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Abstract

We evaluate the predictive performances of the least absolute shrinkage and

selection operator (Lasso) as an alternative shrinkage method for high-

dimensional vector autoregressions. The analysis extends the Lasso-based mul-

tiple equations regularization to a mixed/high-frequency data setting. Very

short-term forecasting (nowcasting) is used to target the Euro area's inflation

rate. We show that this approach can outperform more standard nowcasting

tools in the literature, producing nowcasts that closely follow actual data

movements. The proposed tool can overcome information and policy decision

problems related to the substantial publishing delays of macroeconomic

aggregates.
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1 | INTRODUCTION

Inflation is back and hitting the economy worldwide.
There is a significant concern about how inflation will
evolve, given its direct and uncontroversial effect on con-
sumers, businesses, governments and central banks'
expectations and incentives. In principle, everyone makes
decisions based on present information and expectations,
thus forecasts, of the price levels in the future. Because
crucial statistics on key macroeconomic variables are
available with a significant delay, real-time (or high-fre-
quency) forecasting of the present and near future (now-
casting) is becoming increasingly relevant in economics
(Ba�nbura et al., 2013).

The anticipation of the present state of the economy
adds a critical dimension, timeliness, to the information
sets upon which private agents and policymakers inform
their decision processes. Unsurprisingly, the practice of

nowcasting is becoming increasingly common at central
banks and super-national economic institutions.1

Possibly because of their high-frequency forecasts,
policymakers partially expected the current inflation
hype and anticipated its emergence. The availability of
increasingly accurate short-term inflation forecasts
enriches the information on which policymakers form
their decision processes. In this perspective, monitoring
the variability of price levels at higher frequencies than
the current publication timing is essential.

1The Board of Governors of the Federal Reserve implemented the first
nowcasting model to provide high-frequency forecasts of GDP
(Giannone et al., 2008). Since then, various versions of this seminal
model have been built and implemented in other central banks,
including the European Central Bank (Ba�nbura & Saiz, 2008) and the
International Monetary Fund (Matheson, 2011).
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Our paper contributes to the nowcasting literature on
a specific aspect of the high-frequency forecasting prac-
tice, that is, on the model dimensionality reduction issue.

Nowcasting introduces three significant complica-
tions to the practical implementation of the analyses.
First, including timely information from various sources
implies that data are sampled at different frequencies and
possibly in an asynchronous manner. Mixed frequency
data inherently imply missing values for lower frequency
inner observations (gaps) and outer observations (ragged
edges). Second, the need to relate standard statistical
information to high-frequency information from different
sources implies that the information set is generally
extensive. Nowadays, we can get a vast amount of infor-
mation on the behavior of individual prices in the dis-
tance of a “click,” so the issue is how to make the best
use of this information. This second point leads to the
third analytical complication, that is, the need to use
model shrinkage methods to keep complexity to a com-
putationally tractable level.

Model dimension issues arise particularly in multivar-
iate dynamic settings, as in vector autoregressions
(VARs), where the number of coefficients increases with
the square of the variables in the VAR. The profligate
parameter problem can make estimation infeasible or
forecasts inaccurate in cases where the sample size is too
small relative to the parameters' space. Here, the “horse
race” among different missing data inputting methods
and model shrinkage techniques comes to the fore.

Several approaches have been proposed for nowcast-
ing in high-dimensional information settings, but only
some pertain to the model shrinkage issue. On this latter
terrain, reference studies in the nowcasting literature
adopt either Bayesian shrinkage or dynamic factors con-
volutions, leading to large Bayesian VAR models (BVAR)
and factor augmented VAR models (FAVAR),
respectively.

This paper proposes the least absolute shrinkage and
selection operator (Lasso) as an alternative (machine
learning-based) shrinkage method for high-dimensional
VARs estimated over mixed frequency data. Compared
with other linear regularization methods, such as the
Ridge regression and the Elastic Net estimator, the Lasso
has the advantage of entirely excluding some information
from the model.2 The missing data inputting issue is
instead aligned with the literature reference solutions. To
the better of our knowledge, this is the first work in
which a Lasso-based VAR regularizer is applied to

nowcast Euro area HICP inflation considering a large,
mixed frequency information set.

Results show that our machine learning approach is
aligned with the BVAR model. At the same time, it can
outperform the FAVAR model in the near-term predic-
tion of both inflation and core inflation. Considering
forecast sub-samples characterized by different degrees of
price variability, we obtain that the Lasso-VAR tends to
outperform all the tested model alternatives in periods of
reduced price variability. These results are robust to some
evaluation directions, such as the size of the information
set (i.e., the inclusion of policy variables) and the consid-
eration of core inflation as a target variable. We also
show that other (linear) machine learning-based regulari-
zation methods, such as the Ridge and the Elastic Net, do
not provide predictive improvements on the Lasso. We
interpret this last finding as an indication that the selec-
tion step (i.e., the fact that the Lasso entirely excludes
some variables/lags from the model by shrinking their
parameters to precisely zero) is critical to avoid overfit-
ting and poor forecasting in highly parameterized
models. The consideration of extended forecast horizons,
that is, moving from a nowcasting analysis to a forecast-
ing analysis, shows that the BVAR modeling alternative
attains the best predictive performances over the other
model shrinkage approaches.

Our paper relates to two strands of literature. The first
is the literature on short-term forecasting and nowcasting
in high-dimensional information settings, which is
becoming as vast as its importance for macroeconomic
dynamics. To simplify, we can refer to a few significant
works in the field. Giannone et al. (2008) evaluate the
marginal effect of high-frequency information releases on
current period (quarter) forecasts (nowcasts) in a factor
model. Marcellino (2008) compare the predictive abilities
of time-varying models, nonlinear time series models and
artificial neural network models against standard ARMA
models in predicting US GDP growth. Modugno (2011)
uses mixed frequency data and a factor modeling frame-
work to separate the effect on forecast revisions due to
the inclusions of new data releases from that attached to
the high-frequency dimension. Breitung and Roling
(2015) propose a non-parametric approach to high-
frequency forecasting using mixed frequency data and
equations. Di Filippo (2015) uses dynamic model averag-
ing and dynamic model selection to forecast US and Euro
area price inflation, considering a large set of predictors.
Hubrich and Skudelny (2017) propose using
performance-based forecast combination methods to
forecast HICP headline inflation. Cimadomo et al. (2022),
following Giannone et al. (2008), apply the mixed fre-
quency data approach to nowcasting within a Bayesian
Vector Auto-Regression (BVAR) resembling the

2We verify this potential advantage in the robustness checks step. Other
machine learning algorithms are not considered because their ability to
allow for nonlinear relations would penalize the other benchmark
models considered in the analysis, which are inherently linear.

