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Advances in machine learning technology and the availability of big data from GPS systems have led to the development of 

effective methods for modelling transportation demand and forecasting the future. Most previous research concentrated on demand 
prediction using a variety of machine learning and deep learning models that took into account spatial and temporal relationships. 
This paper investigates the impact of spaces and time granularity for a Spatio-temporal demand modelling framework. Using taxi 
demand data from New York City, our study compares the prediction performance of deep learning models such as Long Short-Term 
Memory (LSTM), Convolution Neural Networks (CNN) and Temporal-Guided Networks (TGNet), modelled with a grid-based 
tessellation strategy. The findings of this study could assist researchers in better understanding how the granularity of space and time 
helps deep learning models perform better for demand forecasting problems. 
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1. Introduction  

Cities are places where economic activities are accumulated and concentrated. The ability of a city’s 
transportation systems to move labour, consumers, and freight between many origins and destinations is 
the key to its productivity. Many public transport systems have been overused or underused as public 
transport demand varies with time and space. During high usage hours, congestion can cause user 
discomfort as the system copes with temporary spikes in demand. Improper planning and design of transport 
and its services can lead to a massive failure in the city’s productivity. Peak capacity design leaves the 
system underutilised during off-peak hours, whereas average capacity planning causes congestion during 
peak hours. Therefore, accurately predicting the passenger demand for transport infrastructure is necessary 
for planning, designing, evaluating, and regulating transport systems. From a business perspective, 
estimating expected consumer demand is essential in all scheduling and planning activities to improve 
business profitability. For instance, a ride-sourcing company can use the predicted taxi demand to deploy 
taxis in advance to high-demand locations, cutting down on the waiting time for passengers and the idle 
time for the taxis themselves. Increased use of taxis might also enhance driver pay and reduce energy 
consumption. As a result, public transportation operators and logistics companies are keen to create and 
interpret the results of precise and reliable demand forecasting models. 

With the help of modern technologies, enormous amounts of information, including GPS locations, 
time, number of passengers, weather, traffic counts, and other information, can be acquired in real-time and 
stored in different cloud-based databases. These data can be analysed to indicate different traffic patterns. 
As a result of these trends, it may be able to predict future traffic issues. This information paves the way 
for developing an intelligent transportation system capable of controlling and coordinating supply on a 
broad scale while benefiting businesses. In addition to the exponential growth of historical data, forecasting 
has improved dramatically due to recent advances in Artificial Intelligence (AI). For example, machine 
learning (ML), a subfield of AI, has algorithms capable of capturing non-linear correlations between input 
and output data. These algorithms are commonly known as deep learning (LeCun et al., 2015) and include 
Artificial Neural Networks (ANNs) based partly on how biological neurons in the brain work. 

Numerous research on the prediction of traffic data, such as traffic volume, taxi pick-ups, and traffic 
inflow/outflow volume, have been published in the literature. Time series prediction techniques have been 
used frequently to forecast traffic. In particular, autoregressive integrated moving averages (ARIMA) and 
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their variations have been used extensively for traffic prediction (Williams & Hoel, 2003). Recent research 
has considered geographical relationships and external information like weather data based on the time 
series, proving that the prediction can be improved by considering additional features (Pan et al., 2012; Wu 
et al., 2016). However, a noticeable trend in these studies is that a fixed area, as well as a fixed time interval 
or considering a fixed period of historical data as features are considered. Most of the research neglect the 
effect of different space and time granularity on the accuracy of demand prediction models. 

In this research, our primary goal is to investigate the effects of different Spatio-temporal 
granularities on the performance of deep learning models and reach a conclusion on the appropriate 
spatiotemporal feature to select to get the best prediction results from the model. The objectives of this 
study are to address the following questions: 

• Is there an optimal spatiotemporal granularity that produces more accurate predictions? 

