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Abstract: This article develops a modal expansion (in terms of functions exponentially decaying
with time) of the force acting on a micrometric particle and stemming from fluid inertial effects
(usually referred to as the Basset force) deriving from the application of the time-dependent Stokes
equation to model fluid–particle interactions. One of the main results is that viscoelastic effects
induce the regularization of the inertial memory kernels at t = 0, eliminating the 1/

√
t-singularity

characterizing Newtonian fluids. The physical origin of this regularization stems from the finite
propagation velocity of the internal shear stresses characterizing viscoelastic constitutive equations.
The analytical expression for the fluid inertial kernel is derived for a Maxwell fluid, and a general
method is proposed to obtain accurate approximations of it for generic complex viscoelastic fluids,
characterized by a spectrum of relaxation times.

Keywords: microparticle dynamics; complex viscoelastic fluids; fluid inertial effects; time-dependent
Stokes equations; modal expansion

1. Introduction

Microfluidics and the study of fluid–particle interactions at a microscale represent not
only a vast area of practical engineering applications [1,2] as they provide the opportunity of
addressing fundamental physical questions in fluid dynamics [3–5], such as the relevance of
acoustic propagation in liquid hydrodynamics [6–8], the nature of the boundary conditions
and the occurrence of slip effects [9–11], as well as the role of the finite propagation velocity
in the evolution of internal stresses [8,12].

A significant role in this research is played by the study, both theoretical and exper-
imental, of Brownian motion, i.e., of the motion of micrometric particles in a quiescent
fluid. This is due to the fact that Brownian motion is a central problem in statistical physics,
from the early age of Einstein, Langevin, Smoluchowski, Perrin, [13–16] up to now [17,18],
providing a direct way of quantifying the influence of thermal fluctuations and of studying
the interactions between a fluid and a particle, thus permitting the investigation of the
role and the relative relevance of different hydrodynamic effects. In this sense, Brownian
motion represents an invaluable probe to verify experimentally fundamental fluid dynamic
properties at short time and length scales [11,19].

The last two decades have seen an increasing attention on the experimental analysis
of Brownian motion at short time scales in different fluids (gases and liquids) [20–24], with
different rheological properties (Newtonian, viscoelastic) [25]. The experimental results have
confirmed many predictions of the hydrodynamic theory of Brownian motion [26–28], and
in some cases have raised fundamental questions involving basic principles of statistical
mechanics [29].

The analysis of the velocity autocorrelation function of a micrometric particle in a
liquid phase has shown the importance of fluid inertial contributions, expressed by the
occurrence of the Basset force and of the added-mass term [30] in the expression of the force
exerted by a fluid on a rigid object [22,23]. These terms arise in the low-Reynolds number
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hydrodynamics, using the time-dependent Stokes equations, and provide a power-law
decay of the particle velocity autocorrelation function [25], to be compared with the expo-
nential decay occurring if solely the Stokesian drag is considered [31,32]. Indeed, the use of
the time-dependent Stokes equation, instead of the instantaneous Stokes formulation, is
well justified and appropriate when addressing micrometric particle motion in liquids at
short time scale, due to the high frequencies characterizing thermal fluctuations. Conse-
quently, while the Reynolds number is extremely small in these systems, the product of
the Reynolds number times the Strouhal numbers is order of unity, justifying the inclusion
of the inertial contribution expressed as the time derivative of the velocity in the hydro-
dynamic equations. In the case of viscoelastic fluids, characterized by time-dependent
constitutive equations, this statement is a fortiori valid.

The rheological modeling of complex viscoelastic fluids is well consolidated as regards
the quantitative description of viscoelastic properties [33]. As regards the dynamics of
a microparticle, this corresponds to the formulation of a generalized Langevin equation
with a dissipative memory kernel [34–36]. This class of equations has been introduced
by Zwanzig in connection with the interaction of a physical system with a heat bath,
and the fluctuation–dissipation theorem for this class of systems has been obtained by
Kubo [37]. On the other hand, the hydrodynamic analysis of Brownian motion and the
numerical simulation experiments by Alder and Wainwright [38] have clearly indicated
that fluid inertial contributions are of paramount importance in order to correctly predict
particle dynamics.

The current approach to particle motion in complex fluids is essentially based on the
direct hydrodynamic simulation of particle motion [39,40]. What is missing is a physically
consistent and computationally tractable formulation of particle dynamics in viscoelastic
fluids, analogous to the corresponding equation of motion (which includes Stokes friction,
the Basset force and the added mass effect) that apply for Newtonian ones. These equations
can be derived into two steps: (i) via the detailed characterization of the fluid inertial
contribution to particle motion in a complex fluid, expressing it in a computationally
effective representation, and (ii) by generalizing the Kubo fluctuation–dissipation theory in
order to include fluid-inertial contributions. In this article, we focus essentially on the first
issue, leaving the second one to a forthcoming work.

Albeit the present analysis is focused on the hydrodynamic theory of particle motion,
its application to microfluidic engineering for particle separation and nanoparticle produc-
tion and optimization is significant. Indeed, the obtained result could be directly applied to
the design of microfluidic systems enforcing the rheological properties of complex fluids in
the limit of Stokesian hydrodynamics. In point of fact, the importance of inertial effects
and rheological properties in separation devices is well known, e.g., in connection with
the Segré-Silberberg effect [40,41], although this effect involves flows at non-vanishing
Reynolds numbers [4,42].