2 ALIAJ ET AL.
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modeling approach suggested by Ba�nbura et al. (2010).3

Richardson et al. (2021) test the application of machine
learning algorithms in a high-dimensional data setting to
nowcast New Zealand's GDP. They show that these algo-
rithms can significantly improve over a simple autore-
gressive benchmark and a dynamic factor model.

The second strand of literature is about using the
Lasso as a shrinkage device in VARs. In this perspective,
recent literature shows that Lasso-regularized VARs can
provide an efficient solution to the “profligate parameter-
ization” issue, as it ensures sparse structures. With the
removal of over-parameterization and overfitting, the
forecasts generated with these models can outperform
those obtainable with benchmark single equation
methods and the alternative multivariate methods
developed for high-dimensional settings (Basu &
Michailidis, 2015; Lin & Michailidis, 2017; Messner &
Pinson, 2019; Nicholson et al., 2017, 2020).

The remainder of the paper is organized as follows.
Section 2 deals with data issues. Here, we describe the
data set, its continuous updating with mixed frequency
information, how missing values are estimated, and the
sample is re-balanced. Section 3 describes the economet-
ric modeling strategy, the estimation, and its validation.
Section 4 describes the nowcasting method and the met-
rics used to evaluate the out-of-sample model predictions.
Here, we discuss the main results of the analysis from a
comparative perspective. Section 5 describes some robust-
ness checks. Section 6 concludes.

2 | DATA AND MISSING DATA
IMPUTATION

Our analysis considers mixed frequency data, including
weekly and monthly observations from September 2005
to August 2022. The benchmark model considers 31 vari-
ables, including inflation indicators for food, commodity,
and electricity prices, changes in the broad money aggre-
gate for the euro area (M3), and changes in bilateral and
(nominal and real) effective exchange rates. Data are
collected from Eurostat, the ECB Statistical Data
Warehouse, Bloomberg, and the US Energy Information
Administration (EIA). The complete dataset is described
in Appendix A.

In the benchmark model estimates, we purposely left
out monetary policy variables to produce nowcasts that
are unconditional on information about policy measures.

This choice, which is quite unconventional in forecasting,
is justified by the fact that we aim to provide real-time
forecasts (nowcasts) upon which policy decisions might
be anchored. European Central Bank and US Federal
Reserve's key policy variables are then included in the
nowcasting models to verify the robustness of the main
results to extensions of the information set.

Data are published at different time frequencies, on
different days, by various institutions that do not coordi-
nate the publishing or the data revision frequency. The
first issue is providing a fixed weekly structure for the
irregular and unstructured data flow. We attribute all the
(working week) daily observations to the specific week
they belong. This choice is consistent with the idea that
data can be included in the conditioning set if known to
the forecaster, no matter the publication day (i.e., their
relative weight in the information content of the weekly
observations).

We then estimate the unobserved weekly measures
from lower frequency (monthly) data. For this purpose,
we follow the latent observation VAR method (L-VAR)
recently described in Cimadomo et al. (2022). This
method treats the missing weekly observations as latent
processes that can be inferred using the Kalman Filter
(KF).4 With this strategy, we build a structured weekly
dataset such that even an irregular flow of information
in the time dimension (i.e., mixed frequencies with rag-
ged edges) can feed any high-dimensional forecasting
model.

Provided that the information set is continuously
updated in a real-time data environment, we follow
the standard practice in the nowcasting literature by
introducing data vintages.5 In this way, we can pro-
duce nowcasts at any time by using the data being
made available at the same time nowcasts are
calculated.

In the remaining part of this section, we thoroughly
explain the missing data imputation process we followed
in our analysis.

3A (Kalman) filtering method has been suggested to estimate general
equilibrium models by Canova and Ferroni (2011) in a data-rich
environment.

4Cimadomo et al. (2022) evaluate the nowcasting performances of this
approach against two alternative strategies. The first is the blocking
VAR (B-VAR), in which the VAR is estimated at the joint (lower) data
frequency. The higher-frequency observations are considered separate
lower-frequency variables. This approach avoids the latent state
definition of the VAR for missing higher-frequency data, limiting the
use of Kalman recursions to fill the ragged edges generated by the
asynchronous data release. The second alternative is labeled cubic root
VAR (C-VAR) in a monthly-quarterly mixed frequency data
environment. It starts from a lower-frequency model estimate and then
maps it into a higher-frequency model using Kalman filtering
techniques, as in the L-VAR.
5The vintage is a set of new data available at a particular moment in
time, that is, in which the model is estimated.

ALIAJ ET AL. 3
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2.1 | Imputation of high-frequency
missing data

In a continuously updating mixed frequency information
set by vintages, missing weekly observations emerge
within known monthly observations (for data released at
the monthly frequency) and at the end of the sample
(when the last observation of a monthly frequency vari-
able still needs to be released). In the latter case, the
missing data generate a time-evolving sample's ragged
edges. In order to get a complete weekly dataset, we need
to estimate the motion of the monthly variables at a
higher frequency than that available from official sources'
releases. The KF can contribute to guessing the missing
values between each monthly observation.6

In order to fill the missing weekly data, we adopt
Cimadomo et al.'s (2022) latent observation VAR method
(L-VAR).7 The main difference is that our procedure con-
siders a machine learning-regularized VAR instead of a
Bayesian VAR.

The proposed strategy relies on KF techniques applied
to the state-space representation of the VAR. The missing
(weekly) values for the low-frequency observations are
conceived as existing—albeit latent—processes for
weekly variables that are observed only at the monthly
frequency.

Specifically, the missing data imputing procedure
goes as follows. First, a preliminary complete weekly
dataset is obtained by interpolating monthly observations
using splines. The preliminary weekly dataset is then
used to initialize the Kalman recursions using a regular-
ized VAR. For the benchmark estimates, the start coeffi-
cients for the KF consider a Lasso-VAR.8 The state-space
representation of the VAR is used to iteratively apply the
Durbin and Koopman's (2001) simulation smoother,
obtaining improved VAR and missing data estimates in
each repetition of the procedure. The process is rerun
until convergence—and thus the final complete weekly
dataset—is achieved.