• Does the forecast accuracy differ between the model trained with aggregated demands for the 
entire city for each time interval and the model trained with aggregated demands for each city 
zone after spatial clustering? 

• Which deep learning model works best for which space-time granularity? 

• Can we use a whole city model to forecast the demand for local city zones? 
The rest of this paper is organised as follows: The earlier research and most recent developments in 

estimating taxi demand are covered in Section 2. Section 3 explains the approach used. The analysis and 
experimental results are presented in Section 4. This paper is concluded in the final section. 

2. Literature Review 

The traditional approach used a statistical methods model for data with temporal correlation for 
travel demand predictions. The ARIMA model is the most extensively used method, assuming traffic 
forecasting is a stationary process with constant mean, variance, and auto-correlation (Williams & Hoel, 
2003). Kalman filters (Okutani & Stephanedes, 1984) and Markov chains (Qi & Ishak, 2014) are also 
statistical approaches. These methods usually use a linear mathematical model to determine the inner 
properties of the traffic flow. However, these traditional time series prediction approaches perform well in 
stable and linear time series prediction but struggle in non-linear and unstable time series prediction. 
Furthermore, they ignore the spatial correlation and work well for short-term traffic predictions. 

To resolve the limitations of the traditional approach, many researchers used deep neural networks. 
Felix A Gers et al. (Gers et al., 2002) studied the suitability of using LSTM networks for time series 
forecasting. The researchers concluded that LSTM networks could tackle the vanishing gradient problem 
of basic neural networks and store essential long-term information. However, regarding short-term time 
series forecasting, LSTM networks may not consistently outperform more straightforward strategies like 
ARIMA. They recommend that LSTM networks be used only after more traditional methods have failed or 
for long-term time series forecasting. 

Using big data and machine learning, Florin Schimbinschi et al. in (2015) explored traffic 
predictions in complicated metropolitan networks. They concluded that more data leads to better ML model 
predictions. They also concluded that spatial relationships between road segments are a better predictor 
than temporal patterns. Finally, they claim that ARIMA-based models have difficulty forecasting 
spatiotemporal data and cannot capture complicated dynamics. Laith Alzubaidi et al. (Alzubaidi et al., 
2021) is a survey paper that explains the most used DL method called Convolutional Neural Network 
(CNN). The researcher has reviewed 300 papers published during 2010-2021 and concluded that the main 
benefit of CNN compared to other DL models is that it automatically identifies relevant features without 
human supervision. In addition, the paper describes the development of CNN architecture along with its 
main features, current challenges, and solutions. Pedro Lara-Benítez et al.  in (2021) investigated around 
seven DL methods for time series forecasting in terms of efficiency and accuracy. They trained 38000 
models with a dataset having more than 50000-time series. They concluded that long short-term memory 
(LSTM) and convolutional neural network (CNN) are the best DL methods. LSTM obtains the most 
accurate forecast, and CNN performs similarly and more efficiently. It is also stated that without feature 
engineering requirements, CNNs can extract features from high-dimensional raw data having a grid 
structure, such as pixels in a picture. However, when using CNN, Huaxiu Yao et al. in (2019) believed that 
the complete city image harmed prediction accuracy. He used local CNN to introduce the semantic view 
and then integrated it with LSTM to improve prediction accuracy to tackle this problem and capture the 
spatial correlation. Even though the study captures both spatial and temporal correlation in both cases, they 
interacted between the two individually. 

Even though these researches have considered the spatiotemporal correlations, minimal research has 

studied the effect of different spatial and time partitions. In a recent study, Liu Kai et al. (2022) explored 

the impact of 36 spatiotemporal granularities with departure and arrival demands, revealing that a 
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hexagonal partition with an 800 m side length and a 30 min time interval produces the best overall 

prediction accuracy. However, in this study, only the previous 8-timestamps were considered for the next 

prediction. Therefore, our study compares various spatiotemporal granularity, considering a wide range of 

historical timestamps as features and studying its effect on the prediction performance of the deep learning 

models. 

