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Introduction

Directive 2009/138/CE of the European parliament and of the council (“Solvency
II”) requires insurance companies to have a level of Own Funds consistent with the
risks to which they are exposed, at least equal to Solvency Capital Requirement
(SCR), which is defined as the Value-at-Risk (VaR) of the one-year distribution
of the company’s Basic Own Funds (BOF), with a probability level of 99.5%.

The approaches proposed for calculating the SCR include, among others, the
Standard Formula - a predefined model calibrated on data relating to the Euro-
pean insurance market - and the Internal Model, which should represent under-
taking risk profile as accurately as possible. Both approaches require that balance
sheet items should be evaluated according to a market consistent method. There-
fore, in accordance with the principles of the Directive, valuation of BOF is carried
out using risk-neutral probabilities and, on the other hand, valuation of VaR of
the one-year distribution of the company’s BOF should be based on real-world
probabilities of risk factors affecting BOF. In order to comply Directive’s princi-
ples, calibration of the models should be carried out on the basis of time series
of market values, from which both probability distributions can be inferred.

Among the risks covered by SCR, in this thesis we analyzed spread risk, de-
fined as "the sensitivity of the values of assets, liabilities and financial instruments
to changes in the level or in the volatility of credit spreads over the risk-free in-
terest rate term structure"1 . Although many factors can affect the level or the
volatility of credit spread, such as counterparty risk, tax effects and liquidity risk
(Elton et al. 2001, Dignan 2003 and Driessen 2003), we assume that only counter-
party risk is relevant, leaving other components as residuals. Counterparty risk
can be defined as the risk that, in the context of a credit transaction, a debtor
fails to meet his obligations (repay the principal and/or interest), even partially.
The additional return required by the creditor, i.e. the risk premium for default
risk, is composed by arrival risk, timing risk, and recovery risk (Schönbucher
2003). Arrival risk is a term for the uncertainty whether a default will occur
or not; timing risk refers to the uncertainty about the precise time of default;
recovery risk describes the uncertainty about the severity of the losses if a default

1Article 105 of the Directive.
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has happened.

Considering the above assumptions, in order to manage spread risk we use
two intensity-based models: the Duffie-Singleton model (DS model) proposed by
Duffie and Singleton 1999 and the model developed by Li, Linetsky, and Mendoza-
Arriaga 2016 in the context of electricity spot price modelling, properly adapted to
model counterparty risk (as we will see, we call this model GMAC-JCIR model).
The latter is set up within the one-dimensional Markovian framework and is
based on the DS diffusion process, interspersed with compound Poisson’s jumps
with exponentially distributed jump size and a subordinated process as a random
clock.

The DS model stems from Cox, Ingersoll, and Ross 1985 (CIR) square-root
diffusion and has been a warhorse in the stochastic modeling of default risk in
financial markets since the seminal work. In this framework, the default time can
be thought of as the first jump time of a doubly stochastic Poisson process (Cox
process) with stochastic intensity following a diffusion process. The attractiveness
of the DS model stems from its dynamics and its analytical tractability. Under
certain conditions, the DS process is nonnegative and mean-reverting, which is an
important empirical feature observed in credit markets. Its analytical tractability
primarly stems from its membership in the class of affine processes, which yields
a closed-form solution for the survival probability (Schönbucher 2003) that essen-
tially coincides with the expression for the bond price in CIR interest rate model.
These properties lead to analytical pricing for a wide range of credit-sensitive
instruments in CIR-based models (Brigo and Mercurio 2001).

A limitation of the CIR-based default intensity model is its inability to capture
jumps in credit spread: this fact led a number of authors to introduce jumps into
the CIR model (for example, Duffie and Garleanu 2001). In order to preserve
analytical tractability, these models have been in the affine class.

