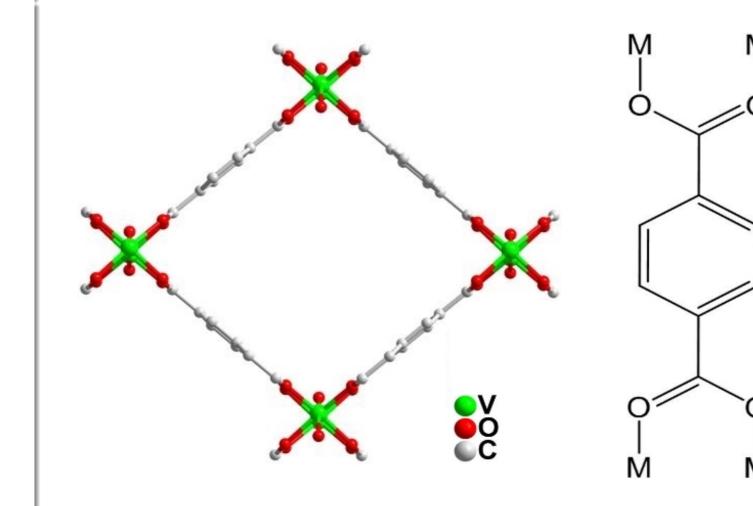


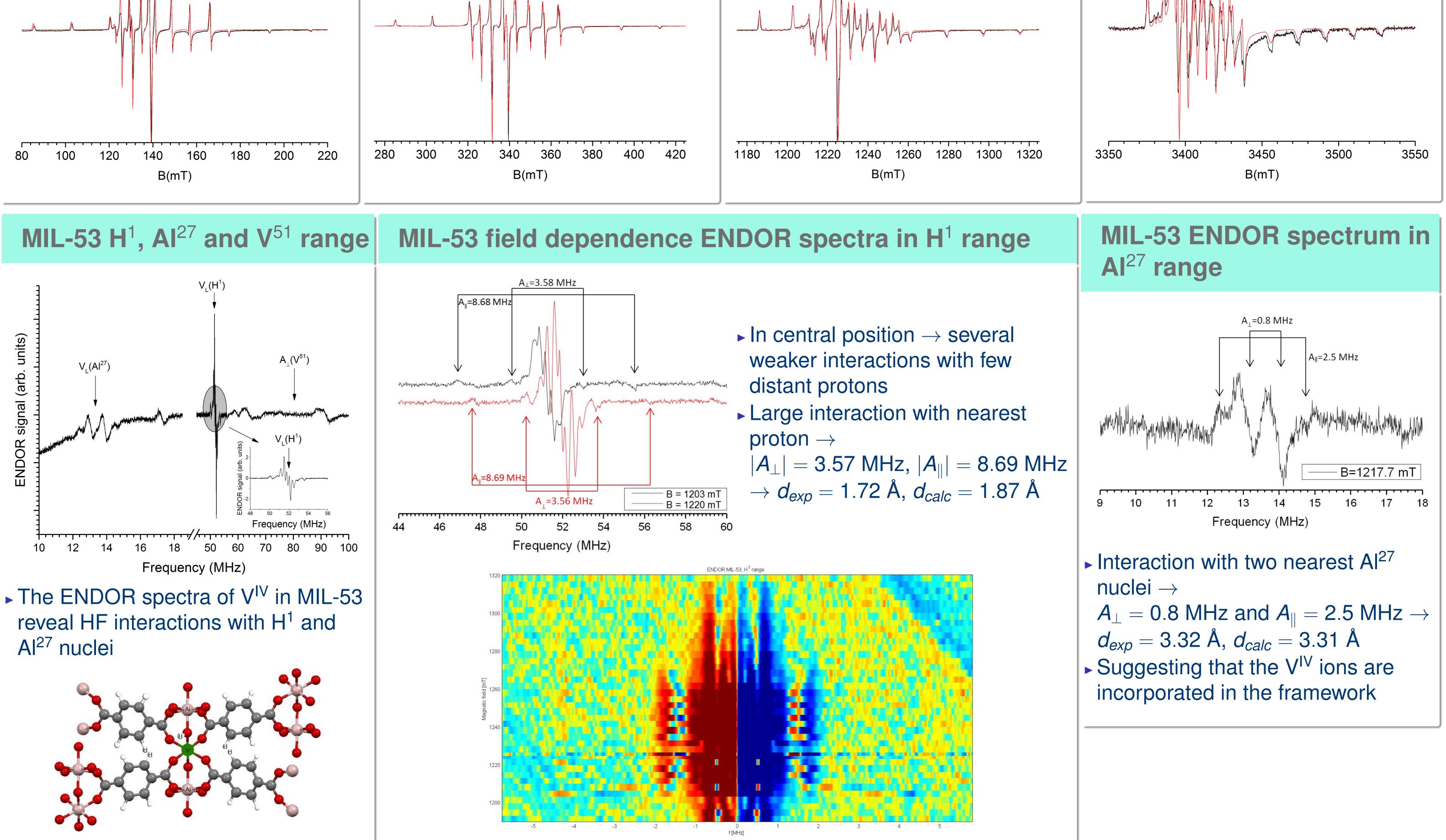
Resolving the relative tilting of hyperfine and g tensors for vanadyl complexes in the Al-metal-organic framework MIL-53 by a multifrequency (S, X, Q and W-band) EPR approach

