
Optimization-Based Methods for Real-Time
Generation of Safe Motions in Mobile Robots

Sapienza Università di Roma

Dottorato di Ricerca in Automatica, Bioingegneria e Ricerca Operativa –
XXXIV Ciclo

Candidate

Spyridon G. Tarantos
ID number 1840399

Thesis Advisor

Prof. Giuseppe Oriolo

Thesis defended on 25 January 2023
in front of a Board of Examiners composed by:

Prof. Paolo Valigi (chairman)
Prof.ssa Paola Cappanera
Prof. Danilo Pani

Optimization-Based Methods for Real-Time Generation of Safe Motions in
Mobile Robots
Ph.D. thesis. Sapienza – University of Rome

© 2023 Spyridon G. Tarantos. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Version: February 7, 2023

Author’s email: tarantos@diag.uniroma1.it

mailto:tarantos@diag.uniroma1.it

To my parents,
Gerasimos and Margarita

v

Abstract

Having robots operating in unstructured and dynamically changing environments
is a challenging task that requires advanced motion generation approaches that are
able to perform in real-time while maintaining the robot and environment safety.

The progress in the field of numerical optimization, as well as the development of
tailored algorithms, made Nonlinear Model Predictive Control (NMPC) an appealing
candidate for real-time motion generation. By considering the robot model as
prediction model and through appropriate constraints on the robot states and
control inputs, NMPC can enforce safety to the resulting motion in a straightforward
way.

This thesis addresses the problem of real-time generation of safe motions for
mobile robots and mobile manipulators. The different structure of the considered
robots introduces different safety risks during the robot motion and so the motion
generation problem for each robot is addressed in separate parts of this thesis.

In the first part, the problem of motion generation for mobile robots navigating
in environments populated by static and/or moving obstacles is considered. For
the generation of the desired motion, real-time NMPC is used. We argue that, in
order to tackle the risk of collision with the environment, traditional distance-based
approaches are incapable of maintaining the robot safety when the NMPC uses
relatively short prediction horizons. Instead, we propose two NMPC approaches
that employ two alternative collision avoidance constraints. The first proposed
NMPC approach is applied to a scenario of safe robot navigation in a human crowd.
The NMPC serves as a motion generation module in a safe motion generation
framework, complete with a crowd prediction module. The considered collision
avoidance constraint is built upon an appropriate Control Barrier Function (CBF).
The second NMPC approach is applied to a scenario of robot navigation among
moving obstacles, where the dynamics of the considered robot are significant. The
proposed collision avoidance constraint is built upon the notion of avoidable collision
state, which considers not only the robot-obstacle distance but also their velocity as
well as the robot actuation capabilities. The simulation results indicate that both
methods are effective and able to maintain the robot safety even in cases where their
purely distance-based counterparts fail.

The second part of the thesis addresses the problem of safe motion generation
for mobile manipulators, called to execute tasks that may require aggressive motions.
Here, in addition to the risk of collision with its environment, the robot, consisting
of multiple articulated bodies, is also susceptible to self-collisions. Moreover, fast
motions can always result to loss of balance. To solve the problem, we propose
a real-time NMPC scheme that uses the robot full dynamics, in order to enforce
kinodynamic feasibility, while it also considers appropriate collision and self-collision
avoidance constraints. To maintain the robot balance we enforce a constraint that
restricts the feasible set of robot motions to those generating non-negative moments
around the edges of the support polygon. This balance constraint, inherently
nonlinear, is linearized using the NMPC solution of the previous iteration. In this
way, we facilitate the solution of the NMPC in real-time, without compromising the
robot safety.

vi

Although the proposed NMPC is effective when applied to MM with low degrees
of freedom, when the robot becomes more complex the use of its full dynamic model
as a prediction model in an NMPC can lead to unacceptably large computational
times that are not compatible with the real-time requirement. However, the use
of a simplified model of the robot in an NMPC can compromise the robot safety.
For this reason, we propose an optimization-based controller equipped with balance
constraints as well as CBF-based collision avoidance constraints. The proposed
controller can serve as an intermediate between a motion generation module that
does not consider the robot full dynamics and the robot itself in order to ensure that
the resulting motion will be at least safe. Simulation results indicate the effectiveness
of the proposed method.

vii

Acknowledgments

With this thesis, an important part of my academic life, the period of my Ph.D.,
comes to an end. With this opportunity, I would like to express my gratitude to those
that supported me during these years.

First of all, I would like to thank my supervisor prof. Giuseppe Oriolo for giving
me the opportunity to work with him and his team. I can only be grateful for his
great support during this period.

I would also like to mention all my colleagues and friends from DIAG Robotics
Lab for creating a supportive and fun working environment.

Special thanks to my girlfriend Maria for her incredible patience and support
during this period.

I would also like to thank my sister Dimitra for being always my greatest supporter
in all my endeavors.

Finally, this thesis is dedicated to my parents Gerasimos and Margarita, for
being always by my side and supporting me blindly in any way possible. Words are
not enough to express my gratitude.

ix

Contents

1 Introduction 1

2 Real-time nonlinear model predictive control 7
2.1 Model predictive control formulation 8
2.2 Numerical solution of the OCP . 9

2.2.1 Numerical solution approaches 10
2.2.2 Nonlinear optimization . 12

2.3 Real-time implementation . 15
2.3.1 Real-time iteration scheme 16
2.3.2 Efficient software . 17

2.4 Conclusions . 18

I Motion generation for mobile robots 19

3 Mobile robot navigation 21
3.1 Problem formulation . 22
3.2 Mobile robot model . 23

3.2.1 Kinematic constraints . 24
3.2.2 Kinematic model . 25
3.2.3 Dynamic model . 26

3.3 Motion generation via NMPC . 27
3.3.1 The collision avoidance constraint 29

3.4 Conclusions . 30

4 Crowd navigation using NMPC and control barrier functions 33
4.1 Problem formulation . 34
4.2 Proposed framework . 35
4.3 Crowd prediction module . 36

4.3.1 Data association . 37
4.3.2 State estimation . 38
4.3.3 Motion prediction . 39

4.4 Motion generation via NMPC . 39
4.4.1 NMPC algorithm . 40
4.4.2 CBF-based collision avoidance 41

4.5 Simulations . 42
4.6 Conclusions . 48

x Contents

5 A dynamics-aware NMPC method for robot navigation 49
5.1 Problem formulation . 50
5.2 Proposed NMPC approach . 50
5.3 Dynamics-aware collision avoidance 51

5.3.1 Preliminaries . 51
5.3.2 Avoidable collision states . 52
5.3.3 Use of the ACS condition in the NLP 55

5.4 Simulations . 55
5.4.1 Static environments . 56
5.4.2 Dynamic environments . 57

5.5 Conclusions . 60

II Motion generation for mobile manipulators 63

6 Ensuring balance for mobile manipulators via NMPC 65
6.1 Introduction . 65
6.2 Problem formulation . 67
6.3 Mobile manipulator model . 68

6.3.1 Kinematic constraints . 69
6.3.2 Kinematic model . 71
6.3.3 Dynamic model . 72
6.3.4 Contact forces . 73

6.4 Proposed NMPC approach . 74
6.5 Collision avoidance . 75
6.6 Robot balance . 77

6.6.1 Balance criterion . 77
6.6.2 Balance constraint . 78
6.6.3 Improving balance . 79

6.7 Simulations . 79
6.7.1 Compared methods . 81
6.7.2 Simulation results . 82

6.8 Conclusions . 84

7 An optimization-based controller for enforcing safety constraints in
mobile manipulators 87
7.1 Introduction . 87
7.2 Problem formulation . 89
7.3 Proposed approach . 89
7.4 Motion generation module . 90
7.5 Optimization-based controller . 92

7.5.1 Cost function . 93
7.5.2 State and input bounds . 93
7.5.3 Balance constraint . 94
7.5.4 Collision avoidance constraints 94
7.5.5 Optimization scheme . 95

7.6 Simulations . 96

Contents xi

7.6.1 Simulation scenario 1 . 99
7.6.2 Simulation scenario 2 . 100

7.7 Discussion . 102
7.8 Conclusions . 103

8 Conclusions 105

A Robot dynamics 109
A.1 Kinetic energy . 110
A.2 Potential energy . 112
A.3 Equations of motion . 112

B Zero moment point 113

1

Chapter 1

Introduction

Over the course of years, human beings invented tools and machines in an attempt
to reduce their physical effort, increase productivity and improve their quality of
life. Eventually, they managed to create robots able to replace them in performing
tasks that would require excessive physical strength, could potentially expose them
to danger, or simply were rather trivial and repetitive.

A family of robots, commonly used in industrial applications are the robot
manipulators (see Fig. 1.1). They consist of a series of rigid bodies, referred to as
links, connected with joints that can be either prismatic or revolute serving as means
of articulation. The structure of a manipulator is characterized by the way in which
the links are arranged. The consecutive links connected with the joints constitute
a kinematic chain, which is open if no loops are formed by the links or closed in
a different case. In the case of the open kinematic chain, each joint adds a degree
of freedom (DOF) to the manipulator, while in the case of the closed kinematic
chain, the number of DOF is reduced by the constraints imposed by the kinematic
loops. The last link of the manipulator is typically connected to an end-effector
appropriate for the considered application. Grippers, cameras, welding torches, spray
guns and drills are only some of the tools that can be used as end-effectors. Finally,
an important characteristic of a manipulator is its workspace, i.e., the area that the
end-effector can reach, that depends on the manipulator structure and is limited.

The mobile robots constitute another big family of robotic systems. Unlike the
robot manipulators, whose base is fixed on their environment, mobile robots consist
of a mobile base equipped with a locomotion system that permits them to move in the
environment, creating in such a way a practically unlimited workspace. Depending
on the particular locomotion system, the mobile robots can be categorized into
land-based, with representative examples the wheeled and legged robots, air-based

Figure 1.1. Examples of robot manipulators. Starting from the left, the KUKA LBR iiwa
robot, the ABB YuMi - IRB 14000 robot and the ABB IRB 360 FlexPicker robot.

2 1. Introduction

Figure 1.2. Examples of mobile robots. Starting from the left, the Robotnik SUMMIT-XL
as representative of the land-based mobile robots, the AscTec Firefly for the air-based
and the Girona 500 AUV for the water-based.

Figure 1.3. Examples of mobile manipulators. Starting from the left, the TIAGo mobile
manipulator, the Spot quadruped equipped with a robotic arm, a Fletcher double-rotor
helicopter equipped with an LWR arm and the Girona 500 AUV equipped with a
manipulator.

and water-based (see Fig. 1.2).
A combination of these two types of robots results to a family of rather versatile

robots, the mobile manipulators (MM), that combine the advantages of both subsys-
tems. The MMs can be formed by mounting one or more robot manipulators on
a mobile robot and combine the mobility of the mobile robot and the dexterity of
the manipulators. In this way, the MM may be called to reach targets that at the
beginning of the operation were outside of the manipulator workspace. Depending
on the type of the mobile base, the MMs can operate on the land, in the air, or in
the water (see Fig. 1.3).

The robots were originally employed in industrial applications in protected
environments where the interaction with the humans was limited and monitored,
while if humans had to operate in the vicinity of a robot they were trained to do so.
Fig. 1.4 (left) illustrates robots working in an isolated space protected by a cage,
minimizing the possibility of a human entering unintentionally in their workspace.

One of the greatest challenges in robotics was to let the robots leave the cages
and start operating alongside humans not only in industrial but also in urban or
even domestic environments. See in Fig. 1.4 (right) a delivery robot navigating
through a group of people. Note that, unlike a robot in an industrial environment,
robots in an urban environment have to deal with its unstructured nature. On top
of that, humans in an urban environment are not typically trained to coexist with a
robot, setting additional challenges to its operation.

Clearly, the problem of motion generation for such robots is challenging as the
robot is not only required to execute the assigned task, but also to ensure that
throughout its motion its safety as well as the safety of its surrounding environment
is preserved. For this to be achieved, the motion generation module is required to
be equipped with an accurate model of the considered robot, to receive the latest
information about the robot surroundings and to be able to react to any change in

3

Figure 1.4. Robots employed in industrial (left) and urban (right) environments. One can
notice that in the industrial environment, the robots are isolated within a cage limiting
in such a way the access to humans, while in the urban environment, the robot operates
in close proximity to humans.

the environment that might occur by adapting appropriately the robot motion. As
a result, real-time performance is also a requirement.

One of the most successful and advanced approaches for real-time motion gen-
eration is the Nonlinear Model Predictive Control (NMPC). The motion planning
problem is formulated as an Optimal Control Problem (OCP) over a finite time hori-
zon. At each control cycle, the latest measurements for the robot and environment
state are considered and the OCP is solved. The resulting control action is applied
to the robotic system for a short time interval, until new measurements for the robot
and the environment are available, so that a new OCP is solved to obtain the new
control action. This recomputation constitutes the feedback mechanism of NMPC.
The recent algorithmic and hardware advancements permit a significant reduction
of the time interval between two consecutive measurements, enabling NMPC to
perform in real-time.

This thesis addresses the problem of generating safe motions for wheeled mobile
robots and wheeled mobile manipulators, using real-time NMPC. The thesis is
divided into two parts in order to address separately the motion generation problem
for each of the two types of robots.

The first part addresses the problem of real-time motion generation for mobile
robots navigating in environments populated by static and/or moving obstacles. Of
particular importance is the robot safety in terms of collision with the environment
obstacles. Our motion generation approach is based on a real-time NMPC algorithm
where the robot safety is enforced via appropriate collision avoidance constraints.
We argue that the use of purely distance-based collision avoidance constraints
can jeopardize the robot safety when the considered prediction horizons are short.
Instead, we propose the use of collision avoidance constraints that, in addition to
distance information, consider the robot-obstacle relative velocity as well as the robot
actuation capabilities. Simulation results indicate the effectiveness of the proposed
methods and their superior performance compared to their purely distance-based
counterparts.

The second part concerns the problem of real-time motion generation for mobile
manipulators called to execute end-effector tasks that might require aggressive

4 1. Introduction

motions in environments populated by obstacles. Here central role plays the robot
safety, which in the case of a MM is defined in terms of collision with the environment
obstacles, self-collision and loss of balance. The proposed motion generation approach
is based on a real-time NMPC algorithm that considers the robot full dynamics,
while the robot safety is enforced via appropriate collision and balance constraints.
Although this method effectively generates safe motions for MMs of low DOF, as
the simulations indicate, when the robot becomes more complex, the computational
time required by a motion generation module that considers the robot full dynamics
can be unacceptably large for real-time applications. In cases like this, the literature
suggests the use of simplified models that enable real-time performance. However,
the use of such models cannot guarantee the robot safety. To tackle this problem,
we also propose an optimization-based controller that can be interposed between
the motion generation module and the robot, in order to ensure that the resulting
motion is at least safe. Simulation results indicate the effectiveness of the proposed
controller even in cases where the motion generation module considers only the robot
kinematics.

The thesis is organized as follows

• Chapter 2 offers some preliminaries on real-time NMPC and presents the
algorithms that are going to be used in the following chapters as motion
generation approaches.

Part I: Motion generation for mobile robots

• Chapter 3 formulates the problem of mobile robot navigation in environments
populated by obstacles. After obtaining the kinematic and dynamic model
of a differential-drive mobile robot, the proposed NMPC for the real-time
generation of the desired motion is presented. The chapter concludes with a
discussion on appropriate collision avoidance constraints within a real-time
NMPC, paving the road for the following chapters.

• Chapter 4 considers the problem of safe robot navigation in a human crowd.
The proposed NMPC algorithm serves as a motion generation module in a
sensor-based scheme for safe robot navigation that is complete with a crowd
prediction module. To ensure safety, the NMPC considers collision avoidance
constraints built upon appropriate discrete-time CBFs. The method presented
in this chapter was originally presented in our paper [1].

• Chapter 5 presents a dynamics-aware NMPC method for robot navigation
among moving obstacles. Here we propose a collision avoidance constraint
that essentially requires the robot to be always at a state from which it can
avoid collision with a certain obstacle. The method presented in this chapter
was originally presented in our paper [2].

Part II: Motion generation for mobile manipulators

• Chapter 6 formulates the problem of real-time motion generation for a mobile
manipulator called to execute tasks that require aggressive motions. After
obtaining the kinematic and dynamic model of a general wheeled mobile

5

manipulator, we propose an NMPC algorithm for real-time motion generation
that considers the robot full dynamics and appropriate constraints to enforce
safety. To enable real-time performance we proposed a linearization of the
considered balance constraint using the solution of the previous NMPC iteration.
The method presented in this chapter was originally presented in our paper [3].

• Chapter 7 considers the problem of motion generation for mobile manipula-
tors using a simplified model of the robot. In this chapter, we propose an
optimization-based controller that considers the robot full dynamics as well
as collision avoidance constraints built upon appropriate CBFs and balance
constraints. The proposed controller can be interposed between the motion gen-
eration module and the considered robot in order to ensure that the resulting
motion will be at least safe.

• Chapter 8 offers some concluding remarks and directions for future work.

7

Chapter 2

Real-time nonlinear model
predictive control

Model Predictive Control (MPC) is a control technique where the control action
is obtained via the on-line solution of a finite horizon, open-loop Optimal Con-
trol Problem (OCP), which is subject to a prediction model of the system and
constraints on the system state and control inputs [4]. At a given time instant,
the controller, based on measurements received from the system, solves the OCP
and obtains a control action that respects the imposed constraints and minimizes
certain performance criteria (imposed as a cost function in the OCP). The computed
control action is applied to the system only for a small time interval, typically until
a new measurement is available. Then, based on the new measurement, a new,
updated, control action is computed and applied to the system. This recomputation
of the control action, based on the latest measurements, constitutes the feedback
mechanism of the MPC.

This control approach became rather attractive over the last years and has been
used in numerous applications [5]. Its conceptual simplicity in combination with
its ability to control multivariable systems and to incorporate hard constraints in a
straightforward way justify its popularity.

Linear MPC (LMPC) is a category of MPC where the prediction model and the
imposed constraints are linear while the cost function is quadratic [6]. LMPC is
a rather mature technology while the developed algorithms for the solution of the
resulting quadratic program (QP) allow low computational times [7, 8, 9, 10, 11]. On
the downside, the majority of the systems that we are called to control, especially in
the field of robotics, are inherently nonlinear. In principle, one can apply LMPC to a
nonlinear system by linearizing it around a reference trajectory (possibly generated
off-line) [12]. However, a nonlinear model can describe more accurately the behavior
of a nonlinear system. Moreover, tight performance requirements that bring the
system to its limits (e.g., high-speed robot motion at the vicinity of obstacles or
close to balance loss) cannot be efficiently handled by a linear model over large time
intervals. This motivates the development of Nonlinear MPC (NMPC) which permits
the use of a nonlinear model as a prediction model as well as nonlinear constraints
and cost functions. Nevertheless, due to its higher complexity compared to its linear
counterpart, NMPC was originally deployed in slower processes, where the time

8 2. Real-time nonlinear model predictive control

between consecutive requests for a new control action was large enough to permit
the computationally intensive algorithms to converge. Recently, the use of powerful
processing platforms in combination to the development of appropriate algorithms,
reduced the computational time of NMPC making it a competitive candidate for
real-time applications [13, 14, 15, 16, 17].

This chapter serves as a preliminary to the following ones where real-time NMPC
is used as a motion generation approach. The NMPC formulation is given in Sect. 2.1
describing an OCP appropriate for the considered applications of this thesis. Sect. 2.2
is dedicated to the numerical solution of the considered OCP and of the NMPC
in general. Sect. 2.3 is dedicated to the real-time implementation of an NMPC
algorithm focusing in particular on the real-time iteration scheme. Finally, some
concluding remarks are offered in Sect. 2.4.

2.1 Model predictive control formulation

In this work, we consider robotic systems whose equations of motion can be described
by ordinary differential equations (ODE)

ẋ(t) = ϕ (x(t), u(t)) (2.1)

with initial value for t = t0

x(t0) = x0.

The vectors x ∈ IRnx and u ∈ IRnu correspond to the system states and control inputs
respectively. In principle, these vectors (or some elements of them) are constrained
with lower and upper bounds enforced by the system hardware limitations (e.g.,
actuator limits) and/or the specific application (e.g., maximum permitted driving
velocity for a mobile robot)

xmin ≤ x ≤ xmax

umin ≤ u ≤ umax

where xmin, xmax and umin, umax are the lower and upper bounds of the system
state and control inputs.

Note that depending on the application, the system may be also subject to
additional constraints on the state, the inputs or both (e.g., collision avoidance
constraints, balance constraints, occlusion constraints, etc.). These constraints can
be expressed as path constraints

h(x(t), u(t)) ≤ 0.

At each time instant, given a state estimation of the system, NMPC solves an
OCP defined over a finite horizon and subject to a prediction model of the system
and constraints on the system state and control inputs. The resulting control action
is applied to the system for a small time interval until a new measurement is available.
Given the new measurement, the NMPC solves the new OCP in order to obtain the
control action.

2.2 Numerical solution of the OCP 9

Algorithm 1: NMPC algorithm
Input: the initial state of the system x0 at t0

1 tk ← t0;
2 x̄k ← x0;
3 while true do
4 receive the estimated state of the system at time tk, x̄k;
5 solve the OCP (2.2) over the time interval [tk, tk + T] and obtain the

optimal control action u∗
k(·);

6 isolate the control action that corresponds to the time interval [tk, tk + δ],
uNMPC

k (·), and apply it to the system;
7 tk ← tk + δ;
8 end

Let us consider the generic time instant tk and denote by x̄k the estimated state
of the system at the considered time instant. Let us also consider the finite horizon
OCP of interest defined over a time interval [tk, tk + T] as

min
u(·)

∫ tk+T

tk

Vr(x(t), u(t))dt + Vt(x(tk + T)) (2.2a)

subject to:
x(tk)− x̄k = 0 (2.2b)
ẋ(t)− ϕ(x(t), u(t)) = 0, t ∈ [tk, tk + T] (2.2c)
xmin ≤ x(t) ≤ xmax, t ∈ [tk, tk + T] (2.2d)
umin ≤ u(t) ≤ umax, t ∈ [tk, tk + T] (2.2e)
h(x(t), u(t)) ≤ 0, t ∈ [tk, tk + T] (2.2f)
r(x(tk + T)) ≤ 0 (2.2g)

where T the prediction horizon, Vr(x(t), u(t)) and Vt(x(t0 + T)) the running and
terminal cost functions respectively, while (2.2g) represents state constraints at the
final time instant.

Solution of the OCP (2.2) gives an optimal control action u∗
k(·) : [tk, tk + T]→ U

where U is the feasible set of control inputs as defined by the constraints considered
in the OCP. At the time instant tk and given the state estimate x̄k the NMPC
solves the OCP (2.2) and applies to the system a control action uNMPC

k (·) for a time
interval [tk, tk + δ] such that

uNMPC
k (t) = u∗

k(t), t ∈ [tk, tk + δ] (2.3)

with δ being the considered sampling time. When a new state estimation becomes
available, the OCP is solved again and a new control action is applied to the system.
The steps of an NMPC algorithm are presented at Algorithm 1.

2.2 Numerical solution of the OCP
It is clear that the solution of the OCP is at the heart of the NMPC algorithm. The
choice of the particular method for its solution will strongly affect the performance

10 2. Real-time nonlinear model predictive control

and the reliability of the whole NMPC.
First, we briefly present different solution approaches for the OCP with particular

focus on the direct methods and specifically on the direct multiple shooting method,
which is a popular approach for transcribing the OCP into a Non-Linear Program
(NLP), especially for real-time applications. Then we discuss the solution of the
resulting NLP using a Sequential Quadratic Programming (SQP) algorithm.

2.2.1 Numerical solution approaches

There are three main classes of methods used for the numerical solution of the OCP.
The first class consists of the Dynamic Programming (DP) and the Hamilton-

Jacobi-Bellman (HJB) [18] approaches. Both methods are based on the computation
of the level sets of the OCP value function and require the solution of a partial differ-
ential equation. These methods suffer from the, so called, course of dimensionality
as they are practically applicable only to systems with a small number of states.

The second class consists of the indirect methods. These methods require the
optimality conditions of the considered problem and are based on the exploitation
of Pontryagin’s minimum principle [19]. These methods end up to the numerical
solution of a multi-point boundary value problem [20]. Although they lead to highly
accurate numerical solutions, indirect methods are not normally applied to on-line
implementations, like in an NMPC [4].

The third class consists of the direct methods or transcription methods. These
methods first transcribe the infinite-dimensional continuous-time OCP to a Non-
Linear Program (NLP) of finite dimensions, which is then solved using tailored
numerical optimization algorithms [21]. The direct methods are in principle more
popular for the on-line solution of an OCP, so in the rest of this section, we will
focus on them.

The direct methods are characterized by the way in which they transcribe the
OCP into an NLP. Their differences consist of the way in which the state and inputs
are discretized, as well as of the parameters that will be chosen as decision variables
in the resulting NLP. The three approaches are the direct collocation, the direct
single shooting and the direct multiple shooting.

The direct collocation method aims at the discretization of both the states and
the inputs. The resulting NLP is large and sparse and can be solved by an SQP or
an Interior-Point (IP) algorithm [22].

The direct single shooting discretizes only the control inputs, which are then used
as decision variables in the resulting NLP. As regards the state variables, given the
initial state of the system they derive implicitly by integrating the system dynamics.
This method leads to an NLP with a small number of decision variables, compared
to the direct collocation method. However, it is sensitive to changes in the initial
value of the state, which has a large influence on the state when the system is highly
nonlinear or unstable [23].

Finally, the direct multiple shooting method [24], as the name suggests, practically
divides the time interval [tk, tk +T] into smaller subintervals and applies the shooting
method to each one of them. This approach increases the decision variables in the
resulting NLP, as now the states that correspond to the shooting nodes have to
also be considered as decision variables. As a result, the NLP is large (not larger

2.2 Numerical solution of the OCP 11

however than the one of the collocation method) and sparse. Moreover, appropriate
conditions have to be added for each shooting node to ensure the continuity of the
resulting solution. Compared to the single shooting, the multiple shooting method
can be parallelized, can take advantage of the state variables in order to initialize the
optimization solvers and generally reports faster contraction rates of Newton-type
iterations, especially for highly nonlinear and unstable systems [21]. Finally, is often
preferable for on-line implementations.

In the following, we will present in more detail the direct multiple shooting
method.

Direct multiple shooting method

For the discretization of the OCP we start from the partition of the prediction
horizon [tk, tk + T] using a time grid that divides the considered time interval into
N subintervals

tk < tk+1 < ... < tk+N = tk + T. (2.4)

Although it is not necessary, we choose the resulting subintervals [tk+i, tk+i+1] for
i = 0, ..., N−1 to be equidistant and equal to the sampling time, i.e., tk+i+1−tk+i = δ.
Over the chosen grid, we discretize the control trajectory u(·) using a piecewise-
constant vector function

u(t) = uk|i, ∀t ∈ [tk+i, tk+i+1]

with uk|i ∈ IRnu . Note that alternative control parameterizations can be also
considered. The interested reader is referred to [23] for a list of the most common
ones.

Regarding the state trajectory, let us denote by xk|i the predicted state of the
system at time instant tk+i, i.e., xk|i = x(tk+i). In the multiple shooting setup, the
state trajectory is considered independently at each time subinterval [tk, tk+1] and
the vectors xk|i, for i = 0, ..., N at the beginning of each subinterval are used as
decision variables. To ensure continuity for the resulting trajectory, we consider that
the state of the system over a subinterval [tk+i, tk+i+1] is described by the solution
of the Initial Value Problem (IVP)

ẋ(t) = ϕ(x(t), uk|i), x(tk+i) = xk|i, t ∈ [tk+i, tk+i+1]. (2.5)

If we denote by ϕd-t(·, ·) the discrete time dynamics of the system (2.1) obtained by
a numerical integration method under the assumption of piecewise-constant control
inputs and by x̃(tk+i+1; xk|i, uk|i) an approximation of the solution of the IVP (2.5)
for t = tk+i+1 such that

x̃(tk+i+1; xk|i, uk|i) = ϕd-t(xk|i, uk|i) (2.6)

then to ensure continuity, the following equality constraint has to be considered

xk|i+1 − x̃(tk+i+1; xk|i, uk|i) = 0, i = 0, ..., N − 1

or equivalently

xk|i+1 − ϕd-t(xk|i, uk|i) = 0, i = 0, ..., N − 1. (2.7)

12 2. Real-time nonlinear model predictive control

For the discretization of the running cost function, one can evaluate it at the
corresponding nodes of the grid (2.4) or at a possibly finer one. The same procedure
can be followed for the considered state, inputs and path constraints.

So the infinite-dimensional OCP can be transformed into the finite-dimensional
NLP of the form

min
xk|0,...,xk|N ,

uk|0,...,uk|N−1

N−1∑
i=0

Vk|i(xk|i, uk|i) + Vk|N (xk|N) (2.8a)

subject to:
xk|0 − x̄k = 0 (2.8b)
xk|i+1 − ϕd-t(xk|i, uk|i) = 0, i = 0, ..., N − 1 (2.8c)
xmin ≤ xk|i ≤ xmax, i = 0, ..., N (2.8d)
umin ≤ uk|i ≤ umax, i = 0, ..., N − 1 (2.8e)
h(xk|i, uk|i) ≤ 0, i = 0, ..., N − 1 (2.8f)
r(xk|N) ≤ 0 (2.8g)

where x̄k is the estimated state of the system at time tk, (2.8b) the initial value
constraint, Vk|i(xk|i, uk|i) the running cost evaluated at tk+i and Vk|N (xN) the
terminal cost evaluated at tk+N .

2.2.2 Nonlinear optimization

Preliminaries

Let us express the NLP of interest (2.8) in the form

min
w

F (w) (2.9a)

subject to:
G(w, x̄k) = 0 (2.9b)
H(w) ≤ 0 (2.9c)

collecting the decision variables in the vector

w = (xk|0, uk|0, ..., xk|N−1, uk|N−1, xk|N) ∈ IRnw ,

and expressing the ne equality constraints (2.8b) and (2.8c) as G(w, x̄k) = 0, the
ni inequality constraints (2.8d - 2.8g) as H(w) ≤ 0 and the cost functions as F (w).
Note that in G(w, x̄k), the initial state x̄k enters linearly due to the initial value
constraint (2.8b).

For the rest of this analysis, we assume that all the functions are at least twice
differentiable.

Let us denote by S the set of all w that satisfy the constraints (2.9b) and (2.9c)
defined as

S := {w ∈ IRnw |G(w, x̄k) = 0 and H(w) ≤ 0}.

We will refer to S as feasible set and to each point in it, w ∈ S as feasible point.

2.2 Numerical solution of the OCP 13

Consider the i-th element of H(w) that corresponds to the i-th inequality
constraint hi(w). This constraint is called active if hi(w) = 0, while inactive if
hi(w) < 0. We collect all the indices that correspond to active inequality constraint
in A(w) defined as

A(w) := {i ∈ {1, ..., ni}|hi(w) = 0}.

