
Citation: Contreras-Ropero, J.E.;

Lidueñez-Ballesteros, V.S.;

Rodríguez-Bohórquez, A.D.;

García-Martínez, J.B.; Urbina-Suarez,

N.A.; López-Barrera, G.L.; Barajas-

Solano, A.F.; Bryan, S.J.; Zuorro, A.

The Effect of LEDs on Biomass and

Phycobiliproteins Production in

Thermotolerant Oscillatoria sp. Appl.

Sci. 2022, 12, 11664. https://doi.org/

10.3390/app122211664

Academic Editors: José Carlos

Magalhães Pires and Helena Amaro

Received: 22 March 2022

Accepted: 13 November 2022

Published: 17 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

The Effect of LEDs on Biomass and Phycobiliproteins
Production in Thermotolerant Oscillatoria sp.
Jefferson E. Contreras-Ropero 1 , Valentina S. Lidueñez-Ballesteros 1, Angie D. Rodríguez-Bohórquez 1,
Janet B. García-Martínez 1 , Néstor A. Urbina-Suarez 1 , Germán L. López-Barrera 1 ,
Andrés F. Barajas-Solano 1 , Samantha J. Bryan 2 and Antonio Zuorro 3,*

1 Department of Environmental Sciences, Universidad Francisco de Paula Santander,
Av. Gran Colombia No. 12E-96, Cucuta 540003, Colombia

2 Department of Chemical and Environmental Engineering, University of Nottingham,
Nottingham NG7 2RD, UK

3 Department of Chemical Engineering, Materials and Environment, Sapienza University,
Via Eudossiana 18, 00184 Roma, Italy

* Correspondence: antonio.zuorro@uniroma1.it

Featured Application: The selection of LEDs wavelength, intensity, and light: Dark cycle positively
enhances the biomass production and phycocyanin synthesis in Oscillatoria sp.

Abstract: This study evaluates the role of different LED lights (white, blue/red), intensity (µmol m−2 s−1),
and photoperiod in the production of biomass and phycocyanin-C, allophycocyanin and phycoery-
thrin (C-PC, APC, and PE respectively) from a novel thermotolerant strain of Oscillatoria sp. Results
show that a mixture of white with blue/red LEDs can effectively double the biomass concentration
up to 1.3 g/L, while the concentration of the selected phycobiliproteins increased proportionally to
biomass. Results also indicate that high light intensities (>120 µmol m−2 s−1) can diminish the final
concentration of C-PC, APC, and PE, significantly reducing the overall biomass produced. Finally, the
photoperiod analysis showed that longer light exposure times (18:6 h) improved both biomass and
phycobiliproteins concentration. These results demonstrate that the application of LEDs to produce a
novel strain of Oscillatoria sp can double the biomass concentration, and the photoperiod regulation
can eventually enhance the final concentration of specific phycobiliproteins such as APC and PE.

Keywords: light:dark cycle; light intensity; light quality; C-PC; photosynthesis

1. Introduction

Cyanobacteria are potential producers of value-added bioactive compounds such as
chlorophyll a, b and c; β-carotene; astaxanthin; xanthophyll; and phycobiliprotein [1]. Most
of the bioactive compounds isolated from cyanobacteria consist of amino acids and fatty
acids and antibacterial, antifungal, anti-algal, antiprotozoal, and antiviral agents [2–6].
Phycobiliproteins (PBPs) are a group of brilliant water-soluble pigment proteins found
in cyanobacteria and red algae [7]. These proteins are divided according to their color
into blue (phycocyanin or C-PC), blue-green (allophycocyanin, or APC), and pink-purple
(phycoerythrin, or PE) [8]. This group of proteins is exploited as colorants for the food
industry (desserts, gums, gelatins, ice cream), pharmaceuticals (eyeliners, lipsticks, and
makeup), and even in the development of anticancer agents [9,10]—with a market price
of up to 1500 USD per mg (highly purified phycobiliprotein) [11]. The number of strains
that are industrially produced is limited to a handful of genera (such as Anabaena sp.,
Nostoc sp., Phormidium valderianum, Porphyridium cruentum, Spirulina platensis, and Galdieria
sulphuraria) [12–14], with only one strain (G. sulphuraria) isolated from a thermophilic
environment [15–17]. Thermal environments are the new frontier for isolating novel
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cyanobacterial strains with unique characteristics [18]; however, several culture parameters
must be defined before exploiting novel strains [19–22].

