λ)2

)
1

δ2
dλdδ2

∝

∫ +∞

0

(
1

δ2

) m
2 +1 ∫ +∞

−∞
exp

(
− 1

2δ2

m

∑
i=1

(µ2
i − 2λµi + λ2)

)
dλdδ2

=
∫ +∞

0

(
1

δ2

) m
2 +1 ∫ +∞

−∞
exp

(
− 1

2δ2

( m

∑
i=1

µ2
i − 2λ

m

∑
i=1

µi + mλ2
))

dλdδ2 ;

and set µ̄ = 1
m

m

∑
i=1

µi; then, we obtain the following.

π(µ) ∝

∫ +∞

0

(
1

δ2

)m
2 +1

exp
(
− 1

2δ2

m

∑
i=1

µ2
i

) ∫ +∞

−∞
exp

(
− 1

2 δ2

m

(
λ2 − 2λµ̄ + µ̄2 − µ̄2

))
dλdδ2 =

=
∫ +∞

0

(
1

δ2

)m
2 +1

exp

(
− 1

2δ2

( m

∑
i=1

µ2
i − mµ̄2

)) ∫ +∞

−∞
exp

(
− 1

2 δ2

m

(λ − µ̄2)

)
dλdδ2 =

=
∫ +∞

0

(
1

δ2

)m
2 +1

exp

(
− 1

2δ2
m
( 1

m

m

∑
i=1

µ2
i − µ̄2

))√
2π

δ2

m
dδ2 ∝

∝

∫ +∞

0

(
1

δ2

)m−1
2 +1

exp

(
− 1

2δ2

m

∑
i=1

(µi − µ̄)2

)
dδ2 ,

For any choice of m > 1, π(µ) can be written as follows.

π(µ) ∝
(1

2

m

∑
i=1

(µi − µ̄)2
)− m−1

2
Γ
(m − 1

2

)
∝
( m

∑
i=1

(µi − µ̄)2
)− m−1

2
.

Now, we compute the following.
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π(γ) =
∫

S(σ1)
· · ·

∫

S(σm)

∫

S(µ1)
· · ·

∫

S(µm)
π(γ|µ, σ2)π(µ)π(σ2)dσ2dµ

∝

∫

S(σ1)
· · ·

∫

S(σm)

∫

S(µ1)
· · ·

∫

S(µm)

m

∏
i=1

[
(2πσ2

i )
− 1

2 exp
(
− 1

2σ2
i

(γi − µi)
2
)]

×

∏
m
i=1(σi)

−2

(
∑

m
i=1(µi − µ̄)2

) m−1
2

dσ2dµ

∝

∫

S(µ1)
· · ·

∫

S(µm)

( m

∑
i=1

(µi − µ̄)2
)− m−1

2
m

∏
i=1

[ ∫

S(σ2
i )

( 1

σ2
i

) 3
2

exp
(
− 1

σ2
i

(γi − µi)
2

2

)
dσ2

i

]
dµ

∝

∫

S(µ1)
· · ·

∫

S(µm)

( m

∑
i=1

(µi − µ̄)2
)− m−1

2
m

∏
i=1

(
(γi − µi)

2
)− 1

2
dµ

=
∫

S(µ1)

1

|γ1 − µ1|
∫

S(µ2)

1

|γ2 − µ2|
· · ·

∫

S(µm)

1

|γm − µm|
1

(
∑

m
i=1(µi − µ̄)2

)m−1
2

dµ.

Notice that the following is the case:

m

∑
i=1

(µi − µ̄)2 =
m

∑
i=1

µ2
i − mµ̄2

=µ2
m +

m−1

∑
i=1

µ2
i −

1

m

( m

∑
i=1

µi

)2

=µ2
m +

m−1

∑
i=1

µ2
i −

1

m

(( m−1

∑
i=1

µi

)2
+ 2µm

( m−1

∑
i=1

µi

)
+ µ2

m

)
;

and set K =
m−1

∑
i=1

µ2
i and H =

m−1

∑
i=1

µi: then, we obtain the following.

m

∑
i=1

(µi − µ̄)2 =µ2
m + K − 1

m
(H2 + 2Hµm + µ2

m)

=
m − 1

m
µ2

m − 2H

m
µm + K − 1

m
H2 .

So
m

∑
i=1

(µi − µ̄)2 is a convex parabolic function of µm, and by the Weierstrass theorem, a

global maximum exists for all bounded and closed sets. By integrating µm, one obtains the
following.