We say that at a point w ∈ S the Linear Independence Constraints Qualification
(LICQ) holds iff the constraint gradients ∇gj(w) for j ∈ {1, ..., ne}, where gj the
j-th element of G, and ∇hi(w) for i ∈ A(w) are linearly independent.

The Lagrange function of the optimization problem (2.9) is

L(w, λ, µ) = F (w) + λT G(w, x̄k) + µT H(w) (2.10)

with λ = (λ1, ..., λne) and µ = (µ1, ..., µni) the vectors of the Lagrange multipliers.
First-order necessary conditions or Karush - Kuhn - Tacker (KKT) conditions

suggest that if w∗ is a local minimizer of the optimization problem (2.9) and LICQ
holds at w∗ then there exist λ∗ and µ∗ such that

∇wL(w∗, λ∗, µ∗) = 0 (2.11a)
G(w∗, x̄k) = 0 (2.11b)
H(w∗) ≤ 0 (2.11c)
µ∗

i ≥ 0, i = 1, ..., ni (2.11d)
µ∗

i hi(w∗) = 0, i = 1, ..., ni (2.11e)

The point (w∗, λ∗, µ∗) that satisfies the KKT conditions is called KKT point.
In principle, for a point at which LICQ holds, the KKT conditions are only

necessary for optimality and it is required to argue about the second order derivatives
for local optimality. However, in the special case of convex optimization problems,
the KKT conditions are also sufficient for global optimality.

Most of the optimization solvers aim at finding an approximate solution to the
KKT conditions (2.11). Representative examples are the Interior-Point (IP) [25]
methods and the Sequential Quadratic Programming (SQP) [22]. The two methods
mainly differ in the way in which (2.11d) and (2.11e) are treated.

In this work, we are going to solve the NMPC using the real-time iteration
method that is based on the SQP algorithm. As a result in the rest we will focus on
this.

Sequential quadratic programming

SQP is an iterative method for the solution of the NLP. At each iteration, SQP
solves a quadratic approximation of the NLP until a convergence criterion is satisfied.
Specifically, at the κ-th iteration, an inequality constrained Quadratic Program (QP)
is obtained from the quadratic approximation of the NLP around the iterate wκ.
Solution of the resulting QP gives a search direction ∆wκ based on which the next
iterate is computed from

wκ+1 = wκ + ακ∆wκ (2.12)

14 2. Real-time nonlinear model predictive control

where ακ ∈ [0, 1] a step size computed by a globalization method [22].
The inequality constrained QP obtained by the quadratic approximation of the

NLP (2.9) at the iterate wκ is

min
∆wκ

∇F (wκ)T ∆wκ + 1
2∆wκ

T B̄κ∆wκ (2.13a)

subject to:
G(wκ, x̄k) +∇G(wκ)T ∆wκ = 0 (2.13b)
H(wκ) +∇H(wκ)T ∆wκ ≤ 0 (2.13c)

where ∇G(wκ) and ∇H(wκ) are the Jacobians of the equality and inequality
constraints, respectively, and ∇F (wκ) the gradient of the objective function, all
evaluated at wκ. Note that since the initial value x̄k enters linearly in G(wκ, x̄k),
the Jacobian ∇G(wκ) is independent of x̄k. Such property will be particularly
useful for the real-time implementation of the SQP method.

The matrix B̄κ in principle corresponds to the exact Hessian of the Lagrangian,
i.e., ∇2

wL(wκ, λ, µ). However, computation of the exact Hessian requires a consider-
able amount of time and so an approximation of it can be considered. In this work, we
will consider the generalized Gauss-Newton method [26] which is appropriate for cost
functions of least squares form. For a cost function of the form F (w) = 1/2 |c(w)|2
the Gauss-Newton Hessian can be written as B̄ = ∇c(w)∇c(w)T , which is a posi-
tive semi-definite matrix. We can notice that the considered Hessian is Lagrange
multiplier-free as it only depends on the primal variables w.

The SQP algorithm is given in Algorithm 2. Note that the computationally
intensive parts of this algorithm are: (i) the computation of the sensitivities in step
3 and (ii) the solution of the QP in step 4.

QP solution and condensing As it is shown in Algorithm 2, at each SQP
iteration a QP is constructed from the quadratic approximation of the NLP (2.9)
and solved. Since the NLP (2.9) results from the use of the multiple shooting
method, the associated QP considers decision variables that correspond to both
the states and the control inputs of the system and as a result, the problem has
high dimensions and a sparse block structure. This structure can be exploited by
using an appropriate QP solver (e.g., FORCES [7] or qpDUNES [9]). An alternative
approach suggests the reduction of the decision variables by eliminating those that
correspond to the system state, using the linearized system dynamics from (2.13b).
This approach, referred as condensing [24], results to a smaller and dense QP that
can be efficiently solved by appropriate solvers that use dense linear algebra (e.g.,
qpOASES [8]). Clearly, the use of condensing requires an additional step after the
solution of the resulting QP (step 4 of Algorithm 2) in order to obtain the elements of
wκ that correspond to the state of the system using again the linearized dynamics. It
is reported that the condensing method is appropriate for relatively short prediction
horizons, while as the size of the horizon increases the use of structure exploiting
solvers is preferable. For more details, the interested reader is referred to [27].

2.3 Real-time implementation 15

Algorithm 2: SQP algorithm using the generalized Gauss-Newton method
Input: the estimated state of the system at time tk, x̄k, and an initial guess

w̃k

1 wκ ← w̃k;
2 while convergence conditions not satisfied do
3 compute the vectors G(wκ, x̄k), H(wκ) and the sensitivities ∇F (wκ),

B̄κ, ∇G(wκ) and ∇H(wκ);
4 construct and solve the QP (2.13) to obtain the search direction ∆wκ;
5 compute step size ακ;
6 update the primal variables: wκ ← wκ + ακ∆wκ;
7 end
8 return wκ

2.3 Real-time implementation
At the beginning of this chapter, we implicitly assumed that at each time instant tk

a state estimate of the system is available and the control action from the NMPC is
applied to the system. This would require an infinitesimally small computational
amount of time that is obviously not realistic. On the contrary, the numerical
solution of an OCP requires a significant amount of time, even comparable to the
sampling time δ, while in the meantime the system evolves. Thus, by the time
that the new control action is available, the system is at a different state than the
estimated one. One can attack this problem by starting to solve the OCP before tk

using a prediction of the state that the system will have at tk. Nevertheless, even if
the solution will be available at tk it will be based on outdated information, ignoring
any disturbances that might affect the evolution of the system in the meantime.

In both cases, the so called real-time dilemma [12] is evident. It consists in
deciding either to solve the NLP until convergence and apply an exact, however,
based on outdated information about the system and its environment, solution or to
apply an approximate solution but based on the most recent information available.

Fortunately, the recent advancement in the field permits not only the reduction of
the computational time but also to maintain the approximation errors at acceptable
levels.

Some ideas that can enable an NMPC algorithm to perform in real-time can be
found in [28, 21]. Among them are:

• offline preparation and code generation: exploits the fact that the NLPs
solved during each NMPC cycle are similar permitting the generation of an
optimized code with vectors and matrices of fixed dimensions;

• state prediction for delay compensation: if one knows in advance an
upper bound of the computational time needed for the solution of the NMPC,
then it is advisable instead of using the current state estimate, to predict the
state that the system will have at the time in which the solution is expected
to be available.

• separation into preparation and feedback phase: here one can exploit

16 2. Real-time nonlinear model predictive control

Algorithm 3: Real-time iteration algorithm
Input: solution of the previous NLP, wk−1

Preparation phase
1 prepare an initial guess w̃k from the previous solution wk−1 ;
2 compute the vector H(wκ) and the sensitivities ∇F (wκ), B̄κ, ∇G(wκ) and
∇H(wκ);

Input: state estimation x̄k

Feedback phase
3 given the elements of step 2 construct and solve the QP (2.13) to obtain the

search direction ∆wk;
4 update the primal variables: wk ← w̃k + ∆wk;
5 return wk

the fact that many of the expensive computations for the solution of the NLP
can be performed without the knowledge of the estimated state x̄k and they
can be performed in advance during a preparation phase. The rest of the
computations that can be only performed as soon as the estimated state is
available constitute the feedback phase.

• use of warm-start: exploiting the fact that in NMPC neighboring problems
are consecutively solved, one can use the solution of the previous problem as
an initial guess for the current one.

• iteration along with the evolution of the problem: based again on
the idea that the NMPC solves similar neighboring problems, one can avoid
solving each problem to convergence but instead settle with an approximate
solution and move to the next optimization problem using the latest information
available.

In the literature there exist several methods that use some of the ideas presented
above like the Newton-type controller [29], the continuation/GMRES method [30]
and the advanced step controller [31]. For a more detailed review of these methods,
the reader is referred to [28, 12]. However, in this work, we will only focus on the
Real-Time Iteration (RTI) method [32, 33] that will be presented in more detail in
the following.

2.3.1 Real-time iteration scheme

As we already mentioned, within NMPC, iterating an SQP algorithm to convergence
will require a significant (possibly prohibitive) amount of time, leading eventually to
an outdated control action.

Providing a "good" initial guess, w̃k, to the SQP (see Algorithm 2) can be
beneficial as [12]: (i) it minimizes the possibility to output an infeasible solution and
(ii) it permits to take full Newton-steps, i.e., ακ = 1, increasing the convergence rate.
However, providing a good initial guess to the SQP is not trivial. Luckily, in the
context of NMPC this choice emanates naturally from the structure of the NMPC

2.3 Real-time implementation 17

itself. Specifically, NMPC requires the solution of consecutive similar OCPs (and
consequently NLPs). As a result, their solution is also similar. For two consecutive
NLPs, say the NLP that corresponds to time tk−1 and the NLP that corresponds
to tk, the solution of the one solved at tk−1 can be used as an initial guess for the
solution of the one to be solved at tk.

The Real-Time Iteration (RTI) scheme, originally presented in [32], exploits the
fact that NMPC solves consecutive neighboring OCPs and instead of the solution of
SQP until convergence, it suggests the execution of only one full Newton-step per
NLP using as initial guess the solution of the previous one and always with the latest
information available about the system. In order to further reduce the feedback
time, the RTI scheme further exploits the structure of (2.13). Particularly it exploits
the fact that H(wk), ∇F (wk), B̄k, ∇G(wk) and ∇H(wk) whose computation
is the most expensive step of the SQP iteration (see Algorithm 2) do not require
the estimation of the system state x̄k for their computations. As a result, these
computations can precede the estimation of the system state permitting the use of
the most recent state information. These computations, that practically prepare the
QP to be solved at the time that the estimated state will be available, constitute
the preparation phase. After the state estimation is received the QP (2.13) can be
solved in order to obtain the new Newton-step and consequently the solution of the
NLP. This phase is the feedback phase. The Algorithm 3 presents an overview of the
RTI scheme.

2.3.2 Efficient software

Apart from tailored algorithms, like the RTI, achieving real-time performance for the
solution of the NMPC requires appropriate software. A list of embedded optimization
software packages can be found in [34]. However, a review of those is out of the
scope of this work. Instead, here we will briefly present the two packages that will be
used in the chapters to follow, namely, the ACADO Toolkit and its successor acados.

The ACADO Toolkit [35, 17, 36] is a software environment consisting of a collec-
tion of algorithms for direct optimal control. Its efficient structure, that permits low
computational times, in combination with the use of tailored algorithms, like RTI,
make it suitable for real-time NMPC. Its main advantage is that it represents the
functions symbolically using an operator-based-tree form. In this way, the specific
structure of a function can be efficiently detected and exploited, permitting also
numerical, symbolic and automatic differentiation and C-code generation.

Regarding the code generation tool of the ACADO Toolkit, it receives the NMPC
formulation in order to prepare an optimized C-code. Specifically, it exports C-
code with the elements of NMPC (the user-specified functions) and the associated
derivatives with respect to the state and control inputs, which are symbolically sim-
plified. Following, an integration routine is chosen and based on this a discretization
algorithm is prepared using either a single or multiple shooting method together
with appropriate algebra routines for condensing. For the resulting NLP, the RTI
scheme is autogenerated, binded with an appropriate solver for the resulting dense
QP that uses either an interior-point or an active-set method. The resulting C-code
is self-contained, is based on hard-coded dimensions and makes use of only static
memory. Thus it is efficient for real-time implementations.

18 2. Real-time nonlinear model predictive control

Successor of the ACADO Toolkit is the acados [34]. Although the idea behind
the two software is similar, there are notable differences. Instead of the use of
expression-trees for the symbolic representation, acados is based on CasADi [37] that
uses expression graphs that often lead to a smaller and faster code, as the resulting
instruction sequences are reportedly shorter. Moreover, regarding the linear algebra,
in ACADO Toolkit it is code-generated, which is an efficient approach when matrices
of low dimensions are involved, while it keeps the generated code independent of
external libraries. On the contrary, acados is based on the linear algebra package
BLASFEO [38] that incorporates optimized linear algebra routines and is efficient for
matrices of relatively higher dimensions (reportedly, acados outperforms ACADO on
medium-scale problems [34]). Finally, a variety of SQP-like methods (including the
RTI scheme) and a variety of numerical simulation routines and QP solvers give
flexibility to the user.

2.4 Conclusions
This chapter offered some preliminaries for the NMPC schemes that will be used
for real-time motion generation in the following chapters. Starting from a general
infinite-dimensional OCP the procedure for its solution using the direct multiple
shooting was described. After describing an SQP algorithm for the resulting NLP,
the RTI scheme was presented for the solution of the NMPV in real-time. Finally, the
two software packages that will be used in the following chapters for the formulation
and solution of the NMPC were briefly presented.

19

Part I

Motion generation for mobile
robots

21

Chapter 3

Mobile robot navigation

The first part of this thesis focuses on the mobile robot navigation in environments
populated by static and/or moving obstacles.

Mobile robots are used in numerous applications, ranging from house cleaning,
surveillance and parcel delivery to search and rescue operations or exploration
of human-hostile environments. When the robot has to operate autonomously,
navigation is at the heart of the considered operation. According to the definition
given in [39], navigation is the problem of finding a collision-free motion for the robot
system from one configuration (or state) to another.

The mobile robot navigation has been studied extensively in the past years,
however, is still an active field of research. A comprehensive review of some of the
most commonly used methods can be found in [40, 41]. Classic approaches are
based on graph search like A∗ [42], sampling-based techniques like the Probabilistic
Roadmap (PRM) [43] and the Rapidly-exploring Random Tree (RRT) [44, 45] or
its optimal version RRT∗ [46]. In addition, the motion planning problem can be
also formulated as a mathematical program that can be solved by a numerical
optimization solver [47]. Note that these methods require full knowledge of the
environment and a significant amount of time to output the resulting path. For
this reason, they are characterized as offline methods. However, in most of the
cases one cannot have complete knowledge of the environment, which might also be
populated by moving obstacles (like other robots or humans) whose motion is not
known in advance. As a result, a motion planning method has to be able to adapt
to the environment changes when they occur. With this in mind online approaches
were implemented. Among them, an extension of RRT with a real-time flavor [48],
approaches like the dynamic-window approach [49], velocity obstacles [50], as well as
the artificial potential fields [51].

Recently, NMPC has become a rather famous alternative for mobile robot
navigation in environments populated by static and/or moving obstacles. Solving
an OCP at each control cycle and by using the robot dynamic model as a prediction
model along with appropriate state and input constraints, NMPC can generate
kinodynamically feasible motions that adapt to the changes of the environments,
while since the OCP is defined over a time horizon, the resulting motion have also a
notion of look-ahead.

This chapter offers some preliminary material and an introductory discussion on

22 3. Mobile robot navigation

Figure 3.1. A general differential-drive mobile robot. The robot consists of two driving
wheels and a caster wheel for mechanical balance.

the use of NMPC as a motion generation approach for mobile robot navigation. Its
purpose is to pave the road to the methods proposed in Chapters 4 and 5 for the
solution of the robot navigation problem. Note that, although some of the concepts
presented in this and Chapters 4 and 5 are applicable to most mobile robots (i.e.,
ground, aerial, under-water), this thesis only focuses on wheeled mobile robots.

The chapter is organized as follows. In Sect. 3.1 we formulate a general navigation
problem for a mobile robot that operates in environments populated by static and/or
moving obstacles. Sect. 3.2 obtains the kinematic and dynamic model of a commonly
used type of wheeled mobile robot, the differential-drive robot, that it is going to
be used as a testing platform for the methods proposed in the following chapters.
Sect. 3.3 presents an NMPC method for robot navigation, complete with a discussion
about the collision avoidance constraint, which is at the heart of the robot navigation
problem. We focus our attention on the way in which the structure of the collision
avoidance constraint affects the robot safety within an NMPC setup. Finally, Sect. 3.4
offers some concluding remarks.

3.1 Problem formulation

In this section, we will formulate a general version of the mobile robot navigation
problem. Note that the particular details of the problem can vary depending on
the environment in which the robot moves, the robot itself1, as well as the available
information about the robot state and the state of the environment obstacles.

Consider the robot illustrated in Fig. 3.1 with configuration q. The robot moves
on horizontal ground, in a workspaceW populated by static and/or moving obstacles.

1In many practical applications, the motions required by the mobile robot to perform are
relatively slow, without the need of excessive accelerations. As a result, the use of the kinematic
model of the robot is adequate. On the other hand, in cases where the robot performs aggressive
motions and its dynamic characteristics (e.g., mass and moment of inertia) are significant, then the
use of the dynamic model is required.

3.2 Mobile robot model 23

We denote by R(q) ⊂ W the volume occupied by the robot at configuration q and
by O(t) ⊂ W the volume occupied by the obstacles at time t.

A navigation task is assigned to the robot in terms of a vector y ∈ Y which
describes the position of a representative point C (see Fig. 3.1) on the robot and is
related to the configuration via a forward kinematic map y = k(q). The task is to
drive C to a goal region G. The problem consists in generating in real-time a motion
that

1. drives the robot from its starting configuration to a configuration realizing the
task, i.e., brings C in the goal region G;

2. is consistent with the considered model of the robot and respects existing
bounds on the robot velocity and the considered control inputs;

3. always avoids collisions between the robot and the obstacles, i.e., R(q)∩O(t) =
∅ for all t.

3.2 Mobile robot model
As it was already mentioned, this analysis focuses on a general differential-drive
mobile robot as the one depicted in Fig. 3.1. The considered robot consists of two
driving wheels and a caster wheel for mechanical balance. For our analysis we make
the following assumptions:

• the robot bodies are rigid;

• the robot wheels are in point contact with the ground, while the contact points
that correspond to the driving wheels do not change with respect to a reference
frame attached to the vehicle;

• the robot maintains its balance, in the sense that its wheels remain always in
contact with the ground (which is a reasonable assumption for most conven-
tional wheeled mobile robots whose center of mass is close to the ground);

• the ground-wheel friction is adequate to prevent slippage.

Referring to Fig. 3.1, we denote by Fw the world reference frame, by B(xb, yb)
the midpoint of the line segment joining the two driving wheels with xb and yb its
Cartesian coordinates, by Pr(xr, yr) and Pl(xl, yl) the contact points of the right
and left wheel with the ground. With b we denote the distance between the contact
points of the driving wheels. Let us also denote the reference frame Fb with its
origin attached at B and its x-axis aligned with the sagittal axis of the robot.

The robot generalized coordinates are collected in the vector

q = (xb, yb, θb, ϕr, ϕl) ∈ IRn

where (xb, yb, θb) define the pose of the mobile robot on the horizontal plane, with
θb being the orientation of the vehicle (and consequently of the two driving wheels)
with respect to the world frame Fw, and ϕr and ϕl the joint angle of the right and
left driving wheels respectively.

24 3. Mobile robot navigation

The position vector of Pr and Pl can be expressed in the world frame as

pr =
(

xr

yr

)
=
(

xb + b/2 sin θb

yb − b/2 cos θb

)
(3.1a)

pl =
(

xl

yl

)
=
(

xb − b/2 sin θb

yb + b/2 cos θb

)
(3.1b)

while their velocity as

ṗr =
(

ẋr

ẏr

)
=
(

ẋb + b/2 θ̇b cos θb

ẏb + b/2 θ̇b sin θb

)
(3.2a)

ṗl =
(

ẋl

ẏl

)
=
(

ẋb − b/2 θ̇b cos θb

ẏb − b/2 θ̇b sin θb

)
(3.2b)

3.2.1 Kinematic constraints

The robot is in contact with the ground through its wheels. The forces exerted
by the ground to the robot at the contact points of the wheels constrain the robot
motion.

No lateral wheel motion The assumption for adequate wheel-ground friction
suggests that the robot wheels are prevented from slipping sideways (i.e., to a
direction orthogonal to the robot sagittal plane). So, for the two wheels we have the
following constraints

−ẋr sin θb + ẏr cos θb = 0 (3.3a)

−ẋl sin θb + ẏl cos θb = 0 (3.3b)

After substituting (3.2) in (3.3) we get

ẋb sin θb − ẏb cos θb = 0 (3.4a)

ẋb sin θb − ẏb cos θb = 0 (3.4b)

We can notice that the no lateral motion condition for each wheel leads to the same
constraint. This is due to the structure of the differential-drive robot.

Pure rolling condition The pure rolling condition suggests that the translational
motion of the wheels is a result of its rotation around its axis only. Again this is a
result of the assumption that the friction is adequate to prevent slippage. This leads
to the following conditions that connect the wheel angular velocity around its axis
to the wheel translational velocity (and consequently to the robot velocity) in the
world frame.

ẋr cos θb + ẏr sin θ − rϕ̇r = 0 (3.5a)

ẋl cos θb + ẏl sin θ − rϕ̇l = 0 (3.5b)

by substituting (3.2) in (3.5) we get

ẋb cos θb + ẏb sin θb + θ̇bb/2− rϕ̇r = 0 (3.6a)

3.2 Mobile robot model 25

ẋb cos θb + ẏb sin θb − θ̇bb/2− rϕ̇l = 0 (3.6b)

The constraints (3.4), (3.6a) and (3.6b) constitute the k = 3 linearly independent
kinematic constraints that can be written in Pfaffian form as

sin θb − cos θb 0 0 0
cos θb sin θb b/2 −r 0
cos θb sin θb −b/2 0 −r


︸ ︷︷ ︸

AT (q)∈IRk×n


ẋb

ẏb

θ̇b

ϕ̇r

ϕ̇l


︸ ︷︷ ︸

q̇

= 0 (3.7)

3.2.2 Kinematic model

At a given configuration q, the generalized velocities q̇ lie at the null space of matrix
AT (q) and can be expressed as

q̇ = G(q)ν (3.8)

where G(q) ∈ IRn×m a matrix whose columns span the null space of AT (q), with
m = n − k and ν ∈ IRm a velocity input vector. We will refer to vector ν as the
vector of the robot pseudovelocities, in order to distinguish it from the generalized
velocities q̇. Equation (3.8) is referred to as the kinematic model of the robot.

Note that the choice of G(q) is not unique and it can be chosen in such a way
that the velocity input ν has a specific physical meaning. Particularly, one can use
as an input the angular velocity of the two wheels, ν = (ϕ̇r, ϕ̇l) by choosing

G(q) =


r/2 cos θb r/2 cos θb

r/2 sin θb r/2 sin θb

r/b −r/b
1 0
0 1

 . (3.9)

Alternatively, by choosing G(q) as

G(q) =


cos θb 0
sin θb 0

0 1
1/r b/(2r)
1/r −b/(2r)

 (3.10)

one can use the input vector ν = (υ, ω) where υ is the robot driving velocity2 and ω
its steering velocity3. Note that the driving and steering velocities are connected to
the wheels angular velocities via

υ = r(ϕ̇r + ϕ̇l)
2 , ω = r(ϕ̇r − ϕ̇l)

b
.

2As driving velocity we define the velocity of the robot along its longitudinal axis.
3As steering velocity we define the angular velocity around the vertical axis at B.

26 3. Mobile robot navigation

Differentiation of (3.8) with respect to time gives a relationship between the
generalized accelerations and the time derivative of the pseudovelocities that we will
refer to them as pseudo-accelerations

q̈ = Ġ(q)ν + G(q)ν̇. (3.11)

Representative points on the robot In principle any point on the robot is
related to the robot configuration q via a forward kinematic map. Referring to
Fig. 3.1 consider the point C which will be used as a representative point for the
navigation task. Its position can be described as

y = pc =
(

xc

yc

)
=
(

xb + dc cos θb

yb + dc sin θb

)
︸ ︷︷ ︸

k(q)

(3.12)

while its velocity as
ẏ = ṗc = ∂

∂q
k(q)G(q)ν

3.2.3 Dynamic model

The dynamic model of the robot provides a mapping between the generalized forces
acting on the robot (i.e., actuator forces and external forces) and its motion. In
this work, in order to derive the dynamic model of the robot we follow the Lagrange
formulation. Note that the derivation of the dynamic model of the robot of Fig. 3.1
is relatively simple, as the kinetic energy can be computed even by hand. However, if
the structure of the robot was more complex, a systematic approach for the derivation
of the kinetic and potential energy, and in extension of the robot equations of motion,
is required (see Appendix A).

The following analysis is based on [52]. Given the generalized coordinates q, we
define the Lagrangian of the mechanical system (robot) as the difference between its
kinetic energy T (q, q̇) and its potential energy U(q)

L(q, q̇) = T (q, q̇)− U(q) (3.13)

The kinetic energy of the system is the sum of the kinetic energies of each
individual robot body. In the particular case of the considered mobile robot (Fig. 3.1),
its kinetic energy is the sum of the kinetic energy of the base (i.e., the main vehicle)
and the two driving wheels4. Regarding the potential energy, our initial assumption
that the robot moves on an horizontal ground suggests that U(q) = 0.

Having computed the Lagrangian as a function of the generalized coordinates and
the generalized velocities, the Lagrange equations for the kinematically constrained
mobile robot are

d

dt

(
∂L(q, q̇)

∂q̇

)T

−
(

∂L(q, q̇)
∂q

)T

= S(q)τ + A(q)λ (3.14)

4The kinetic energy of the caster wheels can be ignored by simply considering them as part of
the main vehicle for a fixed configuration.

3.3 Motion generation via NMPC 27

where τ ∈ IRnτ is the vector of the forces/moments applied by the nτ robot actuators5,
S(q) ∈ IRn×nτ the matrix that maps the actuator forces to forces performing work
on the generalized coordinates, A(q)λ the vector of the forces6 exerted to the robot
by its contact with the ground at the generalized coordinates level, λ ∈ IRk the
vector of the Lagrange multipliers.

From (3.13) and (3.14) we get the dynamic model of the robot as

B(q)q̈ + n(q, q̇) = S(q)τ + A(q)λ (3.15a)

AT (q)q̇ = 0 (3.15b)

where B(q) ∈ IRn×n is the robot inertia matrix, while n(q, q̇) ∈ IRn is the vector of
velocity and gravitational terms for which holds

n(q, q̇) = Ḃ(q)q̇ − 1
2

(
∂

∂q

(
q̇T B(q)q̇

))T

+
(

∂U(q)
∂q

)T

. (3.16)

Note that in the considered case the term that corresponds to gravitational forces is
zero since U(q) = 0.

One can eliminate the Lagrange multipliers by left-multiplying both sides of
(3.15a) by GT (q), leading to the reduced-dynamics model

GT (q)B(q)q̈ + GT (q)n(q, q̇) = GT (q)S(q)τ . (3.17)

By also substituting (3.11) in (3.17) we get

M(q)ν̇ + m(q, ν) = E(q)τ (3.18)

where

M(q) = GT (q)B(q)G(q)
m(q, ν) = GT (q)B(q)Ġ(q)ν + GT (q)n(q, q̇)

E(q) = GT (q)S(q).

By substituting the kinematic constraints (3.15b) by the kinematic model (3.8)
and since M(q) is positive definite, we can obtain the state-space reduced model as

q̇ = G(q)ν (3.19a)
ν̇ = M−1(q) (E(q)τ −m(q, ν)) (3.19b)

3.3 Motion generation via NMPC
To generate the desired motion we will use an NMPC algorithm for real-time motion
generation. The proposed NMPC that will be presented in this section is the base
for the NMPC approaches for robot navigation that will be presented in Chapters 4
and 5.

5In this work we assume that the number of the actuators is equal to the number of the robot
DOF, i.e., nτ = m = n − k.

6Note that these are the forces that enforce the kinematic constraints to the robot.

28 3. Mobile robot navigation

The considered robot model that will be used as a prediction model will be
expressed as

ẋ = ϕ(x, u) (3.20)

where x = (q, ν) is the robot state and u the robot control inputs. Note that the
control inputs depend on the model that we use. Particularly, if we consider only
the kinematic model (3.8) we can consider inputs at the pseudo-acceleration level,
i.e., u = ν̇. Alternatively, if we consider the state-space reduced model (3.19) then
the considered inputs correspond to the torques applied by the robot actuators, i.e.,
u = τ .

Consider the prediction horizon T , the sampling time δ and the number of the
subintervals N = T/δ. At the generic time instant tk, we want the NMPC to
generate over the time interval [tk, tk + T] a motion that drives the task error to
zero with the least possible control effort, while maintaining the robot safety.

Denote by xk|i and uk|i the predicted robot state and control inputs at time tk+i,
by yd the position of a representative point in G and by yk|i and ẏk|i the predicted
position and velocity of C at tk+i. Denoting also by ek|i = yd − yk|i the predicted
task error at time tk+i, the running and terminal costs can be expressed respectively
as

Vk|i(xk|i, uk|i) = eT
k|iQek|i + ẏT

k|iSẏk|i + uT
k|iR uk|i,

Vk|N (xk|N) = eT
k|N QN ek|N + ẏT

k|N SN ẏk|N ,

where Q, S and R are weighting matrices of appropriate dimensions for the predicted
task error, the velocity of C and the control effort throughout the prediction horizon,
while QN and SN are the weighting matrices for the predicted task error and the
velocity of C at the final time instant.

The resulting NLP to be solved at time tk will be

min
xk|0,...,xk|N ,

uk|0,...,uk|N−1

N−1∑
i=0

Vk|i(xk|i, uk|i) + Vk|N (xk|N) (3.21a)

subject to:
xk|0 − xk = 0 (3.21b)
xk|i+1 − ϕd-t(xk|i, uk|i) = 0, i = 0, ..., N − 1 (3.21c)
xmin ≤ xk|i ≤ xmax, i = 0, ..., N (3.21d)
umin ≤ uk|i ≤ umax, i = 0, ..., N − 1 (3.21e)
collision avoidance constraints at tk, ..., tk+N (3.21f)

where xk the state of the robot at time tk, ϕd-t(·, ·) the discrete-time model of
the robot obtained via numerical integration of (3.20) under the assumption of
piecewise-constant control inputs, while xmin,xmax and umin,umax are the lower and
upper bounds of the considered robot state and control inputs respectively.

Clearly, in order for the robot to navigate safely in an environment occupied by
obstacles, collision avoidance constraints have to be added to the NMPC scheme. In
the following, we offer a discussion about the collision avoidance constraints.