The aim of this article is two-fold. A first goal involves the development of the
modal representation of the fluid inertial contributions in the expression of the particle
equation of motion in a fluid phase. This naturally leads to a simple field-theoretical
representation of these effects. The second goal involves the mathematical structure of the
inertial memory kernels entering the convolutional representation of the Basset forces, and
their basic qualitative properties derived from fundamental physical principles. Specifically,
it is shown that for any viscoelastic fluid (and all the liquids fall in this category, even if
their characteristic relaxation times could be extremely small), the inertial memory kernel
accounting for the generalized Basset contribution is bounded and non-singular near time
t = 0.

The article is organized as follows. Section 2 introduces the hydrodynamic problem,
the representation of fluid inertial effects and their implications in microparticle dynamics.
Section 3 analyzes the modal representation of the Basset force, and its compact description
in terms of a simple field equation. Moreover, it is shown in Section 3.2 that the modal
representation also provides an efficient computational tool to study inertial particle motion.
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This is an important topic that recently emerged in the fluid-dynamic literature [43–45] in
connection with the numerical solution of the Maxey–Riley equation [46] (see also [47] and
references therein). Specifically, the modal expansion transforms the integro-differential
equations of motion into a system of ordinary differential equations. Section 4 addresses the
boundedness of the resulting memory kernels in the presence of viscoelastic constitutive
equations, outlining the physical and computational relevance of this result. For a simple
Maxwell fluid, the expression of this kernel is obtained in closed form, and a general
method for approximating it for generic complex viscoelastic fluids is proposed. Finally,
Section 4.3 describes the connection between the present theory and the generalization of
the Kubo fluctuation–dissipation theory to include fluid inertial effects in the stochastic
equations of motion for a microparticle in a heat bath at constant temperature.

2. Fluid–Particle Interactions and Inertial Effects

Consider the motion of a micrometric rigid spherical particle of radius R in a un-
bounded incompressible fluid. Assume that the fluid is Newtonian, and ρ and µ represent
its density and viscosity, respectively. Without loss of generality, assume neutrally buoyant
particles (i.e., possessing the same density as the liquid), as the inclusion of Archimedean
forces is immaterial in the present analysis. Let BR be the domain representing the space
occupied by the particle, ∂BR its boundary and Vp(t) its translational velocity. Since we
are considering the motion of a Brownian particle in a still liquid (the liquid is referred
to be still if its velocity field originates exclusively from thermal motion of the immersed
Brownian particle), the momentum balance equation for the particle reads

m
dVp(t)

dt
= F f→p[Vp(t)] + S(t) (1)

where F f→p[Vp(t)] represents the force exerted by the fluid on the particle, and is a func-
tional of the particle velocity, expressed by the surface integral over ∂BR,

F f→p[Vp(t)] = −
∫

∂BR
(τ + p I) · er dS (2)

where τ is the shear stress tensor, p the pressure, I the identity matrix and er is the unit
radial vector (we consider a reference system with the origin at the center of the spherical
particle) and S(t) is a stochastic contribution describing the thermal force fluctuation.

Indicating with v(x, t) the fluid velocity field, in the low-Reynolds number regime it
is the solution of the time-dependent Stokes equations

ρ
∂v
∂t

= −∇ · τ −∇p , ∇ · v = 0 , x ∈ R3/BR (3)

equipped with the boundary and initial conditions,

v(x, t)|x∈∂BR = Vp(t) , v(x, t)|t=0 = 0 (4)

Equation (4) corresponds to the no-slip assumption. For an incompressible Newtonian
fluid,

τ = −µ
(
∇v +∇vT

)
(5)

where the superscript “T” indicates transpose, so that Equation (3) is a linear partial
differential equation for v(x, t) (the time-dependent Stokes equation)

ρ
∂v
∂t

= µ∇2v−∇p (6)

where, from Equation (3), the velocity field v(x, t) is incompressible. Owing to the linearity
of Equations (5) and (6), the functional F f→p[Vp] is a linear and causal functional of the
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particle velocity Vp(t). Causality means that F f→p[Vp(t)] depends solely on the velocity
history in the interval [0, t).

Under these conditions, the force exerted by the fluid onto the rigid spherical particle
can be expressed analytically. Let us indicate with F̂ f→p(s) the Laplace transform of
F f→p[Vp] (henceforth, we will indicate with f̂ (s) =

∫ ∞
0 e−s t f (t) dt the Laplace transform

of any function f (t) of time t, and with s the complex-valued Laplace variable), F̂ f→p(s)
attains the expression [48,49]

− F̂ f→p(s) = 6 π µ R V̂p(s) + 6 π

√
ρ µ

s
R2
(

s V̂p(s)
)
+

2
3

ρ π R3
(

s V̂p(s)
)

(7)

Transforming Equation (7) back into the time domain, one obtains

F f→p[Vp(t)] = −6 π µ R Vp(t)

−6
√

π ρ µ R2
p

∫ t

0

1√
t− τ

(
dVp(τ)

dτ
+ Vp(0) δ(τ)