As photosynthetic microorganisms, light is one of the most critical factors during
microalgae and cyanobacteria production [23]. Light wavelength and light intensity affect
cell growth and pigment composition [24–28]. In the case of cyanobacteria, they are known
for arranging their pigmentation to a specific light source to optimize light harvest [29].
Therefore, the understanding of light on the growth and deposition of metabolites is crucial
for improving their production [30].

Most microalgal and cyanobacterial cultures employ sunlight; however, to produce
specific metabolites (astaxanthin, lutein, and phycobiliproteins), most companies prefer
controlled environments to maximize the synthesis of those metabolites [23,31]. Typi-
cally, those specialized environments employ fluorescent lamps, but the companies have
switched to light-emitting diodes (LEDs) [32]. LEDs are a sustainable alternative since
they consume less energy, have a higher energy conversion efficiency, and last longer than
traditional fluorescent lamps [33–35].

Unlike fluorescent lamps, LEDs can produce a specific wavelength with better quality,
favoring the synthesis of specific metabolites such as photosynthetic colorants (carotenoids,
chlorophylls, and phycobiliproteins) [30]. Worldwide, most algal production facilities use
sunlight as the main light source; however, to improve production efficiency and avoid
negative environmental conditions (such as winter), several companies are using LEDs as
a more viable light source. Over the years, evaluating LEDs in phycocyanin production
has gained momentum as an interesting tool for improving their synthesis [36–46]. Sev-
eral wavelengths (colors) such as white [26,47–64], red [23,25,26,30,51–54,57–59,63], and
blue [49–53,57–59] have been studied.

In the last ten years several strains have been studied using LEDs, including Arthor-
spira sp [23,47,48], A. maxima [30,49,50], A. platensis [26,50–61], Chlorogloeopsis fritschii [62],
Cyanobium sp. [45], Gracilaria tikvahiae [63], Porphyridium purpureum [64], and Synechococcus
PCC 6715 [25]. White LEDs [23,26,45,47–50,53,55,58,60–62,64] is the most common light
wavelength used on the production of several cyanobacterial strains; However, “white”
light is a mixture of different wavelengths trying to simulate natural daylight, which can
increase the overall biomass production. Still, it cannot increase the synthesis of specific
photosensitive molecules such as phycobiliproteins.

According to Yim et al. [53], green (λmax = 525 nm) and red (λmax = 660 nm) im-
proved both biomass and C-phycocyanin concentration (green color). Other researchers
such as Prates et al. [23], Park et al. [30], and Bachchhav et al. [54] have found similar results
where red LEDs with a maximum wavelength of 660 nm improved the concentration of
C-phycocyanin (C-PC). However, not every study evaluates the effect of wavelength on the
synthesis of different phycobiliproteins present in the chromophore; other phycobilipro-
teins, such as Allophycocyanin (APC) and phycoerythrin (PE), can be found in lower
concentrations in comparison to C-PC in most of the species studied [65]. On the other
hand, most studies used single wavelengths, and the effect of multiple specific wavelengths
(blue:red, or others) is highly underrepresented in scientific literature as an effective tool to
improve both biomass and phycobiliproteins in cyanobacterial strains. The present study
aimed to evaluate the effects of light intensity and wavelength using LEDs on the growth
rate and phycobiliprotein composition in a thermotolerant Oscillatoria sp.