3.3 Motion generation via NMPC 29

3.3.1 The collision avoidance constraint

In order to ensure that the generated motion will be collision-free we have to include
appropriate collision avoidance constraints. Let us consider the j-th obstacle whose
volume is denoted by Oj(t) ⊂ O(t). Typically a collision avoidance constraint aims
at limiting the robot-obstacle relative motion in such a way that the volume R(q)
of the robot and the volume of the obstacle do not overlap, i.e.,

R(q) ∩ Oj(t) = ∅ ∀j = 1, ..., no. (3.22)

with no the number of obstacles. In principle the constraint (3.22) is non-convex
and non-differentiable [53, 54]. As a result, (3.22) cannot be included directly in
(3.21f) and so a reformulation or an approximation of this constraint is required.

Clearly, the particular structure of the environment plays an important role in the
formulation of the collision avoidance constraint. In some structured environments7

one can leverage the particular features and treat the problem as a corridor navigation
problem after proper reformulation of the equations of motion, see [55, 56]. In such a
way the collision avoidance constraint can be substituted by a state bound constraint
of the form (3.21d) with the upper and lower bounds set at each control cycle in such
a way that they form a "corridor" that does not contain any obstacle inside. However,
in the general case this is not possible and one has to include explicit collision
avoidance constraints. In [54] the authors proposed a reformulation of the generic
collision avoidance constraint (3.22) as a smooth nonlinear version, appropriate
for numerical optimization. In [57, 58] signed distance fields are used in order to
generate collision-free trajectories. In [59], a soft collision avoidance constraint is
introduced that considers obstacles described by general non-convex sets. Other
approaches aim at the approximation of (3.22) by enveloping the robot and the
obstacles with bounding spheres or ellipsoids [60, 61, 62, 63] and evaluating whether
the two bodies collide using a quadratic inequality that corresponds to the inequality
of the ellipsoid.

It should be noted that all the aforementioned collision avoidance constraints
depend only on distance information between the robot and the obstacles, without
any consideration about the rest of the robot state. We will refer to this kind of
methods as distance-based methods. In an NMPC, a distance-based constraint is
active, and as a result affects the generated motion, only if the obstacle is reachable
by the prediction horizon. In that case, the NMPC can "see" the obstacle and
generate a motion that avoids the collision with it. So, one can notice that the
effectiveness of such methods depends on the length of the prediction horizon since
the longer the prediction horizon, the earlier an imminent collision can be detected
and averted without significant (sometimes prohibitive) actuation effort.

On the other hand, real-time performance obviously does not allow arbitrarily
long prediction horizons. In practice, high-speed navigation requires the use of the
robot dynamic model and high control frequency. Moreover, the presence of moving
obstacles with unpredictable motion also requires fast control cycles in order to use
the latest information about the environment. As a result, the maximum achievable

7With the term structured here, we refer to environments that contain an underlying structure
(i.g., a city road or the corridor of a building).

30 3. Mobile robot navigation

prediction horizon on typical robot processing platforms ends up being relatively
short. Consequently, the use of a purely distance-based collision avoidance constraint
may jeopardize the robot safety, since the danger of collision may be detected at a
time when the robot does not have the necessary actuation power to prevent it.

In an attempt to increase the area in which the collision avoidance constraint
affects the solution of the NMPC, authors exploited methods in which the volume
of the bounding geometries used in order to envelop the robot and the obstacles for
the collision avoidance constraint, increases throughout the prediction horizon [62].

Alternatively, other approaches attack the problem of collision avoidance via
appropriate constraints on Control Barrier Functions (CBFs). CBFs are a tool for
attaining forward-invariance of a set via an appropriate constraint. The interested
reader is referred to the works [64, 65, 66] for an overview on CBFs. In the context of
mobile robot navigation, one can define a safe-set that contains robot states in which
the robot is not in collision with an environment obstacle. If this safe-set is forward-
invariant, collision avoidance is guaranteed. So, one can use such constraints on
appropriate CBFs in order to enforce collision avoidance. Note that these constraints
involve not only the distance between the robot and the obstacle but also its rate
of change. Thus, using them in an NMPC setup can be beneficial as the presence
of an obstacle will affect the generated motion, even if it is not in the range of the
prediction horizon. Examples of CBF-based collision avoidance constraints in an
NMPC setup for mobile robot navigation can be found in [67, 68, 69].

The influence of the collision avoidance constraint can be increased if a look-ahead
capability is given, by considering both the whole robot state with respect to the
obstacles and the robot actuation capabilities. This idea has been already exploited
in some classical motion planning methods like the dynamic window approach [49]
or the velocity obstacles [50]. The importance of considering the whole robot state
in order to guarantee safety is also stressed in [70] where the concept of Inevitable
Collision States (ICS) is first introduced. In [71], the idea of ICS is exploited by an
anytime motion planning approach based on an RRT. In [72], workspace obstacles
are represented as velocity obstacles over a predefined time horizon, whose length
depends on the robot state and actuation capabilities and is such that the robot can
always avoid collision with the obstacle by a predefined maneuver. Finally, in [73]
a forbidden velocity map is defined as the set of the robot prohibited velocities
associated with each obstacle based on the state of the robot and its braking
capabilities. Nevertheless, these methods require a search in the input space which
is not consistent with the nature of the NMPC. A collision avoidance constraint that
is based on the robot-obstacle relative state and the worst-case stopping time of
the robot joints is introduced in [74] and applied to a linear MPC in [75]. However,
the constraint becomes stricter throughout the prediction horizon considering a
worst-case scenario in which the obstacle and the robot are moving toward each
other with maximum velocity.

3.4 Conclusions

In this chapter, we formulated a general navigation problem in the presence of
obstacles for a differential-drive mobile robot, while for the considered robot we

3.4 Conclusions 31

derived its kinematic and dynamic model. For the solution of the considered
problem, we proposed an NMPC scheme for real-time motion generation. Special
attention was given to the collision avoidance constraint that has to be included in
the NMPC scheme in order to enforce safety. We argued that a purely distance-
based collision avoidance constraint can jeopardize the robot safety, if in view of
real-time performance the prediction horizon is relatively short. On the contrary,
collision avoidance constraints that consider additional information regarding the
robot-obstacle relative velocity and the robot actuation capabilities are preferable
for enforcing safety.

In the following chapters, the proposed NMPC scheme for robot navigation will
be used in two navigation problems. In Chap. 4 we consider robot navigation in
environments crowded by humans. To enforce safety we use in the NMPC scheme
collision avoidance constraints built upon appropriate CBFs. In Chap. 5 we consider
a robot navigating in an environment occupied by static and moving obstacles
and we introduce a novel collision avoidance constraint to be used in the NMPC,
that considers both the robot-obstacle relative state as well as the robot actuation
capabilities.

33

Chapter 4

Crowd navigation using NMPC
and control barrier functions

In this chapter, we consider the problem of safe robot navigation in an environment
populated by a human crowd. Navigation in a human crowded environment is a
common task for robots used in service applications (e.g., parcel delivery, patrolling,
vacuum cleaning). As in every navigation task, collision avoidance is at the heart of
the problem. However, in the context of human crowd navigation, a collision might
not only harm the robot but also the humans populating the environment, whose
safety should be the first priority of any robotic application.

This chapter is based on our work, originally presented in [1], for safe robot
navigation in a human crowd using NMPC. As we already mentioned in Chap. 3,
a purely distance-based collision avoidance constraint within the NMPC can be
insufficient due to the short prediction horizons dictated by the real-time performance,
risking to jeopardize not only the robot but also the human safety. For this purpose,
we consider collision avoidance constraints built upon discrete-time CBFs. The
proposed NMPC serves as the motion generation module, that along with a crowd
prediction module, constitute a sensor-based scheme for safe robot navigation in a
crowd. Regarding the crowd prediction module, it relies on a simple, yet effective,
technique based on Kalman Filters (KFs), that predicts the future motion of the
humans based on the information acquired by an on-board sensor.

The novelty of this work lies in the use of a real-time NMPC with CBF-based
collision avoidance constraint as part of a complete framework for safe robot nav-
igation in a crowd. Extensive simulations show the effectiveness of the proposed
method while comparison with a version of the NMPC that uses a collision avoidance
constraint based on purely distance information shows the superior performance of
CBFs as collision avoidance constraints in an NMPC.

This chapter is organized as follows. Sect. 4.1 formulates the considered crowd
navigation problem, while Sect. 4.2 gives an overview of the proposed framework. The
crowd prediction module is presented in Sect. 4.3 followed by the motion generation
module which is presented in Sect. 4.4. In Sect. 4.5 we present simulation results
and in Sect. 4.6 we offer some concluding remarks.

34 4. Crowd navigation using NMPC and control barrier functions

Figure 4.1. An instance of the considered problem. The robot must safely navigate in the
crowd of moving humans to reach the goal region (in yellow).

4.1 Problem formulation

Consider the mobile robot of Fig. 3.1 with configuration q moving in a workspace W
populated by a crowd of humans (see Fig. 4.1). The robot motion can be described
by the kinematic model (3.8). Denote by x = (q, ν) ∈ D the robot state, with
the pseudovelicities ν comprised by the robot driving and steering velocity, i.e.,
ν = (υ, ω). If we consider the robot being controlled at the wheel acceleration level,
i.e., u = (ϕ̈r, ϕ̈l), then the considered robot model can be expressed as

ẋ = ϕ(x, u) =

 G(q)ν
r
2(ϕ̈r + ϕ̈l)
r
b (ϕ̈r − ϕ̈l)

 . (4.1)

We assume that the robot is always aware of its own state x.
Denote by R(q) ⊂ W the volume occupied by the robot at configuration q

and by H(t) ⊂ W the volume occupied by the humans at time t. The robot is
equipped with an on-board sensor – in particular, a laser rangefinder – through
which it continuously acquires information about its surrounding. This information,
typically in the form of a range-bearing pair, can be readily transcribed into a set S
of the measured relative position of points on the humans detected within the sensor
field-of-view (FOV).

The robot is assigned a navigation task in terms of a vector y ∈ Y which describes
the position of the representative point C of the robot (see Fig. 3.1). The task is to
drive C to a goal region G. The problem of safe navigation in a crowd consists in
generating in real-time a motion, that based on the available sensory information S,

1. drives the robot from an initial configuration to a configuration that realizes
the task, i.e., the representative point C reaches the goal region G;

2. is consistent with model (4.1) and respects existing limitations on both state
and input variables;

3. always avoids collisions with humans, i.e., R(q(t)) ∩ H(t) = ∅ at all time
instants t.

4.2 Proposed framework 35

Figure 4.2. Block scheme of the proposed safe navigation framework.

We emphasize that for safe navigation knowledge about the humans future motion
is essential. However, in the considered context, this knowledge is not available and
has thus to be predicted based on the available sensory information. This aspect is
therefore part of the considered problem.

4.2 Proposed framework

To solve the considered problem, we propose the safe navigation framework outlined
in the block scheme of Fig. 4.2. It works in a digital fashion over sampling intervals
of duration δ and is constituted by two main modules, i.e., the crowd prediction and
motion generation module.

At the generic time instant tk = kδ, the available sensory information Sk and
the current robot state xk are passed to the crowd prediction module. Based on
this information, the crowd prediction module predicts the motion of a number of
surrounding humans over the time interval [tk, tk + T], with T = Nδ its duration
and N the number of sampling intervals within it. In particular, denote by pj

k the
absolute position of the closest to the robot point of a generic human at time tk

and collect in a vector P j
k the predicted path of this point over the time interval

[tk, tk + T]
P j

k = (pj
k|0, . . . , pj

k|N),

where pj
k|i is the predicted absolute position of the closest to the robot point of

the human at tk+i = (k + i)δ and pj
k|0 = pj

k. At each time tk the crowd prediction
module collects the predicted path for M humans in the tuple

Pk = {P 1
k, . . . , P M

k },

where M represents the number of humans that will be considered for collision
avoidance and is a byproduct of the crowd prediction module. Pk is the output of
the crowd prediction module.

The predicted motion of the M humans, collected in Pk, is fed to the motion
generation module, together with the goal region G and the current robot state xk.
The motion generation module relies on a real-time NMPC algorithm to produce
wheel acceleration commands u = (ϕ̈r, ϕ̈l) for the robot. It uses a prediction horizon
T (over which Pk is defined). In order to avoid collisions with the surrounding

36 4. Crowd navigation using NMPC and control barrier functions

Figure 4.3. Humans selected for collision avoidance by the K-Neighbors (left) and K-Cones
(right) strategy for K = 3. Green dots indicate the closest point of the selected humans.

humans the NMPC uses a CBF-based collision avoidance constraint for each of the
M humans accounted in Pk.

The focus of this thesis is on the motion generation module and particularly
on the CBF-based collision avoidance constraint used within the NMPC. However,
the crowd prediction module is an important element of the proposed safe robot
navigation framework that also affects design choices within the NMPC. As a result
in addition to the motion generation module that is presented in Sect. 4.4, the crowd
prediction module will be briefly presented in Sect. 4.3.

4.3 Crowd prediction module
This module receives in input the sensory information Sk available at tk and the
current robot state xk. It outputs the tuple Pk with the predicted motion of M
humans over [tk, tk + T].

To obtain this, it is essential to first choose which humans in the crowd will be
considered for collision avoidance, whose future motion must therefore be predicted.
We propose two possible strategies to make this choice, which are described in the
following and illustrated in Fig. 4.3. Let K be a user-specified maximum number of
humans to be considered.

• K-Neighbors. This strategy considers for collision avoidance the K closest to
the robot humans within the sensor FOV.

• K-Cones. This strategy conceptually divides the sensor FOV in K cones of
equal detection angle and considers the closest to the robot human within each
of them.

The state of the selected K humans at time instant tk is estimated by means
of an array of K KFs, called KF-1, . . . , KF-K. In particular, consider the generic
l-th human and collect in a vector χl

k = (pl
k, ṗl

k) his state at tk, with pl
k and ṗl

k the

4.3 Crowd prediction module 37

Figure 4.4. Conceptual scheme of the crowd prediction module.

position and velocity of his closest to the robot point, which will be estimated by
the associated to the l-th human KF, i.e., KF-l. Assume this closest to the robot
point moves omnidirectionally with constant velocity over the sampling intervals;
moreover, notice that the measurements include only position information. Then,
the state-transition and output models can be represented by the discrete-time
stochastic system

χl
k+1 =

(
I2×2 δI2×2

02×2 I2×2

)
︸ ︷︷ ︸

A

χl
k + vk (4.2)

ζl
k =

(
I2×2 02×2

)
︸ ︷︷ ︸

C

χl
k + wk (4.3)

where vk, wk are white Gaussian noises with zero mean and covariance matrices V k,
W k, respectively; ζl

k is the measured closest to the robot point of the human which
needs to be carefully extracted from the sensory information Sk. Note that, since
the available sensory information is non-specific (i.e., it does not embed the notion
of human identity), the same KF can, in principle, estimate the state of different
humans at different time instants.

The full crowd prediction procedure, outlined in Fig. 4.4, consists of the three
stages described in the next subsections.

4.3.1 Data association

The adopted selection strategy (i.e., K-Neighbors or K-Cones) determines the way
in which the measurements extracted from Sk are associated to the KFs.

When adopting the K-Neighbors strategy, an iterative procedure is involved
to extract from Sk a subset Zk containing the measured absolute position of the
closest to the robot points on the K closest to the robot humans. Such procedure

38 4. Crowd navigation using NMPC and control barrier functions

relies on the assumption that the planar projection of the occupancy volume of
any human in the crowd is always contained in a bounding circle of radius ρH . At
the l-th iteration, the measured relative position of the point that is the closest to
the robot is extracted from Sk, expressed in absolute coordinates (using xk), and
added to Zk; then, the center of the bounding circle of the l-th human is computed
via simple geometrical considerations and all positions of points lying within it are
removed from Sk. The procedure terminates as soon as the number of elements in
Zk reaches K (|Zk| = K) or Sk becomes empty (Sk = ∅). Finally, the extracted |Zk|
measurements are associated to the KFs of the array using the maximum likelihood
technique (see [76]), while if |Zk| < K a void measurement ζk = ∅ is associated to
each of the remaining K − |Zk| KFs.

When adopting the K-Cones strategy, each cone is separately considered. Denote
by S l

k the subset of Sk containing the measured relative position of human points
lying within the l-th cone. If this is not empty (S l

k ̸= ∅), the measured relative
position of the point that is the closest to the robot is extracted; then, expressing it
in absolute coordinates (using xk) produces the measurement ζl

k to be associated to
KF-l. Otherwise, a void measurement ζl

k = ∅ is associated to KF-l.

4.3.2 State estimation

The l-th KF receives the associated measurement ζj
k at tk and has memory of

the previous state estimate χ̂l
k−1, the last valid measurement ζ̄l that it received

and the time instant t̄l at which this was received. Each of ζj
k and χ̂l

k−1 can be
either valid (ζj

k ̸= ∅, χ̂l
k−1 ̸= ∅) or void (ζj

k = ∅, χ̂l
k−1 = ∅). Moreover, KF-l has

an associated finite state machine (FSM), depicted in Fig. 4.4, that governs its
operation. It consists of four states, i.e., Idle, Start, Active, Hold, that are described
in the following, together with the actions to be taken according to the received
measurement and the KF memory in order to produce the state estimate χ̂l

k.

• Idle. The KF is inactive, i.e., χ̂l
k−1 = ∅.

– If ζl
k ̸= ∅, χ̂l

k is initialized as χ̂l
k = (ζl

k, 0) and the FSM state becomes
Start.

– Otherwise, χ̂l
k = ∅ and the FSM state remains Idle.

• Start. The KF is initializing the state estimate.

– If ζl
k ̸= ∅, χ̂l

k is set as χ̂l
k = (ζl

k, 1
δ (ζl

k− p̂l
k−1)) and the FSM state becomes

Active.
– Otherwise, χ̂l

k = ∅ and the FSM state becomes Idle.

• Active. The KF is actively generating the state estimate based on valid
measurements.

– If ζl
k ≠ ∅, χ̂l

k is generated applying the standard prediction-correction
procedure. First, the state prediction and covariance matrix are generated
as

χ̂l
k|k−1 = Aχ̂l

k−1

Σl
k|k−1 = AΣl

k−1AT + V k.
(4.4)

4.4 Motion generation via NMPC 39

Then, the innovation zl
k, i.e., the difference between the measured and

the predicted output, is computed as

zl
k = ζl

k −Cχ̂l
k|k−1 (4.5)

and it is checked whether its norm does not exceed a predefined threshold
z̄.

∗ If
∥∥∥zl

k

∥∥∥ < z̄, the state estimate and covariance matrix are corrected
as

χ̂l
k = χ̂l

k|k−1 + Γl
kzl

k

Σl
k = Σl

k|k−1 − Γl
kCΣl

k|k−1,
(4.6)

with Γl
k the Kalman gain matrix computed as

Γl
k = Σl

k|k−1CT
(
CΣl

k|k−1CT + W k

)−1

and the FSM state remains Active.
∗ Otherwise, χ̂l

k is reset as χ̂l
k = (ζl

k, ˆ̇pl
k−1) and the FSM state becomes

Start.
– Otherwise, χ̂l

k is generated using (4.4–4.6) by setting ζl
k = ζ̄l in (4.5) and

the FSM state becomes Hold.

• Hold. The KF is temporarily generating the state estimate based on the last
valid measurement ζ̄l.

– If ζl
k ≠ ∅, χ̂l

k is generated using (4.4–4.6) and the FSM state becomes
Active.

– Otherwise:
∗ if tk ≤ t̄l + T̄ , with T̄ a predefined hold period, χ̂l

k is generated using
(4.4–4.6) by setting ζl

k = ζ̄l in (4.5) and the FSM state remains Hold;
∗ else, χ̂l

k = ∅ and the FSM state becomes Idle.

4.3.3 Motion prediction

Let X̂k = {χ̂1
k, . . . , χ̂M

k } be the set of the M valid state estimates, i.e., χ̂j
k ̸= ∅ (j =

1, . . . , M), among the K produced by the KFs. Then, the tuple Pk = {P 1
k, . . . , P M

k }
is generated by computing each vector P j

k = (pj
k|0, . . . , pj

k|N) under the assumption
that the corresponding human closest point will move with constant velocity ˆ̇pj

k over
the time interval [tk, tk + T], i.e., pj

k|i = p̂j
k + iδˆ̇pj

k (i = 0, . . . , N).

4.4 Motion generation via NMPC
At the heart of the proposed safe navigation framework is the motion generation
module. It is constituted by a real-time NMPC algorithm that at each control
cycle receives as an input the predicted humans motion Pk produced by the crowd

40 4. Crowd navigation using NMPC and control barrier functions

prediction module, the goal region G and the current robot state xk and computes
the control inputs u to be applied to the robot. In order to ensure that the resulting
motion will be collision-free the NMPC uses a discrete-time CBF-based collision
avoidance constraint throughout the prediction horizon T for each of the humans
accounted in Pk.

In the following, we first present the NMPC algorithm and then describe the
adopted collision avoidance constraints.

4.4.1 NMPC algorithm

Consider the NLP to be solved at time tk. The task is to drive the representative
point C of the robot inside the goal region G, possibly with minimum control effort,
while maintaining the robot and humans safety. For this purpose, we can use the
NLP presented in (3.21), restated here for completeness.

Let xk|i and uk|i be the predicted robot state and control inputs at time tk+i,
yk|i and ẏk|i be respectively the predicted position and velocity of C at tk+i, yd be
the position of a representative point of G and ek|i = yd − yk|i be the predicted task
error at time tk+i.

The NLP to be solved at time tk is

min
xk|0,...,xk|N ,

uk|0,...,uk|N−1

N−1∑
i=0

Vk|i(xk|i, uk|i) + Vk|N (xk|N) (4.7a)

subject to:
xk|0 − xk = 0 (4.7b)
xk|i+1 − ϕd-t(xk|i, uk|i) = 0, i = 0, ..., N − 1 (4.7c)
xmin ≤ xk|i ≤ xmax, i = 0, ..., N (4.7d)
umin ≤ uk|i ≤ umax, i = 0, ..., N − 1 (4.7e)
collision avoidance constraints at tk, ..., tk+N (4.7f)

where xk the robot state at time tk, ϕ(·, ·) the discrete-time dynamics of the robot
obtained via numerical integration of (4.1) under the assumption of piecewise-
constant control inputs, while xmin, xmax and umin, umax are the lower/upper
bounds on the state variables and control inputs. The running cost Vk|i(xk|i, uk|i)
and the terminal cost Vk|N (xk|N) are expressed respectively as

Vk|i(xk|i, uk|i) = eT
k|iQek|i + ẏT

k|iSẏk|i + uT
k|iR uk|i,

Vk|N (xk|N) = eT
k|N QN ek|N + ẏT

k|N SN ẏk|N ,

with Q, S and R weighting matrices of appropriate dimensions for the predicted
task error, the velocity of C and the control effort throughout the prediction horizon,
and QN and SN weighting matrices for the predicted task error and the velocity of
C at the final time instant.

As regards the collision avoidance constraints (4.7f), they will be presented in
full detail in the following.

4.5 Simulations 41

4.4.2 CBF-based collision avoidance

To guarantee collision avoidance, the proposed NMPC incorporates constraints
formulated via discrete-time CBFs.

Consider the smallest circle bounding the planar projection of the robot occupancy
volume R(q) at any configuration q (see Fig. 3.1). Let ρ be the radius of this circle
and R its center, whose position vector is denoted by r and depends on the robot
configuration q, and consequently to its state x, via a forward kinematic map
r = σ(q).

We say that a robot state x is safe in terms of collision with a generic human, if
the robot being at this state maintains a safety clearance ds > 0 with the closest
point of this human, i.e., ∥r − p∥ ≥ ρ + ds, where p the position of the closest to
the robot point of the generic human. Accordingly, we define the safe-set of robot
states with respect to the generic human as

C = {x ∈ D : h(x) ≥ 0}

where
h(x) = ∥r − p∥2 − (ρ + ds)2.

It can be shown [69] that the function h(x) can serve as a CBF for the discrete-time
system (4.7c), while the condition

∆h(xk, uk) ≥ −γh(xk) (4.8)

with ∆h(xk, uk) = h(xk+1) − h(xk) and 0 < γ ≤ 1, attains forward-invariance of
the safe-set C, enforcing collision avoidance.

By imposing condition (4.8) throughout the prediction horizon for all M humans
accounted in Pk, the CBF-based collision avoidance constraints in (4.7f) can be
explicitly written as

∆hj(xk|i, uk|i) ≥ −γhj(xk|i), i = 0, . . . , N − 1,

j = 1, . . . , M,
(4.9)

where
hj(xk|i) = ∥rk|i − pj

k|i∥
2 − (ρ + ds)2,

with rk|i = σ(qk|i) and pj
k|i extracted from element P j

k of Pk.
Note that the identity of the closest point of a certain human might change

along the prediction horizon. Such aspect is not explicitly considered by our collision
avoidance constraints which, instead, involve only information about the predicted
future position of the point that is the closest at time tk. However, as we will
show via simulation results in Sect. 4.5, this is not an issue for the proposed scheme
thanks to (i) the real-time capabilities of our implementation that allows high control
frequency and (ii) the use of a relatively small value for γ that improves the ability
to promptly react to sudden changes in the robot surroundings.

42 4. Crowd navigation using NMPC and control barrier functions

Figure 4.5. Snapshots of the motion generated by the proposed method (top) and the
compared method (bottom) in a robot-unfriendly crowd of 20 humans using the K-
Neighbors strategy. At time t = 6.85 s the DB method runs into collision with one of the
humans while the proposed method navigates safely towards the goal.

4.5 Simulations
The proposed safe navigation method was implemented in the CoppeliaSim envi-
ronment as a C++ plugin. The latter wraps a library implementing the NMPC
algorithm generated using the Python interface of acados [77]. For the NMPC the
RTI scheme was used.

The targeted platform is the Pioneer 3-DX mobile robot for with r = 9.75 cm
and b = 38.1 cm. It is equipped with an Hokuyo URG-04LX laser rangefinder whose
detection area is aligned with the robot heading direction and has a range of 5 m and
an angle of 240°, thus leaving a 120° blind zone behind the robot. According to the
robot characteristics, its driving and steering velocities are bounded as, respectively,
0 ≤ v ≤ 1.2 m1 and |ω| ≤ 5.24 rad/s, while for the angular accelerations of the
wheels |ϕ̈r|, |ϕ̈l| ≤ 70 rad/s2.

To assess the performance of the proposed framework, we conducted a series
of simulations in an environment populated by a crowd of humans. To simulate
the motion of the crowd we assumed that each human moves along a sequence of
randomly generated viapoints (locations of the environment). The human moves in
a unicycle-like fashion [52] and under the action of an artificial potential field, such

1We chose to not use a negative value for the minimum driving velocity in order to prevent the
robot from moving back in its blind zone.

4.5 Simulations 43

Figure 4.6. The driving and steering velocity profiles and the control inputs (driving wheels
acceleration) generated by the two methods in the robot-unfriendly crowd of 20 humans
using the K-Neighbors strategy.

that an attractive field drives him towards his currently targeted viapoint, while
repulsive fields push him away from the other humans. Every time a human reaches
the assigned viapoint, remains still for a certain pause period before moving to the
next viapoint. Each human is assigned with a maximum linear velocity that cannot
exceed during his motion.

The conducted simulations are divided into two campaigns. In the first one, the
crowd is robot-friendly meaning that the humans are aware of the presence of the
robot (and try to avoid collisions with it). To achieve this behavior, an additional
repulsive field is added to each human, pushing him away from the robot. In the
second campaign, a robot-unfriendly crowd is considered, which means that the
humans are not aware of the robot presence, so it is up to the robot only to avoid
collisions with them.

44 4. Crowd navigation using NMPC and control barrier functions

It is emphasized that the robot is not aware of such crowd behavior, but only
relies on the information obtained by the on-board sensor.

Apart from the overall evaluation of the performance of the proposed framework,
our intention is to investigate how this performance is affected by the particular
choice of (i) the selection strategy in the crowd prediction module (i.e., K-Neighbors
and K-Cones) and (ii) the collision avoidance constraint in the motion generation
module. In order to investigate the effect of the collision avoidance constraint, the
proposed CBF-based method will be compared with a purely distance-based (DB)
approach that is obtained by using

hj(xk|i) ≥ 0, i = 0, . . . , N, j = 1, . . . , M

in (4.7f). To this purpose, for each campaign, we considered 12 simulation scenarios
obtained by varying (i) the number (5, 10 or 20) of humans in a 15 × 15 m
environment, (ii) the adopted selection strategy (K-Neighbors or K-Cones), and
(iii) the formulation of the collision avoidance constraints (CBF or DB). For each of
these scenarios, we run 50 different simulations, each time randomly generating the
initial configuration of the robot, goal region G, sequence of viapoints, associated
pause periods and maximum linear velocity of each human.

All the simulations were performed on an Intel Core i7-8700K CPU running at
3.7 GHz. In all of them, the whole safe navigation scheme worked with a sampling
time δ = 0.05 s, while the prediction horizon was set to T = 2 s; also, we used K = 3,
dC = 0.15 m, ρH = 0.8 m and γ = 0.3.

The results of the two simulation campaigns are reported in Tables 4.1–4.2,
respectively, where we show the success rate (we recorded a failure whenever a
collision occurred) and maximum computation time (including both crowd prediction
and motion generation modules) averaged over the 50 runs in each simulation
scenario. Video clips showing examples of generated motions are available at the
link https://youtu.be/iDdM6Ud9I4c.

In the case of robot-friendly crowd (see Table 4.1), as expected, for both our
and DB method the success rate decreases as the number of humans populating
the environment increases. However, our method maintains a higher success rate
even in the most challenging environment (20 humans), where we achieve a success
rate higher than 85%, independently of the adopted selection strategy, while the DB
method fails in more than half of cases when using the K-Cones strategy. Moreover,
the table confirms the real-time capabilities of the proposed scheme, as the maximum
computational time is always lower than the sampling time. We also report that, in
our observations, most of the computational time is spent by the motion generation
module, while only a negligible portion is used by the crowd prediction module,
which also highlights the efficiency of the latter.

The case of robot-unfriendly crowd (see Table 4.2) is clearly more challenging. In
environments containing 10 and 20 humans, the success rate is significantly reduced
compared to the case of robot-friendly crowd. This is reasonable if we consider that
in this case a human can either approach the robot from its blind zone and collide
with it, without any possibility for the robot to react, or suddenly turn towards it
without giving the robot the chance to react in time. However, the table reveals
that, even in a robot-unfriendly crowd, our method is clearly more effective than the

https://youtu.be/iDdM6Ud9I4c

4.5 Simulations 45

of
humans

selection
strategy

collision
avoidance
constraint

success
rate (%)

maximum
computation

time (ms)

5
K-Neighbors CBF 100 31

DB 92 28

K-Cones CBF 98 34
DB 90 29

10
K-Neighbors CBF 96 30

DB 86 33

K-Cones CBF 98 29
DB 72 34

20
K-Neighbors CBF 88 36

DB 64 36

K-Cones CBF 86 35
DB 48 41

Table 4.1. Performance data in the case of robot-friendly crowd

of
humans

selection
strategy

collision
avoidance
constraint

success
rate (%)

maximum
computation

time (ms)

5
K-Neighbors CBF 92 30

DB 90 31

K-Cones CBF 92 32
DB 84 27

10
K-Neighbors CBF 74 28

DB 62 28

K-Cones CBF 80 27
DB 68 31

20
K-Neighbors CBF 60 32

DB 38 30

K-Cones CBF 58 29
DB 40 31

Table 4.2. Performance data in the case of robot-unfriendly crowd

DB approach. Also in this case the real-time requirement is respected, as proven by
the reported maximum computation times.

