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Abstract— Weather forecasting is a critical aspect for 

optimizing aerodrome operations. It allows ensuring on-ground 

and en-route safe and efficient air traffic management. Being a 

continuous and mandatory operation for aerodrome systems, it 

routinely produces large amounts of data. This paper suggests a 

customized performance-based analysis of weather forecasts 

accuracy in line with ICAO (International Civil Aviation 

Organization) standards. The analysis is instantiated into 

operational settings of a European Weather Service Provider 

(WSP), and its implications for operations of an Air Navigation 

Service Provider (ANSP), by means of exemplary data 

intelligence reports including accuracy indicators. The analysis 

is meant to support decision makers in managing aerodrome 

weather forecasting gaining knowledge from past operations. 

Keywords—Weather forecasting, aerodromes, weather service 

providers, data analytics, data intelligence. 

I. INTRODUCTION 

Accurate weather prediction by Weather Service 
Providers (WPS) is critical for aviation services. Airport 
operations for example are exposed to large safety and 
economic losses in case of adverse weather [1]. Weather 
phenomena such as thunderstorms, snow, low visibility, or 
gusts are frequently the causes of delays and flight 
rescheduling [2]. Access to timely and accurate weather 
forecasting is thus fundamental to support decision makers 
from Air Navigation Service Providers (ANSPs) in planning, 
routing and managing flight operations, and to ensure a safe 
and smooth management of air traffic. ANSPs take as 
reference two main drivers for weather management [3]: 

• METeorological Aerodrome Reports (METARs), 
which contain observations and measures about actual 
weather conditions. METARs are generated manually 
or from automatic observing systems. A METAR 
follows peculiar hourly or half hourly intervals. If 
atmospheric conditions have a higher variability, a 
SPECI (SPECIal Report) may be released. SPECIs do 
not follow the hourly/half hourly emission frequency. 

• Terminal Aerodrome Forecasts (TAFs), previsions 
for future weather conditions. An aerodrome forecast 
shall be issued at a specified time and shall consist of 
a concise statement of the expected meteorological 
conditions at an aerodrome for a specified period 
(e.g., 9h, 24h or 30h). A TAF remains valid for its 
overall time validity. Nonetheless, the meteorological 
offices preparing TAFs should keep the forecaster 
under continuous review and, when necessary, should 

issue new TAFs, or amend promptly the previous 
ones. The use of modern technologies in aerodrome 
weather forecasting produces large amount of data 
stratified by geographical area, and time of the day. 
This generates a higher potential for syntax errors in 
forecasts being done manually. Such problem has 
been acknowledged in (e.g.) [4], where a Python code 
for TAFs error checking has been produced to spot 
major criticalities and correlations over six year of 
data collected in Czech airports. 

Besides syntax errors, understanding weather forecast 
accuracy for a certain region in a certain time span means 
comparing what has been forecasted, i.e., relevant TAF data, 
versus what really happened corresponding to METAR data. 
The way the comparison is run is suggested by ICAO, leaving 
room to state the operationalization of the methodology under 
certain boundaries [5]. Despite the number of research 
contributions available in literature, either deterministic [6] or 
stochastic [7], forecasts accuracy analysis still presents 
uncertainties to be resolved [8]. For example, data aggregation 
techniques to allow shifting from individual TAFs’ accuracy 
to organization-wide dynamic sets of TAFs seems to be a 
partially open challenge. In this regard, some limitations can 
be acknowledged: (i) limited periods of analysis (e.g., [9], 
where authors evaluated forecasting performance based on 
24h operations data); (ii) restricted geographical area (e.g., 
[10], where authors evaluated forecasting performance using 
data from 5 Czech airports).  