Because this process also yields nowcasts/forecasts
conditional on the final dataset, a first one-month (four
weeks) ahead forecast can be made. The procedure is

then repeated for each new weekly data observation,
obtaining weekly nowcasts. In fact, following each emis-
sion of new information, the KF is re-booted in order to
provide corrected estimates. Figure 1 depicts the update-
prediction procedure graphically. The red semi-circles are
the observations released by official sources every four-
time steps (weeks). The orange ones denote the output of
the correction step, whereas the green semi-circles and
lines result from the prediction step (this is where the
data imputation occurs). The arrows show the direction
of the KF updating process, starting from defining initial
conditions to the final prediction step.

3 | THE ECONOMETRIC MODEL

Since the seminal work of Sims (1980), the VAR has
become the most used methodological approach to
empirical macroeconomic modeling. Despite their popu-
larity, VAR models are often at risk of over-parameteriza-
tion, leading to overfitting and poor forecast
performances. Such a drawback of the methodology
becomes particularly stringent in high-dimensional data
settings.

The over-parameterization problem can be solved by
artificially penalizing the model coefficients. Prior struc-
tures (or hyperparameters) in Bayesian settings or com-
mon factors-based structures are often employed to reach
this goal. In the nowcasting literature, two are, in fact,
the main modeling approaches to the high dimensional-
ity issue: (i) large Bayesian VARs (BVAR) and

6The KF is designed to filter out the best guess for the latent state of a
system in an environment characterized by the presence of a given level
of noise.
7In a frequentist setting, this strategy has been applied in Giannone
et al. (2008), Mariano and Murasawa (2010), Kuzin et al. (2011) and
Foroni et al. (2015). Eraker et al. (2014), Schorfheide and Song (2015),
Cimadomo and D'Agostino (2016), and Brave et al. (2019) apply the
latent variable approach within Bayesian settings.
8Other regularization strategies for linear models (Ridge and Elastic
Net) are also considered to evaluate the robustness of results to the use
of alternative machine learning-based model shrinkage methods.

FIGURE 1 Graphical exemplification of the KF update-

prediction procedure.

4 ALIAJ ET AL.
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(ii) dynamic factor and factor augmented VAR models
(DFM-FAVAR).

A non-exhaustive summary of literature in which
these approaches are proposed is, for DFMs-FAVARs,
Stock and Watson (2002a), Stock and Watson (2002b),
Giannone et al. (2008), Aruoba et al. (2009), and
Cascaldi-Garcia et al. (2021). On the side of BVARs
(2021), some significant contributions are Banbura et al.
(2010), Koop and Onorante (2019) and, more recently,
Cimadomo et al. (2022). Higgins (2014) proposes the joint
consideration of the two approaches in a high-
dimensional forecasting setting.

We propose a Lasso-based regularization as an
alternative approach to overfitting issues in high-
dimensional VARs, seeking to improve their real-time
predictive performances (Basu & Michailidis, 2015; Lin &
Michailidis, 2017; Messner & Pinson, 2019; Nicholson
et al., 2017, 2020).

3.1 | The Lasso-VAR

The Lasso is a method for automatic variable selection
and parameter shrinkage used to select the most informa-
tive predictors of a target variable from a large set of vari-
ables and parameters. A peculiarity of the approach is
that the information set (i.e., number of variables) might
be even larger than the sample size. This peculiarity
makes high-dimensional modeling and forecasting feasi-
ble for any degree of model dimension and complexity.

The Lasso has been initially developed for single
equation settings by Tibshirani (1996). The Lasso
approaches curve fitting as a quadratic programming
problem, where the objective function penalizes the total
size of the regression coefficients based on the value of a
tuning parameter, λ. In doing so, the Lasso can drive the
coefficients of irrelevant variables to zero, thus perform-
ing the automatic variable selection. The strength of the
penalty must be tuned. The stronger the penalty, the
higher the number of coefficients shrunk to zero. The
model is thus forced to select only the most important
predictors, that is, those with the highest contribution to
the prediction of the target variable.

Let fxtgTt¼1 be a k dimensional vector including time
series that follow a VAR process of order p. All the vari-
ables are entered in first differences in the VAR, such
that it considers aggregate, commodity-specific and
currency-specific relative prices inflation rates. We have
verified with Phillips–Perron tests that all the time series
included in the VAR are stationary (non-stationarity test
results are provided in Appendix A).

We fix the maximum order of lag p to 12 periods (thus
one quarter). The chosen lag order is higher than the one

indicated by the Akaike Information Criterion, suggest-
ing a four-week lag order. This choice allows the model
to capture economically plausible lags in the transmis-
sion dynamics from specific commodity price variations
to other prices and aggregate inflation.9

Xt ¼A1Xt�1þ…þApXt�pþut
ut �Nð0,ΣuÞ

ð1Þ

where each Ai is a k�k matrix of coefficients for the
endogenous variables, and ut �ð0,ΣuÞ is the vector of
reduced-form errors. Because we standardize data before
modeling, the VAR does not consider the k-dimensional
intercept vector.

The LASSO objective function is minimized as
follows:

ÂðλÞ¼ argmin
A

1
T
kAZ�Yk22þλkAk1, ð2Þ

where λ is the shrinkage parameter, whose calibration
targets the out-of-sample model's predictive ability, that
is, the minimization of the forecast error. The optimiza-
tion problem is solved by applying a coordinate descent
numerical procedure, as explained in Kim et al. (2007)
and Friedman et al. (2010).

3.2 | Lasso-VAR time series cross-
validation

As immediately evident from Equation 2, λ is the most
critical parameter in the Lasso framework. Its calibration
is based on selecting the best predicting model, which
should not be sample-specific. To minimize the risk of a
sample-specific calibration, a cross-validation stage,
based on sample splitting, is thus employed for getting
the “optimal” value for λ.

In this respect, the data set is divided into a training
and a test sample. The test set is for final evaluation,
whereas the training set is split into five subsets. We fol-
low an expanding window (more precisely, an “anchored
walk forward”) approach to cross-validation Carta et al.
(2021).10

The anchored walk forward (five-fold) cross-
validation method implies a gradually expanding training

9Nicholson et al. (2020) fix the maximum order of lag of the VAR to the
number of periods included in the lower frequency dating, such as four
weeks or 22 trading days in a month.
10Time series cross-validation essentially considers time dependence,
such that the training set includes observations temporally preceding
those in the test set.