3. Methodology 

3.1. Data Description 

The data used in the project were collected by technology providers licensed by the Taxi and 

Uniform Passenger Improvement Program and provided to the New York City Taxi and Limousine 

Commission (TLC). This open-source data can be downloaded directly from the TLC website. The taxi trip 

logs include fields that capture the pick-up date/time, pick-up location, distance travelled, itemised fare, 

fare type, payment type, and the number of passengers reported by the driver. The data used for model 

training was the yellow taxis from January 2015 to June 2015; for validation and testing, the data was from 

January 2016 to June 2016. The six months of data contain almost 70 million records. 

Any machine learning model must include data visualisation as a necessary step after data collection 

to comprehend demand’s temporal and spatial distribution, as demonstrated in Figures 1 and 2. The hourly 

demand distribution shown in Figure 1(a) allows us to pinpoint the peak and low demand periods. The daily 

seasonality in the distribution is visible when we plot the demand distribution over a week (Figure 1(b)). 

Taxis are generally employed for short-distance travel, covering an average distance of 7 kilometres, 

according to the histogram of travel distance in Figure 1(c). Finally, Figure 2 shows the heat map from 

which we can understand the demand concentration in New York City. 

 

(a)                                                                  (b)                                                         (c) 

Figure 1. Data analysis of NYC Yellow Taxi (a) Histogram of hourly demand distribution for January 2015,  

where black denotes weekdays, and red denotes weekends. (b)  Daily demand for a week in January 2015 (c) Histogram of travel 

distance for January 2015 

 

 

Figure 2. Heat map of demand for January 2015 

3.2. Data Cleaning 

One of the essential tasks in machine learning is data pre-processing. Because traffic data is acquired 

automatically using sensors and GPS, databases frequently contain missing numbers, out-of-range values, 

incorrect temporal information, and other errors. These outliers can mislead machine learning models, 

resulting in inaccurate forecasts. Because such a database contains millions of records, detecting and 

deleting outliers is tough. As a result, data pre-processing is the most crucial stage of a machine learning 

project. 
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The dataset of NYC yellow taxis underwent two cleaning procedures. Data were initially examined for 

missing data, inaccurate pick-up or drop-off dates, unwanted columns, outbound coordinates, and sea points. 

The data was cleaned using the Z-score in the second stage, which involved statistical analysis of explanatory 

variables such as travel distance, journey length, and speed. In this study, outliers are defined as data points 

with a Z-score greater than or equal to 3. The Z-score calculation formula is given in Equation 1. 

𝑍 − 𝑠𝑐𝑜𝑟𝑒 =
𝑥−𝑚𝑒𝑎𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
. (1) 

3.3. Spatio-Temporal 3D-Grid Clustering 

After cleaning the data, a Spatio-temporal time series was created by dividing the entire city into 

uniform grids, each representing a different city zone. Grid side lengths (α) of 700, 1200, and 2000 meters 

were selected for this study. Using these grid lengths, the city is divided into I x J grids along the latitude 

and longitude axes, where I and J are calculated using Equations 2 and 3. Similarly, a whole day is divided 

into several intervals (Δ) like 15min, 30min and 60min, and the number of time steps (t) in a day would be 

1440/Δ. Therefore, we have 260640/Δ Timesteps (T) for six months. The demand (𝑑(𝑖,𝑗)
𝑡 )  for each 

timestamp is then aggregated for each grid (i, j) and represented as a 2D matrix, as shown in Equation 4. 

Each of these 2D matrices is stacked for each timestamp, therefore forming a 3D matrix of shape (T, I, J). 

Figure 3 shows the pictorial representation of the Spatio-temporal grid clustering. 