2. Materials and Methods
2.1. Strain

Oscillatoria sp. OSCI_UFPS001 was isolated from a thermal spring in Cucuta (Colom-
bia) and kept at the INNOValgae collection (Universidad Francisco de Paula Santander,
Colombia). The strain was cultured in a 2 L tubular glass flask with 1.3 L of BG-11 me-
dia [66]. The strain was mixed through the injection of filtered air with 1% (v/v) CO2 at a
flow rate of 0.78 L min−1, with a photoperiod of 12:12 h at 100 µmol m−2 s−1 for 15 days.
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2.2. Experimental Design

Three configurations of LEDs: Cool white (60 LEDs/m, 400–700 nm, 12 V, 8 W/m)
(Sinowell, Shanghai, China), Red:Blue (4:1, chips ratio, 60 LEDs/m, Blue: 660 nm, Red
450 nm, 12 V, 8 W/m) (Sinowell, Shanghai, China), and a mixture of the lights mentioned
above (white/Red:Blue) were initially evaluated. For each experiment, Oscillatoria sp. was
cultured (in triplicate) in 500 mL GL45 flasks (Schott Duran) with 250 mL of BG-11 culture
media of working volume. Each flask was enclosed in a box (Figure 1) with 1 m of LEDs
strip (2 cm from the surface of the flask).
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Figure 1. Cultivation system diagram.

Each flask was mixed using filtered air at a flow rate of 0.15 Lair min−1 and a pho-
toperiod of 12:12 h at 100 µmol m−2 s−1 for 15 days. The air was enriched with 1 % (v/v)
CO2 to accelerate the cyanobacterial growth. Since fluorescent lamps are the most widely
available light source for producing algal and cyanobacterial biomass, this lamp was used
as a control (Control FL) in all experiments.

The configuration that maximizes biomass and phycobiliproteins was further ana-
lyzed to identify the effect of light intensity (50, 80, 120, 150, and 180 µmol m−2 s−1) and
photoperiod (12:12, 18:6, and 24:0 light:dark). The light intensity was monitored using
a PAR (Photosynthetically Active Radiation) sensor (MQ-510, Apogee Instruments, Inc.,
North Logan, UT, USA).

The results were analyzed using a one-way ANOVA in GraphPad Prism version 9.3.1.
The significant differences obtained in the analysis were represented in each figure.

2.3. Biomass and PBPs Quantification

The biomass was concentrated by centrifugation at 3500 rpm (20 ◦C, 20 min) and dried
using a food-grade dehydrator (30 h, 40 ◦C) [65], and stored in a desiccator until a constant
weight [4]. The phycobiliproteins were extracted from the dried biomass using the method
described by Zuorro et al. [2]; briefly, a known amount of dried biomass was mixed with
a volume (0.26 % w/v) of cold phosphate buffer solution (0.05 M, pH 6.8) and a known
amount of glass beads (0.5 mm diameter) (15 % w/w). The solution was mixed using an
automatic vortex (Multi Reax, Heidolph, Germany) and stored in a refrigerator to promote
the solubilization of the phycobiliproteins (4 ◦C, 24 h). PBPs were separated from cell debris
by centrifugation (3400 rpm, 30 min, 20 ◦C). The deep blue supernatant was collected and
measured in a spectrophotometer at specific wavelengths for C-PC (620 nm), APC (652 nm),
and PE (562 nm). The concentration of phycocyanin (C-PC), allophycocyanin (APC), and
phycoerythrin (PE) were calculated using Equations (1)–(3), which were described by
Bennett and Bogorad [67].
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The purity of C-PC, APC, and PE was determined using Equations (4)–(6) proposed
by Patil [68] and Antello et al. [69], where each of the phycobiliprotein is divided by the
total content of proteins measured at 280 nm

PC [g / L] =
OD620 − 0.474(OD652)

5.34
(1)

APC [g / L] =
OD652 − 0.208(OD620)