ALIAJ ET AL. 5
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set, pushing forward a fixed dimension test set. The
5-split time series cross-validation method is exemplified
in Figure 2, where the length of training and test sets is
shown on the horizontal axis. In contrast, the five cross-
validation iterations are shown on the vertical axis.

4 | RESULTS AND MODEL
COMPARISONS

After estimating the sparse model resulting from the
cross-validated Lasso-VAR, we proceed to short-term
forecasting, considering a sample spanning from July
2019 to August 2022. Consistent with the idea of now-
casting (i.e., forecasting the present or very near future),
we are interested in a four periods-ahead forecast exer-
cise, thus covering one month given the weekly update of
the high-frequency information. In the robustness
checks, we also consider extensions of the forecasting
window to 8 and 12 periods ahead, moving from a typical
nowcasting analysis to forecasting.

We thus restrict the information set to the one that
would be available during the week in which the nowcast is
performed. Following Diebold's (2020) approach to using
information vintages, we build 165 weekly data releases (the
weeks between July 2019 and August 2022). These releases
are imputed using the methodology described in Section 2
to deal with the missing data issues related to mixed fre-
quencies and ragged edges. During the weekly nowcasting
exercises, we consider one other vintage per nowcast up to
the date in which one additional monthly information is
released. We then move to the next vintage of data.

4.1 | Evaluation of the Lasso-VAR
nowcasting performances

A standard dynamic (recursive) forecasting method is
applied to calculate the near-term out-of-sample forecast:

XTþhjT ¼ cþA1XTþh�1jT þ :::þApXTþh�pjT ð3Þ

In order to provide a first evaluation of the perfor-
mances of a real-time approach to inflation forecasting,
the Survey of Professional Forecasters (SPF) estimate of
the Euro area HICP inflation is first taken into account.

We acknowledge that the comparison with the SPF is
only partially legitimate because the latter is not based on
nowcasts. The reference to the SPF is only to highlight
the potential improvements in forecasting macro-
aggregates coming from the use of higher frequency
information and efficient model shrinkage methods, as
compared with an established methodology within the
operation of central banks.11

Figure 3 compares Lasso-VAR-based nowcasts, real-
ized HICP inflation and SPF estimates. The figure also
reports the nowcasts' 95% confidence intervals, obtained
from bootstrapped forecast errors.12 We also include the
forecasts obtainable by a simple linear extrapolation of
inflation from its past, obtained by a naive AR(2) process
(Cimadomo et al., 2022). Unsurprisingly, the nowcasting
approach outperforms the AR(2) model, because the lat-
ter neglects the information embedded in the higher fre-
quency variables. The predictive improvement obtained
with the Lasso-VAR nowcasts on the naive benchmark is
particularly evident when relevant changes in dynamics
are building up, possibly due to unexpected shocks.

FIGURE 2 Graphical example of the five-

split time series cross-validation.

11The SPF is a quarterly survey conducted by the European Central
Bank, reflecting the average perception of approximately 90 experts
regarding their expectations about the dynamics of a set of leading
macroeconomic indicators. In the first month of each quarter, the
participants (experts affiliated with financial or non-financial
institutions within the Euro area) declare their expectations regarding
the HICP inflation rate, GDP growth and unemployment (and their
degree of uncertainty). Expectations are formed after having been
provided with all the information available up to that date.
12Because forecast errors are normally distributed according to the
Shapiro–Wilk, D'Agostino and Pearson, and Anderson-Darling tests for
normality, we have verified that analytical and bootstrapped confidence
intervals are only marginally different.

6 ALIAJ ET AL.
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In order to evaluate the forecasting model perfor-
mances over objective metrics, the Root Mean Squared
Forecast Error (RMSFE) is adopted and calculated on
out-of-sample residuals.

RMSFE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
H

� �Xn

i¼1
ðxi� x̂iÞ2

s
ð4Þ

A critical step in evaluating the nowcasting results is
deciding to which values these nowcasts are to be com-
pared. We do not have the actual values of the weekly
inflation rate within two consequent months, and the
model is trained and tested on subsets including both
actual inflation data (at the monthly frequency) and
imputed data (at the weekly frequency). Consistent with
the standard approach in the literature, we calculate the
ex-post RMSFE considering weekly point HICP inflation
nowcasts and the realized HICP inflation, which is
observed at the monthly frequency. This approach high-
lights the role of the arrival of new high-frequency infor-
mation for forecasting performances.

Figure 4 depicts the dynamics of the RMSFE for the
Lasso-VAR-based nowcasts and for the AR(2) benchmark

over the entire (weekly) sample spanning from July 2019
to August 2022. The graphs highlight that the forecast
errors increase with time, possibly reflecting the build-up
of inflationary pressures at the end of 2021.

The behavior of the forecast errors over the weekly
sample indicates that the forecasting accuracy improves
as more weekly information becomes available over
the month. This result is better depicted in Figure 5,
in which we report, for every week in a month, the
average RMSFEs for the point HICP inflation nowcasts
in the month, calculated over the entire sample (July
2019 to August 2022). The behavior of the average
forecast error over subsequent weeks indicates that the
proposed Lasso-VAR is a valid nowcasting tool. As
more information becomes available each week of the
month, the forecast error decreases. Such a decrease
does not materialize for the naive AR(2) benchmark,
denoting an RMSFE slightly lower than the Lasso-VAR
at the beginning of the month, then increasing with
the (weekly) forecast horizon. This difference in
the average RMSFE behavior over the weeks in
the month highlights the informational advantage
arising from the efficient use of higher-frequency
information.

FIGURE 3 Nowcasts, actual HICP inflation

and SPF estimates. Notes: Nowcasts' 95%

confidence intervals are obtained from

bootstrapped forecast errors.

FIGURE 4 Root mean squared forecast

error.
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4.2 | Model comparisons

We compare the performance of our Lasso-VAR-based
nowcasting approach to two modeling benchmarks in the
literature, the FAVAR and the BVAR. Because our main
focus is to evaluate the relative forecasting abilities of the
methodologies, the model comparisons are performed on
standardized experimental features. The information set
and the missing values imputation strategy are the same
across model specifications, and the maximum lag order
is fixed to 12 in all model shrinkage alternatives. For the
FAVAR model, the number of top factors identified by
the largest eigenvectors is defined such that they jointly
explain about 85% of the variation in the data. In our
analysis, this threshold is reached with three factors.