An advancement of the state of the art in terms of 
organizational solutions can be represented by the usage of 
Business Intelligence (BI). This latter is defined as the set of 
methodologies, processes, architectures, and technologies that 
transform raw data into meaningful and useful information to 
ensure a more effective strategic, tactical, and operational 
decision-making [11]. Acknowledging the limitations of 
available approaches, the aim of this paper consists of 
proposing data analytics which may serve as a basis for BI 
technologies to help systematic analyses of weather forecasts. 
The paper will go through each step, from the data pre-
processing to establish a data mart towards data analysis by 
means of specific Key Performance Indicators (KPIs) to be 
captured in data intelligence reports. 

The remainder of this paper is organized as follows. 
Section II presents each step of the proposed methodology. 
Section III instantiates the proposed methodology on data in 
order to propose exemplary results. Section IV lastly discusses 
the obtained results in light of future applications. 



 

 

II. MATERIALS AND METHODS 

This work details methodological steps and results of 
weather forecast accuracy evaluation.  

 

Fig. 1. Methodological steps of the weather data pre-processing for 
accuracy analysis. 

Fig. 1 presents the methodological steps being developed for 
the purpose of the paper. It is worth noticing that the blocks 
with dashed edges in Fig. 1 represent data to be used as input, 
and data generated as output. Data to be analyzed are 
constituted by historic weather data collected from 
aerodromes. These data comprehend bulletins regarding: (i) 
observed weather conditions, i.e., METAR and SPECI, and 
(ii) forecasted weather conditions, i.e., TAF. The BI data 
model is then built on three main phases: 

• Data extraction: to retrieve information about 
observed and forecasted weather conditions from the 
bulletin strings. 

• Errors checking: to spot syntax errors, typos and 
unallowed elements. This step is meant to isolate the 
consistent data for the subsequent analysis. 

• Accuracy analysis: to compare weather data from 
both observations and forecasts. At this stage, weather 
KPIs are calculated to assess forecasts accuracy. 

A. Data extraction 

Basic weather information codified in METARs, SPECIs 
and TAFs strings comprehend (among others) location, time 
of emission, wind direction and speed, horizontal visibility, 
meteorological phenomena (present weather e.g., rain, snow), 
cloud amount, cloud type and height of cloud base, 
temperature, pressure. Besides the static value in the bulletins 
(i.e., baseline value in the period of interest of a certain 

bulletin), each parameter may have a dynamic evolution 
which needs to be captured in the string. This dynamicity 
(change groups) adds complexity to the comparisons, and 
analysis. From an IT perspective, the structure of the main 
field of the weather database used in the analysis are 
summarized in Table 1.  

B. Errors checking 

The main goal of a BI solution is to support operators, 
managers, and analysts in making better and faster decisions 
[12]. To do so, a BI model must enable operations such as 
filtering, joining, and aggregating data. Accordingly, the BI 
model is developed based on Extraction-Transformation-
Loading (ETL) process [13]. All information about observed 
and forecasted weather are stored in a single field of the input 
database (i.e., “TEXT”, cf. Table 1). 

A proper data model for errors checking and accuracy 
analysis requires a de-codification process to deconstruct this 
data into relevant fields. A decoding script has been developed 
to parse METAR, SPECI and TAF strings and split them into 
their relevant elements. The script follows ICAO codification 
[3], as well as documents from the World Meteorological 
Organization (WMO) [14]. 

Subsequently, data transformations are put in place to: (i) 
remove not compliant records to avoid noise in data; (ii) gain 
additional information on aerodrome performance through the 
calculation of weather KPIs. The decoding script is then 
paired with a second script to perform formal syntax checks 
and spot errors run on all database records. 

The script procedure is the following: 

• Type check. Individual weather data fields can be 
numerical or categorical. This distinction is 
established ex ante for the extracted data, so a formal 
control on data type can be performed accordingly. 
For example, wind velocity is expected to be always 
made up of digits, any letter would generate a wind 
velocity type error.  

• Length check. Element’s length is calculated for 
fields that must be reported through a precise number 
of characters and compared against their prescribed 
length. For example, since the visibility value must be 
reported in four digits, a visibility value of 100 meters 
must be coded as “0100”; (e.g.) “100” would be 
marked as a visibility length check error. 