5.09
(2)

PE [g / L] =
(OD562 − 2.41(P − PC)− 0.849(APC))

9.62
(3)

PC [purity] =
OD620

OD280
(4)

APC [purity] =
OD652

OD280
(5)

PE [purity] =
OD562

OD280
(6)

3. Results

The results for biomass production using different LEDs are shown in Figure 2. The
strain grew in all the LED configurations, with better results than in fluorescent lamps
(0.49 g/L). Cool white and red:blue (4:1) LEDs increased the final concentration by up to
0.7 g/L; however, according to the ANOVA analysis, a higher difference was observed
(<0.0001) in the biomass produced using the mixture of white/red:blue, with up to three
times the concentration of the control (1.3 g/L).
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Figure 2. Biomass is produced under different LEDs configurations.

The effect of the different LEDs on the concentration and purity of the different
phycobiliproteins (C-PC, APC, and PE) can be found in Figure 2. Unlike biomass, C-PC
(Figure 3a) (%w/w) in Oscillatoria sp. UFPS_001 shows no difference between the cool
white and red:blue LEDs and the fluorescent lamps—with values between 7.5 and 7.8%
(w/w); however, the white/red:blue mixture significantly increased the final concentration
(10% w/w). In the case of APC (Figure 3b), the ANOVA analysis shows that white LEDs and
the mixture of white/red:blue are significantly different (<0.0001) compared to the control,
with values higher than 3.5% (w/w). The same behavior occurs with the PE (Figure 3c),
where the same LED configuration increases the final content of PE. In the case of purity,
the ANOVA analysis found that the mixture of white/red:blue increased the purity for
C-PC, APC, and PE compared to the fluorescent lamps that were used as controls; however,
no statistical differences were obtained when comparing the tested LEDs configurations.
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(PE) (c) and their purity (d–f) under different LEDs configurations.

According to the previous results, the white/red:blue LEDs configuration was used to
determine the effect of intensity and the light:dark cycle. In the case of biomass concen-
tration (Figure 4), it was found that Oscillatoria sp. grows better at low light intensities.
An ANOVA analysis showed that intensities up to 80 µmol m−2 s−1 significantly (<0.0001)
improved the biomass concentration compared to the control (up to 1.4 g/L). On the other
hand, higher intensities significantly reduced the final biomass concentration.
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The effect of the LEDs’ intensity on the concentration and purity of C-PC, APC, and PE
can be found in Figure 4. The concentration of C-PC (Figure 5a) of Oscillatoria sp. behaves like
the biomass, where 80 µmol m−2 s−1 significantly improves the C-PC concentration by up
to 8% (w/w) in comparison with other light intensities. In the case of APC (Figure 5b), the
ANOVA analysis shows no significant difference between the intensities evaluated, except
at 180 µmol m−2 s−1; in this case, at higher light intensities, the concentration of APC is
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significantly reduced. On the other hand, the concentration of PE is substantially increased at
80 µmol m−2 s−1 compared to the control and the different intensities tested. In the case of
purity, the ANOVA analysis found that the mixture of white/red:blue increased the purity for
C-PC, APC, and PE compared to the fluorescent lamps that were used as controls; however,
no statistical differences were obtained when comparing the tested LEDs configurations.
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The previous results highlighted the intensity of 80 µmol m−2s−1 for evaluating the
light:dark cycle. According to the results from the ANOVA analysis shown in Figure 6, when
Oscillatoria sp. OSCI_UFPS001 is exposed to more extended light regimes at 80 µmol m−2 s−1,
the biomass increased significantly (<0.0001) by up to 1.6 g/L (24:0 photoperiod) in com-
parison with the control, which used fluorescent lamps at 100 µmol m−2 s−1 (0.49 g/L,
12:12 photoperiod).
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The effect of the LEDs’ photoperiod on the concentration and purity of phycobilipro-
teins can be found in Figure 7. In the case of C-PC, APC, and PE, more extended light
periods substantially increased these proteins’ final concentrations and purities, with higher
values using 18 h light and 6 h dark of photoperiod; however, when the flask was exposed to
continuous light (24 h), the concentration and purity in all the evaluated phycobiliproteins
significantly diminished compared to the control and the other photoperiods.
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4. Discussion