From the simulation results we can see a clear advantage of the proposed method
(CBF) against the compared method (DB). To illustrate the different behavior
of the two methods, in Fig. 4.5 we provide snapshots of the robot motion under
the two methods in a robot-unfriendly crowd of 20 humans using the K-Neighbors
strategy, while in Fig. 4.6 we illustrate the driving and steering velocity profiles
and the control inputs throughout the robot motion. The driving velocity profiles
reveal a more conservative motion generated by the proposed method compared to
the one generated by the DB method. One can notice that while the DB method

46 4. Crowd navigation using NMPC and control barrier functions

Figure 4.7. Safe navigation in a robot-unfriendly crowd of 20 humans using the K-Neighbors
strategy. Snapshots from a simulation.

KF- KF- KF-

Figure 4.8. Safe navigation in a robot-unfriendly crowd of 20 humans using the K-
Neighbors strategy. Plots of d̂l, ˆ̇pl

x, ˆ̇pl
y (l = 1, 2, 3), i.e., distance and x,y-components of

the velocity of a human estimated by KF-l. Gray zones indicate time intervals in which
the corresponding KF was in the Active state.

moves at high speed at time t = 6.53 s, the proposed method, reacting earlier to the
presence of the closest human, has reduced the driving velocity to zero performing
simultaneously a fast reorientation. With this collision avoidance maneuver the
imminent collision with the human is effectively avoided and the robot manages to
reach the goal safely. On the contrary, due to the late reaction of the DB method to
the presence of the human, it was impossible for the robot to perform successfully the
required collision avoidance maneuver and it collided at time t = 6.85 s. Note that
although the robot tried to perform a reorientation to the right (see the acceleration
at the right wheel being saturated before the collision in Fig. 4.6), due to its late
reaction, the collision was inevitable.

Regarding the different selection strategies, Figures 4.7 and 4.9 show snapshots
from two simulations obtained using the proposed method with the K-Neighbors and
K-Cones strategy, respectively, in a robot-unfriendly crowd of 20 humans. Figures
4.8 and 4.10 show associated plots. Clips are included in the video. Comparing the

4.5 Simulations 47

Figure 4.9. Safe navigation in a robot-unfriendly crowd of 20 humans using the K-Cones
strategy. Snapshots from a simulation.

KF- KF- KF-

Figure 4.10. Safe navigation in a robot-unfriendly crowd of 20 humans using the K-Cones
strategy. Plots of d̂l, ˆ̇pl

x, ˆ̇pl
y (l = 1, 2, 3), i.e., distance and x,y-components of the

velocity of a human estimated by KF-l. Gray zones indicate time intervals in which the
corresponding KF was in the Active state.

snapshots, taken at the same time instants, it is possible to appreciate that although
the crowd is identically placed at each considered time instant, the robot follows
different paths due to the influence of the chosen selection strategy.

Although in terms of both success rate and computation time we found no
significant differences between the two selection strategies, in practice the K-Cones
strategy (as can be seen from the plots corresponding to KF-1 and KF-2 in Fig.
4.10) might consider for collision avoidance a number of humans smaller than K
even if K humans are actually present in the sensor detection area, which could
obviously be disadvantageous. On the other hand, the K-Cones strategy is a valid
option when dealing with multiple sensors that have a reduced detection angle. In
this case, each cone will correspond to a certain sensor and the presented scheme
can be applied without any significant modification.

Note that, even if we presented simulation results obtained using K = 3, our
approach can work with generic values of K provided that this still guarantees

48 4. Crowd navigation using NMPC and control barrier functions

real-time performance. The video also shows simulations obtained for K = 6.

4.6 Conclusions
In this chapter, we presented a sensor-based scheme for safe robot navigation in a
crowd of moving humans. At each control cycle, the crowd prediction module foresees
the future motion of the humans in the robot surroundings using the information
obtained by the robot on-board sensors. Then, the motion generation module
produces feasible commands for the robot to safely drive it among the humans
until a desired goal region of the workspace is reached. For crowd prediction we
employ a simple, yet effective, technique based on Kalman filters, while our motion
generation strategy combines NMPC and collision avoidance constraints formulated
via discrete-time CBFs.

Simulation results show that this combination can produce sensible results in
environments crowded by a varying number of moving humans. Moreover, we
demonstrated that our approach considering collision avoidance constraints built
upon appropriate CBFs outperforms the typical schemes that consider collision
avoidance constraints based on purely distance information.

Future work will address

• the investigation of feasibility properties of the NMPC and design of recovery
strategies in case of possible infeasibilities;

• the extension of our method to environments containing obstacles of various
shapes;

• an in-depth performance analysis of the effect of the various parameters (e.g.,
K, T , γ).

49

Chapter 5

A dynamics-aware NMPC
method for robot navigation

In many navigation problems, a relatively heavy robot (with respect to its actuation
capabilities) may be called to move at high-speed in environments populated by
static and/or moving obstacles (e.g., load transportation robot in a warehouse). In
a motion like this, the effect of the robot dynamics becomes significant. As a result,
in order to generate the desired motion via NMPC, one has to consider the robot
full dynamic model as well as small sampling times. Clearly, real-time performance
does not allow arbitrarily long prediction horizons, while on typical robot processing
platforms, this horizon ends up being relatively short. In cases like this, the use of a
purely distance-based collision avoidance constraint may jeopardize the robot safety,
since the danger of collision may be detected at a time when the robot does not
have the necessary actuation capabilities to prevent it.

In Chap. 4, we showed that a CBF-based collision avoidance constraint that
practically considers in addition to the robot-obstacle distance, the rate of change of
this distance can significantly improve the performance of the NMPC compared to
a purely distance-based collision avoidance constraint. Nevertheless, in that work,
only the robot kinematics were considered.

In this chapter, we consider a scenario in which a relatively heavy robot has to
navigate at high speed in an environment occupied by static and moving obstacles.
To solve this problem we use the motion generation approach which was originally
proposed in our work [2]. Specifically, taking inspiration from the ICS concept, we
define the notion of Avoidable Collision State (ACS), i.e., a state from which the
robot can avoid collision with a certain obstacle. Building on this, we propose an
NMPC method for real-time motion generation which enforces collision avoidance
through a constraint that essentially requires the robot to be in an ACS at all times.
Extensive simulations on a differential-drive robot that navigates in both static and
dynamic environments clearly show the superiority of the proposed NMPC method
with respect to distance-based formulations, especially when the robot must navigate
at high-speed in environments cluttered with moving obstacles. In particular, it is
shown that thanks to its dynamics-aware nature, the novel constraint works well
with relatively short prediction horizons, making real-time performance achievable
even on low-cost computational platforms.

50 5. A dynamics-aware NMPC method for robot navigation

The chapter is organized as follows. The navigation problem is formulated in
Sect. 5.1. In Sect. 5.2 we outline the proposed NMPC approach, while in Sect. 5.3
we formally define the concept of ACS and derive the associated collision avoidance
constraint. Simulation results for a differential-drive robot are presented in Sect. 5.4.
Finally, some concluding remarks are offered in Sect. 5.5.

5.1 Problem formulation

Consider again the differential-drive mobile robot of Fig. 3.1 with configuration q
whose motion is described by the state-space reduced model (3.19), rewritten here as

ẋ = ϕ(x, u) =
(

G(q)ν
M−1(q)(E(q)u−m(q, u))

)
, (5.1)

with the robot state defined as x = (q, ν), with the pseudovelocities vector ν
comprised by the robot driving and steering velocity, i.e., ν = (υ, ω), and the control
inputs being at the wheel torque level, i.e., u = τ = (τr, τl).

The robot moves in a workspaceW , populated by static and/or moving obstacles.
We shall denote by R(q) ⊂ W the volume occupied by the robot at configuration q,
and by O(t) ⊂ W the volume occupied by the environment obstacles at time t.

A navigation task is assigned to the robot in terms of a vector y ∈ Y, which
describes the position of a representative point on the robot, here the point C, and
is related to the configuration via a forward kinematic map y = k(q). The task is
to drive C in the goal region G.

The problem consists in generating in real-time a motion that:

1. drives the robot from its starting configuration to a configuration realizing the
task, i.e., the representative point C lies inside the goal region G;

2. is kinodynamically feasible, in the sense that it is consistent with model (5.1)
and respects existing constraints on both x (i.e., velocity limits) and u (i.e.,
torque bounds);

3. avoids collisions between the robot and the obstacles, i.e., R(q) ∩ O(t) = ∅, at
all time instants t.

As for the information available for solving the problem, it is assumed that the
robot is always aware of its own state and that an on-board sensor provides the
position and velocity of all obstacles located inside the sensor field-of-view.

5.2 Proposed NMPC approach

To generate the desired motion we will use an NMPC algorithm for real-time motion
generation. Consider the NLP to be solved at time tk. Our objective is to drive the
representative point C of the robot inside the goal region, ideally with the minimum
control effort, maintaining also the robot and environment safety. So, we can use
the NLP proposed in (3.21), which is restated here for completeness.

5.3 Dynamics-aware collision avoidance 51

Denote by T the prediction horizon, by δ the sampling time and by N = T/δ
the number of control intervals in the prediction horizon. Let xk|i and uk|i be the
predicted robot state and control inputs at time tk+i, yk|i and ẏk|i be respectively
the predicted position and velocity of C at tk+i, yd be the position of a representative
point in G and ek|i = yd − yk|i be the predicted task error at time tk+i. The NLP
to be solved at time tk is

min
xk|0,...,xk|N ,

uk|0,...,uk|N−1

N−1∑
i=0

Vk|i(xk|i, uk|i) + Vk|N (xk|N) (5.2a)

subject to:
xk|0 − xk = 0 (5.2b)
xk|i+1 − ϕd-t(xk|i, uk|i) = 0, i = 0, ..., N − 1 (5.2c)
xmin ≤ xk|i ≤ xmax, i = 0, ..., N (5.2d)
umin ≤ uk|i ≤ umax, i = 0, ..., N − 1 (5.2e)
collision avoidance constraints at tk, ..., tk+N (5.2f)

where xk the robot state at time tk, ϕd-t(·, ·) the discrete-time system dynamics
obtained via numerical integration of (5.1) under the assumption of piecewise-
constant control inputs, while xmin, xmax and umin, umax are the lower/upper
bounds on the state variables and control inputs. The running cost Vk|i(xk|i, uk|i)
and the terminal cost Vk|N (xk|N) are expressed, respectively, as

Vk|i(xk|i, uk|i) = eT
k|iQek|i + ẏT

k|iSẏk|i + uT
k|iR uk|i,

Vk|N (xk|N) = eT
k|N QN ek|N + ẏT

k|N SN ẏk|N ,

with Q, S and R weighting matrices of appropriate dimensions for the predicted
task error, the velocity of C and the control effort throughout the prediction horizon,
and QN and SN weighting matrices for the predicted task error and the velocity of
C at the final time instant.

As for the collision avoidance constraint (5.2f), which is the main contribution
of this work, it is discussed in full detail in the next section.

5.3 Dynamics-aware collision avoidance
The proposed collision avoidance constraint hinges upon the notion of Avoidable
Collision State (ACS), i.e., a robot state from which it is possible to avoid collisions.
In this section, we will first give a formal definition of what an ACS is, and then
derive the corresponding collision avoidance constraint.

5.3.1 Preliminaries

The notion of ACS is obstacle-specific, in the sense that it characterizes the possibility
for the robot to avoid a certain obstacle. In view of this, we first need to identify
the obstacles for which there is an actual danger of collision given the current state
of the robot.

52 5. A dynamics-aware NMPC method for robot navigation

Figure 5.1. Obstacle Oj is considered dangerous for the robot at a certain time if the
relative velocity ṙj of the robot with respect to the obstacle lies inside the collision cone.

We are going to use bounding circles to envelope the planar projection of the
occupancy volume of both the robot and the obstacles. In particular, we take the
smallest circle that contains the planar projection of the robot volume R, and denote
its radius by ρ and its center by R. The position vector of R in the world frame
is denoted by r and is related to the robot configuration via a forward kinematic
map r = σ(q). For its velocity we have: ṙ = J(q)ν where J(q) = ∂σ(q)/∂qG(q).
Similarly, we use a bounding circle of radius ρj to envelop the planar projection
of the volume of the generic obstacle Oj(t) ⊂ O(t), denoting its center by Oj , the
corresponding position vector by oj and its velocity by ȯj . Finally, let nj be the
unit vector pointing from R to Oj , and rj = r − oj be the relative position of R
with respect to Oj , so that the corresponding relative velocity is ṙj . Refer to Fig. 5.1
for illustration.

Now, augment the obstacle circle by the radius of the robot circle, denoting by
ρa,j = ρj + ρ the total radius. The collision cone is the cone defined by R and the
tangents from R to the augmented obstacle. Obstacle Oj is dangerous at time t if
ṙj(t) lies inside the collision cone (see Fig. 5.1). Simple geometrical arguments lead
to the following condition for an obstacle to be dangerous:

h(x, ξj) = nT
j

ṙj

∥ṙj∥
−

√
∥rj∥2 − ρ2

a,j

∥rj∥
≥ 0 (5.3)

where ξj = (oj , ȯj) is the state of the j-th obstacle.

5.3.2 Avoidable collision states

By definition, to avoid an obstacle which is non-dangerous at time t the robot simply
needs to keep its course. Therefore, we only need to characterize the possibility
of avoiding obstacles that are dangerous at t. In particular, we will say that the

5.3 Dynamics-aware collision avoidance 53

robot is in an Avoidable Collision State (ACS) with respect to a dangerous obstacle
if there exists at least one trajectory that originates from the current state, is
kinodynamically feasible and avoids collision with the obstacle.

In principle, to conclude that a state is an ACS we should check all feasible
trajectories emanating from it until we find at least one that avoids collision. However,
such a potentially exhaustive study is incompatible with a real-time application. We
shall therefore look at one specific motion and ask ourselves if the robot can avoid
collision during that motion. If the answer is positive, then it can be concluded that
the current state is certainly an ACS.

In particular, in the presence of an obstacle Oj which moves along a given
direction with constant speed and is dangerous at time t, we consider the robot
moving in such a way that at each time instant t′ ≥ t its relative velocity with
respect to the obstacle, ṙj(t′), projected on the original direction of collision, nj(t),
decreases with a constant rate α.

During this motion there will be eventually a time instant, denoted by tv, in which
the projection of the robot relative velocity on the original direction of collision
will be zero, i.e., nT

j (t)ṙj(tv) = 0. A sufficient condition for this motion to be
collision-free is:

nT
j (t)(oj(t′)− r(t′)) ≥ ρa,j , ∀t′ ∈ [t, tv].

Denoting by γ(t) the robot-obstacle clearance and considering that at time t the
relation nT

j (t)(oj(t)− r(t)) = γ(t) + ρa,j holds, after simple substitution of ρa,j , the
condition for collision-free motion becomes:

nT
j (t)(rj(t′)− rj(t)) ≤ γ(t), ∀t′ ∈ [t, tv]. (5.4)

Note that inequality (5.4) defines an admissible half-plane for the relative position
of R with respect to Oj in which the robot has to remain for all t′ ∈ [t, tv] (see
Fig. 5.2).

In order to ensure that the considered motion can be implemented by the robot
we will investigate whether the required deceleration of R, i.e. r̈ = nj(t)α, projected
on the robot actuation space lies within the actuation limits.

Throughout the considered motion, the position of R, projected on the original
direction of collision nj(t) is described at time t′ ≥ t as

nT
j (t)r(t′) = nT

j (t)r(t) + nT
j (t)ṙ(t)(t′ − t) + 1

2α(t′ − t)2 (5.5)

and its projected velocity as

nT
j (t)ṙ(t′) = nT

j (t)ṙ(t) + α(t′ − t). (5.6)

As for the obstacle, the position of Oj at t′ ≥ t projected on the original direction
of collision is

nT
j (t)oj(t′) = nT

j (t)oj(t) + nT
j (t)ȯj(t′ − t). (5.7)

By solving the system of equations (5.4) for the equality, (5.5), (5.6) and (5.7),
with t′ = tv, we obtain the minimum required deceleration of the robot in the original
direction of collision:

α = −1
2

(
nT

j (ȯj − ṙ(t))
)2

γ(t) .

54 5. A dynamics-aware NMPC method for robot navigation

Figure 5.2. The admissible half-plane for the relative position of robot R with respect to
the obstacle Oj at time t′, t′ ∈ [t, tv].

Note that α depends on both the robot and the j-th obstacle state. Considering
that the acceleration of R is:

r̈ = J(q)ν̇ + J̇(q)ν (5.8)

and that from (5.1) we can express ν̇ as:

ν̇ = M−1(q)(E(q)u−m(q, ν)), (5.9)

we can obtain the required control inputs for this deceleration by substituting
r̈ = nj(t)α and (5.9) in (5.8). Using the Moore-Penrose pseudoinverse, we get the
minimum norm control inputs needed in order to apply the deceleration r̈ = nj(t)α
to R:

uα(x, ξj) =
(
J(q)M−1(q)E(q)

)†
β(x, ξj), (5.10)

where
β(x, ξj) = nj(t)α− J̇(q)ν + J(q)M−1(q)m(q, ν).

So the motion is kinodynamically feasible if the following condition is satisfied:

umin ≤ uα(x, ξj) ≤ umax. (5.11)

This condition can be used as a constraint in order to guarantee that the robot is
always at an ACS.

Note that the ACS property for a state is strongly related to its being safe
according to [70], i.e., not being an Inevitable Collision State (ICS). However, the
two properties differ in two aspects:

5.4 Simulations 55

• The number of obstacles considered by the property. An ICS is defined with
respect to all the obstacles (or at least all the obstacles visible by the robot),
a practice that obviously increases the computational time, while the ACS
property is defined with respect to a specific (dangerous) obstacle;

• The way in which the property is established. To prove that a state is not
ICS, in principle, one has to search the whole control input set (or a finite
subset [71]) to find a collision-free motion. On the other hand, to characterize
a state as ACS we only look at the relative velocity of the robot with respect
to the dangerous obstacle and specifically investigate whether it is possible to
stop motion along the robot-obstacle direction before collision.

5.3.3 Use of the ACS condition in the NLP

Note that constraint (5.11) is suitable for enforcing collision avoidance since every
robot motion that leads to collision will violate the constraint before the collision
occurs. So we will use (5.11) in the proposed NLP applying it for each considered
obstacle, for each time instant throughout the prediction horizon. In order to ensure
that the constraint is inactive if non-dangerous obstacles are considered and since we
cannot use if statements, we multiply uα(x, ξj) as given by (5.10) by the sigmoid
function g(h(x, ξj)) = 1/(1 + e−κh(x,ξj)), with κ being a constant value that tunes
the steepness of the sigmoid function, getting:

ub(x, ξj) = g(h(x, ξj))
(
J(q)M−1(q)E(q)

)†
β(x, ξj).

So the constraint that will be applied in the NLP is:

umin ≤ ub(xk|i, ξj,k|i) ≤ umax, i = 0, . . . , N, j = 1, . . . , no, (5.12)

where ξj,k|i is the state of the j-th obstacle at tk+i and no is the number of the
considered obstacles in the NMPC.

5.4 Simulations

In order to show the effectiveness of the proposed method, we conducted a series of
simulations in various static and dynamic environments. All the simulations were
implemented in MATLAB on an Intel Core i9-9900K CPU at 3.60 GHz. For the
solution of the NMPC, we used the RTI scheme implemented within the ACADO
Toolkit.

As a robotic platform for our simulations, we used a differential-drive robot (see
Fig. 3.1 for reference) with l1 = 60 cm, l2 = b = 30 cm and r = 10 cm. The Center
of Mass (CoM) is located at the geometric center of the vehicle, R, located at a
distance dR = 25 cm from the driving wheels. We use the same point as the center
of the robot bounding circle. The robot bounding circle radius is ρ =

√
l21/4 + l22/4.

The vehicle mass and moment of inertia are respectively 50.0 kg and 1.41 kg·m2,
making this a rather heavy vehicle. The torque bounds for the wheel actuators are
set to 2.5 Nm.

56 5. A dynamics-aware NMPC method for robot navigation

The robot representative point for the navigation task C is also placed at the
geometric center of the robot.

We wish to compare the proposed NMPC method, which relies upon the dynamics-
aware (DA) collision avoidance constraint, with an NMPC that uses a purely distance-
based (DB) collision avoidance constraint. In both methods, the NLP formulation is
the same, apart from the collision avoidance constraint (5.2f) which in DB takes the
form: ∥∥∥rk|i − oj,k|i

∥∥∥ ≥ ρa,j , i = 0, . . . , N, j = 1, . . . , no,

where rk|i and oj,k|i are the position of R and Oj at tk+i, respectively. In both
NMPCs we consider the no = 5 closest visible obstacles. The sampling time for
real-time control is δ = 31 ms in both cases.

The two methods have been tested in 50 different environments (25 static and
25 dynamic), using 3 different values for the maximum driving velocity vmax. The
maximum steering velocity is always set at ωmax = 20/3 vmax rad/s. The prediction
horizons were chosen as large as possible to allow real-time performance for the two
methods. In particular, for the DB method the prediction horizon is T = 0.992 s
while for the DA method it is T = 0.93 s; in fact, the DB method requires slightly
less computations than the DA method.

We assess the performance of the two methods by taking into account the success
rate as well as the quality of the motion according to the following criteria: (1) time
tg needed for the robot to reach the goal, (2) control effort Jτ =

∫ tg

0 ∥τ∥2dt, (3)
length lp of the resulting path, (4) duration of the longest iteration δmax and (5)
average iteration time δ̄.

Video clips of representative simulation results are available at https://youtu.
be/LS57E8jGoJk.

5.4.1 Static environments

In the first group of simulations, the robot moves in 25 environments, each occupied
by 10 static obstacles (e.g., see Fig. 5.3). The robot starts from an initial position
(xb, yb) = (2, 2) at the Cartesian space with orientation θb = π/3 rad and must reach
yg = (16, 15). Table 5.1 (top) summarizes the results of the DA and DB methods
averaged over the 25 environments, for increasing values of the maximum driving
velocity vmax.

For lower vmax the two methods behave similarly having also the same success
rate. An illustrative example of the robot motion with vmax = 0.9 m/s is given in
simulation 1 of the accompanying video. However, when vmax = 1.2 m/s the success
rate of the DB method drops to 88% while the DA method is hardly affected by
the increase in the maximum velocity. Note that in this case, the stopping time1

ts is significantly larger than the prediction horizon. This shows that under these
conditions, unlike DA, a robot navigating with the DB method would require either
a longer prediction horizon or greater braking capabilities in order to navigate safely.
A representative example of the behavior of the two methods is shown in Fig. 5.3
while in Fig. 5.4 we offer the resulting velocity and control input profiles throughout

1By stopping time ts we denote the minimum time that a robot traveling on a straight line with
speed vmax needs in order to stop.

https://youtu.be/LS57E8jGoJk
https://youtu.be/LS57E8jGoJk

5.4 Simulations 57

Figure 5.3. Motions generated by the two methods in one of the static environments, with
vmax = 1.2 m/s. The DB method (left) cannot avoid collision with an obstacle, whereas
DA (right) goes safely through the narrow passage and successfully reaches the goal.
See also simulation 2 in the accompanying video.

the robot motion (also see simulation 2 in the accompanying video). In particular,
Fig. 5.3 shows the trajectories generated by the two methods in one of the static
environments with vmax = 1.2 m/s. The DB method (left) runs into a collision while
passing through a narrow passage because the robot has accumulated too much
speed in the initial part of the motion and avoiding the imminent collision would
require more than the available torque (this corresponds to an unfeasibility for the
NMPC). On the other hand, the DA method (right) starts the avoidance maneuver
earlier thanks to the dynamics-aware constraint, which can detect a violation before
the distance-based constraint does; therefore, DA is able to go through the narrow
passage and reach the goal safely. This early reaction of the DA method to the
presence of the obstacles is better illustrated in Fig. 5.4. Here, one can notice how
the control inputs generated by the two methods start to differ after t ≈ 2 s with DA
starting diverging from the collision path almost 0.5 s earlier than the DB method.
This late reaction from the DB method led later to torque saturation in the vicinity
of the obstacle and eventually to collision.

Looking at the other performance criteria of Table 5.1, one can observe that
on average the DA method produces trajectories that are slightly shorter and less
energy-consuming than the DB method. As a counterpart, the DB method shows a
slightly reduced duration of the longest iteration mainly due to the simplicity of the
collision avoidance constraint.

5.4.2 Dynamic environments

The second group of simulations take place in 25 dynamic environments, each
occupied by 10 static and 10 moving obstacles. The moving obstacles are zigzagging
at a speed vo = vmax/2, while their direction changes after traveling a distance
of 2.45 m by turning π/3 rad toward the robot. The results are presented in

58 5. A dynamics-aware NMPC method for robot navigation

Figure 5.4. The driving and steering velocity profiles and the control inputs generated by
the two methods in the static environment, with υmax = 1.2 m/s. See also simulation 2
in the accompanying video.

Table 5.1 (bottom).
The success rate of both methods is affected by the presence of the moving

obstacles. However, the DA method is much more effective than the DB method,
with success rates over 80% while DB goes as low as 40%.

Once again, for the lowest vmax the DB method has its higher success rate, yet
lower than the DA method. In simulation 3 of the accompanying video, we show
the robot moving in a dynamic environment with vmax = 0.9 m/s. Nevertheless, the
success rate of the DB method decreases as vmax increases and plummets to 40% for
vmax = 1.2 m/s, revealing that the presence of moving obstacles in combination with
fast robot motion affects significantly its performance. This is due to the fact that
the maneuvers needed for collision avoidance become now more demanding, since a
worst-case scenario may require the robot not only to stop, but also to accelerate in
the opposite direction in order to avoid an imminent collision. Thus, by the time an
imminent collision is detected in the DB case, there may not be enough actuation
capability left to avoid the obstacle explaining why the DB method has such a low
performance even in the case of the lowest maximum velocity. On the other hand,
the DA method guarantees that the robot is at all times in an ACS. As a result, the
robot is able to veer off collision paths earlier.

5.4 Simulations 59

Static Environments
DB DA

vmax [m/s] 0.9 1.1 1.2 0.9 1.1 1.2
ts [s] 0.93 1.116 1.209 0.93 1.116 1.209

success rate (%) 96 96 88 96 96 92
tg [s] 27.16 24.29 25.07 26.63 24.76 23.98

Jτ [104 N2m2s] 1164.63 1495.56 1763.30 1046.58 1397.92 1601.14
lp [m] 19.56 20.12 20.85 19.51 19.96 20.48

δmax [ms] 25.21 25.15 25.46 26.84 27.55 27.11
δ̄ [ms] 15.31 14.26 13.67 16.40 15.96 15.50

Dynamic Environments
DB DA

vmax [m/s] 0.9 1.1 1.2 0.9 1.1 1.2
ts [s] 0.93 1.116 1.209 0.93 1.116 1.209

vo [m/s] 0.45 0.55 0.6 0.45 0.55 0.6
success rate (%) 72 64 40 80 84 80

tg [s] 29.65 25.52 24.38 30.61 29.78 27.19
Jτ [104 N2m2s] 1766.29 2001.42 2009.93 1625.94 2171.06 2510.07

lp [m] 20.37 20.69 20.77 20.62 21.83 21.31
δmax [ms] 26.16 25.65 26.14 28.18 28.56 28.85

δ̄ [ms] 15.47 14.63 14.19 16.87 16.64 16.40

Table 5.1. Averaged results over 25 environments for the proposed dynamics-aware (DA)
method vs the distance-based (DB) method. Top: static environments, bottom: dynamic
environments.

For illustration, Fig. 5.5 (see also simulation 4 in the accompanying video)
shows the behavior of the two methods for vmax = 1.2 m/s in one of the dynamic
environments through a series of snapshots. Fig. 5.6 reports the corresponding
velocity profiles and control inputs for the same scenario.

As in the static environment case, the DB method is not aware of the robot
dynamic state and therefore cannot prevent the collision with the moving obstacle.
On the other hand, the DA method effectively reaches the goal avoiding nearby
obstacles. Note in particular how the early reaction of the DA method in the presence
of a moving obstacle (see also the corresponding control inputs in Fig. 5.6) averted
the impending collision, while at the same time, the late reaction of the DB method
lead to torque saturation at the vicinity of the obstacle, which was, however, not
enough to prevent the collision. One can also appreciate the elaborate avoidance
maneuver performed by the DA method in front of a moving obstacle combining a

60 5. A dynamics-aware NMPC method for robot navigation

reverse motion and a quick reorientation.
In an attempt to further assess the effectiveness of the proposed method, we

tested the performance of the two methods in a more cluttered version of the dynamic
environment, increasing the number of moving obstacles to 15. The obstacles are
zigzagging at a speed of 0.4 m/s, with direction changes of π/3 (toward the robot)
after traveling a distance of 2.45 m. The robot maximum velocity is vmax = 1.2 m/s.
This simulation, whose results are only shown in simulation 5 of the accompanying
video for compactness, confirms that the robot controlled by the dynamics-aware
NMPC method safely reaches its goal even in this challenging environment, while
the distance-based NMPC fails.

5.5 Conclusions
In this chapter, we presented a novel real-time NMPC for robot navigation in
environments populated by static and/or moving obstacles. Inspired by the concept
of inevitable collision state, we defined the notion of ACS (avoidable collision state)
and, based on this, formulated a hard constraint on the robot state guaranteeing
that it can execute a collision avoidance trajectory in the presence of a dangerous
obstacle. The method was compared with a version of the proposed NMPC that
considers a purely distance-based collision avoidance constraint.

The comparative simulations showed that the proposed method is generally more
effective than the considered distance-based alternative, especially when the robot
navigates at high speed in cluttered dynamic environments. They also confirmed our
claim that within an NMPC for robot navigation, the use of a collision avoidance
constraint that considers information about the whole relative state of the robot
with respect to the obstacle and the robot actuation capabilities can lead to an
earlier reaction in the presence of an obstacle compared to a collision avoidance
constraint that is based on purely distance information.

Future work will be aimed at

• comparing the proposed dynamics-aware collision avoidance constraint with a
CBF-based collision avoidance constraint like the one proposed in Chap. 4;

• testing the proposed method in flying robots which are known to perform
much more agile motions than a wheeled mobile robot;

• extending the proposed method on multi-body mobile robots (namely, mobile
manipulators).