Even in this case, the forecast performances of our
nowcasting strategy are tested considering an extended
period spanning from July 2019 to August 2022. Refer-
ence to an extended sample allows us to verify whether
model comparison results are sample-dependent, an issue
that emerged in recent literature (de Bondt et al., 2021;
Dauphin et al., 2022). To better highlight this point, the
forecasting period over which model comparisons are
evaluated is divided into three reference periods: a pre-
COVID-19 period, spanning from July 2019 to February
2020; a COVID-19 crisis period, spanning from March

2020 to September 2021 (i.e., when the European mass
vaccination campaign was almost completed, allowing
for a generalized relaxation of non-pharmaceutical con-
tainment measures); a post-COVID-19/Energy crisis
period, starting from October 2022 and still ongoing.

Figure 6 depicts the Lasso-VAR, the FAVAR and
BVAR-based average weekly nowcasts for the sample
from July 2019 to August 2022, along with the realized
inflation values. The nowcasts are compared with those
obtained with the naive AR(2) benchmark.

The figure shows that all the nowcasting model alter-
natives can closely follow the actual inflation rate, pro-
viding policymakers with valuable real-time information
about inflation.

To give an idea of the relative nowcasting abilities of
the three model competitors, Table 1 summarizes their
RMSFEs (and that of the naive AR(2) model benchmark)
in the three sub-samples. The table also reports, with
bold values, whether the results from the model's predic-
tive accuracy comparison tests are significant. These tests
are based on the corrected (Diebold & Mariano, 1995) sta-
tistics (Harvey et al., 1997), taking the Lasso-VAR as a
reference.

The table shows that the three nowcasting alterna-
tives have similar predictive properties, with the Lasso-
VAR significantly outperforming the FAVAR and the

FIGURE 5 Nowcasting performance per

week of the month. Notes: The line denotes

average monthly RMSFEs for weekly point

HICP inflation nowcasts for the sample July

2019 to August 2022.

FIGURE 6 Nowcasts: Lasso-VAR versus

FAVAR, BVAR and AR(2).
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AR(2) benchmark in the total nowcast sample. In “nor-
mal times,” the Lasso-VAR outperforms all the alterna-
tive methods, reaching the minimum RMSFE across
model competitors. With the increase of the HICP volatil-
ity registered during the COVID-19 and the energy crisis
periods, the BVAR marginally outperformed the Lasso-
VAR in terms of RMSFE (the difference in the predictive
performances is not statistically significant). The latter,
however, continues to perform significantly better than
the FAVAR and the AR(2). The relative decrease in the
nowcasting abilities of the Lasso-VAR in the heightened
price volatility periods is entirely due to a loss of accuracy
in two specific episodes. One between February 2021
and March 2021 and one just before May 2022
(see Figures 3, 4, and 6). We speculate that the Lasso
shrinkage (which sets to exactly zero some of the VAR
coefficients) might become inaccurate when some
sudden shocks hit the economy (possibly the COVID-19
shock in February-March 2021 and the energy prices
turmoils from the Russian-Ukrainian war in May 2022).
The three nowcasting tools outperform the AR(2) model,
whose RMSFE is significantly higher by 45% to 59%.

A further comparison of the models' nowcasting prop-
erties can be obtained from the average RMSFEs for the
weekly point HICP inflation nowcasts in the month.
Figure 7 replicates the information included in Figure 5
for the Lasso-VAR (and for the AR(2) benchmark),

adding the same information for the FAVAR and the
BVAR. The performance of the three models is, on aver-
age, similar. For the Lasso-VAR and the FAVAR, it
shows monotonic improvements in accuracy as new
information becomes available during the month. The
Lasso-VAR attains the minimum (and least) average
RMSFE at the end of the month. The BVAR attains its
minimum average RMSFE in the second week of the
month.

5 | ROBUSTNESS CHECKS

The robustness of the results described in the previous
section can be evaluated in several ways. Here, we focus
on four significant aspects of the analysis: (i) the exten-
sion of the information set to the inclusion of high-
frequency (weekly) and standard-frequency (monthly)
policy variables; (ii) the extension of the forecasting win-
dow up to 12 weeks (approximately one quarter); (iii) the
use of alternative machine learning-based regularization
tools in the class of linear models; (iv) the application of
the Lasso-VAR procedure to perform core inflation
nowcasts.

The first robustness check enriches the information
set by including the monetary policy rates. Three of six
policy rates are observed at the highest frequency (daily,

TABLE 1 Model comparisons: RMSFE and Diebold–Mariano test results.

pre-COVID-19 sample COVID-19 sample Energy crisis sample Full sample

h=4 Lasso-VAR 0.144 0.239 0.379 0.261

FAVAR 0.153 0.262 0.401 0.281

BVAR 0.152 0.235 0.364 0.256

AR(2) 0.200 0.386 0.546 0.407

Notes: Bold values indicate that the predictive performance of the Lasso VAR is statistically different from those obtained by the other models. The reference

test is the Diebold and Mariano's (1995) test of differences in the model's predictive accuracy. The reference statistics consider the Harvey et al. (1997)'s
correction for small samples.

FIGURE 7 Models' nowcasting

performance per week of the month. Notes: The

line denotes average monthly RMSFEs for

weekly point HICP inflation nowcasts for the

sample July 2019 to August 2022.
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thus moved to weekly): the ECB's Marginal lending facil-
ity rate, the Deposit facility rate and the Main refinancing
operations rate. The other rates are available at a
monthly frequency: the ECB's shadow interest rate
(Wu & Xia, 2020), the US Federal Funds rate and its
shadow rate (Wu & Xia, 2016).13 With this data exten-
sion, the number of variables (thus equations) considered
in the VARs increases from 31 to 37. The missing data
imputing procedures and the dynamic model specifica-
tions are fixed to those used for the no-policy variables
model estimates. Results, summarized in Table B1 in
Appendix C, show that including policy variables does
not alter the near-term (four weeks ahead) models' pre-
dictive properties. This result is constant across model
alternatives.

With the second check, we verify whether our meth-
odology, specifically designed for very short-term fore-
casts, maintains its predictive properties even at larger
forecasting horizons, that is, moving from a nowcasting
analysis to a forecasting analysis. We also consider eight
and 12-week-ahead forecasts along with the four-week
ahead forecasts. Results are summarized in Table C1 in
Appendix C. Unsurprisingly, the predictive abilities of
the Lasso-VAR, the FAVAR and the BVAR, summarized
in the values of the RMSFE, worsen with the size of the
forecasting periods. There are, however, signals that the
predictive abilities of the Lasso-VAR tend to be outper-
formed by the alternative methods when the forecast
period is extended, with the BVAR prevailing on the
other model shrinkage methods.