• Spell check. This check is performed on categorical 
fields to be completed with predefined values. These 
latter are evaluated by searching their value within a 
list of all possible items for that specific field. For 
example, since each aerodrome has a fixed and 
individual code (i.e., the ICAO Location Indicator 
[15]), a list of all possible codes is made available to 
verify each string includes one of them in the right 
position.  

TABLE 1. INPUT DATABASE STRUCTURE FOR WEATHER DATA. 

Field Description 

ID Unique identification code for the record 

KIND Type of the record, it can be METAR, SPECI or TAF. 

AD Aerodrome of the record  



 

 

Field Description 

TEXT 
Metar or TAF, i.e. alphanumerical string coded following 
[3] that carries on information about weather condition, 
either actual or foreseen. 

TIME 
STAMP 

Time stamp (i.e. date and time) at which the record is stored 
in the database 

Similarly, the list of weather phenomena is fixed ex 
ante and it can be used to perform the a spell check: 
“RA” is acceptable sign for rain phenomenon, but 
“RAS” would be a weather phenomenon spell check. 

• Numerical feasibility check. Additional rules are 
developed to spot feasibility errors in numerical 
fields. These rules check a record is included within 
certain thresholds to verify specific requirements. For 
example, wind direction cannot be more than 360° 
and must be reported with intervals of 10° each: a 
value of 370, or 355 would then generate a numerical 
feasibility error. 

 Errors checks run on extracted METARs, SPECIs and 
TAFs. Those strings presenting at least one of the errors 
mentioned above are excluded from any subsequent analysis. 
As a result of the errors checking procedure, less than 0.1% of 
METARs/SPECIs records, and about 3% of TAFs records 
have been proved to contain errors. 

C. Accuracy analysis 

At this stage, KPIs can be defined and computed to assess 
forecasts accuracy for each string parameters. Six weather 
parameters are prioritized for a set of corresponding KPIs: 
wind direction (ddd), wind velocity (ff), wind gust (fmfm), 
visibility (VVVV), weather phenomena (ww), cloud height 
and amount (NsNsNs and nsnsns). Weather KPIs rely on the 
usage of contingency tables. They provide relations between 
two variables, in this case observed and forecasted parameters. 
A representation of a generic contingency table for weather 
forecast is presented in Fig. 2. [16] 

One should note that for binary parameters (i.e., presence or 
not presence, in or out a fixed threshold) there are fewer 
chances of relationships and only four possible outcomes are 
present (c.f. Fig. 2): 

• Hit (a): number of times forecasted an event has been 
observed. 

• False alarm (b): number of times an event has been 
forecasted but not observed. 

• Miss (c): number of times an event has been observed 
but not forecasted. 

• Correct rejection (d): number of times an event has 
neither been observed nor forecasted. 

 Specific criteria for each weather parameter have been 
defined to assess whether their occurrence should be listed as 
hit, false alarm, miss or correct rejection in the corresponding 
contingency tables. Individual criteria are defined for each 
parameter recalling ICAO Annex 3 [3]:  

• Forecasted wind direction is considered correct if it 
does not exceed 60° difference with the observed one. 
Moreover, if the observed and forecasted intensity is 
less than 10kt forecasted direction is always 
considered correct. Notice that false alarm and correct 
rejections make no sense in wind direction 
contingency table. 

• Forecasted wind velocity is considered correct if the 
difference between its value and the observed one 
does not exceed 10 kt. Notice that false alarm and 
correct rejections make no sense in wind velocity 
contingency table. 

 

Fig. 2. Exemplary multi-category contingency table. 

• Gust is treated as a binary parameter: occurrence or 
non-occurrence versus forecasted or not forecasted. 
The intensity of the gust is not considered. 