)
dτ − 2

3
ρ π R3 dVp(t)

dt
(8)

where Vp(0) is the initial condition for the particle velocity at t = 0. The first term at the
r.h.s. of Equation (8) is the Stokesian friction, with the factor η = 6 π µ R, corresponding
to the only dissipative term occurring also in the case of the instantaneous Stokes regime.
The two other contributions at the r.h.s. stem from fluid inertial effects, and depend on the
history of particle acceleration up to time t. The first of these terms is the convolutional
integral of dVp(t)/dt with the kernel k(t) given by

k(t) =
6
√

π ρ µ R2
√

t
(9)

and it is usually referred to as the Basset force. Let us observe that kernel k(t) is singular at
t = 0. This property will be thoroughly analyzed in Section 4. The last term at the r.h.s. of
Equation (8) is an instantaneous inertial contribution proportional to the actual value (i.e., at
time t) of the acceleration dVp(t)/dt of the particle, and it defines the hydrodynamic added
mass ma = 2ρ π R3/3, equal to half of the mass of the fluid displaced by the particle [31].
Let us observe within the Basset term the occurrence of a contribution proportional to
Vp(0)δ(τ), in the case Vp(0) 6= 0. Equation (8) can be compactly written as

me
dVp(t)

dt
= −η Vp(t)− k(t) ∗

(
dVp(t)

dt
+ Vp(0) δ(t)

)
+ S(t) (10)

where me = m + ma is the extended mass and “∗” indicates convolution. The physical
importance of the Basset contribution can be appreciated by considering the velocity auto-
correlation tensor of a Brownian particle, Cv(t) = 〈Vp(t)⊗Vp(0)〉, where “⊗” indicates
the dyadic tensor product and “〈·〉” the ensemble average over the probability measure
of the thermal fluctuations. Since 〈S(t) ⊗ Vp(0)〉 = 0, as it is physically reasonable to
assume that the thermal fluctuations S(t) at time t ≥ 0, are independent of (uncorrelated
to) the velocity fluctuations at any previous time instant t = 0 [32,37] (this principle is
by some authors referred to as the principle of causality [50], and it essentially states the
non-anticipativity of the action of thermal fluctuations as regards its effects on the particle
velocity), by taking the tensorial product of both members of Equation (10) and averaging
over the statistics of thermal fluctuations (the operations of time derivative and convolution
commute with 〈·〉), we obtain the evolution equation for Cv(t),

m∗
dCv(t)

dt
= −η Cv(t)− k(t) ∗

(
dCv(t)

dt
+ Cv(0)

)
(11)
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equipped with the isotropic initial condition

Cv(0) = 〈V2〉 I (12)

where 〈V2〉 is the squared variance of any entry Vp,h(t), h = 1, 2, 3 of the particle veloc-
ity vector (proportional at thermal equilibrium to the temperature of the fluid). There-
fore, due to this symmetry, the velocity autocorrelation function can be expressed as
Cv(t) = 〈V2〉 cv(t) I, where the scalar function cv(t) satisfies Equation (11) with cv(0) = 1.
The occurrence of the Basset contribution determines a qualitative change in the long-term
scaling of cv(t) with respect to the purely dissipative case (corresponding to considering
the fluid motion in an instantaneous Stokes flow). In the latter case, the long-term decay
is exponential, i.e., cv(t) = e−η t/m while inertial effects induce an asymptotic power-law
scaling cv(t) ∼ t−γ, with γ = 3/2 in the free space [25,37].

The application of Equation (10) in the Lagrangian analysis of particle motion, in
the case the kernel k(t) attains the Basset form expressed by Equation (9), raises three
main issues:

• A computational issue, as the presence of a convolution in the equations of motion
implies that the entire history of Vp(t) over the time interval [0, t) should be stored in
order to evaluate it;

• An analytical issue, associated with the singularity of the Basset kernel k(t) at t = 0;
• A physical issue, related to the determination of the stochastic force S(t), in the case

that inertial effects are accounted for.

The first problem is analyzed in the next section, in terms of modal representations.
The second one is treated on physical grounds in Section 4. The last point, related to the
determination of S(t), is one of the main issues of fluctuation–dissipation theories [32,37].
To the best of our knowledge, a computationally valid approach to the determination
of S(t) in the presence of the Basset term is lacking, although formal results have been
proposed [51]. This point will be addressed in forthcoming works, as it pertains mostly to
statistical physics than to strict hydrodynamic theory.

3. Modal Representation

The idea behind modal representations lies in the expression of the fluid inertial mem-
ory term entering the particle equation of motion as a linear superposition of elementary
stochastic modes, susceptible of a simple evolution. We use the diction “stochastic” in
this context, to pinpoint the fact that since S(t) 6= 0, the velocity Vp(t) is itself a stochastic
process, as well as any other process functionally dependent on Vp(t).

Let us consider Equation (10), and without loss of generality let us set Vp(0) = 0. Since
the problem of Brownian motion in the free space is isotropic, we can exclusively consider a
scalar formulation of it, setting Vp(t) instead of Vp(t). Let us assume in the remainder that
the stochastic representation of S(t) (replacing S(t) as a scalar formulation is considered)
is known.