𝐼 = ⌈
𝑙𝑜𝑛max  − 𝑙𝑜𝑛𝑚𝑖𝑛

α
⌉. (2) 

𝐽 = ⌈
𝑙𝑎𝑡max  − 𝑙𝑎𝑡𝑚𝑖𝑛

α
⌉. (3) 

𝐷(𝐼,𝐽)
𝑡 = [

𝑑(𝑖,𝑗)
𝑡 ⋯ 𝑑𝑖,𝐽

𝑡

⋮ ⋱ ⋮
𝑑(𝐼,𝑗)

𝑡 ⋯ 𝑑(𝐼,𝐽)
𝑡

], t = {1,2, 3,…T}, i ≤ I, j ≤ J. (4) 

                     

 

Figure 3. Visualisation of 3D Spatio-Temporal matrix where each cell contains a number representing the aggregated demand  

of that region at time t 

3.4. Deep Learning Models 

This study examines the prediction performance of three deep learning models for various spatial 

and time granularities. The three significant models used are the following: 

Long Short-term Memory (LSTM) 

Long Short-Term Memory (LSTM) network is a Recurrent neural network (RNN) capable of 

learning long-term dependencies and handling sequential data. For the model’s training, the demand of the 

city or city zone is converted into a one-dimensional array, and previous t timestamps are given to the model 

to predict the demand for the next timestamp. The hidden layer used is a Bidirectional LSTM with 128 

neurons. 

3D-Convolutional Neural Network (3D-CNN) 

3D CNN is a convolutional neural network with a temporal component to the convolutional kernel, 

allowing it to work across a defined timestamp frame. 3D-CNN models employ 3D convolutions, which 

T 
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employ 3-dimensional kernels that slide along the matrix’s width, height, and temporal dimensions. In this 

study, the model’s architecture includes four layers of a 3D convolutional layer having 32, 64, 1 and 1 

hidden states with the Relu activation function. The 3D convolutional kernel of (3,3,3) for the first three 

layers and kernel of (window size, 1,1) for the last 3D convolutional layer. Additionally, drop-out layers 

and batch normalisation are also used. 

Temporal-Guided Network (TGNet) 

Temporal-Guided Network (TGNet) (Lee et al., 2019) is a baseline for estimating short-term 

demand. Complex spatiotemporal properties of each region can be extracted through graph networks, and 

these features are independent of the spatial permutations of neighbouring regions. Instead of relying on 

long-term demand histories, temporal-guided embedding can learn temporal contexts explicitly and capture 

temporally recurrent patterns. Six hidden layers are before the fully connected layer, and two layers are 

used for adding external data sources. A 2D average pooling layer with a 2x2 kernel after the first graph 

network layer is used for computational efficiency. The number of hidden neurons in the first layer is 32. 

3.5. Evaluation Metrics 

In this project, we have used four metrics to evaluate the model’s performance: Mean Absolute Error 

(MAE), Symmetric Mean Absolute Percentage Error (SMAPE), Root Mean Square (RMSE) and 

Normalised RMSE. MAE shows the difference between the predicted and actual values and is mainly used 

to monitor prediction accuracy. SMAPE gives the percentage error. RMSE, the square root of the Mean 

Squared Error, gives a broad overview of the generated error. Lastly, NRMSE is calculated by normalising 

the RMSE with the average of actual values. NRMSE helps us to compare errors among the models since 

it eliminates the increased error due to different scales of spatiotemporal granularity. The evaluation method 

of (Lee et al., 2019; Yao et al., 2019) is followed in this paper, where we eliminate those values that are 

less than the k value. According to the literature, it is a common practice to exclude low-demand values as 

they are less important to real-world applications. These metrics can be formulated as shown below: 

𝑀𝐴𝐸 =  
∑ |ý𝑖−𝑦𝑖|𝑛

𝑖=1

𝑛
. (5) 

𝑆𝑀𝐴𝑃𝐸 =  
100%

𝑛
∑

|ý𝑖−𝑦𝑖|

(ý𝑖+𝑦𝑖)/2

𝑛
𝑖=1 . (6) 

𝑅𝑀𝑆𝐸 =
1

𝑛
√∑ (ý𝑖 −  𝑦𝑖)2𝑛

𝑖=1  . (7) 

𝑁𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1

. (8) 

4. Experiments 

In this section, the experiments are divided into two parts. The aggregated part is where we train the 

model for the whole city, compare the models’ results, and find the best model for the city. The second part 

is the disaggregated part, where we train the models for each city zone or grid and compare the results to 

find the best one. 