Light quality is one of the most critical variables in microalgal and cyanobacterial
industrial biomass production and specific metabolites [30]. In the case of biomass pro-
duction using cyanobacterial strains, the application of LEDs with specific wavelengths
has proved an interesting alternative (Table 1). While it is important from a research point
of view to identify the best wavelength using LEDs to produce phycocyanin, it is also
essential for determining the possibility of scaling up this type of technology to industrial
production systems. Worldwide, most microalgae and cyanobacteria production plants
use sunlight for their operations; however, to maintain high productivity, it is necessary to
avoid the uncertainty generated by adverse environmental conditions that can substantially
reduce the photosynthetic efficiency, and therefore reduce the company’s total profits. Thus,
the search for ways to improve photosynthetic efficiency throughout the day is critical for
sustainability in producing microalgae and cyanobacteria of commercial interest.
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Table 1. Strains of cyanobacteria produced under different LEDs colors for PBPs production.

Strain
LED Biomass

(g/L)
PBPs

Reference
LEDs Radiation Color µmol m−2 s−1 Photoperiod Concentration (mg/L) Type

Arthrospira
sp.

White *

50 N/A 1 0.7 91 C-PC [47]

70 12:12 3.2
1.1 A-PC

[48]0.75

C-PC

3200
24:0 1.77 103 [23]Red 500

A. maxima

White
350 12:12 0.78 120 [49]Blue

Red 10 12:12 0.78
2.3

[30]0.4 PE
1.57

A-PC
White

80 24:0

3.9
97

[50]

351
C-PC

Blue 3.7
481
111

A-PC
Orange 1.2

24
84

C-PC

A. platensis

Orange 1.7
119
40

A-PC
White 3.4

135
340

C-PC
Blue 3.6

288
90 A-PC

Blue

150 12:12

0.4 40

C-PC [51]
Red 0.6 70

White 0.6 50
Yellow 0.5 30

Red
2500 2

N/A 1

3.9 17.6% w/w
C-PC [52]Blue 3.6 2.9% w/w

White * 2.8 15.7% w/w
White

1000

0.8 112

C-PC

[53]
Blue 0.2 30

Green 0.9 126
Red 1 140

Yellow
250 12:12

6.6 1300
[54]Red 6.2 800

Red:Blue (3:1) 350 16:8 5 700
White 300 N/A 1 6.7 1072 [55]

Natural light with Filtered Red 60
12:12

0.7 198
[56]Natural light with Filtered Blue 100 0.5 144

Red 700
N/A 1 0.6 60

[57]Blue 1050 0.4 5
Red

3000 12:12

0.36 54

[58]
White 0.21 30
Yellow 0.1 14
Green 0.12 19

Blue
0.05 6

75

N/A 1

3.1 209

C-PC

[59]
Red 500 0.75 34 [60]White N/A 1 0.87 38

White *

400

6.2 806

[26]White 7.5 1200
Red 3.9 234
Blue 1.4 56

White 160 20:4 0.45 40 [61]
Red

150 12:12

0.49 58

[51]
Yellow 0.5 46

Blue 0.41 57
White 0.58 46
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Table 1. Cont.

Strain
LED Biomass

(g/L)
PBPs

Reference
LEDs Radiation Color µmol m−2 s−1 Photoperiod Concentration (mg/L) Type

Chlorogloeopsis
fritschii

White
N/A 1

16:8

0.14 7.8
[62]

0.3 9Far-red
Cyanobium

sp. White 200 2.8 357 PBP [45]

Gracilaria
tikvahiae Red 100 12:12 2.2

26 A-PC [63]10 PE

Porphyridium
purpureum White 120 N/A 1 4

400 C-PC
[64]114 A-PC

480 PE
Synechococcus
PCC 6715 Red 100 16:8 8.6

70 C-PC
[25]20 APC

Oscillatoria
sp.