Consider a family of stochastic processes y(t; λ) parameterized with respect to
λ ∈ [0, ∞) and fulfilling the equations

dy(t; λ)

dt
= −λ y(t, λ) + q

dVp(t)
dt

(13)

where q is a constant to be determined. Let us suppose y(t = 0; λ) = 0 so that

y(t; λ) = q
∫ t

0
e−λ (t−τ) dVp(τ)

dτ
dτ (14)

The inertial memory kernel can be expressed as a linear superposition of these pro-
cesses. To this end, let p(λ) the probability density of occurrence of y(t; λ), so that p(λ) dλ
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represents the infinitesimal weight factor in the representation of the memory inertial
contribution. Thus, the particle equation of motion can be expressed as

m∗
dVp(t)

dt
= −η Vp(t)− q

∫ ∞

0
p(λ) y(t; λ) dλ︸ ︷︷ ︸

I

+S(t) (15)

The integral I entering Equation (15) can be rewritten in convolutional form as

I =
∫ t

0

[
q
∫ ∞

0
p(λ) e−λ(t−τ) dλ

]
dVp(τ)

dτ
dτ = kp(t) ∗

dVp(t)
dt

(16)

thus defining the kernel kp(t).
Let us assume for p(λ) the following expression

p(λ) =
{

A λ−1/2 λ < λc
0 otherwise

(17)

where λc > 0, and A is the normalization constant such that
∫ ∞

0 p(λ) dλ = 1. In this case,
setting z = λc t,

kp(t) =
q A√

t

∫ λc t

0

e−z
√

z
dz (18)

Let us observe that kp(0) = q, while for t > 0, and for large λc, λct can be approximated
by an infinite value, and thus

kp(t) =
q A√

t

∫ ∞

0

e−z
√

z
dz =

q A π√
t

(19)

The constant q can be always defined in order to match the asymptotics of the Basset
kernel Equation (9). Therefore, the modal expansion Equation (15) provides an inertial
kernel that does not match the singular behavior of the Basset kernel near t = 0, but still
represents an excellent approximation of it for t large enough. The regularity of the inertial
kernel will be questioned in the next section starting from physical arguments.

If one is interested in obtaining exactly the modal expansion for the Basset kernel,
a slightly different parameterization can be chosen by considering the modes y(t; k),
k ∈ [0, ∞), still satisfying the linear relaxation dynamics Equation (13), with the relax-
ation rates λ = λ(k) depending quadratically on the parameter k, i.e.,

λ(k) = λ0 k2 (20)

with λ0 > 0, consequently,

y(t; k) = q
∫ t

0
e−k2(t−τ) dVp(τ)

dτ
dτ (21)

Assuming that all the modes at different ks concur uniformly in the expansion of
the inertial force, i.e., that the weight function does not have a probabilistic meaning, the
integral I in the k-representation becomes

I =
∫ ∞

0
y(t; k) dk = kk(t) ∗

dVp(t)
dt

, kk(t) = q
∫ ∞

0
e−λ0 k2t dk (22)

providing

kk(t) =
q
2

√
π

λ0 t
(23)
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and thus the parameters q and λ0 can be always determined in order to exactly match the
Basset kernel Equation (9).

3.1. Diffusional Field Representation

The quadratic spectral representation based on the dispersion relation Equation (20)
suggests the Basset inertial term could be viewed as the consequence of the interaction of
diffusional models associated with a scalar field with the particle. It is therefore interesting
to further develop this field approach.

Let u(x, t) be a scalar field of fluctuations, evolving according to a pure diffusion
equation over the real line, perturbed by an impulsive forcing term F(x, t)

∂u(x, t)
∂t

= α
∂2u(x, t)

∂x2 + F(x, t) (24)

with α > 0 and
F(x, t) = δ(x− xc) f (t) (25)

where f (t) is a generic function of time. The forcing F(x, t) represents the action of the
particle onto the field (corresponding to the fluid continuum) while the scalar field u(x, t)
represents the fluid flow. Set u(x, t = 0) = 0, the solution of Equations (24) and (25) can be
expressed in terms of the diffusional Green function as

u(x, t) =
∫ t

0
dτ
∫ ∞

−∞

1√
4 π α (t− τ)

e−(x−x′)2/4 α (t−τ)F(x′, τ) dτ

=
∫ t

0

1√
4 π α (t− τ)

e−(x−xc)2/4 α (t−τ) f (τ) dτ (26)

Let uc(t) = u(x = xc, t). From Equation (26) it follows that

uc(t) =
1√

4 π α

∫ t

0

f (τ)√
t− τ

dτ (27)

which admits the same functional form of the Basset memory integral. This formal result
has also been obtained in [45] (see also [47]), with a different approach, and with a purely
computational motivation. Below we are interested in going beyond the pure mathematical
formalism, providing a physical interpretation of the field representation of the Basset force.

Let us consider a one-dimensional approximation of the momentum exchange between the
fluid, with velocity v(x, t), and the particle, with velocity Vp(t). This can be modeled by consid-
ering a one-dimensional moment balance equations in the fluid of purely diffusional nature

ρ
∂v(x, t)

∂t
= µ

∂2v(x, t)
∂x2 + f (x, t) (28)

where f (x, t) is the force density exerted by the particle onto the fluid which can be written
as an impulsive contribution centered at the particle center of mass xc,

f (x, t) = ρ Lc δ(x− xc)
dVp(t)

dt
(29)

where, from dimensional analysis, the parameter Lc has the dimension of a length, and
corresponds to length scale of inertial influence, in the fluid, due to the perturbation induced
by the motion of the particle. From physical reasons, Lc is of the order of magnitude of the
particle radius, and the choice

Lc = D = 2R (30)
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where D is the particle diameter, provides, as shown below, the correct value of Lc matching
the Basset force. The inertial force exerted by the fluid onto the particle F(i)

f→p can be viewed
as a dissipative Stokesian contribution evaluated at the fluid velocity vc(t),