5.5 Conclusions 61

Figure 5.5. Snapshots of the motion generated by the two methods in one of the dynamic
environments, with vmax = 1.2 m/s. As in the static environment, the DB method
cannot avoid collision with an obstacle, whereas the DA method safely navigates to the
goal. See also simulation 4 in the accompanying video.

62 5. A dynamics-aware NMPC method for robot navigation

Figure 5.6. The driving and steering velocity profiles and the control inputs generated
by the two methods in the dynamic environment, with υmax = 1.2 m/s. Each vertical
dashed gray line corresponds to one of the time instants in which the snapshots of
Fig. 5.5 were taken. See also simulation 4 in the accompanying video.

63

Part II

Motion generation for mobile
manipulators

65

Chapter 6

Ensuring balance for mobile
manipulators via NMPC

This chapter concerns the problem of real-time generation of safe motions for Mobile
Manipulators (MM) called to execute tasks that require aggressive motions. The
proposed approach is based on a real-time NMPC algorithm that considers the robot
full dynamics and appropriate constraints to ensure the robot safety.

6.1 Introduction

The MMs are robotic platforms consisting of a mobile base with one or more
manipulators mounted on it. They have a large domain of application spanning from
operations in inhospitable environments to household assistance. Their popularity is
mainly a result of their inherent versatility, as they combine the mobile base mobility
and the manipulator dexterity. Depending on the application, their structure and
size vary, having examples of ground, underwater, aerial, or even space mobile
manipulators, and are able to perform dexterous tasks in environments where human
beings cannot reach or their operation in such environments could expose them
to danger. This thesis only focuses on ground and particularly on wheeled mobile
manipulators studying the problem of motion generation with particular focus on
the safety of the resulting motion.

However complicated the assigned task is, preserving the robot safety and in
extension the safety of the environment is of utmost importance. During its motion
the robot runs the risk of: (i) exceeding its hardware limitations, (ii) colliding
with the environment and/or itself (self-collision) and (iii) losing its balance. Note
that, these safety risks for the robot can constitute a safety risk for its surrounding
environment too, as a collision with the environment might cause material damage
or even harm a human operating close to the robot. Clearly, in order to generate
motions for a MM, it is required to take into consideration the aforementioned risks.

In the literature, there are several methods that generate task-consistent mo-
tion for MMs. Many approaches taking advantage of the MM structure treat each
subsystem (i.e., mobile base and manipulator) separately by assigning sub-tasks to
each one of them and solving two separate motion planning problems. A compre-
hensive survey of methods like this can be found in [78]. However, this approach

66 6. Ensuring balance for mobile manipulators via NMPC

does not permit the exploitation of the full potential of a MM and in principle
leads to suboptimal motions. This can be avoided by treating the system as a
whole. This approach comes with the disadvantage that the high dimensions of the
resulting motion planning problem make it computationally intensive. The problem
of whole-body motion planning can always be treated as an OCP. In [79] the authors
formulate and solve the motion planning problem among obstacles for nonholonomic
MM as an OCP. Alternative approaches are based on sampling-based methods
(e.g., [80, 81, 82, 83, 84, 85]). However, the aforementioned methods are in principle
computationally intensive and can only be applied offline. Clearly, offline solutions
are not effective when the robot operates in a dynamically changing environment. So
online solutions have to be employed. In order to reduce the required computational
time, the authors in [86] attack the motion planning problem for a nonholonomic
MM using a discontinuous feedback controller built upon navigation functions that
account for collision and singularity avoidance. The authors in [87] also use potential
fields in order to drive the robot along a collision-free tunnel built in the workspace of
the robot, while repulsive fields push the robot away from the environment obstacles.

Recently, NMPC became an attractive approach for real-time motion generation,
applicable also to robots with high DOF, like MMs, thanks to the development of
tailored algorithms for its solution, like the RTI scheme [32] or Differential Dynamic
Programming (DDP)-like approaches like the Sequential Linear Quadratic (SLQ)
algorithm [88], as well as to the development of appropriate software (to mention a
few, ACADO Toolkit [17], acados [77], Crocoddyl [89]). In NMPC the safety risks
that the robot runs can be considered explicitly by the use of the robot full dynamic
model, state and input bounds as well as with appropriate collision avoidance and
balance constraints.

Note that in cases where the robot has to execute tasks that permit low speeds
without excessive accelerations, the use of the robot full dynamic model is not
necessary and its kinematic model can be used instead. An example can be found
in [90] where the kinematic model of an MM moving under non-holonomic constraints
is considered as prediction model in an NMPC. However, the authors did not include
inequality constraints like control input limits and collision avoidance constraints.
In order to ensure that the resulting motion will be collision-free the methods
in [75, 91, 92, 93] consider appropriate collision avoidance constraints in the proposed
MPC schemes.

Clearly, the kinematic model of the robot is essential in order to generate motions
that are compatible with a task assigned in terms of a representative point of
the robot and in order to respect geometric constraints (e.g., collision avoidance
constraints). However, as the motion of the robot becomes faster, one has to consider
the robot dynamics in order to enforce kinodynamic feasibility and reason about the
robot balance. Although approximations of balance constraints exist that ignore the
robot dynamics effect, under the assumption of relatively slow motions (see [92]),
these approximations can be dangerous when the effect of the dynamics becomes
significant.

In the literature, there are many attempts to evaluate and prevent the MM
loss of balance. The motion planning approach in [94] maintains the MM balance
when the robot base is stationary. The Force-Angle measure [95, 96] predicts and
prevents tip-over instabilities when the whole robot is in motion. The extensively

6.2 Problem formulation 67

used in humanoids Zero-Moment Point (ZMP) [97] is applied to MMs in [98, 99,
100] neglecting though the moment of inertia of the robot bodies. Clearly, the
consideration of a detailed model of the robot dynamics can be computationally
intensive. In order to reduce this computational effort, in [101] the authors use
approximations of the ZMP position gradient and Hessian matrix, while in [102]
such approximations are avoided using appropriate recursive algorithms. Alternative
but equivalent to the ZMP methods have also been introduced for the evaluation of
the robot balance. In [103, 104] the Stability Twist Constraint (STC) is used in an
inverse kinematics solver implemented as a QP. STC constrains the support wrench
on the robot base to produce non-positive power with an imaginary twist along each
axis of the robot support polygon. Similarly, [105] introduces an algorithm that
adjusts the robot motion in order to recover from a loss of balance, considering the
moment around the support polygon edges. Note, however, that the approaches
of [101, 102, 103, 104, 105] have to be paired with a separate motion planner.

This chapter addresses the problem of motion generation for MMs called to
perform aggressive motions. For the solution of the considered problem, we will use
the NMPC approach proposed in our work [3]. Specifically, to enforce kinodynamic
feasibility to the resulting motion we consider the robot full dynamic model and
appropriate state and input bounds while the resulting motion is collision-free thanks
to appropriate collision and self-collision avoidance constraints. To ensure that the
robot will not lose its balance we adopt the STC constraint, which requires essentially
that the exerted by the robot moments around the support polygon edges remain
non-negative. To facilitate the real-time solution of the NMPC, the inherently
nonlinear balance constraint is linearized using the solution of the previous NMPC
iteration.

The chapter is organized as follows. The considered problem is formulated in
Sect. 6.2. In Sect. 6.3 we obtain the kinematic and dynamic model of a general
wheeled MM. In Sect. 6.4 we outline the proposed NMPC scheme for the generation
of the desired motion. In Sect. 6.5 we present the collision and self-collision avoidance
constraints to be included in the NMPC, while Sect. 6.6 is dedicated to the considered
balance constraint. The simulation results for the considered MM are presented in
Sect. 6.7, while some concluding remarks are offered in Sect. 6.8.

6.2 Problem formulation
Consider a general wheeled MM with configuration q taking values in an n-dimensional
space. The robot operates in a 3-dimensional workspace W moving on an horizontal
ground. The considered workspace is populated by static and/or moving obstacles.
Denote by R(q) ⊂ W the volume occupied by the robot at configuration q and by
O(t) ⊂ W the volume occupied by the obstacles at time t.

The robot is called to execute a task in terms of a vector y ∈ Y which describes
the position of its end-effector and is assigned as a desired trajectory yd(t), with
defined derivatives and t ∈ [0, tf] where tf the duration of the assigned task.

The problem consists in generating in real-time a motion that:

1. starts from the robot initial configuration and follows as close as possible the
desired end-effector trajectory yd;

68 6. Ensuring balance for mobile manipulators via NMPC

Figure 6.1. A general mobile manipulator consisting of a wheeled mobile base carrying a
nm joint manipulator.

Figure 6.2. Top view of the mobile base of the considered mobile manipulator.

2. is kinodynamically feasible, in the sense that it is consistent with the robot
dynamics and respects joint and velocity limits and the joint torque bounds;

3. maintains the robot balance, in the sense that the robot wheels are always in
contact with the ground;

4. is collision-free, avoiding not only collisions with the environment obstacles
but also self-collisions.

We assume that the robot is always aware of its own state as well as the position
and velocity of the obstacles populating its environment.

6.3 Mobile manipulator model
In this work, we will consider a general wheeled mobile manipulator (see Fig. 6.1).
The robot consists of a differential-drive mobile base with nw wheels of which the 2

6.3 Mobile manipulator model 69

are actuated and the rest nw − 2 are caster wheels placed for mechanical balance.
The mobile base carries a manipulator of nm joints, equipped with an end-effector.

For our analysis we make the following assumptions:

• the robot bodies are rigid;

• the robot wheels are in point contact with the ground, while the contact points
that correspond to the driving wheels do not change with respect to a reference
frame attached to the vehicle;

• the ground-wheel friction is adequate to prevent slippage.

Referring to Fig. 6.1, denote by Fw the world reference frame and by Fb a frame
attached to the mobile base. In order to represent the pose of the mobile base we
consider 6 fictitious joints that connect the world frame Fw with the mobile base
frame Fb. The joints are arranged as follows: 3 prismatic joints along the x, y and z
axes of Fw, followed by 3 revolute joints with axes parallel to the yaw, pitch and
roll axes of the mobile base. Note, however, that this arrangement is not unique.

The generalized coordinates of the base are collected in the vector

qb = (xb, yb, zb, θz, θy, θx, ϕr, ϕl) ∈ IR6+2

where the first six elements are the variables of the fictitious joints and represent
the pose of the mobile base, while ϕr and ϕl are the joint angles of the right and left
driving wheels, respectively.

The generalized coordinates of the manipulator are expressed in the vector

qm = (θ1, ..., θnm) ∈ IRnm

consisting of the variables of the nm manipulator joints.
The generalized coordinates of the mobile base and of the manipulator constitute

the generalized coordinates of the whole MM that we collect in the vector

q = (qb, qm) ∈ IR6+2+nm .

6.3.1 Kinematic constraints

The considered robot moves on an horizontal ground. The robot is in contact with
the ground through its wheels, while the forces exerted by the ground to the robot
at the contact points, constrain the robot motion. Note that in order to obtain the
robot model that is going to be used as prediction model in the NMPC, we consider
its motion under normal conditions, i.e., the robot maintains its contact with the
ground and in extension its balance. Clearly, in order to ensure this, an appropriate
constraint has to be added in the NMPC in order to maintain the robot balance as
we will do in a following section.

Having as a reference Fig. 6.2, let us denote by Pr(xr, yr, zr) and Pl(xl, yl, zl) the
centroids of the driving wheels (we assume cylindrical wheels) and assume that the
contact points that corresponds to the driving wheels coincide with the projections of
Pr and Pl on the ground. Denote also by Pc,i(xc,i, yc,i, zc,i) the point on the mobile
base at which the i-th caster wheel is connected, with i = 1, ..., nw − 2. Note that

70 6. Ensuring balance for mobile manipulators via NMPC

the projection of Pc,i on the ground does not coincide with the contact point of the
i-th caster wheel. However, it is assumed that their distance and, as a consequence,
the resulting moment applied by the caster wheel to the mobile base is negligible.
Denote by pr and pl the position vectors of points Pr and Pr, respectively, while by
pc,i the position vector of Pc,i, all expressed in the world frame Fw. The vectors pr,
pl and pc,i are related to the mobile base configuration qb via forward kinematic
maps

pr = σr(qb) (6.1a)
pl = σl(qb) (6.1b)

pc,i = σc,i(qb), i = 1, ..., nw − 2. (6.1c)

Their velocity vectors are expressed as

ṗr = ∂σr(qb)
∂qb

q̇b (6.2a)

ṗl = ∂σl(qb)
∂qb

q̇b (6.2b)

ṗc,i = ∂σc,i(qb)
∂qb

q̇b, i = 1, ..., nw − 2. (6.2c)

No orthogonal to the ground motion In order for the robot to maintain its
contact with the ground, the velocity of the contact points along the orthogonal to
the ground axis has to be zero. So the following conditions for the velocity of points
Pr, Pl and Pc,i hold

ṗz
r = nT ṗr = nT ∂σr(qb)

∂qb

q̇b = 0 (6.3a)

ṗz
l = nT ṗl = nT ∂σl(qb)

∂qb

q̇b = 0 (6.3b)

ṗz
c,i = nT ṗc,i = nT ∂σc,i(qb)

∂qb

q̇b = 0, i = 1, ..., nw − 2. (6.3c)

where n is a unit vector orthogonal to the ground.
The conditions (6.3) also suggest that the components of vectors pr, pl and pc,i

projected on the orthogonal to the ground axis are constant throughout the robot
motion

pz
r = nT pr = const. (6.4a)

pz
l = nT pl = const. (6.4b)

pz
c,i = nT pc,i = const., i = 1, ..., nw − 2. (6.4c)

where the values of pz
r , pz

l and pz
c,i can be determined by the robot dimensions.

Intuitively, one can also realize that the fictitious joints Jf3, Jf5 and Jf6 remain
fixed during the robot motion and consequently the corresponding generalized
coordinates maintain a constant value

zb, θy, θx = const.

This value can be determined by solving the system of equations (6.4).

6.3 Mobile manipulator model 71

No lateral wheel motion and the pure rolling condition The assumption of
adequate wheel-ground friction suggests that the robot wheels are prevented from
slipping sideways (i.e., to a direction orthogonal to the mobile base sagittal plane).
The same assumption enforces also pure rolling conditions, i.e., the translational
motion of the wheels is a result of its rotation around its axis. Denote by bnx a unit
vector along the x-axis of the base frame Fb and bny a unit vector along the y-axis
(see Fig. 6.2). Denote also by wRb(qb) the rotation matrix of frame Fb with respect
to Fw. The no-slipping condition can be written for the right and left driving wheels,
respectively, as

bnT
y

wRT
b (qb)ṗr = 0 (6.5a)

bnT
y

wRT
b (qb)ṗl = 0. (6.5b)

By substituting (6.2a) and (6.2b) in (6.5) we get the no-lateral-slipping condition
for the right and left wheels as

bnT
y

wRT
b (qb)

∂σr(qb)
∂qb

q̇b = 0 (6.6a)

bnT
y

wRT
b (qb)

∂σl(qb)
∂qb

q̇b = 0 (6.6b)

Regarding the pure rolling conditions for the right and left driving wheels,
respectively, we have

bnT
x

wRT
b (qb)ṗr = rϕ̇r (6.7a)

bnT
x

wRT
b (qb)ṗl = rϕ̇l. (6.7b)

By substituting (6.2a) and (6.2b) in (6.7) we get the pure rolling conditions in the
form

bnT
x

wRT
b (qb)

∂σr(qb)
∂qb

q̇b − rϕ̇r = 0 (6.8a)

bnT
x

wRT
b (qb)

∂σl(qb)
∂qb

q̇b − rϕ̇r = 0 (6.8b)

The kinematic constraints Overall the kinematic constraints that restrict the
motion of the MM on the horizontal ground are (6.3), (6.6) and (6.8), which can be
also expressed in Pfaffian form as AT (q)q̇ = 0. Note that the elements of A(q) that
correspond to the manipulator are set to zero.

6.3.2 Kinematic model

As it was mentioned above, due to the robot motion on the horizontal ground the
robot configuration q consists of generalized coordinates that evolve during the
robot motion, denoted by the vector qe = (xb, yb, θz, ϕr, ϕl, qm), and of those that
correspond to the fictitious joints Jf3, Jf5 and Jf6, denoted by the vector qf =
(zb, θy, θx), which remain constant throughout the robot motion if the robot maintains

72 6. Ensuring balance for mobile manipulators via NMPC

its balance. These two vectors can be extracted from the robot configuration q using
the selection matrices P e and P f such that

qe = P eq,

qf = P f q.

If we denote by ν = (νb, q̇m) the robot velocity vector, where νb = (ϕ̇r, ϕ̇l) is the
vector of the mobile base velocities1, the robot kinematic model can be written as

q̇e = G(q)ν (6.9)

where G(q) is a matrix whose columns span the null space of AT (q)P T
e . Differenti-

ation of (6.9) with respect to time gives

q̈e = G(q)ν̇ + Ġ(q)ν. (6.10)

Regarding the end-effector position y, in terms of which the end-effector task is
assigned, it is related to the robot configuration via a forward kinematics map

y = k(q). (6.11)

The expressions for its velocity and acceleration are

ẏ = J(q)ν (6.12)

ÿ = J(q)ν̇ + J̇(q, ν)ν (6.13)

where J(q) = ∂k(q)/∂qG(q) the robot Jacobian and J̇(q, ν) its time derivative.

6.3.3 Dynamic model

For the dynamic model of the MM we use the Lagrange formulation. For this
purpose, the kinetic and potential energy of the considered robot has to be computed
in order to determine the robot equations of motion. The process is briefly presented
in Appendix A. The resulting dynamic model of the robot can be written in the
form

B(q)q̈ + n(q, q̇) = S(q)u + A(q)λ, (6.14)

being B(q) ∈ IRn×n the inertia matrix, n(q, q̇) ∈ IRn the vector of velocity and
gravitational terms, u ∈ IRnu the vector of the forces/torques applied by the nu

robot actuators, S(q) ∈ IRn×nu the matrix that maps the actuator forces to forces
performing work on the generalized coordinates, and A(q)λ the vector of the forces
exerted to the robot by its contact with the ground expressed at the generalized
coordinates level, with λ being the vector of the contact forces.

By left multiplying (6.14) by P e and after simple manipulation we get

P eB(q)P T
e q̈e + P en(q, q̇) = P eS(q)u + P eA(q)λ. (6.15)

1Note that as we mentioned at Chap. 3 one can choose a different pseudovelocity vector νb

comprised by the driving and steering velocity of the mobile base.

6.3 Mobile manipulator model 73

If we define the robot state as the vector x = (qe, ν) ∈ X we can express the
robot state-space reduced model [52] as

ẋ = ϕ(x, u) =
(

G(q)ν
M−1(q) (E(q)u−m(q, ν))

)
(6.16)

with

M(q) = GT (q)P eB(q)P T
e G(q)

m(q, ν) = GT (q)
(
P eB(q)P T

e Ġ(q)ν + P en(q, q̇)
)

E(q) = GT (q)P eS(q).

6.3.4 Contact forces

We already mentioned that λ is the vector of the contact forces exerted by the
ground to the robot. As we already assumed, the ground-wheel friction conditions
can balance the parallel to the ground forces exerted by the robot. In the following,
we will only look at the orthogonal to the ground elements of λ. Their determination,
however, is not trivial as the balance problem is hyperstatic when the contact points
are more than 3. Nevertheless, our intention is to argue about the robot balance, so
it is sufficient to determine the sum of the orthogonal to the ground forces and the
parallel to the ground moments exerted by the robot to the ground.

Note that the vector P f A(q)λ represents the contact forces at the generalized
coordinates level that constrain the base motion along the axes of the joints Jf3,
Jf5 and Jf6. If we left multiply (6.14) by P f , we get the expression

Pf B(q)P T
e q̈e + Pf n(q, q̇) = Pf A(q)λ. (6.17)

Note that in (6.17), P f S(q)u = 0 since the robot actuators do not perform work on
the generalized coordinates qf . If we denote by ff3 the force that the robot exerts
along the joint Jf3 and by µf5 and µf6 the moments that the robot exerts around
the joints Jf5 and Jf6 respectively, we haveff3

µf5
µf6

 = −P f A(q)λ. (6.18)

Substituting (6.17), (6.10) and (6.16) in (6.18) we get these forces and moments
as a function of the robot state and control inputsff3

µf5
µf6

 = −P f B(q)P T
r G(q)M−1(q)E(q)u + P f B(q)P T

r G(q)M−1(q)m(q, ν)

− P f B(q)P T
r Ġ(q)ν − P f n(q, q̇) (6.19)

Denote now by Fv a frame that has axes parallel to Fb and lies on the projection
of Fb on the ground (see Fig.6.1). The forces orthogonal to the ground and the

74 6. Ensuring balance for mobile manipulators via NMPC

moments parallel to the ground that the robot exerts at a point L of the ground
can be expressed in Fv as:

fv = wRv
T (q)ff3ẑw

f3, (6.20)

µv = wRv
T (q)

(
µf5ẑw

f5 + µf6ẑw
f6 + [c]× ff3ẑw

f3

)
(6.21)

where wRv(q) is the rotation matrix of Fv with respect to Fw, ẑw
f3, ẑw

f5 and ẑw
f6 are

the unit vectors of the joints Jf3, Jf5 and Jf6 axes in the world frame respectively,
c is the position vector that starts from the point of application of ff3ẑw

f3 and ends
at L expressed in the world frame and [c]× is the cross product operator which
represents a skew-symmetric matrix built from the elements of c.

6.4 Proposed NMPC approach

The considered real-time motion generation problem will be solved using an appro-
priate NMPC algorithm. Consider the NLP of the form (2.8) to be solved at the
generic time tk. Denote by T the prediction horizon, by δ the sampling time and
by N = T/δ the number of control intervals in the prediction horizon. Denote also
by xk|i and uk|i the predicted robot state and control inputs at time instants tk+i,
while by yk|i and ẏk|i denote the predicted position and velocity of the end-effector
at the same time instant. We define as ek|i = yd(tk+i)−yk|i the predicted task error
at tk+i and as ėk|i = ẏd(tk+i)− ẏk|i its derivative at the same time instant, where
yd(tk+i) and ẏd(tk+i) are the desired end-effector position and velocity at time tk+i,
respectively.

Our objective is to make the task error as small as possible while guaranteeing
the safety requirements, possibly using the minimum control effort. So, we can
express the running and terminal costs, respectively, as:

Vk|i(xk|i, uk|i) = eT
k|iQpek|i + ėT

k|iQdėk|i + νT
k|iSνk|i + uT

k|iRuuk|i (6.22)

Vk|N (xk|N) = eT
k|N Qp,N ek|N + ėT

k|N Qd,N ėk|N + νT
k|N SN νk|N . (6.23)

where Qp, Qd, S and Ru are the weighting matrices for the task error, its derivative,
the robot velocity and the control effort throughout the prediction horizon, while
Qp,N , Qd,N and SN are the weighting matrices for the task error, its derivative and
the robot velocity at the final time instant.

6.5 Collision avoidance 75

Figure 6.3. The bounding geometries used for the collision avoidance constraints between
the robot and the environment obstacles. A bounding ellipsoid is used to envelop the
j-th robot body and a bounding sphere is used to envelop the l-th obstacle.

The resulting NLP that will be solved at time instant tk is:

min
uk|0,...,uk|N−1,

xk|0,...,xk|N

N−1∑
i=0

Vk|i(xk|i, uk|i) + Vk|N (xk|N) (6.24a)

subject to:
xk|0 − xk = 0 (6.24b)
xk|i+1 − ϕd-t(xk|i, uk|i) = 0, i = 0, ..., N − 1 (6.24c)
xmin ≤ xk|i ≤ xmax, i = 0, ..., N (6.24d)
umin ≤ uk|i ≤ umax, i = 0, ..., N − 1 (6.24e)
collision avoidance constraints at tk, ..., tk+N (6.24f)
self-collision avoidance constraints at tk, ..., tk+N (6.24g)
balance constraints at tk, ..., tk+N−1 (6.24h)

where xk represents the current robot state, ϕd-t(·, ·) represents the discrete-time
dynamics of the robot obtained via numerical integration of (6.16) under the as-
sumption of piecewise-constant control inputs, while xmin, xmax and umin, umax
are respectively the lower/upper bounds on the state variables and on the control
inputs.

Regarding the collision avoidance and the balance constraints, they will be
presented in full detail in Sections 6.5 and 6.6 respectively.

6.5 Collision avoidance
In order to design collision avoidance constraints between the robot and the en-
vironment obstacles we are going to consider bounding ellipsoids for the former
and bounding spheres for the latter. In particular, for the j-th robot body, where
j ∈ {1, ..., nb} with nb the number of robot bodies, we consider a bounding ellipsoid
that completely contains it (see Fig. 6.3). The centroid of the ellipsoid is denoted

76 6. Ensuring balance for mobile manipulators via NMPC

Figure 6.4. The bounding geometries used for the collision avoidance constraints between
two robot bodies susceptible to collision (self-collision). A bounding ellipsoid is used for
the larger body while a bounding sphere is used for the smaller one.

by Rj and by αj , βj and γj we denote the length of the principal semi-axes of the
ellipsoid. By rj denote the position of Rj in the world frame, which is related to
the robot configuration via a forward kinematics map rj = σj(q). Finally, we define
a reference frame Frj with origin at Rj and axes aligned with the principal axes of
the ellipsoid. Its rotation matrix with respect to the world frame Fw is denoted by
Rrj (q).

Regarding the l-th obstacle Ol ⊂ O, where l ∈ {1, ..., no} with no the number of
the obstacles, we consider a bounding sphere with center placed at Ol and radius ρl,
large enough in order to envelop the volume of the obstacle. By ol we denote the
position vector of Ol.

To ensure that the j-th robot body and the l-th obstacle do not collide, we can
use as in [106] the inequality constraint

hj,l(x, ol) = (rj − ol)T Rrj Hj,lR
T
rj

(rj − ol)− 1 ≥ 0 (6.25)

with
Hj,l = diag{(αj + ρl + dc)−2, (βj + ρl + dc)−2, (γj + ρl + dc)−2}.

where dc > 0 is a small safety clearance. The collision avoidance constraints to be
applied at (6.24f) can be written as

hj,l(xk|i, ol,k|i) ≥ 0, i = 0, ..., N, j = 1, ..., nb, l = 1, ..., no

where ol,k|i is the position of the the l-th obstacle at the predicted time instant tk+i.
For the self-collision avoidance constraint let us consider the j-th robot body

and the l-th robot body, with j ̸= l. We say that the two bodies are susceptible
to collision if they are structurally reachable, in the sense that there exists a robot
configuration q in which the two bodies can collide, and their collision cannot be
avoided by the considered joint bounds in the NMPC scheme (6.24d). We denote
by S the set of pairs of indices (j, l) that correspond to the robot bodies that are
susceptible to collision.

6.6 Robot balance 77

Figure 6.5. The robot support polygon. By ei we denote the unit vector of its i-th edge
and by pi the position of its starting point, all expressed in Fv.

Given a pair of susceptible to collision robot bodies, we follow the same approach
as for the collision between the robot and the environment obstacles. Specifically,
we assign to the robot bodies the bounding ellipsoid and the bounding sphere based
on their shape (see Fig. 6.4). Let us assign to the j-th body the bounding ellipsoid
with its centroid denoted by Rj and the length of its principal semi-axes denoted
by αj , βj and γj . To the l-th body we assign a bounding sphere with its center
placed at Rl and with radius ρl, large enough in order to envelop the volume of the
body. By rl we denote the position vector of Rl which is now a function of the robot
configuration, rl = σl(q).

To ensure that the j-th and the l-th robot bodies will not collide we use the
inequality constraint

hs
j,l(x) = (rj − rl)T Rrj Hs

j,lR
T
rj

(rj − rl)− 1 ≥ 0, (j, l) ∈ S (6.26)

where rj = σj(q) the position vector of Rj , Rrj (q) the rotation matrix of Frj with
respect to Fw and

Hs
j,l = diag{(αj + ρl + ds)−2, (βj + ρl + ds)−2, (γj + ρl + ds)−2},

where ds > 0 is a small safety clearance. Note, that now the self-collision avoidance
constraint depends only on the robot state.

So, the self-collision avoidance constraints to be included in (6.24g) can be written
as

hs
j,l(xk|i) ≥ 0, i = 0, ..., N, (j, l) ∈ S

6.6 Robot balance
In this section, we first present the criterion that we will use for the evaluation of the
robot balance. Then, we derive the constraint to be applied in (6.24h) and introduce
an additional term in the cost function to improve the robot balance.

6.6.1 Balance criterion

As a criterion to evaluate the robot balance, we use the moments that the robot
exerts around the support polygon edges. The robot maintains its balance if the

78 6. Ensuring balance for mobile manipulators via NMPC

resulting moments are non-negative. Denote by ei the unit vector of the i-th edge
and by pi the position of its starting point, both expressed in Fv (see Fig. 6.5). If
µi is the moment that the robot exerts around the i-th edge of the support polygon
then the criterion for robot balance is expressed as:

µi = eT
i (−(pi − lv)× fv + µv) ≥ 0, ∀ i = 1, ..., ne, (6.27)

where lv the position vector of L with respect to Fv and ne the number of support
polygon edges. Note that constraining the moments around the support polygon
edges to remain non-negative is equivalent to constraining the ZMP to lie within
the support polygon (see Appendix B).

Substituting (6.20), (6.21) and (6.19) in (6.27) and after simple manipulation
we get the balance criterion in the form:

Ab(x)u ≤ bb(x), (6.28)

where the expressions of Ab and bb can easily derive from the aforementioned
equations.

6.6.2 Balance constraint

As we already mentioned, for the solution of the NMPC we are using the RTI scheme
based on an SQP algorithm. To reduce the computational time, software like ACADO
Toolkit, which is the one used here, are based on the symbolic representation of the
OCP and the generation of optimized code. Although this method is very effective
for a fast and reliable solution of the optimization problem it comes with a drawback.
When the prediction model and the considered constraints are long and complex,
like in the case of a MM, this approach can lead to a memory overhead in common
processing platforms.