4.1. Experimental setup 

Data from the yellow taxi service from January 2015 to June 2015 (a period of six months) was used 

for training; data from January 2016 to February 2016 (a period of two months) was used for validation, 

and data from March to June 2016 was used to test the model (4 months). For aggregated and disaggregated 

parts, models were trained with demand aggregated for time intervals of 15min, 30min, and 60min. For 

each time interval, models were trained by considering historical records as a prominent feature. Historical 

records of 4, 6, 12, 24, 72, 96 and 168 hours were selected to understand their effect on the prediction. 

Although we have data for the entire city of New York, only the Manhattan Borough is considered because 

90% of trips were generated there. 

LSTM and 3D CNN were trained on Nvidia RTX 3060 6GB, while TGNet was trained in Colab pro 

plus with Nvidia Tesla P100 16GB memory since the training of six-month data required large computation 
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memory. TGNet and 3D CNN could not train beyond 24 hours’ historical demand as features even with 

this setup. The models for this study were created using the TensorFlow Keras framework in Python 3.9. 

4.2. Aggregated 

After the Spatio-temporal 3D clustering, the data structure is (T, I, J), where T depends on the time 

interval (Δ), and I and J depend on the grid lengths (α). When considering the data for the entire city, the 

demand for each timestep (t) should be the sum of the demands of all the grids (i, j), hence the name 

Aggregated. CNN and TGNet take 3D data (T, I, J) as input, and the model is trained so that each grid (i, j) 

will have a prediction based on its temporal characteristics and the spatial neighbours surrounding that grid. 

In the end, we will have a model capable of predicting the demand of all the grids at a particular timestamp 

in one go. Therefore, to get the demand of the whole city, we should sum all the demands of each grid (i, j) 

at timestamp t, and this aggregation might affect the model’s performance accuracy. In the case of LSTM, 

we will have a model which directly gives the city demand at a timestep based on past values. 

Performance comparison of models 

To compare the chosen models with the selected space and time granularity, a normalised RMSE is 

used where we divide the average RMSE of the model by the mean demand of the city, which makes the 

errors comparable. From the plots shown in Figure 4, the effect of historical demand of various lengths is 

very evident. We can see that for Bidirectional LSTM, the lowest error is obtained when prior one-week 

values (168 hours) are used for the training. However, we can also observe that there is no significant 

reduction in the error after the past 24 hours. Among the time intervals, 15 mins are the one which gives 

the minimum error, and the second-best time interval is 30 minutes for all the chosen models. For 3D CNN 

and TGNet, the minimum error varies between 6 and 12 hours, depending on the grid length and time 

interval. When we compare the errors along the grid lengths, we see no relevant increase or decrease in 

errors. The maximum difference between the minimal errors we can notice is 1%. From all these 

observations, we can conclude that the city model Bidirectional LSTM with 15 minutes time interval and 

past one week value is the best model with a percentage error of 3.72%. 

 

 

Figure 4. Comparison of normalised RMSE for different models 
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Table 1 compares these deep learning models with baseline models such as a Na-ïve forecast and a 

simple linear model, which are trained with demands of 15 minutes time intervals and past 12 hours demand 

as input features. As observed earlier, Bidirectional LSTM gives the lowest RMSE with a percentage error 

of 3.883%. The TGNeT is the second-best model for city demand prediction. Bidirectional LSTM 

outperforms the 3D CNN and TGNet may be due to its strong ability to capture long-term and short-term 

temporal patterns. Figure 5 shows the forecast of city demand by taking the past 12 hours’ demand as input 

and for a forecast horizon of 15 minutes. 