∫

S(µm)

1

|γm − µm|
1

(
∑

m
i=1(µi − µ̄)2

) m−1
2

dµm

=
∫ +∞

−∞

1

|γm − µm|
1

(
m−1

m µ2
m − 2H

m µm + K − 1
m H2

) m−1
2

dµm

=
∫ γm

−∞

1

|γm − µm|
1

(
m−1

m µ2
m − 2H

m µm + K − 1
m H2

) m−1
2

dµm
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+
∫ ǫ

γm

1

|γm − µm|
1

(
m−1

m µ2
m − 2H

m µm + K − 1
m H2

) m−1
2

dµm

+
∫ +∞

ǫ

1

|γm − µm|
1

(
m−1

m µ2
m − 2H

m µm + K − 1
m H2

) m−1
2

dµm .

Let A = max
µm∈[γm ,ǫ]

(
m−1

m µ2
m − 2H

m µm + K − 1
m H2

)
. The second term of the last expression is

as follows:

∫ ǫ

γm

1

|γm − µm|
1

(
m−1

m µ2
m − 2H

m µm + K − 1
m H2

)m−1
2

dµm

≥
∫ ǫ

γm

1

|γm − µm|
1

A
m−1

2

dµm

=
1

A
m−1

2

∫ ǫ

γm

1

µm − γm
dµm

=
1

A
m−1

2

[
log(µm − γm)

]∣∣∣
ǫ

γm

= +∞ ,

which also implies the following.

∫

S(µm)

1

|γm − µm|
1

[
∑

m
i=1(µi − µ̄)2

]m−1
2

dµm = +∞.

For the same argument, one can also see that the following obtains.

π(γ) ∝

∫

S(µ1)

1

|γ1 − µ1|
∫

S(µ2)

1

|γ2 − µ2|
· · ·

∫

S(µm)

|γm − µm|−1

[
∑

m
i=1(µi − µ̄)2

]m−1
2

dµ = +∞ ,

It follows that

π(γ|U) ∝
m

∏
i=1

[ ni

∏
j=1

(
ci(U1ij, U2ij, . . . Udi ij|γi)

)]
π(γ) = +∞ .

A similar argument can be used to prove the following result.

Proposition A2. If πσ2
i
(σ2

i ) ∝ 1, for i ∈ {1, . . . , m}, and πδ2(δ2) ∝ 1, πλ(λ) ∝ 1, the posterior

distribution γ|U is improper for any choice of copula densities ci(·|γi) and is independent of the
sample size.

Proof. As before, one needs to show that the following pseudo-marginal posterior distri-
bution of γ does not have a finite integral.

π(γ|U) =
∫

S(µ)

∫

S(σ2)

∫

S(δ2)

∫

S(λ)
π(γ, µ, σ2, λ, δ2|U)dλdδ2dσ2dµ

∝
m

∏
i=1

[ ni

∏
j=1

(
ci(U1ij, U2ij, . . . , Udi ij|γi)

)]
π(γ)
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We use the same notation as in Proposition 1 and assume m > 3 (when m ≤ 3, the theorem
is trivially true since π(µ) itself is not defined). With a slight modification in the proof of
the proposition, we obtain the following:

π(µ) =
∫

S(δ2)

∫

S(λ)
π(µ|λ, δ2)π(λ)π(δ2)dλdδ2 ∝

( m

∑
i=1

(µi − µ̄)2
)− m−3

2
,

and

π(γ) =
∫

S(σ2
1 )
· · ·

∫

S(σ2
m)

∫

S(µ1)
· · ·

∫

S(µm)
π(γ|µ, σ2)π(µ)π(σ2)dµdσ2

∝

∫

S(σ2
1 )
· · ·

∫

S(σ2
m)

∫

S(µ1)
· · ·

∫

S(µm)

m

∏
i=1

[
(2πσ2

i )
− 1

2 exp
(
− 1

2σ2
i

(γi − µi)
2
)]

1
(

∑
m
i=1(µi − µ̄)2

)m−3
2

dµdσ2

∝

∫

S(µ1)
· · ·

∫

S(µm)

( m

∑
i=1

(µi − µ̄)2
)− m−3

2
m

∏
i=1

[ ∫

S(σ2
i )

( 1

σ2
i

) 1
2

exp
(
− 1

σ2
i

(γi − µi)
2

2

)
dσ2

i

]
dµ

However, for all i ∈ {1, . . . , m}, the integral with respect to σ2
i is not finite, and this again

implies the following.

π(γ|U) ∝
m

∏
i=1

[ ni

∏
j=1

(
ci(U1ij, U2ij, . . . Udi ij|γi)

)]
π(γ) = +∞ .
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