In order to deal with this issue, instead of using the inherently nonlinear balance
constraint (6.28) directly in the NLP, we take advantage of the recursive nature of
the NMPC in order to simplify it. Specifically, let us first collect the robot state
and control inputs predicted at time tk in the vectors

Xk =
(
xk|0, ..., xk|N

)
,

Uk =
(
uk|0, ..., uk|N−1

)
.

and let us consider that the solution of the NMPC does not change significantly
between two consecutive control cycles. For the balance constraints of the NLP to be
solved at time instant tk we will use the NLP solution Uk−1 obtained at time instant
tk−1. Starting from the initial state xk−1|0 and using the control sequence Uk−1, we
can integrate the robot equations to obtain its trajectory throughout the prediction
horizon computed at time instant tk−1, that is Xk−1 = (xk−1|0, xk−1|1, .., xk−1|N).
Given that the predictive model is accurate, by applying the control input uk−1|0 at
time instant tk−1 we get the robot initial state at time instant tk, i.e., xk|0 = xk−1|1.
Assuming no significant changes in the environment between the consecutive time
instants tk−1 and tk, we can use Xk−1 as an estimation of the first N − 1 states of

6.7 Simulations 79

Figure 6.6. The 3-link mobile manipulator considered for the simulations (left). For the
collision avoidance constraints, we use bounding ellipsoids in order to envelop the links
2 and 3 and a bounding sphere in order to envelop the mobile base (right).

the trajectory Xk. We will use this estimation in order to evaluate Ab(x) and bb(x)
in (6.28) for each time instant throughout the prediction horizon. The resulting
balance constraints that will be applied at (6.24h) of the NLP to be solved at tk are
now linear combinations of the control inputs:

Ab(xk|0)uk|0 ≤ bb(xk|0)
Ab(xk−1|2)uk|1 ≤ bb(xk−1|2)

...
Ab(xk−1|N)uk|N−1 ≤ bb(xk−1|N)

Note that the solution of the NLP might entail some predicted control inputs that lead
to unbalanced states, due to the obsolete information used by the previous solution.
However, the control input that will be applied to the robot at the time instant tk,
namely uk|0, guarantees balance at time instant tk since xk|0 is independent of the
NMPC solution at tk.

6.6.3 Improving balance

Even if the balance constraint is satisfied, the robot might get dangerously close to
losing balance, unless we introduce an appropriate term in the cost function that
improves the robot balance. Thus, we add in the running cost the term vT

k|iΛvk|i,
where vk|i = Ab(xk−1|i+1)uk|i − bb(xk−1|i+1) and Λ the corresponding weighting
matrix. This term helps to evenly distribute the moments among the edges of our
support polygon.

6.7 Simulations
In order to show the effectiveness of the proposed method, we conducted a series of
simulations assigning to the robot end-effector tasks that require aggressive motions.
All the simulations were implemented using Simscape within Simulink on an Intel
Core i9-9900K CPU running at 3.60 GHz. For the numerical solution of the NMPC,
we used the RTI scheme [107] implemented within the ACADO Toolkit [17].

80 6. Ensuring balance for mobile manipulators via NMPC

The robotic platform: The robot used for our simulations is an MM consisting of
a differential-drive mobile base with two caster wheels carrying a 3-link manipulator
on top (see Fig. 6.6). The height of the mobile base is 0.4 m and the length of the
manipulator (fully extended) is 1.35 m. The total robot weight is 44.5 kg. The
robot is torque controlled. By τr and τl we denote the torques at the right and left
driving wheels respectively and by τ1, τ2 and τ3 the torques of the actuators at the
manipulator joints (the enumeration starts from the closest to the base joint).

Collision avoidance with the environment: For the collision avoidance constraints
between the robot and its environment, we used 2 bounding ellipsoids in order to
envelop the 2nd and 3rd link of the manipulator and a bounding sphere (ellipsoid with
semi-axes of equal size) in order to envelop the robot mobile base. In an attempt to
reduce the number of the considered constraints, we consider for collision avoidance
only the closest obstacle to each robot body. The closeness is evaluated using (6.25).

Self-collision avoidance: For the considered robot, the only bodies susceptible
to self-collision are the 3rd link of the manipulator and the mobile base. Note that
the 2nd link will be protected from collision with the base by the considered joint
limits. To build the corresponding self-collision avoidance constraint of the form
(6.26) we envelop the manipulator link with the bounding ellipsoid and the base
with the bounding sphere.

Balance constraints: Regarding the balance constraints, the considered robot is
in contact with the ground via 2 driving and 2 caster wheels, forming a support
polygon with 4 edges. If we locate the frame Fv along the axis of the robot base,
the position of the support polygon edges expressed in this frame is:

p1 = (0.2,−0.133, 0) ,

p2 = (0.2, 0.133, 0) ,

p3 = (−0.15, 0.2, 0) ,

p4 = (−0.15,−0.2, 0) .

However, we consider a more conservative support polygon2 by reducing its dimen-
sions by 10%.

We wish to compare the proposed method with two approaches from the literature:
(1) the NMPC proposed in [92] and (2) the QP proposed in [103]. These methods
were originally applied to velocity controlled robots, considering only their kinematic
models. So for the purpose of this comparison, the compared methods were slightly
modified in order to be applied to the considered torque controlled robot.

In the rest of this section we briefly present the compared methods and then we
show the simulation results.

2Note that for the robot that we consider for our simulations, the use of the reduced support
polygon accounts for integration errors of the simulation environment. However, the consideration
of a reduced support polygon is a valid approach when one deals with more realistic robots equipped
with caster wheels whose exact configuration, and in extension the position of the contact point
cannot be predicted.

6.7 Simulations 81

Figure 6.7. Snapshots of the motion generated by the proposed method and the two
compared methods in the five scenarios.

6.7.1 Compared methods

NMPC using a ZMP position approximation The NMPC presented in [92]
uses a balance constraint built upon the approximation of the ZMP position:

p̃zmp = ng × (pcog × fg − pee × fee − µe)
ng · (fg − fee) ,

where ng is the ground normal vector, pcog and fg are the position of the robot
center of gravity and the gravitational forces applied to the robot, pee the position of
the end-effector and fee and µe are the external forces and moments applied to the
end-effector, all expressed in Fv. The considered balance constraint takes the form:

gzmp(x) = ρ2
sc − ∥p̃zmp∥2 ≥ 0 (6.29)

where ρsc is the radius of a circle enveloped by the support polygon. Since in [92]
the NMPC is solved using the SLQ method, the balance constraint (6.29) was
included in the cost function using a relaxed barrier function. However, for the
purpose of this comparison we will use an NLP as the one proposed in (6.24)
using (6.29) as balance constraint. To improve the robot balance we include in the
running and terminal costs (6.22) and (6.23) the terms w(ln (gzmp(xk|i)/ρ2

sc))2 and
wN (ln (gzmp(xk|N)/ρ2

sc))2 where w and wN are the associated weights.
In the simulation results we will refer to this method as NMPC-CG (CG stands

for center of gravity).

82 6. Ensuring balance for mobile manipulators via NMPC

QP using the STC The method in [103] uses a QP in order to solve the inverse
kinematics problem given an end-effector task at the velocity level. For the purpose
of this comparison, we slightly modified the QP in order to consider the robot
dynamics. If qk+i, νk+i, xk+i and uk+i are the robot configuration, velocity, state
and control inputs at time tk+i respectively, then the QP to be solved at tk is:

min
uk

νT
k+1Qνk+1 + vT

k Svvk + uT
k Ruuk

subject to:
ẏd(tk+1)− J(qk+1)νk+1 = 0
qmin ≤ qk+2 ≤ qmax

νmin ≤ νk+1 ≤ νmax

umin ≤ uk ≤ umax

Ab(xk)uk ≤ bb(xk)

where qk+1, qk+2 and νk+1 result from the integration of the equations of motion
(6.16) using the Euler method and they are functions of xk and uk. The balance is
maintained using (6.28) while the term vT

k Svvk improves the robot balance with
vk = Ab(xk)uk − bb(xk) and Sv the associated weight. Note that here we cannot
apply collision avoidance constraints in the form of (6.25) and (6.26) since they are
nonlinear functions of the state, while the QP can only accept constraints formulated
as linear combinations of the control inputs. Of course, this does not mean that we
cannot apply collision avoidance constraints of an appropriate form in the QP as
it will be shown in the following chapter, however, this is out of the scope of this
chapter.

We will refer to this method as QP-STC and for its solution we use quadprog.

6.7.2 Simulation results

We compare the three methods in five different scenarios of assigned end-effector
tasks. For all methods the sampling time is δ = 23 ms while the prediction horizon
for the proposed method and the NMPC-CG is T = 0.23 s, chosen as large as possible
to allow real-time performance. In Fig. 6.7 we offer a series of snapshots from the
simulations while at https://youtu.be/xp3qVcyYww8 we offer the full video of the
simulations. Note that the maximum iteration time for the proposed method was
less than 23 ms in all considered scenarios, showing that it can perform in real-time.

Scenario 1: The assigned end-effector task is to track a linear path of length
1.45 m following a trapezoidal velocity profile. The task duration is 4 s and the
maximum acceleration along the path is 0.44 m/s2. The environment is obstacle-free.
In this scenario, all three methods generate feasible motions (see Fig. 6.7 and video).
However, Fig. 6.8 shows that the proposed method and the NMPC-CG (inseparable
in the plot) give a smoother ZMP path than the QP-STC.

Scenario 2: The assigned end-effector task is the same of Scenario 1 only now
the task duration is decreased to 1.2 s while the maximum acceleration is increased
to 4.84 m/s2. The environment is again obstacle-free. Fig. 6.7 (and the video) shows
that only the methods that consider the full robot dynamics for the evaluation of
the robot balance, i.e., the proposed method and the QP-STC, are able to generate

https://youtu.be/xp3qVcyYww8

6.7 Simulations 83

Figure 6.8. The ZMP position resulting
in Scenario 1

Figure 6.9. The ZMP position resulting
in Scenario 2

feasible motions while the NMPC-CG fails as the rear wheels of the MM lose contact
with the ground. It is apparent that, unlike Scenario 1, here the high acceleration
required at the beginning of the robot motion makes the ZMP position approximation
of the NMPC-CG inadequate and the robot loses balance immediately (see Fig. 6.9
for the ZMP position).

Scenario 3: The assigned end-effector task is the same as Scenario 1 but now
the desired path is obstructed by a spherical obstacle of radius 0.1 m (see Fig. 6.7).
The presence of the obstacle leads to an increase in the required acceleration at
its vicinity (see Fig. 6.10). In Fig. 6.7 (and the video) we can see that while our
method performs satisfactory, the NMPC-CG fails and the robot loses its balance
when it is called to avoid the obstacle (see Fig. 6.10). Note that as we mentioned in
Sect. 6.7.1, the QP-STC cannot be applied in this scenario since it does not support
the collision avoidance constraints.

Scenario 4: The end-effector has to follow a circular path completing two full
circles in 7 sec. The radius of the circle is 0.5 m. The environment is obstacle-free. In
this scenario, only the proposed method and the QP-STC were able to complete the
task, while in Fig. 6.7 (and the video) we can see the NMPC-CG losing balance as
the rear wheels of the robot detach from the ground at the beginning of the second
circle (see also Fig. 6.11 for the ZMP position). In Fig. 6.11 we can also see that the
proposed method generates motions that result in a smoother ZMP path than the
QP-STC.

Scenario 5: The end-effector has to follow a linear path of length 0.7 m followed
by a second linear path of length 0.7 m that forms an angle of π/4 rad with the
first one (see Fig. 6.7). The desired velocity has again a trapezoidal profile. The
task duration is 4 s and the maximum acceleration along the path is 0.44 m/s2. The
environment is obstacle-free. In Fig. 6.7 (and the video) we can see that due to
the abrupt change of direction, that leads to increased required accelerations (see
Fig. 6.12), only the proposed method is able to generate feasible motions, while the
rest lose balance.

84 6. Ensuring balance for mobile manipulators via NMPC

Figure 6.10. The ZMP position (left) and the control inputs (right) resulting in Scenario 3

Figure 6.11. The ZMP position resulting in Scenario 4

6.8 Conclusions

In this chapter, we presented a novel real-time motion generation approach for
MMs using an NMPC. Kinodynamic feasibility is enforced through the use of the
robot dynamic model as prediction model and via input and state constraints,
while collisions are avoided using appropriate collision and self-collision avoidance
constraints. To prevent the robot loss of balance in cases where it is called to execute
aggressive motions we included a constraint that restricts the robot feasible motions
to those that result in non-negative moments around the support polygon edges.
To enable the solution of the proposed NMPC scheme with off-the-shelf solvers
that require symbolic representation of the OCP, like ACADO Toolkit, we lifted the
inherent nonlinearity of the balance constraint by linearizing it using the solution of
the previous iteration of the NMPC.

The proposed method was compared with two other methods in five scenarios.
The simulation results showed that the proposed method can effectively handle
end-effector tasks that require aggressive motions even in cases where the other
methods fail.

6.8 Conclusions 85

Figure 6.12. The ZMP position (left) and the control inputs (right) resulting in Scenario 5

Future work aims at

• the experimental validation of the proposed method;

• the extension of the proposed method to consider additional aspects of the
robot dynamics (e.g., the effect of the wheel-ground friction).

87

Chapter 7

An optimization-based controller
for enforcing safety constraints
in mobile manipulators

Consider the case in which a simplified model of the robot is used for motion
generation in an attempt to reduce the required computational time. In this chapter,
we propose an Optimization-Based Controller (OBC) that can be interposed between
a motion generation module that considers a simplified model of the robot and the
robot itself in order to enforce safety.

7.1 Introduction

In Chap. 6 we were called to solve the problem of real-time motion generation for
a MM called to execute a desired task in an environment populated by obstacles,
possibly requiring aggressive motions. For the generation of such a motion, of
particular importance is the considered prediction model of the robot. Its kinematic
model is essential as it ensures that the resulting motion will be compatible with the
assigned task and the geometric constraints imposed by the environment, i.e., the
collision avoidance constraints. Nevertheless, in order to ensure that the resulting
motion will be kinodynamically feasible and to properly reason about the robot
balance, one has to consider also the robot full dynamics, as we did in Chap. 6.
However, one can notice that the robot considered in Chap. 6 was relatively simple,
as it was equipped with a 3-DOF manipulator. Recently, MMs equipped with high
DOF manipulators and MM with multi-arm configurations have become rather
popular. Of great interest are also the legged mobile manipulators which in principle
have a rather complex structure. In cases like these, the dynamic model of the robot
can end up being rather complicated. Apart from the memory overhead that may
emerge from the use of such a model (an issue that we also discussed in Chap. 6), it
may also lead to unacceptably large computational times which is incompatible with
the real-time requirement. As a result, approaches that use the simplest possible
prediction model of the robot, without compromising safety are preferable.

In order to efficiently plan motions for complex robots the authors in [108] suggest
the use of simplified dynamic models, specifically the robot centroidal dynamics [109],

88 7. An OBC for enforcing safety constraints in MMs

in combination with the robot kinematics. The robot centroidal dynamics model
is simpler than the full dynamics model as the DOF of the robot increase and it
provides a relation between the robot motion and the external generalized forces
applied to the robot, making it ideal for reasoning about the robot balance. However,
in contrast to the robot full dynamics, the robot centroidal dynamics do not consider
the generalized forces exerted by the motors of the robot. So, if the robot motors do
not have enough control authority, the resulting motion might not be implementable.
As a result, a controller that considers the robot full dynamics should be interposed
between the motion planning module and the robot in order to transform the planned
motion to appropriate torque commands for the robot. In the case of [108] the OBC
presented in [110] was used for this purpose.

A similar approach is used within a real-time NMPC framework in [111] and
applied to a legged mobile manipulator. The prediction model uses the robot
centroidal dynamics and the resulting motion is tracked by an OBC [112] that
considers the robot full dynamics in order to generate appropriate torque commands.
Although in this particular work the robot is not protected from collisions with its
environment, its extension, presented in [113], includes collision avoidance constraints
as soft constraints in the NMPC using an appropriate barrier function.

However, the use of a controller that considers the robot full dynamics in order
to track a collision-free but not necessarily kinodynamically feasible whole-body
motion can eventually lead to tracking errors, which can potentially jeopardize the
robot safety. To illustrate this point, let us consider the case in which a motion
generation module, that does not consider the robot full dynamics, generates an
aggressive motion with high accelerations. If the robot does not have the actuation
capabilities to generate those accelerations at the current state of the robot, then the
controller that is called to track this motion and considers the robot full dynamics
will generate control commands that lead to a tracking error. Although this tracking
error might be negligible, if the robot moves in the vicinity of an obstacle, a collision
can occur.

This issue can be avoided if the controller considers appropriate collision avoidance
constraints. In [114] the authors suggest the use of the Velocity Damper [115]
method in order to include collision avoidance constraints in a QP. However, recently
CBFs [64] have been effectively exploited for this purpose. For robot manipulators,
representative examples where CBF are used as collision avoidance constraints
between the robot and its environment can be found in [116, 117, 118]. However,
in their implementation [116] and [118] consider collision avoidance constraint only
for the robot end-effector, ignoring the rest of the robot, while [117] although it
considers the whole robot for collision it uses only its kinematic model.

In this chapter, we will solve the motion generation problem presented in Sect. 6.2
using a motion generation scheme comprised of a motion generation module that
uses a simplified model of the robot and an OBC that is used in order to track the
generated motion and apply appropriate torque commands to the considered robot.
The proposed OBC, which is interposed between the motion generation module
and the robot, is implemented as a QP and considers the robot full dynamics, joint
limits, velocity limits and torque bounds. To ensure that the resulting motion will
be at least collision-free, the controller considers collision and self-collision avoidance
constraints built upon appropriate CBFs. The controller is complete with a balance

7.2 Problem formulation 89

constraint that restricts the robot motions to those generating non-negative moments
around the support polygon edges. Simulation results indicate the effectiveness of
the proposed OBC, even when the motion generation module ignores completely the
robot dynamics, illustrating also the importance of including the collision avoidance
constraint in the tracking controller.

To the best of our knowledge, an OBC like the one presented in this chapter has
not been applied to mobile manipulators.

This chapter is organized as follows. In Sect. 7.2 we restate the motion generation
problem presented in Sect. 6.2 for completeness and in Sect. 7.3 we describe the
proposed motion generation approach. Sect. 7.4 presents in detail the motion
generation module, while Sect. 7.5 presents the proposed OBC, which is the main
focus of this chapter. Simulation results are presented in Sect. 7.6, followed by a
discussion on the proposed method in Sect. 7.7. Finally, concluding remarks are
offered in Sect. 7.8.

7.2 Problem formulation

Consider a general wheeled mobile manipulator with configuration q. The robot
operates in a 3-dimensional workspace W, moving on an horizontal ground. The
considered workspace is populated by static and/or moving obstacles. Denote by
R(q) ⊂ W the volume occupied by the robot at configuration q and by O(t) ⊂ W
the volume occupied by the obstacles at time t.

The robot is called to execute a task in terms of a vector y ∈ Y which describes
the position of the end-effector and is assigned as a desired end-effector trajectory
yd(t) with defined derivatives and t ∈ [0, tf] where tf the duration of the assigned
task.

The problem consists in generating in real-time a motion that:

R1: starts from the robot initial configuration and follows as close as possible the
desired end-effector trajectory yd;

R2: is kinodynamically feasible, in the sense that it is consistent with the robot
dynamics and respects joint and velocity limits and the joint torque bounds;

R3: maintains the robot balance, in the sense that the robot wheels are always in
contact with the ground;

R4: is collision-free, avoiding not only collisions with the environment obstacles,
but also self-collisions.

We assume that the robot is always aware of its own state as well as the position
and velocity of the obstacles populating its environment.

7.3 Proposed approach

To solve the problem at hand we use the motion generation scheme illustrated in
Fig. 7.1. It consists of two modules; a motion generation module that generates

90 7. An OBC for enforcing safety constraints in MMs

Figure 7.1. The block diagram of the proposed motion generation scheme. It consists
of a motion generation module that plans whole-body motions for the robot, using a
simplified model of it. Those motions are used as a reference from the optimization-based
controller in order to generate appropriate torque commands for the robot while enforcing
safety.

collision-free whole-body reference motions for the robot consistent with the as-
signed end-effector task, and an optimization-based controller that generates torque
commands for the robot joints in order to follow the reference motion.

The motion generation module, which in this work is implemented as a real-time
NMPC, uses as prediction model a simplified model of the robot in order to generate
whole-body motions that are at least consistent with the assigned end-effector
task and account for the geometric constraints imposed by the robot structure,
i.e., self-collision avoidance constraints, and its interaction with the environment,
i.e., collision avoidance constraints with the environment obstacles. The motion
generation module will be presented in detail in Sect. 7.4.

Since the resulting motion is not necessarily kinodynamically feasible, as the
motion generation module does not consider the robot full dynamics, the optimization-
based controller (OBC) is interposed between the motion generation module and the
robot. The OBC, working at a higher frequency than the motion generation module,
receives as a reference the generated motion and tries to follow it as close as possible
while accounting for the robot full dynamics as well as joint limits, velocity limits
and torque bounds (requirement R2). The proposed OBC considers also balance
constraints (requirement R3) as well as collision avoidance constraints (requirement
R4) built upon appropriate CBFs. In this way, it ensures that even if the robot
cannot follow precisely the generated motion, the resulting robot motion will be at
least safe. The OBC, which is the main contribution of this work, will be presented
in detail in Sect. 7.5.

7.4 Motion generation module

As it was mentioned above we will use an NMPC in order to generate whole-body
motions that are at least consistent with the assigned end-effector task, as well as
with the geometry of the robot and its environment, in terms of collision avoidance.

7.4 Motion generation module 91

To do so, it is sufficient to consider the robot full kinematics. The prediction model
that will be used is

ẋ = ϕ(x, υ) =
(

G(q)ν
υ

)
(7.1)

where the robot state is denoted by x = (qe, ν), while υ = ν̇ is the robot (pseudo-)
acceleration and correspond to the control inputs of the considered model. Note that
we could have used a combination of the robot full kinematics with any simplified
version of the robot dynamics (e.g., the robot centroidal dynamics). However, we
decided to use a model that does not consider the robot dynamics at all, in order to
highlight the effectiveness of the proposed OBC, which is the main contribution of
this work.

Denote by T the prediction horizon, by δNMPC the sampling time and by N =
T/δNMPC the number of the control intervals in the prediction horizon. Consider
the NLP to be solved at the discrete time instant tκ = κδNMPC. Denote by υκ|i and
xκ|i the predicted acceleration and state of the robot at the time instant tκ+i.

The objective is to minimize the task error while guaranteeing collision avoidance
between the robot and its environment as well as self-collision avoidance, ideally
with the minimum acceleration. Denote the predicted task error at time tκ|i by
eκ|i = yd(tκ+i) − yκ|i and its derivative by ėκ|i = ẏd(tκ+i) − ẏκ|i, where yκ|i and
ẏκ|i are the predicted end-effector position and velocity at time tκ|i. The running
and terminal costs are

Vκ|i(xκ|i, υκ|i) = eT
κ|iQpeκ|i + ėT

κ|iQdėκ|i + νT
κ|iSνκ|i + υT

κ|iRυυκ|i

Vκ|N (xκ|N) = eT
κ|N Qp,N eκ|N + ėT

κ|N Qd,N ėκ|N + νT
κ|N SN νκ|N .

The running cost consists of terms that, in the order of appearance, penalize the task
error, its derivative, the robot velocity and acceleration throughout the prediction
horizon, with Qp, Qd, S and Rυ the associated weighting matrices. The terminal
cost consists of terms that penalize the task error, its derivative and the robot
velocity at the final time instant, with Qp,N , Qd,N and SN the associated weighting
matrices.

The NLP to be solved at time tκ is

min
xκ|0,...,xκ|N

υκ|0,...,υκ|N−1

N−1∑
i=0

Vκ|i(xκ|i, υκ|i) + Vκ|N (xκ|N) (7.2a)

subject to:
xκ|0 − xκ = 0 (7.2b)
xκ|i+1 − ϕd-t(xκ|i, υκ|i) = 0, i = 0, ..., N − 1 (7.2c)
xmin ≤ xκ|i ≤ xmax, i = 0, ..., N (7.2d)
υmin ≤ υκ|i ≤ υmax, i = 0, ..., N − 1 (7.2e)
collision avoidance constraints at tκ, ..., tκ+N (7.2f)
self-collision avoidance constraints at tκ, ..., tκ+N (7.2g)

where xκ represents the state of the robot at time tκ, ϕd-t(·, ·) represents the
prediction model (7.1) in discrete-time obtained via numerical integration under the

92 7. An OBC for enforcing safety constraints in MMs

assumption of piecewise-constant robot accelerations, while xmin, xmax and υmin,
υmax are respectively the lower/upper bounds on the state variables and on the
robot acceleration.

Collision and self-collision avoidance constraints: For the collision and self-
collision avoidance constraints we will use the same approach followed in Sect. 6.5.
We briefly remind that for the collision avoidance constraints we envelop the j-th
robot body with an ellipsoid and l-th obstacle with a sphere. To ensure that the
two bodies do not collide we use the inequality constraint

hj,l(x, ol) = (rj − ol)T Rrj Hj,lR
T
rj

(rj − ol)− 1 ≥ 0 (7.3)

with
Hj,l = diag{(αj + ρl + dc)−2, (βj + ρl + dc)−2, (γj + ρl + dc)−2}.

For more details, refer to Sect. 6.5. The collision avoidance constraints to be applied
at (7.2f) can be written as

hj,l(xκ|i, ol,κ|i) ≥ 0, i = 0, ..., N, j = 1, ..., nb, l = 1, ..., no

where ol,κ|i is the predicted position of the the l-th obstacle at time instant tκ+i.
Similarly, for the self-collision avoidance constraints, given a pair of susceptible

to collision bodies, we envelop the j-th robot body with the ellipsoid and the l-th
robot body with the sphere. To ensure that the two bodies do not collide we use the
inequality constraint

hs
j,l(x) = (rj − rl)T Rrj Hs

j,lR
T
rj

(rj − rl)− 1 ≥ 0, (j, l) ∈ S (7.4)

with
Hs

j,l = diag{(αj + ρl + ds)−2, (βj + ρl + ds)−2, (γj + ρl + ds)−2}.

Again, for more details refer to Sect. 6.5. The self-collision avoidance constraints to
be applied at (7.2g) can be written as

hs
j,l(xκ|i) ≥ 0, i = 0, ..., N, (j, l) ∈ S

with S the set of pairs of indices (j, l) that correspond to robot bodies that are
susceptible to collision.

7.5 Optimization-based controller
This section presents in detail the OBC, which is the main contribution of this
work. The OBC is implemented as a QP. At each discrete time instant tk = kδQP,
with δQP being the considered sampling time, the OBC receives from the motion
generation module a whole-body reference motion in terms of configuration, velocity
and acceleration ξk = (qr

e,k, νr
k, ν̇r

k) and based on the measurement for the current
state of the robot xk = (qe,k, νk), generates appropriate torque commands uk for
the robot (see Fig.7.1).

The elements of the proposed optimization-based controller are presented in the
following.

7.5 Optimization-based controller 93

7.5.1 Cost function

The ultimate goal of the proposed motion generation approach is to generate motions
that track the desired end-effector trajectory as close as possible (requirement R1).
So, it is sufficient for the OBC to follow the reference ξk, which is consistent with
the end-effector task, in order to satisfy R1.

However, it is clear that if the constraints related to requirements R2-R4 are
active, the optimization-based controller will not be able to follow the reference
motion. In this case, we want at least to follow the end-effector motion that
corresponds to ξk, i.e., (yr

k, ẏr
k, ÿr

k) which is obtained by substituting ξk in (6.11),
(6.12) and (6.13). So, the considered cost function is

Ck(xk, uk) =
∥∥∥q̈e,k − ζk

∥∥∥2

Q
+ ∥ÿk − ηk∥

2
Y . (7.5)

The first term of (7.5) minimizes the deviation of the robot acceleration at the
generalized coordinates level, q̈e,k, from a reference acceleration ζk defined as a
Proportional-Derivative (PD) control rule with a feed-forward term

ζk = q̈r
e,k + Kζ

D(q̇r
e,k − q̇e,k) + Kζ

P (qr
e,k − qe,k),

with q̇r
e,k and q̈r

e,k obtained by substituting ξk in (6.9) and (6.10), while q̇e,k obtained
by substituting νk in (6.9). Kζ

D and Kζ
P are gain matrices of appropriate dimensions.

The second term of (7.5) minimizes the deviation of the end-effector acceleration,
ÿk, from a reference ηk defined also as PD control rule with a feed-forward term

ηk = ÿr
k + Kη

D(ẏr
k − ẏk) + Kη

P (yr
k − yk)

where yk and ẏk are obtained by substituting xk in (6.11) and (6.12). Kη
D and Kη

P

are gain matrices of appropriate dimensions. Q and Y are the weighting matrices
associated with the two terms of the cost function.

7.5.2 State and input bounds

At each time instant tk the control inputs have to remain within the lower and upper
bounds umin and umax that are dictated by the hardware limitations of the robot

umin ≤ uk ≤ umax. (7.6)

Moreover, the control inputs at time tk affect the velocity and the configuration of
the robot at time instant tk+1, namely νk+1 and qk+1, which have to remain within
the considered velocity and joint bounds

νmin ≤ νk + ν̇kδQP ≤ νmax (7.7)

qmin ≤ qk + q̇kδQP + 1
2 q̈kδ2

QP ≤ qmax (7.8)

where νk+1 and qk+1 are approximated by a first and second order Taylor series,
respectively, and νmin, νmax and qmin, qmax are the lower/upper bounds of the robot
velocity and joint position. Using (6.9), (6.10) and (6.16) the constraints (7.7) and

94 7. An OBC for enforcing safety constraints in MMs

(7.8) can be expressed as a function of the robot state and control inputs at tk, and
after some manipulation the constraints (7.6), (7.7) and (7.8) can be expressed in
the form

Ac(xk)uk ≤ bc(xk)
where the matrix Ac and the vector bc can be easily derived.

7.5.3 Balance constraint

To maintain the robot balance we will use the constraint (6.27), that practically
restricts the moments exerted by the robot around the support polygon edges to
remain non-negative. After simple manipulation (see Sect. 6.6) the constraint can
be expressed in the form

Ab(x)u ≤ bb(x). (7.9)

7.5.4 Collision avoidance constraints

Although the reference motion is collision-free, it is not necessarily kinodynamically
feasible and so exact tracking cannot be guaranteed. To ensure that any inability of
the robot to track the reference motion will at least lead to a collision-free motion,
we include appropriate collision avoidance constraints in the OBC. Since (7.3) and
(7.4) cannot be applied directly in a QP as they are nonlinear functions of the robot
configuration, we will build a constraint using an appropriate CBF.

Regarding the collision avoidance constraints between the robot and the environ-
ment obstacles. Let us consider the j-th robot body, the l-th obstacle and the set
comprised by the robot states that satisfy (7.3), i.e.,

Cj,l = {x ∈ X : hj,l(x, ol) ≥ 0}.