Table 1. Comparison of deep learning models for 15min and past 12 hours demand as features 

Model RMSE SMAPE (%) Training Time(min:sec) 

Naïve 254.161 7.427 00:00 

ML-Linear 207.656 6.289 01:12 

Bidirectional-LSTM 142.130 3.883 07:04 

TGNET_700 243.253 7.091 27:34 

TGNET_1200 209.902 5.425 13:10 

TGNET_2000 210.919 4.965 9:09 

3D CNN_700 281.662 7.849 180:30 

3D CNN_1200 265.727 6.771 30:55 

3D CNN_2000 307.944 7.260 14:29 

 

 

Figure 5. Forecast of deep learning models for a five-day test period for the entire city 

4.3. Disaggregated  

This section shows the model’s performance for city zones (grid (i, j)). The demand for each grid (i, j) 

is taken from the clustered data and used to build a model for the LSTM. For instance, when we divide the 

map of Manhattan with a grid length of 2000m, we will have a grid shape of 14x7. Therefore, we will have 

98 individual LSTM models representing each grid. In the case of 3D-CNN and TGNet, each chosen grid 
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length has a model and for the comparison, predicted data at gird (i, j) is extracted and compared with the 

corresponding prediction of LSTM. 

Overall performance comparison 

In this section, we compare the average error of 3D CNN and TGNet to find the best model. From 

Figure 6, we can observe that 3D CNN has the same pattern as in section 4.2. However, the range of error 

has changed due to the change in the average demand of the area. In the aggregated part, the average demand 

of the city was 8745 trips, and in the disaggregated part, the average demand of each grid was 80 trips. In 

the case of TGNet, for the area with a smaller grid length of 700m, the 30 minutes time interval achieves 

the minimum error. As the space-time granularity decreases, the demand distribution becomes more 

irregular, affecting the model’s learning. Hence, the demand distribution in the 30 minutes time interval 

will be more regular than in 15 minutes, making the model predict with lesser error. The best model among 

the two is TGNet, with the minimum error for the grid length of 2000m, 15-minute time interval and the 

past 6 hours as input feature. 

 

Figure 6. Comparison of normalised RMSE of 3D-CNN and TGNET 

Comparison with Bidirectional LSTM 

In this study, we selected three high-demand and three medium-demand grids and compared the 

average NRMSE with the overall NRMSE of TGNet and 3D CNN. For a fair comparison, 3D CNN and 

TGNet used the same grids used for the LSTM to find the overall NRMSE, as shown in Figure 7. The 

average NRMSE for the chosen grids matches the abovementioned profile. The plots show that the optimum 

time interval for Bidirectional LSTM changed to 30 minutes compared to the aggregated model. However, 

the optimum historical demand remains unchanged, which is 24 hours. Furthermore, the best model in the 

disaggregated part is the Bidirectional LSTM, with the minimum error for the grid length of 2000m,  

30-minute time interval and the past 168 hours as input feature. Table 2 compares the prediction errors of 

different models for Grid 114 of the map. 
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Figure 7. Performance comparison of Bidirectional LSTM with 3D CNN and TGNeT 

Table 2. Comparison of deep learning models for 30min and past 12 hours demand as features for Grid 114 of the Map divided with 

a grid length 1200m 

Model RMSE SMAPE (%) Training Time(min:sec) 

Naïve 58.64 16.69 00:00 

ML-Linear 51.41 13.4 00:53 

Bidirectional-LSTM 43.94 11.90 1:19 

TGNET_1200 50.89 13.20 06:10 

3D CNN_1200 57.74 13.9 09:01 

4.4. Error propagation for prediction on prediction 

In this section, we selected Bidirectional LSTM for this experiment since it was the model with 

minimum prediction error.  