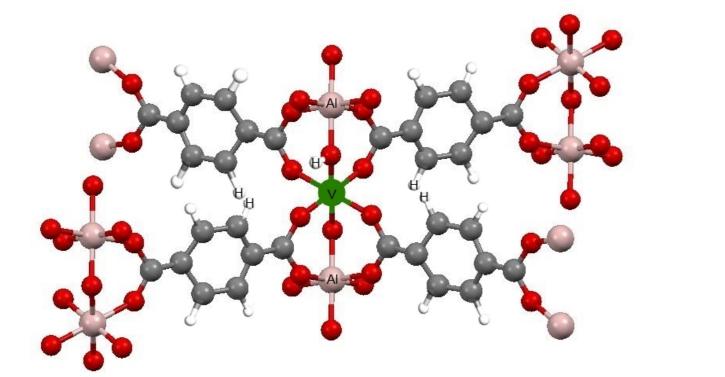

Irena Nevjestić⁽¹⁾, Hannes Depauw⁽²⁾, Karen Leus⁽²⁾, Vidmantas Kalendra⁽³⁾, Ignacio Caretti Giangaspro⁽⁴⁾, Gunnar Jeschke⁽³⁾, Sabine Van Doorslaer⁽⁴⁾, Freddy Callens⁽¹⁾, Pascal Van Der Voort⁽²⁾, Henk Vrielinck⁽¹⁾

(1) Ghent University, Dept. of Solid State Sciences, Krijgslaan 281-S1, B-9000 Gent, Belgium
 (2) Ghent University, Dept. of Inorganic and Physical Chemistry, COMOC, Krijgslaan 281-S3, B-9000 Gent, Belgium
 (3) ETH Zürich, Wolfgang-Pauli-Str. 10, CH-8093 Zürich, Switzerland
 (4) University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium

MIL-47

Introduction


- Metal Organic Frameworks (MOFs) \rightarrow ordered porous materials
- Built of metal ions or clusters connected by organic linkers
- Interesting for many applications because they provide possibilities of designing structure, pore size or shape to desired functionality
- Potential use in catalysis, gas storage and gas separation ► MIL-47^[1] [VO(BDC)] and MIL-53^[2] [AI(OH)(BDC)] ► BDC = terephthalate or 1,4-benzenedicarboxylate MIL = Matériaux de l'Institut Lavoisier



- Recently we reported that V-MIL-47 can be a highly selective catalyst in the liquid phase oxidation of cyclohexene^[3]
 - Problem: Exhibits limited stability in

aqueous environments Solution: Doping the highly stable MIL-53 with catalytically active V^{IV} ions

MIL-53			Multifrequency EPR spectrum and principal values				
np	<pre></pre>	 After calcination → breathing To understand the catalytic activity of such doped framework → verify where dopant ions actually are V^{IV} (3d¹) → a paramagnetic ion 	 In four figures (down) the evolution of the powder EPR spectrum with microwave frequency for V-doped MIL-53 is shown The spectra are dominated by just one V^{IV} center with rhombic g and V⁵¹ hyperfine (HF) tensors whose principal axes do not coincide 	165 (0.9848	y 0 1 0 0 9 -0.9633 -0.1736 0.2048	0
S-band		X-band	Q-band	W-band			
	S-band f = 4.055 GHz —— Exp. —— Sim.	X - band f = 9.477 GHz — Exp. — Sim.	Q - band f = 33.996 GHz — Exp. — Sim.			W - band f = 94.053 — Exp — Sim	3 GHz

References :

[1] K. Barthelet et al., Angew. Chem. Int. Ed. 2002, 41, 281-284 [2] C. Serre et al., J. Am. Chem. Soc. 2002, 124, 13519-13526 [3] K. Leus et al., J. Catal. 2012, 285, 196-207

Contact : Irena Nevjestić Ghent University, Dept. of Solid State Sciences Krijgslaan 281-S1, B-9000 Gent, Belgium E-mail: irena.nevjestic@ugent.be