F(i)
f→p = −6 π µ R vc(t) (31)

Comparing Equations (24) and (25) with Equations (28)–(30), and making use of
Equation (27), it follows that

vc(t) =
√

ρ

4 π µ
D
∫ t

0

1√
t− τ

dVp(τ)

dτ
dτ (32)

and from Equation (31) one finally obtains

F(i)
f→p = −6 π µ

√
ρ

4 π
D R

1√
t
∗

dVp(t)
dt

= −6
√

π ρ µ R2 1√
t
∗

dVp(t)
dt

(33)

that is exactly the Basset force. This result is physically interesting and requires some
interpretation. It indicates that the inertial Basset contribution can be viewed as the inertial
dissipation of the fluid elements nearby the solid particle, due to the perturbation exerted
by the particle onto the fluid itself. This physical interpretation bears some analogies with
Darwin’s description of fluid inertial effects [30]. The fact that a scalar model correctly
describes the fluid inertial effects onto particle dynamics is a remarkable property, as
the fluid hydrodynamics involves vectorial entities, the velocity field v(x, t), subjected
to constraints, in the present case the solenoidal nature of v(x, t), stemming from the
incompressibility of a liquid phase, corresponding to the case of principal theoretical and
engineering interest. Whether this would be a purely mathematical result, or a deeper
physical property is a matter that we leave open to future investigation. Interpreted on
physical grounds, this result indicates that the fluid inertial contributions to the dynamics
of immersed bodies are completely independent of the compressibility of the fluid. If this
observation would be correct, it follows that in any isotropic problems, as the particle
motion is in a unbounded fluid phase, a scalar field model would correctly describe
the physics of a fluid–particle inertial interaction. This situation is altogether similar to
the properties of the other inertial contribution, namely the added-mass term, which is
independent of the constitutive equations in the fluid, and for this reason it can be estimated
from the inviscid (Eulerian) approximation of the flow [31].

3.2. A Numerical Case Study

Let us consider the modal expansion in Equations (20)–(22) and its discretization with
respect to k. Let kmax be the maximum value of k considered, and ∆k the step size in the
discretization. Assuming q = 2/

√
π, for the sake of normalization, the expression for kk(t)

becomes

kk(t) =
2 ∆k√

π

N

∑
i=1

e−(i ∆k)2 t (34)

where N = [kmax/∆k] and [x] represents the closest integer to the real-valued x. In the limit
for ∆k → 0, and kmax → ∞, kk(t) defined by Equation (34) converges to k∞(t) = 1/

√
t.

Figure 1a depicts the behavior of the discretized kk(t) at kmax = 10 for decreasing values
of ∆k. As expected, as ∆k decreases to zero, the deviations of kk(t) from k∞(t) become
negligible for t > 1/k2

max.
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Figure 1. Behavior of the discretized kk(t) defined by Equation (34) for different discretizations. Panel
(a) refers to kmax = 10, lines and symbols (a) to (c) correspond to ∆k = 1, 0.1, 0.01, respectively. Line
(d) represents k∞(t) = 1/

√
t. Panel (b) kmax = 100, ∆k = 0.01 (line a), while line (b) depicts k∞(t).

Similarly, the value of kmax controls the convergence to k∞(t) at short time scales.
Figure 1b depicts the behavior of kk(t) at kmax = 100, ∆k = 0.01. An accurate representation
for k∞(t) is achieved for t > 10−4. The analysis of these data indicates that kmax controls
the behavior of kk(t) near t = 0, which reaches a finite limiting value k(0) ' kkmax. This
property seems to be a basic limitation of any discretization of the Basset force. In point of
fact, as shown in the next section, the occurrence of a bounded value of kk(0) is a physical
constraint derived from the viscoelastic nature of a liquid phase. And all the fluid, including
water at room temperature, possesses a characteristic non vanishing relaxation time.

Consider Equation (10) for a macroscopic particle (radius greater than a millimeter
or higher), for which the stochastic fluctuations could be neglected. Substituting on it the
modal expansion Equation (34), we have

me
dVp(t)

dt
= −η Vp(t)−

2 β ∆k√
π

N

∑
i=1

e−(i ∆k)2 t ∗
(

dVp(t)
dt

+ Vp(0) δ(t)
)

= −η Vp(t)−
2 β ∆k√

π

N

∑
i=1

zi(t) (35)
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where β = 6
√

π ρ µ R2, as it stems from Equation (9), and zi(t), i = 1, . . . , N is a system
of N auxiliary degrees of freedom accounting for fluid inertial effects, the equations for
which read

dzi(t)
dt

= −µi zi(t) +
dVp(t)

dt

= −(µi + η) zi(t)−
2 β ∆k√

π

N

∑
i=1

zi(t) (36)

where µi = (i ∆k)2, and the impulsive initial contribution has been included into the initial
condition for zi(0) = Vp(0).

Equation (35) represents a major advantage of the model expansion compared to
the more recent computational approaches for addressing inertial particle motion [47],
as it reduces the integro-differential particle equations of motion to a system of ordinary
differential equations that can be solved using standard numerical routines. The analysis
here presented for a quiescent fluid can be straightforwardly extended to the presence of a
macroscopic (e.g., pressure-driven) velocity field in the fluid phase.