• Visibility relies on a multi-category contingency table 
since it is evaluated through eight classes distributed 
in accordance with the following thresholds:  150 m, 
350 m, 600 m, 800 m, 1500 m, 3000 m, 5000 m. 

• Weather phenomena are grouped in different 
categories based on their severity. Up to three weather 
phenomena can be included in a TAF. Accordingly, 
the forecast is considered correct if the class of the 
more severe phenomenon (i.e., lower class) 
forecasted corresponds to the class of the more severe 
phenomenon observed. Weather phenomena are 
evaluated as a multi-category parameter.  

• Cloud height and amount are evaluated by 
considering the height of the bottom clouds layer. 
Moreover, this latter must refer to broken amount 
clouds (i.e., 5 to 7 okta) or overcast amount clouds 
(i.e., equal or more than 8 okta) with a height of base 
less than 1500 ft. If the forecast does not satisfy these 
hypotheses, it is always considered correct. In all 
other cases, five ceiling classes are defined for a 
multi-category contingency table. Thresholds 
between classes are: 100 ft, 200 ft, 500 ft, 1000 ft, 
1500 ft. 

 Additionally, other rules are established for managing the 
change groups. When a TAF includes the BECMG 
(becoming) indicator, it means that for a certain time interval 
weather conditions are expected to reach or pass-through 
specified thresholds. In this interval, from a KPI perspective, 
both values (the basic and the change group) are considered 
valid. At the end of the BECMG validity, the BECMG 
parameters overwrite the ones declared in the basic forecast. 
On the other hand, the TEMPO indicator describes temporary 
fluctuations of certain weather parameters. In a TEMPO 
interval, both the main and the change parameters are 
considered valid. Outside the TEMPO interval, the main 
parameters apply. Note however that the expected fluctuations 
should last less than one half of the time period of the TEMPO 
group, as per ICAO recommendations [3]. The KPIs accuracy 
reflects these assessment in terms of scoring penalties, as 
inspired by previous research [17]. The intent of this work is 
to measure the accuracy of TAFs being emitted.  Accordingly, 



 

 

in those cased where a later TAF that overlaps a former one 
both TAFs are considered as distinct entries. 

 On this basis, five types of weather KPIs can be calculated 
from corresponding contingency tables, as summarized in 
TABLE 2. Once syntax errors have been isolated, and KPIs 
been calculated, data are stored into the data mart which serves 
as an input for business analytics. The data model is built 
following a snowflake data architecture, i.e., the fact table to 
be the core of the model, and its dimensions to be in the 
branches. Two fact tables have been identified, a first one for 
METARs and SPECIs, a second one for TAFs. Both fact 
tables relate to dimension tables which enable data 
exploration, calendar date/time, region, location, etc. 

III. RESULTS 

The steps from Section II are applied on a database of 
historic weather data. The database used for this work contains 
a whole year dataset, i.e., about 600000 METARs and 
SPECIs, and 60000 TAFs. Reports are collected from about 
40 different aerodromes. Following the prescribed steps, 
report can encompass a pure descriptive perspective (e.g., 
number of reports produced over time, number of incorrect 
reports per airport over time), towards more specific analyses 
for weather parameters (e.g., frequency of a certain 
combination of wind intensity and wind direction in an 
aerodrome). Some exemplary analyses are presented in Fig. 3 
for a single airport, whose reference values have been de-
identified. Specifically, a report on gusts is shown in Fig. 3a. 
Gust is a critical phenomenon in aerodrome operations with 
serious implications for aircraft landing. Unforeseen wind 
gusts may generate aircraft go-arounds or hazardous landings. 
Fig. 3a shows the number of METARs which include a gust 
(red line chart) against the number of METARs without it 
(light blue line chart) over a quarter. It is noticeable how, for 
the analyzed airport, the second and third month are 
historically more subjected to gusts. Particular attention 
should be paid in managing landing movements over these 
months, putting in place preventing strategies, where possible. 
Fig. 3b and Fig. 3c show wind parameters (i.e., velocity and 
direction) in scenarios with or without gusts. The box plots in 
Fig. 3b demonstrate how gusts, if present, are more 
concentrated in a specific direction. On average, gusts usually 
occur from 260° and in 50% of cases they occur between 240° 
and 330°. In case of no gust occurrence, it is more difficult to 
assess what the most probable wind direction may be. For 
example, in 50% of cases, wind blows between 110° and 330°. 
Concerning wind intensity, in the histogram in Fig. 3c the 
average wind intensity in case of gust presence (light blue) or 
absence (dark blue) is compared.  