UFPS001
White/Blue:red (4:1) 80 18:6 1.3

8.7% w/w C-PC
This paper3.8% w/w APC

4.1% w/w PE

* Fluorescent; 1 N/A: Non-Available data; 2 Lux.

Globally, there are two industrial examples worth mentioning. The first is the company,
Algalif (https://algalif.is; accessed on 12 November 2022), located in Iceland. Algalif is
recognized worldwide as the most sustainable microalgae producer. They use ultra-pure
glacier water to produce Haematococcus pluvialis and use geothermal energy for its operation.
This company only makes astaxanthin indoors using LEDs tuned for cell growth and
carotenogenesis. This allows Algalif to create high-quality astaxanthin year-round without
relying on environmental changes. Other companies such as Algamo (https://www.
algamo.cz/index.php/en/homepageen/; accessed on 12 November 2022) in the Czech
Republic and Yemoja (https://yemojaltd.com; accessed on 12 November 2022) in Israel
apply indoor cultivation systems with LEDs to maximize the production of metabolites. In
the case of phycocyanin production, specifically in S. platensis, to the best of the author’s
knowledge, there is only one indoor production site that uses LEDs to produce phycocyanin,
which is in Sardinia, Italy (https://www.c-led.it/magazine/en/inaugurati-due-nuovi-
impianti-di-coltivazione-di-spirulina-in-sardegna-con-lampade-c-led/; accessed on 12
November 2022).

The most studied wavelengths in the production of biomass and phycobiliproteins
are white [26,47–64], red [23,25,26,30,51–54,57–59,63], and blue [49–53,57–59]. Other less
studied wavelengths are orange [50], green [53,54], yellow [51,54,58], and far-red [62].
In the case of A. maxima, different LEDs wavelengths can modulate the final concentra-
tion of biomass, with values up to 3.9 g/L (white LEDs) [50] or as low as 0.78 g/L (red
LEDs) [30]. In A. platensis, white LEDs can increase the final concentration of biomass by
up to 6.5 g/L [55], and even yellow and red LEDs (6.6 and 6.2 g/L, respectively) have
shown a significant increase in the biomass produced; however, the results obtained from
different researchers lack homogeneity among strains of the same species. It is impossible
to highlight any trend in the effect of a specific wavelength. These differences may be due
to culture conditions used in each strain, such as the culture medium and organic carbon
sources (mixotrophic culture).

In this work, the mixture of white and red/blue lights (4:1) enhanced the production
and biomass and C-PC synthesis in Oscillatoria sp. A possible explanation for the synergistic
effect in this strain can be explained by the fact that white LEDs will provide a wide
spectrum of light, which will favor biomass production, while the red/blue LEDs will
enhance the synthesis of PBPs (CPC-APC and PE) in this strain. Most of the literature
focuses on the last two variables, but there is no evidence on the evaluation of the purity
of PBPs. Purity is measured by the concentration of each PBPs divided by the absorbance
at 280 nm (PBPs/Abs280 nm), which corresponds to the wavelength used to quantify
total proteins in the Lowrey and Bradford methods [70]. This PBPs-to-protein ratio helps
us understand how well the strain grows since PBPs are also a storage for nitrogen in

https://algalif.is
https://www.algamo.cz/index.php/en/homepageen/
https://www.algamo.cz/index.php/en/homepageen/
https://yemojaltd.com
https://www.c-led.it/magazine/en/inaugurati-due-nuovi-impianti-di-coltivazione-di-spirulina-in-sardegna-con-lampade-c-led/
https://www.c-led.it/magazine/en/inaugurati-due-nuovi-impianti-di-coltivazione-di-spirulina-in-sardegna-con-lampade-c-led/