4. Regularity of Inertial Kernels

The second main issue addressed in this article concerns the regularity of the inertial
memory kernels k(t), once basic physical requirements (such as the bounded propagation of
any physical phenomenon, limited by the speed of light vacuo, as a consequence of relativ-
ity theory) are taken into account. We have seen in Section 2 that the Basset kernel diverges
at t = 0, as seen in Equation (9). As explained below, this is a consequence of the infinite
propagation velocity of the internal stresses that characterize the Newtonian constitutive
Equation (5). This phenomenon is altogether analogous to the divergence of interfacial
fluxes in heat/mass transfer parabolic problems in the presence of a discontinuity between
the initial and the boundary conditions at a boundary. This problem can be resolved by
removing the paradox of infinite propagation velocity intrinsic to any Fickian/Fourier
constitutive equation, simply considering the hyperbolic extension of the transport prob-
lem [52].

In the hydrodynamic case, the corresponding hyperbolic generalization merely con-
sists in accounting for fluid viscoelasticity, which is a generic property of any liquid
phases. In point of fact, even water at ambient conditions (temperature T = 300 K, pres-
sure p = 105 Pa) behaves as a viscoelastic fluid, but its characteristic relaxation time,
θc ' 1 ps [53,54], is so small that it can be neglected in the overwhelming majority of
hydrodynamic problems, since the observation time scales in most of the practical cases of
interest are widely larger than θc.

To begin with, let us consider the case of a viscoelastic fluid characterized by a single
relaxation time θc (Maxwell fluid). Neglecting the nonlinear terms in the objective definition
of the viscoelastic constitutive equation involving the Oldroyd upper convective deriva-
tive [33] (which are small for the typical conditions of Brownian and micrometric particles in
microchannels), Equation (5) is replaced by the following viscoelastic constitutive equation:

θc ∂τ

∂t
+ τ = −µ

(
∇v +∇vT

)
(37)

that in the Laplace domain takes the following simple expression:

τ̂(x, s) = −µ̂e(s)
[
∇v̂(x, s) +∇v̂(x, s)T

]
(38)

where
µ̂e(s) =

µ

θc (s + 1/θc)
(39)
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Consequently, the Laplace transform of F̂ f→p(s) of the force subjected by the particle is
still given by Equation (7), with the constant viscosity µ replaced by the function µ̂e(s). As
well known, this modifies the instantaneous dissipative Stokesian friction F(d)

f→p[Vp(t)] =
−η Vp(t) into a memory term

F(d)
f→p[Vp(t)] = −η

1
θc

∫ t

0
e−(t−τ)/θc

Vp(τ) dτ (40)

while the inertial Basset term attains in the Laplace domain the form −k̂(s) sV̂p(s) with

k̂(s) =
β√
θc

1√
s (s + 1/θc)

(41)

where β = 6 π
√

ρ µ R2. It is easy to see that the presence of a non-vanishing relaxation time
θc > 0 determines a finite value of k(t) for t = 0. Enforcing the initial value theorem of
Laplace transforms, we have from Equation (41)

lim
t→0

k(t) = lim
s→∞

s k̂(s) =
β√
θc

(42)

In point of fact, the inverse Laplace transform of k̂(s) is given by

k(t) =
β√
θc

e−t/2θc
I0

(
t

2 θc

)
(43)

where I0(ξ) is the modified Bessel function of the first kind, which possesses the following
asymptotic behaviors:

I0(0) = 1 , I0(ξ) =
eξ

√
2 π ξ

[
1 + O

(
1
ξ

)]
(44)

From Equation (44), the asymptotics of the Newtonian Basset kernel is recovered for
t� θc. This phenomenon is depicted in Figure 2 for several values of θc. The viscoelastic
kernel practically coincides with the Basset counterpart of a Newtonian fluid for t > 5 θc.
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Figure 2. Rescaled inertial kernel k(t)/β, Equation (41) vs t for a simple Maxwell fluid, characterized
by the relaxation time θc. Lines (a) to (c) refer to θc = 10−4, 10−6, 10−8, respectively. Line (d) depicts
the asymptotic nondimensional Basset curve, k(t)/β = 1/

√
π t.
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The occurrence of a finite value for k(0) has been observed in Newtonian fluids once
slip boundary conditions are enforced at the surface of the solid particle [55–57]. The
physical reason for this occurrence, and the eventual analogy with the viscoelastic case, is
still an open question.

4.1. Field-Theoretical Analysis

The result expressed by Equation (43) can be recovered from the field approach
addressed in the previous section. The presence of viscoelastic effects characterized by a
single relaxation time θc implies to substitute the parabolic diffusion model Equation (28)
with the hyperbolic Cattaneo equation

ρ θc ∂2v(x, t)
∂t2 + ρ

∂v(x, t)
∂t

= µ
∂2v(x, t)

∂x2 + f (x, t) (45)

while f (x, t) is identical to Equation (29). The solution of this impulsive model, with
v(x, 0) = ∂v(x, t)/∂t|t=0 = 0, takes the following form (see [58], p. 320):

v(x, t) =
1
2

√
ρ θc

µ

D
θc

∫ t

0
e−(t−τ)/2 θc

I0

(
1

2 θc

√
(t− τ)2 − (x− xc)2 ρ θc/µ

)
dVp(τ)

dτ
dτ (46)

that for x = xc, and t ≥ τ reduces to

vc(t) =
1
2

√
ρ

µ θc D
∫ t

0
e−(t−τ)/2 θc

I0

(
t− τ

2 θc

)
dVp(τ)

dτ
dτ (47)

providing the same expression for k(t) derived above, as seen in Equation (43).