TABLE 2. TYPES OF WEATHER KPIS FOR ACCURACY ANALYSES. 

KPI 
Analytical 

expression 
Range 

Perfect 

score 

Frequency 
Bias Index 
(FBI) 

FBI �  
� � �

� � 	
 
∞ � FBI � ∞ FBI � 1 

Proportion 
Correct (PC) PC �  

� � �

� � � � 	 � �
 0 � PC � 1 PC � 1 

Critical 
Success 
Index (CSI) 

CSI �  
�

� � � � 	
 0 � CSI � 1 CSI � 1 

KPI 
Analytical 

expression 
Range 

Perfect 

score 

Probability 
Of Detection 
(POD) 

POD �  
�

� � 	
 0 � POD � 1 POD � 1 

False Alarm 
Ratio (FAR) FAR �  

�

� � �
 0 � FAR � 1 FAR � 0 

 

Fig. 3. Exemplary data analytics visualizations to analyze wind gust. 

This observation confirms that on average, a wind gust is 
larger than a normal wind (i.e., almost double than the normal 
condition. In case of no gust occurrence, it is more difficult to 
assess what the most probable wind direction may be. For 
example, in 50% of cases, wind blows between 110° and 330°. 
Concerning wind intensity, in the histogram in Fig. 3c the 
average wind intensity in case of gust presence (light blue) or 
absence (dark blue) is compared. These three visualizations 
exemplify possible time-dependent analyses on wind 
parameters. Within the scope of this manuscript, special 
attention is devoted to KPIs accuracy analyses through an 
exemplary case sketched in Fig. 4 for two selected airports. 

Concerning FBI (Fig. 4a), both airports behave similarly 
in forecasting clouds and visibility. Even if both FBIs for 
clouds and visibility are close to FBI = 1 (perfect score), 
Airport 1 shows a slightly higher tendency in overestimating 
visibility. In both airports, forecasted gusts are overestimate 



 

 

(FBI > 1), which is a critical parameter for aircraft take-off 
and landing operations affecting both safety and cost-
effectiveness since heavy gusts force flight re-scheduling. 
Overlapping the graphs of the two stations, it can be noticed 
that forecast numerosity of gusts in Airport 2 are 
overestimated. Concerning weather phenomena, the accuracy 
of the forecasts on Airport 1 is perfect (FBI=1), way better 
than Airport 2 (FBI=0.05). 

As far as the PC index is concerned (Fig. 4b), forecasts on 
both airports behaved very similarly for each parameter. High 
scores close to the optimal value PC = 1 are reported. Anyway, 
as long PC considers correct rejections, it is easier to gain 
higher score if compared to the other indexes.  

More detailed observations arise in terms of CSI, which 
does not consider correct rejections. It is clear how a good 
score on weather phenomena forecast heavily depends on 
correct rejections: CSIs from both airports (Fig. 4c) for 
phenomena are low, with Airport 2 CSI being close to the 
bottom value CSI = 0. On both airports the forecasts 
underestimate gusts: a performance loss of almost an order of 
magnitude (compared to PC values) is due to correct 
rejections. Even if Airport 1 obtains a better score concerning 
weather phenomena, its overall CSI performance is worse 
than Airport 2 with lower values for both clouds and visibility. 
On the other hand, Fig. 4d shows POD that simply considers 
correct forecasts over all event observed and can be calculated 
for every weather parameter. The two airports have similar 
POD performance for ddd, ff, VVVV, NsNsNs and largely 
different ones for gusts and weather phenomena. The POD 
score confirms Airport 2 shows inaccuracy to forecast weather 
phenomena (i.e., number of hits). Gust detection for both 
airports is sub-optimal but noticeably better than CSI scores, 
with Airport 2 outperforming Airport 1. A low POD score, yet 
higher than CSI, is representative of many false alarms on 
gusts, being fmfm a boolean parameter. The same observation 
is backed by the overestimation in terms of FBI. 