The third robustness check verifies whether we can
improve the nowcasting properties by considering alter-
native regularization methods for the VAR. In the class
of linear models, the Ridge and the Elastic Net estimators
are “natural” machine learning competitors for the Lasso.
The former replaces a quadratic penalty to the Lasso coef-
ficients' mass, that is, it relies on the following optimiza-
tion problem:

ÂðλÞ¼ argmin
A

1
T
kAZ�Yk22þ λkAk2, ð5Þ

By penalizing the sum of squared coefficients (the so-
called L2 penalty) instead of the sum of their absolute

values (L1 penalty) as in the Lasso, the VAR coefficients
are shrunk but not set to exactly zero.

The Elastic Net estimator combines the L1 and L2
penalties to minimize the following loss function:

ÂðλÞ¼ argmin
A

1
2T

kAZ�Yk22þλ
1�α

2
kAk2þαkAk1

� �
,

ð6Þ

where α is the mixing parameter between Ridge (α=0)
and Lasso (α=1). The Ridge/Lasso penalty parameter λ is
cross-validated over five-time series folds, with α cali-
brated over a grid of values between 0 and 1.

Results, summarized in Table C2 in Appendix C,
show that, for our nowcasting sample and the 31 variables
dataset, the Lasso-VAR ensures a lower RMSFE than the
Ridge and Elastic Net-regularized VARs. This result holds
irrespective of the particular sub-sample being
considered.

With the fourth robustness check, we verify whether
the predictive abilities of the different high-dimensional
VAR methods are also confirmed for Euro area core infla-
tion. This variable is within the information set used for
the estimates. The nowcast graph and the related
RMSFEs, depicted in Figure C1 and Table C3 of
Appendix A, respectively, show that the tested VAR-
based methodologies perform very well in nowcasting
core inflation in “normal” times (the pre-COVID-19
period) while worsening in the COVID-19 period. This
result is likely related to the specificity of the information
set employed for the estimates, in which 10 out of 31 vari-
ables are energy prices, the most important predictors of
the increase in HICP price variability. The models' pre-
dictive performances denote an improvement in the fol-
lowing energy crisis period, signaling that the rise of
energy prices is increasingly embedded in the other com-
ponents of the price level, thus augmenting their predic-
tive content for core inflation.

6 | CONCLUSIONS

Nowcasting tools are becoming increasingly popular in
real-time predicting macroeconomic aggregates such as
industrial production, gross domestic product and infla-
tion, particularly within the central banks' research
offices.

This work contributes to the nowcasting approach by
evaluating the performances of the Least absolute shrink-
age and selection operator Vector Auto Regression
(Lasso-VAR) in the near-term prediction of aggregate
Euro area inflation. The Lasso-VAR performances are

13The shadow rates are included in the model as a measure of the
monetary policy stance during the zero-lower-bound periods. They are
defined as the monthly interest rates implied by a multi-factor shadow
rate term structure (yield curve) model. Wu and Xia's (2016, 2020) rates
are obtained as a linear combination of three latent factors following a
VAR(1) process. An extended Kalman filter estimates the latent factors
and the shadow rate. The main characteristic of the shadow rate is that
it is not bounded to zero, whereas it equals the policy rate when this is
above its lower bound (0.25 % for the US and 0 for the Eurozone).
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compared with well-established model shrinkage strate-
gies adopted in high dimensional, mixed frequency data
settings: the factor augmented vector auto regression
(FAVAR) and the Bayesian vector auto regression
(BVAR) models. Emerging literature shows that the
Lasso strategy efficiently handles dimensionality reduc-
tion, generating the sparsity through which the resulting
adequately-fitted VAR can outperform both FAVARs
models and BVARs in high-dimensional settings.

We merge real-time high-frequency data and
standard-frequency data released by official sources. We
describe the different stages of the analysis, from the
imputation of the missing high-frequency data to the esti-
mation of the sparse structure and the comparative evalu-
ation of the model's forecasting performances.

The modeling approach being proposed performed
relatively well as a nowcasting tool. We show that the
Lasso-VAR can closely follow the actual inflation rate
and effectively handle real-time information. The fore-
casting accuracy improves as more high-frequency data
become available over time. In “normal times” environ-
ments (pre-COVID-19 sample), the Lasso-VAR outper-
forms the alternative methods, reaching the lowest
forecast error across model competitors. With the recent
increase in the price volatility registered during the
COVID-19 and the energy crisis periods, the Lasso-VAR
cannot significantly outperform the BVAR, even if it con-
tinues to perform better than the FAVAR and the naive
AR(2) model benchmark. For the complete nowcast sam-
ple considered in our study (July 2019 to August 2022),
the Lasso-VAR continues to outperform the FAVAR and
the AR(2) benchmark, and its nowcasting ability remains
statistically aligned with that of the BVAR.

These results suggest that machine learning-based
model shrinkage methods provide a valid and efficient
alternative to well-established methods used in now-
casting. A possible advantage is that they can handle
high-dimensional information sets, a feature which
becomes increasingly appealing with the availability of
real-time information. That could significantly improve
the forecasting abilities of these methods. The inclu-
sion of real-time “soft” information to detect the
drivers of nowcast revisions, the application of the pro-
posed approach to nowcast country-specific informa-
tion and inflation components are possible avenues for
future research.
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APPENDIX A

A.1 | DATASET
We provide a summary of the dataset used in the analyses. Table A1 describes the time series data. Information about
their frequency and the source and codes for retrieving the data are provided. Table A2 summarizes the results of the
Phillips–Perron non-stationarity tests. The tests are performed on the series entered in the VARs, thus considering
differenced price levels (inflation), whereas interest rates are tested in levels.

TABLE A1 Summary of data, frequency of observations, and source.