4.2. Extension to Complex Fluids

The analysis developed above for a viscoelastic fluid possessing a single relaxation
time can be generalized to more complex and real fluids. The problem can be stated as
follows. Consider a real fluid and suppose to have obtained from rheological experiments
the functional form of the dissipation memory kernel G(t) entering the expression of the
dissipative contribution to the force exerted by the fluid on a spherical particle

F(d)
f→p[Vp(t)] = −6 π R

∫ t

0
G(t− τ)Vp(τ) dτ (48)

Does this information provide a way to quantify the inertial contribution, and specifi-
cally the expression for the generalized Basset force in this fluid?

This problem can be tackled as follows. The convolutional nature of Equation (48)
suggests that the constitutive equation for the shear stresses is of the form

Lt[τ] = −µ
(
∇v +∇vT

)
(49)

where Lt is a linear operator acting on the stress tensor τ, and containing its derivatives of any
order n, n = 0, 1, . . . , with respect to time, and eventually also its fractional time derivatives
(Riemann–Liouville operators) [59]. In the Laplace domain, Equation (49) becomes

̂̀(s) τ̂(x, s) = −µ
[
∇v̂(x, s) +∇v̂(x, s)T

]
(50)

where ̂̀(s) is a function of the Laplace variable s. Equation (50) coincides with Equation (38),
and µ̂e(s), coinciding with Ĝ(s), is now expressed by

µ̂e(s) =
µ̂̀(s) = Ĝ(s) (51)
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The analysis developed above for a Maxwell fluid can be applied to this more gen-
eral problem, providing for the Laplace transform of the inertial memory kernel the
following expression:

k̂(s) = 6
√

ρ R2

√
Ĝ(s)

s
(52)

The inverse Laplace transform k(t) of k̂(s) defined by Equation (52) cannot be ob-
tained analytically for generic Ĝ(s). Nevertheless, it is always possible to derive accurate
representations for k(t) enforcing Equation (52).

In order to make a practical example, consider the rheological data for polydime-
thilsiloxane at T = 25 ◦C reported in [33], for which an accurate representation involves
the occurrence of N = 5 relaxation rates λh, h = 1, . . . , N,

G(t) =
N

∑
h=1

ah e−λh t (53)

where λh = 1/θc
h, h = 1, . . . , N are the relaxation rates i.e., the reciprocal of the relaxation

times θc
h. The values for λh and for the expansion coefficients ah can be found in [33] (p. 114),

and the graph of the resulting G(t) is depicted in Figure 3a. Applying Equation (52) to this
case we obtain

k̂(s) = α

√√√√1
s

N

∑
h=1

ah
s + λh

, α = 6 π
√

ρ R2 (54)

The graph of k∗(s) = k̂(s)/α is depicted in Figure 3b (symbols). The data can be
accurately approximated over the time scales of interest by a linear combination of the
inertial contributions obtained for the simple Maxwell fluid Equation (41), each of which is
characterized by a different relaxation time

k∗(s) =
Ni

∑
h=1

ch√
s (s + bh)

(55)

Making use of Equation (43), the memory inertial kernel k(t) is given in this case by
the expression

k(t) = α
Ni

∑
h=1

ch e−bh t/2 I0

(
bh t
2

)
(56)

For the use made above of the solutions obtained for the simple Maxwell fluid, each
term of the form (41) in the Laplace domain, and (43) in the time domain, can be referred to
as a “prototypical visco-inertial mode”. In the present case, it is sufficient to consider the
combination of Ni = 2 prototypical visco-inertial modes, and the resulting approximation
is depicted in Figure 3b. The values of the parameters are c1 = 125 a.u., b1 = 1.52 s−1,
c2 = 420 a.u., b2 = 65 s−1. The corresponding inertial memory kernel k(t), i.e., the graph of
Equation (56), is depicted in Figure 4.
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Figure 3. Panel (a) G(t) vs t for polydimethilsiloxane at T = 25 ◦C. Panel (b) (symbols) k∗(s) = k̂(s)/α

vs s for the same fluid, obtained from Equation (54). The solid line is the approximation of these data
using Ni = 2, prototypical visco-inertial modes, as discussed in the main text.
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From this practical example, we can draw the following conclusions:

1. Enforcing the constitutive model Equation (49), corresponding to the rheological
description of a complex viscoelastic fluid, it is possible to derive the functional form
of the fluid inertial kernel k(t) from rheological data, i.e., from the functional form
of G(t);

2. The fluid inertial kernel k(t) can be expressed as linear combination of a few proto-
typical visco-inertial modes;

3. The number Ni of modes required to provide an accurate representation of k(t)
does not necessarily coincide with the number N of dissipative (exponential) modes
adopted for reconstructing G(t).

Of course, it is possible to provide alternative representations of k(t), e.g., adopting the
modal decomposition discussed in Section 3. While for an accurate representation of the
classical Basset kernel, a uncountable system of exponentially decaying modes is required,
the physical constraint of bounded k(t) permits to achieve accurate approximation for k(t)
using a finite (and relatively small) number of exponentially decaying modes.