Appl. Sci. 2022, 12, 11664 10 of 14

cyanobacteria [71]. Therefore, lower purities will imply that more protein is synthesized;
consequently, less nitrogen will be available to produce PBPs. In this case, the purity for
C-PC, APC, and PE is statistically higher than the control (fluorescent lamps), indicating a
balance between biomass building up and synthesis of PBPs; moreover, there are few cases
reported in the literature that can support these results. Lee et al. [59] found that biomass
and C-PC content can be improved when A. platensis is grown in a two-stage process. In
this case, they tested red/blue LEDs (1:1) for biomass production, followed by a second
stage using blue LEDs to increase the synthesis of C-PC; however, there was no evidence of
the effect of mixing white light with other LEDs.

Other factors such as light intensity and photoperiod (also known as light:dark cycle)
are as important as the quality of light [53]. Schipper et al. [72] found out in their preliminary
experiments that a thermotolerant Leptolyngbya sp. strain could not grow normally at high
radiations (up to 2800 µmol m−2 s−1) due to their lack of adaptation. Therefore, the low
biomass concentration of Oscillatoria sp. at elevated radiation requires acclimatization since
this strain was isolated from a hot spring in Colombia with high radiation.

For the case of the photoperiod, longer light times favor photosynthesis, and by adjust-
ing the intensity and wavelength, it is possible to increase biomass concentration; however,
this interaction between the light cycle and intensity may depend on the strain evaluated.
In the case of A. maxima, when growing under medium intensities (80 µmol m−2 s−1) with
white LED lights and complete exposure to light (24 h), it is possible to obtain more biomass
compared to blue or orange LED lights [50]; for the case of A. platensis, blue light with
the same conditions mentioned above are the ones that favor its growth. In another work,
Xie et al. [55] demonstrated yellow LEDs lights with an intensity of 250 µmol m−2 s−1. A
cycle of 12 h light and 12 h dark can maximize the biomass of A. platensis by up to 6.6 g/L,
which is much higher than that found by Milia et al. [39] (0.59 g/L) or Bachchhav et al. [54]
(8.95 g/L).

Another example of this is the results achieved by Klepacz-Smółka et al. [25] by
using Synechococcus PCC 6715 (red LEDs, 100 µmol m−2 s−1, and 16 h of light and 8 h of
dark), which achieved the highest concentration reported for research of this type (8.6 g/L)
and is even more interesting since no inorganic carbon sources were used in the BG11
medium. According to different articles published internationally in recent years, the
effect of the parameters mentioned above on the synthesis of phycobiliproteins does not
follow a fixed pattern [73–75]. Therefore, strains of the same species may have different
light requirements. This can be explained by the unique composition of PBPs of each
cyanobacterial strain. This would explain the unusual behavior of Oscillatoria sp., which
not only has high concentrations of C-PC but, under certain conditions, the concentration
of PE increased significantly compared to the control. It is worth mentioning that the short
distance between the light source and the small diameter of the flask is a variable that must
be considered in the selection of the culture method (raceways, column, or tubular PBR) for
a scaling process.

5. Conclusions

This research shows the capability of LEDs with a specific color to improve biomass and
phycobiliproteins (PBPs). In this case, a mixture of white/Red:Blue LEDs at 80 µmol m−2 s−1

and a photoperiod of 24 h of light significantly increases the final biomass concentration
up to 3 times compared to the same strain cultured on fluorescent lamps. However, total
exposure negatively affects the synthesis of the different PBPs (C-PC, APC, and PE). A
better cycle of 18 h of light and 6 h of darkness allows a better synthesis of these proteins
with a slight reduction in biomass concentration. Further studies should focus on the
possible interaction between specific nutrients (N, P, Mg, etc.) and LEDs that can enhance
different metabolites.
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