Variable name Frequency Source Code

HICP Monthly ECB ICP.M.IT.N.000000.4.ANR

HICP - Processed food incl. alcohol and tobacco Monthly ECB ICP.M.IT.N.FOODPR.4.ANR

HICP - Unprocessed food Monthly ECB ICP.M.IT.N.FOODUN.4.ANR

HICP - Industrial goods excluding energy Monthly ECB ICP.M.IT.N.IGXE00.4.ANR

HICP - Energy Monthly ECB ICP.M.IT.N.NRGY00.4.ANR

HICP - Services Monthly ECB ICP.M.IT.N.SERV00.4.ANR

Food, import weighted Monthly ECB STS.M.I8.N.ECPE.CFOOD0.3.000

Non food, import weighted Monthly ECB STS.M.I8.N.ECPE.CNFOOD.3.000

Total non-energy commodity, import weighted Monthly ECB STS.M.I8.N.ECPE.CTOTNE.3.000

Food, use weighted Monthly ECB STS.M.I8.N.UWIE.CFOOD0.3.000

Non-food, use weighted Monthly ECB STS.M.I8.N.UWIE.CNFOOD.3.000

Total non-energy commodity, use weighted Monthly ECB STS.M.I8.N.UWIE.CTOTNE.3.000

Global Natural Gas Monthly EC EC Weekly Oil Bulletin

EUA CO2 Weekly Bloomberg -

Euro Super 95 Weekly EC EC Weekly Oil Bulletin

Diesel Weekly EC EC Weekly Oil Bulletin

Gas oil Weekly EC EC Weekly Oil Bulletin

Heating Oil Weekly EC EC Weekly Oil Bulletin

LPG Weekly EC EC Weekly Oil Bulletin

Brent Weekly EIA EC Weekly Oil Bulletin

Power - ITA Weekly Bloomberg -

Power - FRA Weekly Bloomberg -

Power - DE Weekly Bloomberg -

Power - ESP Weekly Bloomberg -

USD/EUR Weekly ECB EXR.D.USD.EUR.SP00.A

YEN/EUR Weekly ECB EXR.D.JPY.EUR.SP00.A

GBP/EUR Weekly ECB EXR.D.GBP.EUR.SP00.A

RMB/EUR Weekly ECB EXR.D.CNY.EUR.SP00.A

Nominal effective exchange rate, eurozone Monthly EC ERT_EFF_IC_M

Real effective exchange rate, eurozone Monthly EC ERT_EFF_IC_

Marginal lending facility Weekly ECB FM.B.U2.EUR.4F.KR.MLFR.LEV

Deposit facility Weekly ECB M.B.U2.EUR.4F.KR.DFR.LEV

Main refinancing operations Weekly ECB FM.B.U2.EUR.4F.KR.MRR_FR.LEV

Shadow rate ECB Monthly Wu-Xia shadow rates ECB_WU_XIA_M

Shadow rate US Monthly Wu-Xia shadow rates US_WU_XIA_M

Federal funds rate Monthly FRED FEDFUNDS

Monetary aggregate M3 Monthly ECB BSI.M.U2.Y.V.M30.X.I.U2.2300.Z01.A
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APPENDIX B: ADDITIONAL RESULTS

Table B1 summarizes the RMSFE of the different models at the end of each month for different forecasting horizons.

TABLE A2 Philips–Perron tests for non-stationarity.

Variable name Test statistic p-value Variable name Test statistic p-value

HICP �7.9074 0.05 Brent �18.8200 0.00

HICP - Processed food incl. alcohol
and tobacco

�4.4884 0.00 Power - ITA �30.6786 0.00

HICP - Unprocessed food �7.6619 0.00 Power - FRA �37.6345 0.00

HICP - Industrial goods excluding energy �7.7836 0.00 Power - DE �39.2505 0.00

HICP - Energy �6.4242 0.00 Power - ESP �28.4744 0.00

HICP - Services �9.2710 0.00 USD/EUR �17.0097 0.00

Food, import weighted �7.3260 �7.33 YEN/EUR �18.2911 0.00

Non food, import weighted �6.9617 �6.96 GBP/EUR �18.1924 0.00

Total non-energy commodity, import
weighted

�7.1914 �7.19 RMB/EUR �17.1134 0.00

Food, use weighted �7.2363 �7.24 Nominal effective exchange
rate, eurozone

�7.0695 0.00

Non-food, use weighted �6.9343 �6.93 Real effective exchange
rate, eurozone

�7.2795 0.00

Total non-energy commodity, use
weighted

�7.1080 �7.11 Marginal lending facility �20.7241 0.02

Global Natural Gas �6.3165 0.00 Deposit facility �22.2143 0.03

EUA CO2 �24.3585 0.00 Main refinancing operations �19.9126 0.02

Euro Super 95 �15.3554 0.00 Shadow Rate ECB �8.2463 0.00

Diesel �14.6733 0.00 Shadow rate US �8.1027 0.02

Gas oil �18.4698 0.00 Federal Funds Rate �5.3728 0.00

Heating Oil �19.8784 0.00 Monetary aggregate M3 �7.6345 0.00

LPG �13.1760 0.00

TABLE B1 Monthly RMSFE.

date

h=4 h=8 h=12

lasso favar lbvar ar(2) lasso favar lbvar lasso favar lbvar

2019-09-30 0.172 0.142 0.108 0.208 0.167 0.125 0.121 0.231 0.222 0.246

2019-10-31 0.084 0.131 0.056 0.216 0.153 0.166 0.094 0.202 0.194 0.181

2019-11-30 0.254 0.156 0.188 0.179 0.138 0.119 0.184 0.108 0.088 0.125

2019-12-31 0.184 0.260 0.270 0.346 0.403 0.355 0.388 0.422 0.332 0.432

2020-01-31 0.107 0.169 0.137 0.083 0.281 0.272 0.244 0.421 0.396 0.381

2020-02-29 0.164 0.119 0.087 0.138 0.113 0.122 0.078 0.123 0.125 0.104

2020-03-31 0.313 0.350 0.245 0.429 0.423 0.445 0.300 0.435 0.463 0.317

2020-04-30 0.294 0.344 0.181 0.475 0.522 0.519 0.313 0.667 0.696 0.444

14 ALIAJ ET AL.
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APPENDIX C: ROBUSTNESS CHECKS

In this section, the results from robustness checks are reported. The table summarizes the RMSFE results of the differ-
ent models, considering the inclusion of the six monetary policy measures detailed in Section 5. For the Eurozone, these
are the Marginal lending facility, the Deposit facility, the Main refinancing operations rates, and the Wu and Shadow's
(2020) shadow interest rate. The Federal Funds rate and the Wu and Xia's (2016) shadow rate are considered for the
US. Table C2 reports the RMSFE results for different forecast horizons. Table C3 summarizes the RMSFEs obtained
considering alternative machine learning regularization methods for the VAR (Ridge and Elastic Net). Figure C1 dis-
plays the nowcasts of the model alternatives for Euro area core inflation. Table C4 summarizes the RMSFEs obtained
by the different models for Euro area core inflation.