4.3. Toward a Comprehensive Theory of Brownian Motion

To conclude, we can frame another central issue that takes advantage of the present
theory. For a microparticle in a quiescent fluid (Brownian particle), the equations of motions
in a real complex fluid, accounting for viscoelastic dissipation, fluid inertial effects and
thermal fluctuations can be expressed in the form

me
dVp(t)

dt
= −h(t) ∗Vp(t)− k(t) ∗

(
dVp(t)

dt
+ Vp(0) δ(t)

)
+ S(t) (57)

where h(t) is the viscoelastic kernel proportional to G(t) defined by the linear functional
form Equation (53), and k(t) is the corresponding fluid inertial kernel, the properties of
which have been addressed in the previous section. From rheological data, the viscoelastic
kernel can be expressed as a linear combination of N modes, where usually N < 10 for
most of the fluids [33], i.e., h(t) = ∑N

j=1 hj e−λj t. In a similar way, the fluid inertial kernel
k(t) analyzed in the previous section can also be accurately approximated by means of a
system of exponentially decaying modes,

k(t) '
Ni

∑
i=1

ki e−µi t (58)

where the rates µi > 0, i = 1, . . . , Ni, are in general not related to the relaxation rates λj,
j = 1, . . . , N and Ni � N. The property that k(0) is bounded ensures, as discussed in
the previous section, that the approximation Equation (58) can be arbitrarily accurate in
the metrics of continuous functions. This means that for any ε > 0, there exist a finite
Ni, and finite rates µi > 0, i = 1, . . . , Ni, such that

∣∣∣k(t)−∑Ni
i=1 ki e−µi t

∣∣∣ < ε for any t ≥ 0.
Consequently, Equations (57) reduce to the form

me
dVp(t)

dt
= −

N

∑
j=1

hj e−λj t ∗Vp(t)−
Ni

∑
i=1

ki e−µi t ∗
(

dVp(t)
dt

+ Vp(0) δ(t)
)
+ S(t) (59)

In order to solve these stochastic differential equations, the expression for S(t) should
be determined, and it would constitute the generalization of the celebrated Kubo fluctuation–
dissipation theorem of the second kind [32,37], of which the original formulation is re-
stricted to the pure dissipative case (i.e., to k(t) = 0). The analysis of this problem is
beyond the scope of this article and it will be addressed in a forthcoming work [60]. It
can however be anticipated that the occurrence of a finite value of k(0), coupled with



Fluids 2023, 8, 84 16 of 18

the modal expansion of the memory kernels (h(t) and k(t)) provide the key physical and
formal ingredients toward an elegant solution of this problem.

5. Concluding Remarks

This article has presented a comprehensive description of the mathematical properties
of the fluid inertial kernel entering the particle equation of motion in a complex viscoelastic
fluid. Two main conclusions can be drawn from the present analysis and results. The
modal expansion addressed in Section 3 naturally leads to a simplified field-theoretical
representation of the fluid inertial effects. The latter has been successfully applied to
non-trivial cases, such as a Maxwell fluid, in order to relate the disappearance of the
k(t)-singularity at t = 0 with the physics of stress propagation. It is noteworthy that a
simple one-dimensional field-theoretical description could capture the inertial fluid–particle
interactions in isotropic conditions (free space). This point deserves further investigation.

The boundedness of k(0) is indeed a consequence of the finite propagation velocity of
the internal shear stresses, and this is in agreement with fundamental physical principles
(special relativity theory). The importance of this result is that the regularity of the fluid
inertial kernel has been derived from physical principles, and not as the result of ad hoc
mathematical regularization/mollification techniques. In rheological modeling, this simply
corresponds to the occurrence of a viscoelastic constitutive model with non-vanishing
relaxation times. For the sake of clarity, the inclusion of viscoelasticity does not ensure
either that the corresponding hydrodynamic model is Lorentz covariant [61] nor that all the
hydrodynamic perturbations (for instance, density and pressure waves) would propagate
at finite speed. In order to match the latter condition, the occurrence of acoustic modes
should be included in the description of hydromechanical phenomena as discussed in [8].

The case of a Maxwell fluid, characterized by a single relaxation time, not only provides
an analytic expression for the fluid inertial kernel k(t), but it represents the prototypical
model for expressing the fluid inertial effects of more complex fluids. The representation of
k̂(s) starting from rheological data on the dissipation kernel G(t) is a simple but relevant
result, which applies to any complex fluids.

We have considered in this article spherical micrometric particles, but the obtained
results are independent of the geometry of the particles and of the flow domain. Con-
sequently, these results can be extended to particles of arbitrary shape, and to confined
geometries of flow devices, provided that the parameters controlling the expression for the
force acting on the particle (attaining a tensorial character [5,49]) are known in the case of a
Newtonian fluid.

The results obtained in this article are also propedeutical for addressing and solv-
ing the other crucial problem associated with micrometric particle motion mentioned in
Sections 2 and 4.3, namely the determination of an analytical representation for the stochas-
tic force S(t) at thermal equilibrium in the presence of fluid inertial effects. This represents,
in the terminology introduced by Kubo [32,37], the fluctuation–dissipation relation of the
second kind (see [32], p. 37 and the discussion therein), in the presence of fluid inertial
effects. This topic is outside the scope of the present article and it will be addressed else-
where [60]. Nevertheless, it is important to mention that the key ingredient for an elegant
solution of this problem is represented by the boundedness of the fluid inertial kernel
k(t), proved in the present work for viscoelastic fluids. This could lead to an entropic
characterization of the dissipation effects deriving from rheological/inertial properties of
complex fluids into which a diffusing Brownian particle is immersed and moves under
constant temperature conditions.
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