From now on we will refer to the Cj,l as safe-set.
Note that collision avoidance between the j-th robot body and the l-th obstacle

is enforced, if the safe-set Cj,l is forward-invariant. CBFs are an appropriate tool
for attaining forward-invariance of a set and so we intend to find such a CBF. For
this purpose, we need a function that for the considered dynamic system (6.16) its
relative degree is 1. Since the function hj,l(·, ·) has relative degree 2, as it requires
its second derivative for the control inputs to appear, we can use the method of
exponential CBFs [119]. Taking inspiration from the procedure followed in [120], we
define the auxiliary function

h̃j,l(x, ol, ȯl) = ḣj,l(x, ol) + aj,lhj,l(x, ol)

with aj,l > 0. Note that if moving obstacles are considered, this auxiliary function
depends also on their velocity. This function can be used as an appropriate CBF,
while by enforcing the constraint

˙̃hj,l(x, ol, ȯl) ≥ −bj,lh̃j,l(x, ol, ȯl) (7.10)

with bj,l > 0, the forward-invariance of the safe-set Cj,l is implied. The constraint
(7.10) can be rewritten as

∂

∂x
h̃j,l(x, ol, ȯl)ẋ + ∂

∂t
h̃j,l(x, ol, ȯl) ≥ −bj,lh̃j,l(x, ol, ȯl). (7.11)

7.6 Simulations 95

Before we proceed, let us rewrite the state-space reduced model of the robot (6.16)
in the convenient for this analysis form:

ẋ =
(

G(q)ν
−M−1(q)m(q, ν)

)
︸ ︷︷ ︸

f(x)

+
(

0
M−1(q)E(q)

)
︸ ︷︷ ︸

C(x)

u = f(x) + C(x)u (7.12)

By substituting (7.12) in (7.11) we get the constraint to be included in the OBC

−LC h̃j,l(x, ol, ȯl)u ≤ bj,lh̃j,l(x, ol, ȯl) + Lf h̃j,l(x, ol, ȯl) + ∂

∂t
h̃j,l(x, ol, ȯl) (7.13)

with j = 1, ..., nb and l = 1, ..., no.
Similarly, for the self-collision avoidance constraints, consider the j-th and l-th

robot bodies with (j, l) ∈ S. The safe-set comprised by the robot states that satisfy
(7.4) is defined as

Cs
j,l = {x ∈ X : hs

j,l(x) ≥ 0}.

To ensure self-collision avoidance we want to attain the safe-set Cs
j,l forward-invariant.

Again, we define the auxiliary function

h̃s
j,l(x) = ḣs

j,l(x) + as
j,lh

s
j,l(x)

with as
j,l > 0, that can be used as an appropriate CBF. Enforcing the constraint

˙̃hs
j,l(x) ≥ −bs

j,lh̃
s
j,l(x) (7.14)

with bs
j,l > 0, the forward-invariance of safe-set Cs

j,l is implied. By substituting (7.12)
in (7.14) we get the constraint to be included in the OBC

−LC h̃s
j,l(x)u ≤ bs

j,lh̃
s
j,l(x) + Lf h̃s

j,l(x) (7.15)

with (j, l) ∈ S.

7.5.5 Optimization scheme

The OBC is implemented as a QP. Given the robot state xk at time instant tk, the
QP to be solved is

min
uk

∥∥∥q̈e,k − ζk

∥∥∥2

Q
+ ∥ÿr

k − ηk∥
2
Y

subject to:
Ac(xk)uk ≤ bc(xk)
Ab(xk)uk ≤ bb(xk)
−LC h̃j,l(xk, ol,k, ȯl,k)uk ≤ bj,lh̃j,l(xk, ol,k, ȯl,k)

+ Lf h̃j,l(xk, ol,k, ȯl,k) + ∂

∂t
h̃j,l(xk, ol,k, ȯl,k), j = 1, ..., nb, l = 1, ..., no

− LC h̃s
j,l(xk)uk ≤ bs

j,lh̃
s
j,l(xk) + Lf h̃s

j,l(xk), (j, l) ∈ S

where ol,k and ȯl,k are the position and velocity of the l-th obstacle at time tk.

96 7. An OBC for enforcing safety constraints in MMs

Figure 7.2. The bounding ellipsoids and spheres considered for the collision avoidance
constraints for the TIAGo MM. The left figure shows the bounding ellipsoids and spheres
(ellipsoids with semi-axes of equal size) considered for the collision avoidance constraints
with the environment. The right figure shows the ellipsoids and spheres for the self-
collision avoidance constraint. Note that the gripper and the lower arm are enveloped
with red spheres and in the constraints are treated as if they were obstacles.

Figure 7.3. The considered support polygon for the TIAGo MM. With dashed circles we
denote the admissible path of the caster wheels. The coordinates of the points are in cm.

7.6 Simulations

The proposed motion generation scheme has been validated for the TIAGo mobile
manipulator via dynamic simulations in Simscape within Simulink on an Intel Core
i9-9900K CPU running at 3.60GHz. In the simulations we control the robot at the
joint level sending torque/force commands. The NMPC was solved using the RTI
scheme [107] within ACADO Toolkit [17]. The sampling time used for the NMPC
was δNMPC = 30ms and the prediction horizon T = 0.36s.

The proposed OBC was also set up in MATLAB using sampling time δQP = 3ms.
The dynamic model of TIAGo required for the OBC was extracted from its URDF1

using the Robotics Systems Toolbox, while for the solution of the resulting QP
we used quadprog with an active-set algorithm. The performance of the OBC in
terms of computational time was boosted using the MATLAB Coder.

1https://github.com/pal-robotics/tiago_robot

https://github.com/pal-robotics/tiago_robot

7.6 Simulations 97

Figure 7.4. Snapshots of the motion generated during the simulation scenario 1 by the
proposed method (top) and the compared method that does not consider collision
avoidance constraints in the OBC (bottom).

joint
range

velocity
limits

acceleration
limits

torque/force
limits

driving wheels - ±10.15 rad/s 60 rad/s2 ±6 Nm
torso [0, 0.35] m ±0.07 m/s 160 m/s2 ±2000 N

arm joint 1 [0, 157.5] deg ±2.7 rad/s 39 rad/s2 ±39 Nm
arm joint 2 [−90, 62.5] deg ±3.66 rad/s 38 rad/s2 ±39 Nm
arm joint 3 [−202.5, 90] deg ±4.58 rad/s 67 rad/s2 ±17.86 Nm
arm joint 4 [−22.5, 135] deg ±4.58 rad/s 73 rad/s2 ±17.86 Nm
arm joint 5 [−120, 120] deg ±1.95 rad/s 105 rad/s2 ±3 Nm
arm joint 6 [−81, 81] deg ±1.76 rad/s 400 rad/s2 ±6.6 Nm
arm joint 7 [−120, 120] deg ±1.76 rad/s 5000 rad/s2 ±6.6 Nm

Table 7.1. The range, velocity limits, acceleration limits and torque/force limits of the
TIAGo joints.

State and input bounds: Table 7.1 reports the range of the robot joints as well as
the joint velocity and torque/force2 limits, all obtained from the values reported at
the URDF of TIAGo. For the acceleration limits that are required in the NMPC, the
values were obtained after a series of simulations and are also reported in Table 7.1.

Collision avoidance with the environment: For the collision avoidance constraints
between the robot and its environment, 4 bounding ellipsoids and 2 bounding spheres
(ellipsoids with semi-axes of equal size) are used in order to cover the whole robot as
illustrated in Fig. 7.2 (left). Note that regarding the ellipsoid that envelops the robot
torso, the size of its vertical semi-axis is a function of the prismatic joint position.
In an attempt to reduce the number of the considered constraints, only the closest
obstacle is considered for each robot body based on (7.3).

Self-collision avoidance: Regarding the self-collision avoidance constraints, taking
into account the joint limits and the structure of the robot we consider the following
cases of possible self-collisions: gripper-head, gripper-torso, gripper-base, lower
arm-head, lower arm-torso and lower arm-base. We consider one constraint for each

2The robot torso has a prismatic joint.

98 7. An OBC for enforcing safety constraints in MMs

Figure 7.5. The joint torques (force for the prismatic joint of the robot torso) generated
by the proposed method and the compared method. The dashed vertical lines highlight
the time instants that correspond to the snapshots of Fig. 7.4.

Figure 7.6. On the left, the values of the collision avoidance constraints between the
robot bodies (gripper, lower arm, upper arm, head torso and base) and their closest
obstacle, hj,l(x, ol), during the robot motion under the proposed and the compared
method. On the right, the values of the CBF constraints ˙̃hj,l(x, ol, ȯl) + bj,lh̃j,l(x, ol, ȯl)
for the proposed method.

7.6 Simulations 99

Figure 7.7. On the left, the values of the self-collision avoidance constraints, hs
j,l(x), during

the robot motion under the proposed and the compared method. On the right, the value
of the CBF constraints ˙̃hs

j,l(x) + bs
j,lh̃

s
j,l(x) for the proposed method.

combination treating the gripper and the lower arm as obstacles enveloping them
with a sphere whose position is a function of the robot configuration, as illustrated
in Fig. 7.2 (right).

Balance constraints: Regarding the balance constraints, TIAGo is in contact
with the ground via 2 driving and 4 caster wheels, forming a support polygon
with 6 edges. The considered support polygon is illustrated in Fig. 7.3. We take
a conservative version of the support polygon in order to account for the lack of
knowledge about the actual position of the caster wheels during the robot motion
and any deformations of the robot wheels that could lead to contact points that do
not coincide with the center of the wheel3.

7.6.1 Simulation scenario 1

In this scenario, the end-effector has to follow a linear path of length 1.89 m (see
Fig. 7.4). The task duration is 4 s, the desired velocity has a trapezoidal profile
and the maximum acceleration along the path is 0.57 m/s2. The environment is
populated by 2 spherical obstacles (see the two red spheres in Fig. 7.4). The first
one O1 with radius ρ1 = 0.1 m is placed in such a way that obstructs the desired
end-effector path. The second obstacle O2 with radius ρ2 = 0.1 m is placed in such
a way that obstructs the robot base from moving freely.

To show the effectiveness of the proposed method we compare it with a version of
it that does not consider the collision and self-collision avoidance constraints in the
OBC. Note that in both cases the motion generation module has collision avoidance
constraints, so the generated reference motion is collision-free.

In all the CBFs that correspond to the collision avoidance constraints between the
robot and the obstacles we used the same parameter values aj,l = 20 and bj,l = 200.
Similarly, in all the CBFs that correspond to the self-collision avoidance constraints
we also used the parameters as

j,l = 20 and bs
j,l = 200.

3Note that deformation of the wheel will not appear in the simulations since the wheels are
considered rigid. However, in a real-world experiment, deformation of the wheel is a valid concern.

100 7. An OBC for enforcing safety constraints in MMs

For the purpose of this comparison, we consider the robot being in collision if
the collision avoidance constraints (7.3) and (7.4) are violated. Clearly, violation of
these constraints does not necessarily mean that the robot actually experiences a
collision, since the considered bounding geometries are rather conservative. However,
it means that the imposed safety criteria are violated and the resulting solutions are
infeasible.

The robot motion resulting from the use of the proposed and the compared
method is illustrated in the accompanying video https://youtu.be/xGqKRNUYpFU,
while snapshots of the motion are offered in Fig. 7.4. The actuation torques/forces
generated by the two methods are illustrated in Fig. 7.5. Fig. 7.6 (left) illus-
trates the values of the collision avoidance constraints between the robot bod-
ies and the environment obstacles hj,l(x, ol) throughout the robot motion, while
Fig. 7.6 (right) illustrates the values of the corresponding CBF-based constraints
˙̃hj,l(x, ol, ȯl) + bj,lh̃j,l(x, ol, ȯl) for the proposed method throughout the robot mo-
tion. Finally, Fig. 7.7 (left) illustrates the values of the self-collision avoidance
constraints hs

j,l(x), while Fig. 7.7 (right) the values of the corresponding CBF-based
constraints ˙̃hs

j,l(x) + bs
j,lh̃

s
j,l(x).

We can notice that although the proposed method was able to generate the
desired motion and accomplish the task (see Fig. 7.4), the compared method violated
the collision avoidance constraint between the gripper and obstacle O1 at time
t = 1.869 s, as illustrated in Fig. 7.6 (zoomed area). One can notice that at the
moment of the collision, the torques of the right and left driving wheels, τr and τl

respectively, were saturated (see Fig. 7.5). This implies that although the motion
generation module created a reference motion that was collision-free, that motion
was not kinodynamically feasible and when the OBC was called to track it, a tracking
error occurred that eventually lead the compared method to a collision.

On the contrary, we can notice that the proposed method does not violate the
constraint, thanks to the CBF-based collision avoidance constraints incorporated
in the OBC, ensuring that if the OBC is unable to accurately track the reference
motion, the resulting motion will be at least collision-free.

Regarding the computational time required from the motion generation module
(NMPC), the maximum reported was 19.4 ms while for the proposed OBC the
maximum reported computational time was 1.8 ms, so lower than the considered
sampling times

7.6.2 Simulation scenario 2

In the previous scenario, the robot motion was not aggressive enough in order to
challenge the robot balance and so the balance constraints (7.9) were never active
during the robot motion. To this behavior contributes the rather heavy base of the
considered robot.

In this simulation scenario, we try to generate a highly dynamic motion in order
to see how the proposed method behaves at the boundary of balance loss. Here the
robot end-effector has to follow an "eight-curve" (see Fig. 7.8). The center of the
curve is placed 0.75 m over the ground, while the curve is tilted around its horizontal
axis by 45 deg. The total length of the path is ≈ 6.1 m. The task duration is

https://youtu.be/xGqKRNUYpFU

7.6 Simulations 101

Figure 7.8. Snapshots of the motion generated during the simulation scenario 2 by
the proposed method (top) and the compared method that does not consider balance
constraints in the OBC (bottom).

Figure 7.9. The position of the ZMP during the motion generated by the proposed and
the compared method.

10 s. The desired end-effector velocity has a trapezoidal profile, while the maximum
acceleration along the path is 0.38 m/s2. The desired end-effector path is obstructed
by an obstacle O with radius ρ = 0.18 m as illustrated in Fig. 7.8.

In order to show the effectiveness of the proposed OBC, we compare it with a
version of it that does not consider the balance constraints (7.9). In both methods,
we set the parameters of the CBFs for the collision avoidance constraints to aj,l = 20
and bj,l = 20 and for the self-collision avoidance constraints to as

j,l = 20 and bs
j,l = 20.

Note that the motion generation module, since it does not consider the robot
dynamics, generates references that might cause loss of balance.

For the purpose of the simulation, we consider the robot losing its balance if its
ZMP is outside of the considered support polygon.

The robot motion resulting from the use of the proposed and the compared
method is also illustrated in the accompanying video, while snapshots of the motion
are offered in Fig. 7.8. The proposed method was able to complete the task without

102 7. An OBC for enforcing safety constraints in MMs

experiencing collisions or balance loss. On the contrary, the compared method in
the vicinity of the obstacle violated the balance constraint as it is evident from the
position of the ZMP in Fig. 7.9.

Regarding the computational time required from the motion generation module,
the maximum reported was 18.4 ms while for the proposed OBC the maximum
reported computational time was 2.2 ms, always lower than the considered sampling
times, even in cases where both the collision and the balance constraints were active.

7.7 Discussion

In this section, we offer a brief discussion on the presented motion generation scheme
and the proposed OBC.

First, one can notice that the motion generation module and the OBC use
different collision avoidance constraints, with the constraints in the OBC being more
conservative. Since the constraints (7.3) and (7.4) used in the motion generation
module cannot be applied immediately in the OBC, one could use the more conser-
vative constraints (7.10) and (7.14) of the OBC in the motion generation module in
an attempt to introduce the same level of conservativeness to both modules. Note,
however, that even in this case, the resulting constraints would have been different as
a CBF constraint involves the robot model and the considered robot models in the
two modules are different. Moreover, using the constraints (7.10) and (7.14) in the
motion generation module would lead to an increase in the required computational
time. So, in an attempt to maintain the real-time performance, one would have to
decrease the prediction horizon. Clearly, a deeper investigation on the advantages
and disadvantages of such a choice is required.

Note also that the collision avoidance constraints used in the OBC, should not be
less conservative than the ones used in the motion generation module. In a different
case, even if in the vicinity of an obstacle the OBC leads the robot to collision-free
states, it is possible that these same states violate the more conservative collision
avoidance constraints of the motion generation module, leading to infeasibility.

In any case, in the proposed scheme, one can try to reduce the conservativeness
of the OBC by appropriately tuning the parameters aj,l, bj,l, as

j,l and bs
j,l of the

CBFs.
A second comment concerns the behavior of the proposed method during the

execution of aggressive motions that could result in loss of balance. As we showed in
simulation scenario 2, the proposed OBC managed to maintain the ZMP within the
limits of the support polygon, thanks to the considered balance constraints. On the
contrary, the compared method, which did not have such constraints, in an attempt
to follow the reference motion generated by the motion generation module, had the
ZMP outside the support polygon.

These results reveal the ability of the proposed OBC to enforce safety when the
reference motion tends to drive the system to loss of balance. However, this ability
of the OBC is limited to cases where a balance loss is not inevitable. This means
that the OBC can prevent a balance loss if at the considered state the robot has
the necessary actuation capabilities to do so. Clearly, an inevitable balance loss can
emerge when the considered motion generation module sends constantly reference

7.8 Conclusions 103

motions that drive the robot to unbalanced states. In this case, the OBC will try
to track these motions as close as possible while maintaining the ZMP inside the
support polygon. This will continue until the moment when the robot will not have
the necessary actuation capabilities to do so and an infeasibility will be reported.

There are two ways to reduce the possibility for an inevitable loss of balance
to appear. The first is to include in the cost function of the OBC a term that will
improve the robot balance, i.e., it will bring the ZMP toward the center of the
support polygon. However, this approach would result in tracking errors even in
cases where the robot balance is not challenged.

The second way, which is clearly the most effective, suggests the use by the
motion generation module of a robot model that considers at least a simplified
version of the robot dynamics (e.g., the robot centroidal dynamics). This will enable
to include appropriate balance constraints or terms in the cost function that improve
the robot balance. In this way, the reference motion will not constantly challenge
the robot balance. Note, however, that also in this case the OBC will be required
to have balance constraints since in the event of a kinodynamically infeasible yet
balanced reference motion, the OBC will have to ensure that any tracking error
would not lead to a loss of balance.

Note that our choice to use the simplest possible prediction model for the motion
generation module was aiming to highlight the effectiveness of the proposed OBC
and its ability to enforce safety even in the most challenging situations.

7.8 Conclusions

In this chapter, we considered the case in which the motion of a MM is generated
by a motion generation module that does not consider the robot full dynamics,
in an attempt to reduce the required computational time and achieve real-time
performance. We introduced an optimization-based controller that considers the
robot full dynamics and can be interposed between the motion generation module and
the considered robot in order to track the reference motion and generate appropriate
kinodynamically feasible commands for the robot. The OBC considers collision
and self-collision avoidance constraints, built upon appropriate CBFs, in order to
ensure that the resulting motion will be at least collision-free. The controller is
complete with balance constraints to ensure that the robot will maintain its balance
throughout the robot motion. The simulation results revealed that the introduced
collision avoidance constraints can indeed protect the robot from collisions that could
have occurred if an OBC that does not consider the proposed collision avoidance
constraints had attempted to track a collision-free, but not kinodynamically feasible,
motion in the vicinity of an obstacle. The simulation results also showed that the
proposed OBC is able to maintain the robot balance even if the reference motion
generated by the motion generation module leads to loss of balance.

Future work aims at

• the experimental validation of the proposed optimization-based controller;

• lifting the assumption for adequate friction between the driving wheels and
the ground and including appropriate constraints that guarantee no-slipping

104 7. An OBC for enforcing safety constraints in MMs

conditions;

• testing the controller alongside a motion generation module that considers the
robot centroidal dynamics or another simplified model of the robot that can
reason about the robot balance;

• conducting a comprehensive study on the influence of the parameters aj,l, bj,l,
as

j,l and bs
j,l to the conservativeness of the CBF-based collision avoidance con-

straints, in an attempt to reduce it as much as possible without compromising
the robot safety.

105

Chapter 8

Conclusions

This thesis addressed the problem of safe motion generation for two robotic platforms,
namely wheeled mobile robots and wheeled mobile manipulators. Due to their
different structure and thus their individual safety risks, the motion generation
problem for each considered robotic platform was addressed in separate parts of this
thesis.

In the first part, we investigated the problem of motion generation for mobile
robots called to navigate in environments populated by static and/or moving obsta-
cles. During a navigation task, the robot has to maintain its safety as well as the
safety of the environment in terms of collision avoidance.

For the solution of the considered problem, we used a real-time NMPC algorithm.
Safety is enforced via appropriate collision avoidance constraints. However, we argue
that in a real-time NMPC, where relatively short prediction horizons are dictated by
the real-time requirement, the use of collision avoidance constraints that are based
on purely distance information can jeopardize the robot safety. For this reason, we
proposed two alternative collision avoidance constraints that enabled the robot to
navigate safely in situations where their distance-based counterparts fail to protect
the robot from collision.

In Chap. 4, within a framework for safe robot navigation in a human crowd,
we employed an NMPC that considers collision avoidance constraints built upon
appropriate CBFs. These constraints consider in addition to the robot-obstacle
distance, its rate of change, giving a notion of lookahead to the collision avoidance
constraint. Simulation results revealed the superiority of the proposed constraint
against its purely distance-based counterpart and the effectiveness of the whole safe
robot navigation framework in general.

In Chap. 5 we introduced the concept of avoidable collision states (ACS) and
we proposed a collision avoidance constraint built upon it. The proposed constraint
essentially requires that the robot is always at a state from which it can avoid
collision with a certain obstacle. The constraint was applied to a real-time NMPC
for robot navigation and the simulation results showed its superior performance
over collision avoidance constraints that are based on purely distance information,
especially when the robot navigates at high speed among moving obstacles.

Regarding the future work, in addition to the directions mentioned in each
individual chapter, ensuring the robot safety requires to consider cases in which

106 8. Conclusions

the motion generation method fails to provide a feasible solution and the robot is
exposed to the danger of collision. Clearly, an emergency stop is not ideal when the
environment is populated by moving obstacles. Thus, the development of strategies
that bring the robot to a safe state with respect to its environment in an event of
an emergency is an interesting direction for future work.

In the second part of this thesis, we investigated the problem of motion generation
for mobile manipulators, called to execute tasks that require aggressive motions
(high accelerations) in environments populated by obstacles.

Clearly, while performing aggressive motions the robot is not only at risk of
collision with its environment or itself, but it also faces the risk of losing its balance.
As a result, in order to generate the desired motion one has to take into account all
those risks.

In Chap. 6, we proposed an appropriate NMPC scheme to generate motions in
real-time for a MM called to execute aggressive tasks. In order to ensure kinodynamic
feasibility, we considered the full robot dynamics as a prediction model in the NMPC
using also state and input bounds. To ensure that the resulting motion will be
collision-free, we included appropriate collision and self-collision avoidance constraints.
In order to maintain the robot balance we considered a constraint that essentially
limits the moments exerted by the robot around the edges of the support polygon to
remain non-negative. In order to enable the solution of the proposed NMPC using
off-the-shelf solvers that require a symbolic representation of the OCP, we lifted the
inherent nonlinearity of the balance constraint by linearizing it using the solution of
the previous NMPC iteration.

Although this method was effective for MM of low dimensions, when the robots
become more complex and the DOF increase, the use of the robot full dynamics
as a prediction model in an NMPC might be prohibitive for achieving real-time
performance. For this reason, in principle, simplified models of the robot dynamics
are used. Since these models are unable to enforce kinodynamic feasibility, the
resulting motion should be tracked by a controller that considers the robot full
dynamics in order to generate appropriate commands for the robot. We argue,
however, that if this controller does not consider constraints that ensure the robot
safety in terms of collision and balance, then any tracking error that might occur due
to a kinodynamically infeasible reference motion, could put the robot in danger. For
this purpose, in Chap. 7 we proposed an optimization-based controller that not only
enforces kinodynamic feasibility using the robot full dynamics but it also considers
collision and self-collision avoidance constraint built upon appropriate CBFs and
maintains the robot balance with balance constraints. In this way, the proposed
controller ensures that the resulting motion will be at least safe, a property that
was also verified by the simulation results.

In addition to the future works discussed at the end of each individual chapter,
which aim at the improvement of the proposed methods, enforcing safety during the
operation of a MM also requires the consideration of the, not impossible, scenario in
which the considered motion generation approach fails to find a feasible solution. In
this case, the robot and its environment are exposed to danger and an emergency
action is required. For a wheeled mobile robot or a robot manipulator, this emergency
action would consist of blocking the motion of the robot joints. On the contrary,
blocking the joints motion in a MM could lead to loss of balance, damaging the

107

robot and its environment. Clearly, this leaves space for the development of motion
generation approaches that during an emergency would drive the robot to safe states
that permit the joint motion to stop. Such approaches would be able to complete a
general framework for safe motion generation for mobile manipulators.

109

Appendix A

Robot dynamics

The dynamic model of the robot provides a mapping between the generalized forces
acting on the robot and its motion. Two methods commonly used for the derivation
of the robot equations of motion are the Lagrange formulation and the Newton-Euler
formulation. Here we briefly present the Lagrange formulation based on [52].

Consider an n-dimensional mechanical system1 (robot). Its generalized coordi-
nates qi, with i = 1, ..., n, represent the variables of the n joints and can be collected
in the vector

q = (q1, ..., qn)

Let us also consider the robot moving possibly under the influence of kinematic
constraints that can be expressed in Pfaffian form as

AT (q)q̇ = 0 (A.1)

where AT (q) a matrix with dimensions k × n that characterizes the constraints,
with k the number of constraints.

We define the Lagrangian of the system as the difference between its kinetic
energy T (q, q̇) and its potential energy U(q)

L(q, q̇) = T (q, q̇)− U(q). (A.2)

Having computed the Lagrangian as a function of the generalized coordinates and
the generalized velocities, the Lagrange equations are

d

dt

(
∂L(q, q̇)

∂q̇

)T

−
(

∂L(q, q̇)
∂q

)T

= ξ (A.3)

with ξ being the vector of the generalized forces associated with the generalized
coordinates. These generalized forces are comprised of the generalized forces from
the robot actuators, joint friction and forces resulting from the contact of the robot
with its environment.

110 A. Robot dynamics

Figure A.1. The link i connected with the previous and following links with the joint i
and joint i + 1, respectively. The frame of the link Fi is chosen based on the Denavit-
Hartenberg convention.

A.1 Kinetic energy
Consider the n links of the robotic system. The total kinetic energy of the robot is
the sum of the kinetic energies of each individual link23

T (q, q̇) =
n∑

i=1
Ti(q, q̇) (A.4)

Consider the i-th link of the robot (see Fig. A.1). Denote by Fw the world
reference frame and by Fi a reference frame attached to the i-th link while by Ri(q)
denote the rotation matrix from frame Fi to the world frame Fw. For the analysis
that follows we consider the reference frames on the links selected by using the
Denavit-Hartenberg convention [52]. With pi denote the position vector of the frame
Fi origin while with ẑi a unit vector along the z-axis of Fi. Denote by pli the
position vector of the center of mass (CoM) with respect to Fw, by mli the mass of
the i-th link and by Ii

li
the inertia tensor of the i-th link expressed in frame Fi. By

ṗli and ωi denote the translational velocity of CoM and the angular velocity of the
i-th link, respectively.

The kinetic energy consists of the sum of the contributions that correspond to
the translational and rotational motion of the link

Ti(q, q̇) = 1
2mli ṗ

T
li ṗli + 1

2ωT
i Ri(q)Ii

liR
T
i (q)ωi (A.5)

Note that ṗli and ωi are functions of the robot generalized velocities q̇ and can be
1For our analysis we assume that the robot consists of only rigid bodies (links).
2Note that in principle, for the total kinetic energy of the robot, the kinetic energy of the motors

has to be also considered. However, for simplicity we neglect the kinetic energy of the motors.
3In the case where fictitious joints are used for the representation of the mobile base, like in

Chapter 6, it is assumed that the intermediate fictitious links are mass-less and thus they do not
contribute to the kinetic energy of the robot

A.1 Kinetic energy 111

expressed respectively as

ṗli = J li
P (q)q̇ (A.6a)

ωi = J li
O(q)q̇. (A.6b)

with

J li
P (q) =

(
ȷli

P,1(q) ... ȷli
P,n(q)

)
(A.7a)

J li
O(q) =

(
ȷli

O,1(q) ... ȷli
O,n(q)

)
(A.7b)

In equation (A.6a), J li
P (q) is the 3 × n matrix relating the contribution of the

generalized velocities q̇ to the translational velocity of the i-th link, ṗli , while the
product ȷli

P,j(q)q̇j corresponds to the contribution of the j-th joint. Similarly, in
(A.6b), J li

O(q) is the 3×n matrix relating the contribution of the generalized velocities
q̇ to the angular velocity of link i, ωi, while the product ȷli

O,j(q)q̇j corresponds to
the contribution of the j-th joint,

Note that only ni ≤ n joints contribute to the motion of link i. Thus, if ȷli
P,j(q)

and ȷli
O,j(q) correspond to one of the n − ni joints that do not contribute to the

motion of link i, then they have zero entries. Otherwise, if the j-th joint is prismatic
then

ȷli
P,j(q) = ẑj−1

ȷli
O,j(q) = 0

while if the joint is revolute then

ȷli
P,j(q) = ẑj−1 × (pli − pj−1)

ȷli
O,j(q) = ẑj−1

where pj−1 is the position vector of frame Fj−1 and ẑj−1 is the unit vector of z-axis
of frame Fj−1.

In the end, the kinetic energy of the link can be expressed as

Ti(q, q̇) = 1
2mli q̇

T J li
P

T
J li

P q̇ + 1
2 q̇T J li

O

T
RiI

i
liR

T
i J li

Oq̇ (A.8)

where the dependency on q was dropped.
Substituting (A.8) in (A.4) we get the total kinetic energy in the form

T (q, q̇) =
n∑

i=1

1
2mli q̇

T J li
P

T
J li

P q̇ + 1
2 q̇T J li

O

T
RiI

i
liR

T
i J li

Oq̇

Note that we can write the total kinetic energy also in the quadratic form

T (q, q̇) =
n∑

i=1

1
2mli q̇

T J li
P

T
J li

P q̇ + 1
2 q̇T J li

O

T
RiI

i
liR

T
i J li

Oq̇ = 1
2 q̇T B(q)q̇ (A.9)

where
B(q) =

n∑
i=1

mliJ
li
P

T
J li

P + J li
O

T
RiI

i
liR

T
i J li

O

is the inertia matrix.

112 A. Robot dynamics

A.2 Potential energy
The potential energy of the robot is the sum of the potential energy of each individual
link

U(q) =
n∑

i=1
Ui(q). (A.10)

Again we work with the assumption that the links are rigid and we define the
potential energy of the i-th link as

Ui(q) = −mlig
T
wpli (A.11)

where gw is the gravity acceleration vector expressed in the world frame Fw.
Substituting (A.11) in (A.10) we get the total potential energy of the system

U(q) = −
n∑

i=1
mlig

T
wpli . (A.12)

A.3 Equations of motion
Having computed the total kinetic energy (A.9) and the total potential energy (A.12)
as a function of the generalized coordinates and the generalized velocities, we can
substitute the Lagrangian (A.2) in (A.3) that gives the equations of motion in the
form

B(q)q̈ + n(q, q̇) = ξ (A.13)

where n(q, q̇) ∈ IRn is the vector of velocity and gravitational terms for which holds

n(q, q̇) = Ḃ(q)q̇ − 1
2

(
∂

∂q

(
q̇T B(q)q̇

))T

+
(

∂U(q)
∂q

)T

. (A.14)

Regarding the generalized forces ξ that perform work on the robot joints, we
consider the generalized forces from the actuators and the reaction forces emanating
from the imposed to the robot kinematic constraints4

ξ = S(q)τ + A(q)λ (A.15)

where τ ∈ IRnτ is the vector of the forces/moments applied by the nτ robot actuators,
S(q) ∈ IRn×nτ the matrix that maps the actuator generalized forces to generalized
forces performing work on the generalized coordinates, A(q)λ the vector of the
reaction forces at the generalized coordinates level emanating from the kinematic
constraints (A.1) and λ ∈ IRk the vector of the Lagrange multipliers.