TABLE B1 (Continued)

date

h=4 h=8 h=12

lasso favar lbvar ar(2) lasso favar lbvar lasso favar lbvar

2020-05-31 0.165 0.200 0.094 0.213 0.347 0.350 0.078 0.521 0.565 0.238

2020-06-30 0.159 0.125 0.135 0.172 0.145 0.135 0.135 0.175 0.250 0.200

2020-07-31 0.084 0.106 0.119 0.316 0.209 0.147 0.250 0.198 0.060 0.331

2020-08-31 0.369 0.390 0.290 0.383 0.313 0.418 0.285 0.260 0.395 0.205

2020-09-30 0.092 0.269 0.200 0.537 0.416 0.553 0.234 0.481 0.700 0.319

2020-10-31 0.000 0.069 0.100 0.193 0.125 0.238 0.144 0.273 0.529 0.104

2020-11-30 0.000 0.005 0.025 0.017 0.012 0.050 0.105 0.068 0.202 0.152

2020-12-31 0.000 0.031 0.056 0.003 0.000 0.066 0.019 0.008 0.110 0.104

2021-01-31 0.922 0.738 0.737 0.752 0.756 0.703 0.700 0.763 0.663 0.760

2021-02-28 0.160 0.388 0.375 0.958 0.775 0.778 0.759 0.925 0.871 0.879

2021-03-31 0.256 0.180 0.290 0.566 0.360 0.240 0.448 0.687 0.578 0.730

2021-04-30 0.225 0.281 0.300 0.538 0.375 0.306 0.488 0.456 0.308 0.646

2021-05-31 0.295 0.290 0.175 0.251 0.368 0.405 0.355 0.505 0.465 0.595

2021-06-30 0.112 0.150 0.144 0.134 0.122 0.131 0.091 0.223 0.248 0.227

2021-07-31 0.221 0.088 0.100 0.209 0.138 0.022 0.047 0.175 0.060 0.062

2021-08-31 0.516 0.535 0.560 0.662 0.615 0.497 0.588 0.643 0.440 0.543

2021-09-30 0.296 0.431 0.438 0.599 0.744 0.700 0.741 0.921 0.775 0.875

2021-10-31 0.497 0.513 0.394 0.437 0.772 0.700 0.622 1.017 0.965 0.917

2021-11-30 0.551 0.545 0.405 0.689 0.838 0.735 0.453 1.097 0.975 0.732

2021-12-31 0.128 0.169 0.169 0.166 0.469 0.316 0.153 0.733 0.281 0.175

2022-01-31 0.066 0.125 0.195 0.193 0.135 0.175 0.428 0.307 0.238 0.345

2022-02-28 0.572 0.600 0.412 0.519 0.453 0.778 0.344 0.485 0.608 0.315

2022-03-31 1.080 1.113 1.000 1.448 1.331 1.484 1.244 1.433 1.800 1.025

2022-04-30 0.260 0.381 0.294 0.775 0.866 0.872 0.716 1.248 1.477 1.131

2022-05-31 0.412 0.325 0.415 0.736 0.410 0.340 0.390 0.773 0.703 0.662

2022-06-30 0.329 0.362 0.444 0.879 0.694 0.331 0.616 0.712 0.340 0.615

2022-07-31 0.241 0.231 0.337 0.197 0.347 0.259 0.456 0.612 0.302 0.633

2022-08-31 0.124 0.235 0.225 0.094 0.210 0.273 0.460 0.285 0.242 0.542
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TABLE C3 RMSFE Lasso-ridge-elastic net.

Pre-COVID-19 sample COVID-19 sample Energy crisis sample Full sample

h=4 Lasso-VAR 0.144 0.239 0.379 0.261

Ridge-VAR 0.147 0.251 0.38 0.268

Elastic Net-VAR 0.154 0.258 0.425 0.286

Note: Bold values indicate that the predictive performance of the Lasso VAR is statistically different from those obtained by the other models. The reference test
is the Diebold and Mariano's (1995) test of differences in the model's predictive accuracy. The reference statistics consider the Harvey et al.'s (1997) correction
for small samples.

FIGURE C1 Nowcasting core inflation:

Lasso-VAR versus FAVAR and BVAR.

TABLE C1 Model comparisons: RMSFE with and without policy variables.

Pre-COVID-19 sample COVID-19 sample Energy crisis sample Full sample

No policy Policy No policy Policy No policy Policy No policy Policy

h=4 Lasso-VAR 0.144 0.146 0.239 0.240 0.379 0.387 0.261 0.264

FAVAR 0.153 0.153 0.262 0.262 0.401 0.401 0.281 0.281

BVAR 0.152 0.152 0.235 0.235 0.364 0.364 0.256 0.256

Note: Bold values indicate that the predictive performance of the Lasso VAR is statistically different from those obtained by the other models. The reference test
is the Diebold and Mariano's (1995) test of differences in the model's predictive accuracy. The reference statistics consider the Harvey et al.'s (1997)'s correction
for small samples.

TABLE C2 RMSFE across different models and forecast horizon.

Pre-COVID-19 sample COVID-19 sample Energy crisis sample Full sample

h = 4 Lasso-VAR 0.144 0.239 0.379 0.261

FAVAR 0.153 0.262 0.401 0.281

BVAR 0.152 0.235 0.364 0.256

h=8 Lasso-VAR 0.204 0.353 0.577 0.388

FAVAR 0.198 0.351 0.541 0.376

BVAR 0.208 0.310 0.498 0.345

h=12 Lasso-VAR 0.234 0.437 0.777 0.496

FAVAR 0.220 0.440 0.683 0.467

BVAR 0.252 0.396 0.620 0.433

Note: Bold values indicate that the predictive performance of the Lasso VAR is statistically different from those obtained by the other models. The reference test
is the Diebold and Mariano's (1995)'s test of differences in the model's predictive accuracy. The reference statistics consider the Harvey et al.'s (1997) correction

for small samples.
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TABLE C4 RMSFE core inflation.

Pre-COVID-19 sample COVID-19 sample Energy crisis sample Full sample

h=4 Lasso-VAR 0.089 0.420 0.306 0.320

FAVAR 0.087 0.408 0.332 0.321

BVAR 0.073 0.433 0.317 0.327

Note: Bold values indicate that the predictive performance of the Lasso VAR is statistically different from those obtained by the other models. The reference test
is the Diebold and Mariano's (1995) test of differences in the model's predictive accuracy. The reference statistics consider the Harvey et al.'s (1997) correction
for small samples.
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