Bidirectional LSTM city model 

In the above sections, we predicted based on the actual values. However, testing the model’s 

performance based on predicted values for real-world applications is essential when we lack actual values 

for the predictions. For this experiment, we used Bidirectional LSTM trained with 15 minutes time intervals 

and past 24 hours values as features. Therefore, we have 96 timestamps as input features, and from the error 

propagation plot, we can observe that the model can forecast with 16 timestamps (4 hours) of predicted 

values with an average of 4.6% error. 



Transport and Telecommunication Vol. 24, no.1, 2023 

31 

 

 

Figure 8. Error propagation for prediction on predicted values for Bidirectional LSTM for city model for 15 minutes time interval 

and past 24 hours demand as features. (a) Difference between actual and prediction for one day. (b) Percentage error 

propagation for one-day prediction 

4.5. Predicting city zones with a whole city model 

Another interesting experiment was to apply the city model of Bidirectional LSTM for predicting 

the city zone demand. We created a city model with the optimum configuration for the Bidirectional LSTM 

obtained from section 4.3 for city zones (with 30 min intervals and past 24 hours demand values as features), 

and Table 3 compares this model with the individual LSTM model of this zone, TGNeT and 3D CNN. 

Surprisingly, the results were promising because even though the model did not use the demand of that 

particular zone for training, it achieved a forecast with an average increasing error of 2.3%. Moreover, as 

the grid length increases, it obtains a fore-cast error close to the percentage error of TGNet and 3D CNN. 

Table 3. Comparison of LSTM city model with individual zone models 

Model Space (m) Zone Rmse Smape  (%) % Increase/Decrease in 

error 

BI-LSTM 700 217 14.207 16.364 - 

BI-LSTM 700 217 (City model) 16.614 19.971 3.606 

3D CNN 700 217 14.317 15.267 4.703 

TGNet 700 217 13.527 14.989 4.981 

BI-LSTM 1200 88 37.264 12.004  - 

BI-LSTM 1200 88 (City model) 40.081 12.551 0.547 

3D CNN 1200 88 47.370 13.730 -1.178 

TGNet 1200 88 42.673 12.609 -0.058 

BI-LSTM 2000 52 34.781 12.800  - 

BI-LSTM 2000 52 (City model) 43.000 15.712 2.911 

3D CNN 2000 52 44.102 13.686 2.026 

TGNet 2000 52 47.833 16.128 -0.415 

 

(a) (b) 
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5. Conclusion 

In this paper, we explored a combination of space and time granularity, hoping to find an optimum 

choice for the models. It was interesting to discover different behaviour of deep learning models for space-

time granularity. From the error plots, we can observe that the effect of space and time varies with the type 

and architecture of deep learning models we adopt. We started this paper with four main questions that any 

researcher would have when dealing with space and time granularity. We can conclude this paper by 

answering them. From the analysis, we can observe that there is an effect of past demand values affecting 

the performance of the models. For Bidirectional LSTM, although the optimum value was 168 hours, 

proving that LSTM can learn long-term temporal patterns, we observed no significant decrease in error 

after 24 hours of past value. For 3D CNN, the minimum value varies between 6 and 12 hours, depending 

on the time interval and chosen space. TGNeT was built for short-term demand estimation, which is why 

the errors increase after 6 hours of past values. The time interval of 15 minutes was the optimum for all the 

models in the aggregated part, representing whole city demand, and for the disaggregated part, 30 minutes 

was the optimum, mainly for Bidirectional-LSTM. Finally, we can discover from Table 3 that it is possible 

to create a whole city model and use it to estimate the demand of city zones with the Bidirectional LSTM 

model. From this research, we can conclude that even though 3D CNN and TGNet had the advantage of 

both temporal and spatial correlation, Bidirectional LSTM, with its strong capability to remember long and 

short-term temporal patterns, outperforms the other models. 
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