Substituting (A.15) in (A.13) and given the kinematic constraints (A.1) imposed
to the robot, the equation of motion of the robot can be written as

B(q)q̈ + n(q, q̇) = S(q)τ + A(q)λ (A.16a)

AT (q)q̇ = 0 (A.16b)

4Note that for a more detailed dynamic model one has to also consider the generalized forces due
to the friction at the robot joints. However, in this work we will assume that they are negligible.

113

Appendix B

Zero moment point

The Zero-Moment Point (ZMP), originally introduced for humanoid robots [97], was
also considered in the case of wheeled mobile manipulators as a measure to evaluate
the robot balance. According to the definition given in [100] ZMP is the point on
the ground about which the sum of all the moments of active forces are equal to zero.
The robot will not lose balance, if the ZMP lies within the support polygon, which
is defined by the contact points between the robot wheels and the ground.

Using Fig. B.1 as a reference, let us denote by Fv a reference frame whose origin
lies on the ground, by ei the unit vector of the i-th support polygon edge and by pi

the position of its starting point (the i-th contact point), both expressed in Fv. Let
us also denote by fv and µv the forces orthogonal to the ground and the moments
parallel to the ground, respectively, that the robot exerts at a point L on the ground,
while denote by lv the position vector of L with respect to Fv.

For our analysis, we assume that the ground-wheel friction is adequate to balance
the parallel to the ground forces and the orthogonal to the ground moments that
the robot exerts to the ground.

If ft is the total ground support force due to the contact of the robot with the
ground and pzmp the position vector of the ZMP, according to the definition for the
ZMP the following static equilibrium holds

ft + fv = 0 (B.1a)

pzmp × ft + lv × fv + µv = 0 (B.1b)
while by substituting (B.1a) in (B.1b) we get:

lv × fv + µv = pzmp × fv (B.2)

Now we will show the relation between the ZMP position pzmp and the moment
µi that the robot exerts around the i-th support polygon edge.

The moment µi is defined as

µi = eT
i (−(pi − lv)× fv + µv) (B.3)

If we substitute (B.2) in (B.3) we get the relation between the moment around the
i-th edge of the support polygon and the position of the ZMP, that is:

µi = fT
v (ei × (pzmp − pi)) (B.4)

From this relation we can deduce that:

114 B. Zero moment point

Figure B.1. The robot support polygon. By ei we denote the unit vector of its i-th edge
and by pi the position of its starting point, all expressed in Fv.

• if the ZMP lies on the half-plane that is defined by ei and contains the support
polygon, then µi > 0;

• if the ZMP lies on the half-plane that is defined by ei but it does not contain
the support polygon, then µi < 0;

• if the ZMP lies on the line generated by ei, then µi = 0.

115

Bibliography

[1] V. Vulcano, S. G. Tarantos, P. Ferrari, and G. Oriolo, “Safe robot navigation
in a crowd combining NMPC and control barrier functions,” in 2022 IEEE
61st Conf. on Decision and Control, pp. 3321–3328, 2022.

[2] S. G. Tarantos and G. Oriolo, “A dynamics-aware NMPC method for robot
navigation among moving obstacles,” in Intelligent Autonomous Systems 17
(I. Petrovic, E. Menegatti, and I. Marković, eds.), (Cham), pp. 216–230,
Springer Nature Switzerland, 2023.

[3] S. G. Tarantos and G. Oriolo, “Real-time motion generation for mobile ma-
nipulators via NMPC with balance constraints,” in 2022 30th Med. Conf. on
Control and Automation, pp. 853–860, 2022.

[4] R. Findeisen and F. Allgöwer, “An introduction to nonlinear model predictive
control,” in 21st Benelux meeting on systems and control, vol. 11, pp. 119–141,
2002.

[5] S. Qin and T. A. Badgwell, “A survey of industrial model predictive control
technology,” Control Engineering Practice, vol. 11, no. 7, pp. 733–764, 2003.

[6] K. R. Muske and J. B. Rawlings, “Model predictive control with linear models,”
AIChE Journal, vol. 39, no. 2, pp. 262–287, 1993.

[7] A. Domahidi, A. U. Zgraggen, M. N. Zeilinger, M. Morari, and C. N. Jones,
“Efficient interior point methods for multistage problems arising in receding
horizon control,” in 2012 IEEE 51st IEEE Conf. on Decision and Control,
pp. 668–674, 2012.

[8] H. Ferreau, C. Kirches, A. Potschka, H. Bock, and M. Diehl, “qpOASES: A
parametric active-set algorithm for quadratic programming,” Mathematical
Programming Computation, vol. 6, no. 4, pp. 327–363, 2014.

[9] J. V. Frasch, S. Sager, and M. Diehl, “A parallel quadratic programming
method for dynamic optimization problems,” Mathematical programming com-
putation, vol. 7, no. 3, pp. 289–329, 2015.

[10] G. Frison, H. H. B. Sørensen, B. Dammann, and J. B. Jørgensen, “High-
performance small-scale solvers for linear model predictive control,” in 2014
European Control Conf., pp. 128–133, 2014.

116 Bibliography

[11] P. Patrinos and A. Bemporad, “An accelerated dual gradient-projection algo-
rithm for embedded linear model predictive control,” IEEE Transactions on
Automatic Control, vol. 59, no. 1, pp. 18–33, 2014.

[12] S. Gros, M. Zanon, R. Quirynen, A. Bemporad, and M. Diehl, “From linear to
nonlinear mpc: bridging the gap via the real-time iteration,” Int. J. of Control,
vol. 93, pp. 1–19, 09 2016.

[13] T. Albin, D. Ritter, D. Abel, N. Liberda, R. Quirynen, and M. Diehl, “Nonlinear
MPC for a two-stage turbocharged gasoline engine airpath,” in 2015 54th
IEEE Conf. on Decision and Control, pp. 849–856, 2015.

[14] S. Gros, R. Quirynen, and M. Diehl, “Aircraft control based on fast non-linear
MPC & multiple-shooting,” in 2012 IEEE 51st IEEE Conf. on Decision and
Control, pp. 1142–1147, 2012.

[15] S. Gros, M. Vukov, and M. Diehl, “A real-time MHE and NMPC scheme
for wind turbine control,” in 52nd IEEE Conf. on Decision and Control,
pp. 1007–1012, 2013.

[16] M. Vukov, W. Van Loock, B. Houska, H. J. Ferreau, J. Swevers, and M. Diehl,
“Experimental validation of nonlinear MPC on an overhead crane using auto-
matic code generation,” in 2012 American Control Conference, pp. 6264–6269,
2012.

[17] B. Houska, H. J. Ferreau, and M. Diehl, “An auto-generated real-time iteration
algorithm for nonlinear MPC in the microsecond range,” Automatica, vol. 47,
no. 10, pp. 2279 – 2285, 2011.

[18] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of
Hamilton-Jacobi-Bellman Equations. Modern Birkhäuser Classics, Birkhäuser
Boston, 2009.

[19] R. F. Hartl, S. Sethi, and R. Vickson, “A survey of the maximum principles
for optimal control problems with state constraints,” SIAM Review, vol. 37,
no. 2, pp. 181–218, 1995.

[20] J. T. Betts, Practical Methods for Optimal Control and Estimation Using
Nonlinear Programming, Second Edition. Society for Industrial and Applied
Mathematics, 2010.

[21] J. Rawlings, D. Mayne, and M. Diehl, Model Predictive Control: Theory,
Computation, and Design. Nob Hill Publishing, 2017.

[22] J. Nocedal and S. J. Wright, Numerical Optimization. New York, NY, USA:
Springer, 2e ed., 2006.

[23] M. Zanon, A. Boccia, V. G. S. Palma, S. Parenti, and I. Xausa, Direct Optimal
Control and Model Predictive Control, pp. 263–382. Springer International
Publishing, 2017.

Bibliography 117

[24] H. Bock and K. Plitt, “A multiple shooting algorithm for direct solution of
optimal control problems,” 9th IFAC World Congress, vol. 17, no. 2, pp. 1603–
1608, 1984.

[25] A. Wächter and L. Biegler, “On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming,” Mathematical
Programming, vol. 106, pp. 25–57, May 2006.

[26] H. G. Bock, Recent Advances in Parameter identification Techniques for
O.D.E., pp. 95–121. Boston, MA: Birkhäuser Boston, 1983.

[27] M. Vukov, A. Domahidi, H. J. Ferreau, M. Morari, and M. Diehl, “Auto-
generated algorithms for nonlinear model predictive control on long and on
short horizons,” in 52nd IEEE Conference on Decision and Control, pp. 5113–
5118, 2013.

[28] M. Diehl, H. J. Ferreau, and N. Haverbeke, Efficient Numerical Methods
for Nonlinear MPC and Moving Horizon Estimation, pp. 391–417. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009.

[29] W. C. Li and L. T. Biegler, “Multistep, Newton-type control strategies for
constrained, nonlinear processes,” Chemical Engineering Research and Design,
vol. 67, pp. 562 – 577, 1989.

[30] T. Ohtsuka, “A continuation/GMRES method for fast computation of nonlinear
receding horizon control,” Automatica, vol. 40, no. 4, pp. 563–574, 2004.

[31] V. M. Zavala and L. T. Biegler, “The advanced-step NMPC controller: Op-
timality, stability and robustness,” Automatica, vol. 45, no. 1, pp. 86–93,
2009.

[32] M. Diehl, H. Bock, J. P. Schlöder, R. Findeisen, Z. Nagy, and F. Allgöwer,
“Real-time optimization and nonlinear model predictive control of processes
governed by differential-algebraic equations,” J. of Process Control, vol. 12,
no. 4, pp. 577–585, 2002.

[33] M. Diehl, H. Bock, and J. Schlöder, “A real-time iteration scheme for nonlinear
optimization in optimal feedback control,” SIAM J. Control and Optimization,
vol. 43, pp. 1714–1736, 2005.

[34] R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. van Duijkeren, A. Zanelli,
B. Novoselnik, T. Albin, R. Quirynen, and M. Diehl, “acados – a modular
open-source framework for fast embedded optimal control,” Mathematical
Programming Computation, Oct 2021.

[35] B. Houska, H. J. Ferreau, and M. Diehl, “ACADO toolkit—an open-source
framework for automatic control and dynamic optimization,” Optimal Control
Applications and Methods, vol. 32, no. 3, pp. 298–312, 2011.

[36] R. Quirynen, M. Vukov, M. Zanon, and M. Diehl, “Autogenerating microsecond
solvers for nonlinear MPC: A tutorial using ACADO integrators,” Optimal
Control Applications and Methods, vol. 36, no. 5, pp. 685–704, 2015.

118 Bibliography

[37] J. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “Casadi: a soft-
ware framework for nonlinear optimization and optimal control,” Mathematical
Programming Computation, vol. 11, pp. 1–36, 2019.

[38] G. Frison, D. Kouzoupis, A. Zanelli, and M. Diehl, “Blasfeo: Basic linear
algebra subroutines for embedded optimization,” ACM Trans. on Mathematical
Software, vol. 44, 04 2017.

[39] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, and W. Burgard,
Principles of robot motion: theory, algorithms, and implementations. MIT
press, 2005.

[40] M. Hoy, A. S. Matveev, and A. V. Savkin, “Algorithms for collision-free
navigation of mobile robots in complex cluttered environments: a survey,”
Robotica, vol. 33, no. 3, p. 463–497, 2015.

[41] B. Patle, G. Babu L, A. Pandey, D. Parhi, and A. Jagadeesh, “A review: On
path planning strategies for navigation of mobile robot,” Defence Technology,
vol. 15, no. 4, pp. 582–606, 2019.

[42] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. on Systems Science and
Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[43] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,” IEEE
Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.

[44] S. Lavalle and J. Kuffner, “Rapidly-exploring random trees: Progress and
prospects,” Algorithmic and computational robotics: New directions, 01 2000.

[45] S. M. LaValle and J. James J. Kuffner, “Randomized kinodynamic planning,”
The Int. J. of Robotics Research, vol. 20, no. 5, pp. 378–400, 2001.

[46] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion
planning,” The Int. J. of Robotics Research, vol. 30, no. 7, pp. 846–894, 2011.

[47] P. Abichandani, G. Ford, H. Y. Benson, and M. Kam, “Mathematical pro-
gramming for multi-vehicle motion planning problems,” in IEEE Int. Conf.
on Robotics and Automation, pp. 3315–3322, 2012.

[48] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. P. How, “Real-
time motion planning with applications to autonomous urban driving,” IEEE
Trans. on Control Systems Technology, vol. 17, no. 5, pp. 1105–1118, 2009.

[49] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision
avoidance,” IEEE Robotics Automation Magazine, vol. 4, no. 1, pp. 23–33,
1997.

[50] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using
velocity obstacles,” The Int. J. of Robotics Research, vol. 17, no. 7, pp. 760–772,
1998.

Bibliography 119

[51] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,”
in IEEE Int. Conf. on Robotics and Automation, vol. 2, pp. 500–505, 1985.

[52] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Modelling,
Planning and Control. Springer, London, 2009.

[53] R. B. Patel and P. J. Goulart, “Trajectory generation for aircraft avoidance
maneuvers using online optimization,” J. of Guidance, Control, and Dynamics,
vol. 34, no. 1, pp. 218–230, 2011.

[54] X. Zhang, A. Liniger, and F. Borrelli, “Optimization-based collision avoidance,”
IEEE Trans. on Control Systems Technology, vol. 29, no. 3, pp. 972–983, 2021.

[55] J. V. Frasch, A. Gray, M. Zanon, H. J. Ferreau, S. Sager, F. Borrelli, and
M. Diehl, “An auto-generated nonlinear MPC algorithm for real-time obstacle
avoidance of ground vehicles,” in 2013 European Control Conference, pp. 4136–
4141, 2013.

[56] A. Liniger, A. Domahidi, and M. Morari, “Optimization-based autonomous
racing of 1:43 scale RC cars,” Optimal Control Applications and Methods,
vol. 36, no. 5, pp. 628–647, 2015.

[57] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil,
K. Goldberg, and P. Abbeel, “Motion planning with sequential convex op-
timization and convex collision checking,” The Int. J. of Robotics Research,
vol. 33, no. 9, pp. 1251–1270, 2014.

[58] R. Bonalli, A. Cauligi, A. Bylard, and M. Pavone, “Gusto: Guaranteed
sequential trajectory optimization via sequential convex programming,” in
2019 Int. Conf. on Robotics and Automation, pp. 6741–6747, 2019.

[59] A. Sathya, P. Sopasakis, R. Van Parys, A. Themelis, G. Pipeleers, and P. Pa-
trinos, “Embedded nonlinear model predictive control for obstacle avoidance
using PANOC,” in 2018 European Control Conference, pp. 1523–1528, 2018.

[60] H. Febbo, J. Liu, P. Jayakumar, J. L. Stein, and T. Ersal, “Moving obstacle
avoidance for large, high-speed autonomous ground vehicles,” in 2017 American
Control Conference, pp. 5568–5573, 2017.

[61] C. Jewison, R. S. Erwin, and A. Saenz-Otero, “Model predictive control with
ellipsoid obstacle constraints for spacecraft rendezvous,” IFAC-PapersOnLine,
vol. 48, no. 9, pp. 257–262, 2015. 1st IFAC Workshop on Advanced Control
and Navigation for Autonomous Aerospace Vehicles ACNAAV’15.

[62] H. Febbo, P. Jayakumar, J. L. Stein, and T. Ersal, “Real-Time Trajectory Plan-
ning for Automated Vehicle Safety and Performance in Dynamic Environments,”
J. of Autonomous Vehicles and Systems, vol. 1, 12 2021. 041001.

[63] B. Brito, B. Floor, L. Ferranti, and J. Alonso-Mora, “Model predictive con-
touring control for collision avoidance in unstructured dynamic environments,”
IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 4459–4466, 2019.

120 Bibliography

[64] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier func-
tion based quadratic programs for safety critical systems,” IEEE Trans. on
Automatic Control, vol. 62, no. 8, pp. 3861–3876, 2017.

[65] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and
P. Tabuada, “Control barrier functions: Theory and applications,” in 2019
18th European Control Conference, pp. 3420–3431, 2019.

[66] A. Agrawal and K. Sreenath, “Discrete control barrier functions for safety-
critical control of discrete systems with application to bipedal robot navi-
gation.,” in Robotics: Science and Systems, vol. 13, Cambridge, MA, USA,
2017.

[67] T. D. Son and Q. Nguyen, “Safety-critical control for non-affine nonlinear
systems with application on autonomous vehicle,” in 2019 IEEE 58th Conf.
on Decision and Control, pp. 7623–7628, 2019.

[68] A. Thirugnanam, J. Zeng, and K. Sreenath, “Safety-critical control and plan-
ning for obstacle avoidance between polytopes with control barrier functions,”
in 2022 Int. Conf. on Robotics and Automation, pp. 286–292, 2022.

[69] J. Zeng, B. Zhang, and K. Sreenath, “Safety-critical model predictive con-
trol with discrete-time control barrier function,” in 2021 American Control
Conference, pp. 3882–3889, 2021.

[70] T. Fraichard and H. Asama, “Inevitable collision states. a step towards safer
robots?,” in 2003 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
vol. 1, pp. 388–393, 2003.

[71] S. Petti and T. Fraichard, “Safe motion planning in dynamic environments,” in
2005 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2210–2215,
2005.

[72] O. Gal, Z. Shiller, and E. Rimon, “Efficient and safe on-line motion planning in
dynamic environments,” in 2009 IEEE Int. Conf. on Robotics and Automation,
pp. 88–93, 2009.

[73] B. Damas and J. Santos-Victor, “Avoiding moving obstacles: the forbidden
velocity map,” in 2009 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
pp. 4393–4398, 2009.

[74] A. M. Zanchettin, N. M. Ceriani, P. Rocco, H. Ding, and B. Matthias, “Safety in
human-robot collaborative manufacturing environments: Metrics and control,”
IEEE Trans. on Automation Science and Engineering, vol. 13, no. 2, pp. 882–
893, 2016.

[75] G. Buizza Avanzini, A. M. Zanchettin, and P. Rocco, “Constrained model
predictive control for mobile robotic manipulators,” Robotica, vol. 36, no. 1,
p. 19–38, 2018.

[76] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press, 2005.

Bibliography 121

[77] R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. v. Duijkeren, A. Zanelli,
B. Novoselnik, T. Albin, R. Quirynen, and M. Diehl, “acados—a modular
open-source framework for fast embedded optimal control,” Mathematical
Programming Computation, pp. 1–37, 2021.

[78] T. Sandakalum and M. H. Ang, “Motion planning for mobile manipulators-a
systematic review,” Machines, vol. 10, no. 2, 2022.

[79] J. Desai and V. Kumar, “Nonholonomic motion planning for multiple mobile
manipulators,” in IEEE Int. Conf. on Robotics and Automation, vol. 4, pp. 3409–
3414, 1997.

[80] J. Ward and J. Katupitiya, “Mobile manipulator motion planning towards
multiple goal configurations,” in IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, pp. 2283–2288, 2006.

[81] G. Oriolo and C. Mongillo, “Motion planning for mobile manipulators along
given end-effector paths,” in IEEE Int. Conf. on Robotics and Automation,
pp. 2154–2160, 2005.

[82] M. Stilman, “Global manipulation planning in robot joint space with task
constraints,” IEEE Transactions on Robotics, vol. 26, no. 3, pp. 576–584, 2010.

[83] R. Seyboldt, C. Frese, and A. Zube, “Sampling-based path planning to cartesian
goal positions for a mobile manipulator exploiting kinematic redundancy,” in
Proceedings of ISR 2016: 47st International Symposium on Robotics, pp. 1–9,
2016.

[84] R. Luna, M. Moll, J. Badger, and L. E. Kavraki, “A scalable motion planner
for high-dimensional kinematic systems,” The Int. J. of Robotics Research,
vol. 39, no. 4, pp. 361–388, 2020.

[85] M. Cefalo, P. Ferrari, and G. Oriolo, “An opportunistic strategy for mo-
tion planning in the presence of soft task constraints,” IEEE Robotics and
Automation Letters, vol. 5, no. 4, pp. 6294–6301, 2020.

[86] H. Tanner and K. Kyriakopoulos, “Nonholonomic motion planning for mobile
manipulators,” in IEEE Int. Conf. on Robotics and Automation, vol. 2, pp. 1233–
1238, 2000.

[87] O. Brock and L. Kavraki, “Decomposition-based motion planning: a framework
for real-time motion planning in high-dimensional configuration spaces,” in
IEEE Int. Conf. on Robotics and Automation, vol. 2, pp. 1469–1474, 2001.

[88] A. Sideris and J. Bobrow, “An efficient sequential linear quadratic algorithm
for solving nonlinear optimal control problems,” in 2005 American Control
Conf., pp. 2275–2280 vol. 4, 2005.

[89] C. Mastalli, R. Budhiraja, W. Merkt, G. Saurel, B. Hammoud, M. Naveau,
J. Carpentier, L. Righetti, S. Vijayakumar, and N. Mansard, “Crocoddyl: An
efficient and versatile framework for multi-contact optimal control,” in 2020
IEEE Int. Conf. on Robotics and Automation, pp. 2536–2542, 2020.

122 Bibliography

[90] M. Giftthaler, F. Farshidian, T. Sandy, L. Stadelmann, and J. Buchli, “Efficient
kinematic planning for mobile manipulators with non-holonomic constraints
using optimal control,” in 2017 IEEE Int. Conf. on Robotics and Automation,
pp. 3411–3417, 2017.

[91] M. Logothetis, G. C. Karras, S. Heshmati-Alamdari, P. Vlantis, and K. J.
Kyriakopoulos, “A model predictive control approach for vision-based object
grasping via mobile manipulator,” in 2018 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, pp. 1–6, 2018.

[92] J. Pankert and M. Hutter, “Perceptive model predictive control for continuous
mobile manipulation,” IEEE Robotics and Automation Letters, vol. 5, no. 4,
pp. 6177–6184, 2020.

[93] M. Spahn, B. Brito, and J. Alonso-Mora, “Coupled mobile manipulation via
trajectory optimization with free space decomposition,” in 2021 IEEE Int.
Conf. on Robotics and Automation, pp. 12759–12765, 2021.

[94] S. Dubowsky and E. E. Vance, “Planning mobile manipulator motions con-
sidering vehicle dynamic stability constraints,” in 1989 IEEE Int. Conf. on
Robotics and Automation, pp. 1271–1276, 1989.

[95] E. G. Papadopoulos and D. A. Rey, “A new measure of tipover stability
margin for mobile manipulators,” in 1996 IEEE Int. Conf. on Robotics and
Automation, pp. 3111–3116, 1996.

[96] D. A. Rey and E. G. Papadoupoulos, “Online automatic tipover prevention for
mobile manipulators,” in in 1997 IEEE/RSJ Int. Conf. on Intelligent Robot
and Systems, pp. 1273–1278, 1997.

[97] M. Vukobratovic and B. Borovac, “Zero-moment point - thirty five years of its
life.,” The Int. J. of Humanoid Robotics, vol. 1, pp. 157–173, 2004.

[98] S. Sugano, Q. Huang, and I. Kato, “Stability criteria in controlling mobile
robotic systems,” in 1993 IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, pp. 832–838, 1993.

[99] Q. Huang, S. Sugano, and I. Kato, “Stability control for a mobile manipulator
using a potential method,” in 1994 IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, pp. 839–846, 1994.

[100] Q. Huang, K. Tanie, and S. Sugano, “Coordinated motion planning for a
mobile manipulator considering stability and manipulation.,” The Int. J. of
Robotic Research, vol. 19, pp. 732–742, 2000.

[101] J. Kim, W. K. Chung, Y. Youm, and B. H. Lee, “Real-time ZMP compensation
method using null motion for mobile manipulators,” in 2002 IEEE Int. Conf.
on Robotics and Automation, pp. 1967–1972, 2002.

[102] S. Lee, M. Leibold, M. Buss, and F. C. Park, “Rollover prevention of mobile
manipulators using invariance control and recursive analytic zmp gradients,”
Advanced Robotics, vol. 26, no. 11-12, pp. 1317–1341, 2012.

Bibliography 123

[103] C. Qiu, Q. Cao, L. Yu, and S. Miao, “Improving the stability level for on-line
planning of mobile manipulators,” Robotica, vol. 27, no. 3, p. 389–402, 2009.

[104] L. Yu, Q. Cao, C. Li, and C. Qiu, “On-line planning of nonholonomic mobile
manipulators based on stability twist constraint,” Journal of the Brazilian
Society of Mechanical Sciences and Engineering, vol. 32, pp. 165–170, 2010.

[105] X. Ding, Y. Liu, J. Hou, and Q. Ma, “Online dynamic tip-over avoidance for
a wheeled mobile manipulator with an improved tip-over moment stability
criterion,” IEEE Access, vol. 7, pp. 67632–67645, 2019.

[106] J. Chen, W. Zhan, and M. Tomizuka, “Constrained iterative lqr for on-road
autonomous driving motion planning,” in 2017 IEEE 20th Int. Conf. on
Intelligent Transportation Systems, pp. 1–7, 2017.

[107] M. Diehl, H. Bock, J. P. Schlöder, R. Findeisen, Z. Nagy, and F. Allgöwer, “Real-
time optimization and nonlinear model predictive control of processes governed
by differential-algebraic equations,” Journal of Process Control, vol. 12, no. 4,
pp. 577–585, 2002.

[108] H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body motion planning with
centroidal dynamics and full kinematics,” in 2014 IEEE-RAS Int. Conf. on
Humanoid Robots, pp. 295–302, 2014.

[109] D. Orin, A. Goswami, and S.-H. Lee, “Centroidal dynamics of a humanoid
robot,” Autonomous Robots, vol. 35, 10 2013.

[110] S. Kuindersma, F. Permenter, and R. Tedrake, “An efficiently solvable
quadratic program for stabilizing dynamic locomotion,” in 2014 IEEE Int.
Conf. on Robotics and Automation, pp. 2589–2594, 2014.

[111] J.-P. Sleiman, F. Farshidian, M. V. Minniti, and M. Hutter, “A unified MPC
framework for whole-body dynamic locomotion and manipulation,” IEEE
Robotics and Automation Letters, vol. 6, no. 3, pp. 4688–4695, 2021.

[112] C. Dario Bellicoso, C. Gehring, J. Hwangbo, P. Fankhauser, and M. Hutter,
“Perception-less terrain adaptation through whole body control and hierarchi-
cal optimization,” in 2016 IEEE-RAS 16th Int. Conf. on Humanoid Robots,
pp. 558–564, 2016.

[113] J.-R. Chiu, J.-P. Sleiman, M. Mittal, F. Farshidian, and M. Hutter, “A collision-
free MPC for whole-body dynamic locomotion and manipulation,” in 2022 Int.
Conf. on Robotics and Automation, pp. 4686–4693, 2022.

[114] K. Bouyarmane, S. Caron, A. Escande, and A. Kheddar, Multi-contact Motion
Planning and Control, pp. 1–42. Springer Netherlands, 2018.

[115] B. Faverjon and P. Tournassoud, “A local based approach for path planning
of manipulators with a high number of degrees of freedom,” in 1987 IEEE Int.
Conf. on Robotics and Automation, vol. 4, pp. 1152–1159, 1987.

124 Bibliography

[116] M. Rauscher, M. Kimmel, and S. Hirche, “Constrained robot control using
control barrier functions,” in 2016 IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, pp. 279–285, 2016.

[117] F. Ferraguti, C. Talignani Landi, S. Costi, M. Bonfè, S. Farsoni, C. Secchi,
and C. Fantuzzi, “Safety barrier functions and multi-camera tracking for hu-
man–robot shared environment,” Robotics and Autonomous Systems, vol. 124,
p. 103388, 2020.

[118] M. A. Murtaza, S. Aguilera, V. Azimi, and S. Hutchinson, “Real-time safety
and control of robotic manipulators with torque saturation in operational
space,” in 2021 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
pp. 702–708, 2021.

[119] Q. Nguyen and K. Sreenath, “Exponential Control Barrier Functions for
enforcing high relative-degree safety-critical constraints,” in 2016 American
Control Conf., pp. 322–328, 2016.

[120] R. Grandia, A. J. Taylor, A. D. Ames, and M. Hutter, “Multi-layered safety
for legged robots via control barrier functions and model predictive control,”
in IEEE Int. Conf. on Robotics and Automation, pp. 8352–8358, 2021.

	Introduction
	Real-time nonlinear model predictive control
	Model predictive control formulation
	Numerical solution of the OCP
	Numerical solution approaches
	Nonlinear optimization

	Real-time implementation
	Real-time iteration scheme
	Efficient software

	Conclusions

	I Motion generation for mobile robots
	Mobile robot navigation
	Problem formulation
	Mobile robot model
	Kinematic constraints
	Kinematic model
	Dynamic model

	Motion generation via NMPC
	The collision avoidance constraint

	Conclusions

	Crowd navigation using NMPC and control barrier functions
	Problem formulation
	Proposed framework
	Crowd prediction module
	Data association
	State estimation
	Motion prediction

	Motion generation via NMPC
	NMPC algorithm
	CBF-based collision avoidance

	Simulations
	Conclusions

	A dynamics-aware NMPC method for robot navigation
	Problem formulation
	Proposed NMPC approach
	Dynamics-aware collision avoidance
	Preliminaries
	Avoidable collision states
	Use of the ACS condition in the NLP

	Simulations
	Static environments
	Dynamic environments

	Conclusions

	II Motion generation for mobile manipulators
	Ensuring balance for mobile manipulators via NMPC
	Introduction
	Problem formulation
	Mobile manipulator model
	Kinematic constraints
	Kinematic model
	Dynamic model
	Contact forces

	Proposed NMPC approach
	Collision avoidance
	Robot balance
	Balance criterion
	Balance constraint
	Improving balance

	Simulations
	Compared methods
	Simulation results

	Conclusions

	An optimization-based controller for enforcing safety constraints in mobile manipulators
	Introduction
	Problem formulation
	Proposed approach
	Motion generation module
	Optimization-based controller
	Cost function
	State and input bounds
	Balance constraint
	Collision avoidance constraints
	Optimization scheme

	Simulations
	Simulation scenario 1
	Simulation scenario 2

	Discussion
	Conclusions

	Conclusions
	Robot dynamics
	Kinetic energy
	Potential energy
	Equations of motion

	Zero moment point