 
Fig. 4. KPIs comparison between two aerodromes in five different KPIs 
(FBI, PC; CSI, POD, FAR) for different weather parameters. Note for the 
construction of some contingency tables not all KPIs can be computed for 
each weather parameter. 

Finally, an investigation on FAR allows complementing 
previous observations. An aspect to be investigated is the 
higher score by Airport 2 for weather phenomena: while FBI 
suggests underestimation in this regard, FAR suggest large 
number of false alarms. Overall, Airport 2 observes weather 
phenomena much more than it is able to capture in forecasting, 
and even when it forecasts any of them, they are frequently 
false alarms (i.e., high FAR). 

Comparison between more than two airports can be made 
too. In Fig. 5, seven airports belonging to the same region are 
compared in terms of POD index for visibility (VVVV). This 
visualization allows observing and comparing trends in terms 
POD index over time. For a given period, airports are 
positioned within the matrix showing a snapshot of system 
performance. On the x-axis, the POD performance value is 
reported vs the number of METARs on which it is calculated 
(on the y-axis). Airports are depicted with different colors 
based on certain performance thresholds: airports in green 
obtained a POD value equal or major than 95%, for airports in 
yellow a value of POD between 80% and 94% is reported, the 
red ones are airports with POD value less than 80%.  



 

 

 

Fig. 5. Comparison of Number of METARs (y-axis) vs POD for visibility 
parameters (x-axis). 

When used on continuously updated data, this type of 
analysis allows mapping dynamically aerodromes to prioritize 
intervention on areas that are performing below expectations. 

IV. CONCLUSION 

In this paper an application of data analytics on weather 
data has been presented. The proposed methodology to 
construct the data mart opens almost limitless possibilities in 
terms of data to be processed and moreover flexibility of the 
analysis. The obtained results can be of interest under multiple 
management perspectives. WSP decision-makers, ANSPs, 
and airport authorities can benefit of data analytics to monitor 
system’s performance at different locations and in terms of 
different KPIs. It is worth highlighting that the methodology 
is conceived from ANSPs perspective: the timing issues 
regarding long haul flights as experienced by airlines flight 
planners are neglected. KPI scores can support improvement 
and interventions, but they can also facilitate sharing best 
practices among diverse forecasters and business units. At a 
pure operational level, dashboards and reports can guide the 
forecasters in the definition of TAF based on historic events 
as reported in METARs. A clear and user-friendly view of 
historic information can be arranged to convert multiple 
analyses into BI dashboards.  

While this paper focuses on descriptive analysis, business 
analytics at large comprehends predictive and prescriptive 
dimensions, too. Future developments may be devoted to 
extending this pure descriptive approach via Machine 
Learning techniques. This retrospective data may be also used 
to predict future phenomena, (e.g.) gust occurrence, direction 
and intensity. On the other hand, clustering algorithms may be 
used to define families of reports, or anomaly detection 
algorithms may highlight patterns and atypical behaviors 
within data and KPIs. ML solution could be aggregated in a 
decision support tool to guide future decision regarding 
weather forecasting. 

In conclusion, the present study provides some examples 
on a systematic methodology to pre-process and analyze 
weather bulletins and forecasts for aerodrome weather 
forecasting, showing the potential for their adoption at a larger 
scale in any aviation management system. 
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