On the other hand, a limitation of jump-CIR process (JCIR) is the one-sided
nature of their jumps. From the standpoint of financial applications, its sample
path behavior is somewhat unnatural because they can never jump down: if the
process experiences a large jump up bringing it far away from its long-run mean,
the only mechanism for it to return back to its long-run mean is via its continuous
mean-reverting drift, with no possibility to jump back down - this is in contrast
to the behavior often observed in financial markets where a jump in one direction
may be followed by a jump in the opposite direction. This is often observed in
energy markets or in credit markets, where the succession of good and bad news
about the financial health of an obligor, such as a firm or a sovereign viewed by
the markets to be in distress, can result in sharp changes in its market credit
spreads over relatively short periods of time.
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Mendoza-Arriaga and Linetsky 2014 have introduced more realistic two-sided
jump behavior into diffusion intensity models via Bochner’s subordination: start-
ing with a nonnegative diffusion intensity model and time change it with a subor-
dinator, they have obtained a jump-diffusion (when the subordinator has a pos-
itive drift) or a pure-jump (when the subordinator is driftless) intensity model
with two-sided jumps that stays nonnegative. In particular, when the diffusion
process is a CIR process, the time-changed model possesses a nonnegative inten-
sity process with two-sided, mean-reverting jumps.

This thesis considers jump-diffusion subordination: in this way, the structure
of the process remains state-dependent and numerically tractable due to avail-
ability of Laplace transform.

As we pointed out, the aforementioned aspects of the subordinated model al-
low to obtain both tractability and interesting features in sample paths: process’
jumps are state-dependent and contribute to the return to the long-time average
level, together with the mean-reversion drift component. This model character-
istics are very important because they allow the GMAC-JCIR model to be more
flexible than the DS model in describing the behavior of the tail (right-hand side)
of the default intensity distribution. As a consequence, as will be seen below,
the SCR for spread risk calculated with the GMAC-JCIR model will be more
conservative than that calculated with the DS model.

For both models, estimation of model parameters is carried out on time series
of market data through maximum likelihood estimation (MLE), where the like-
lihood function is calculated via particle filter technique (Bolviken and Storvik
2001); this approach allows to estimate both real-world and risk-neutral proba-
bility distributions as a whole.

This thesis is organized as follow. Chapter (1) introduce the spread risk and
its components. Chapter (2) provides mathematical notations and tools from a
theoretichal point of view, while Chapter (3) describes the modelling framework.
Chapter (4) provides a brief description of the general theory of filtering; here we
introduce the filter and we mention the situations in which particles are necessary.
After market data presentation in Chapter (5), we apply the particle filtering
technique to calibrate the models in Chapters (6) and (7); here we analyze the
results of the calibration phase by comparing some statistics related to the market
and model time series.

3
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Chapter 1

Spread risk

The purpose of this chapter is to introduce the spread risk.

After providing basic financial definitions, which will be useful in the following,
a review of credit spread measures - proposed both in the literature and financial
practice - will be presented.

On the basis of credit spread measures, components which affect the level and
the volatility of the observed credit spreads in the market will be examined. As
we will see, in order to define a model for managing spread risk, only one of these
components will be considered in our discussion.

Then, we will treat the main characteristics of spread risk in Solvency II,
together with a summary of this regulatory structure. In this framework, the
possibility - offered by the Directive - to use alternative methods to the Standard
Formula for determining regulatory capital requirements - in particular, the so-
called (partial) internal models - will be mentioned. This aspect is relevant in
the scope of our discussion, as the methodologies for measuring the spread risk
proposed in the following chapters fall under the scope of the internal methods
for representing risk profile of an insurance company and calculating regulatory
capital requirements.

The chapter concludes with a discussion on the available data for (partial)
internal model calibration. It will be clear the importance of a proper choice of
the financial product - or products - from which information should be extracted
in order to measure and manage spread risk.

1.1 Basic definitions

In its simplest form, a financial contract allows to exchange monetary amounts
in different points in time. The first definition is related to the basic type of
contract, the risk-free zero-coupond bond.

5



Definition (Risk-free zero-coupon bond). A T -maturity risk-free zero-coupon
bond is a contract that guarantees its holder the payment of one unit of currency
at time T, with no intermediate payments. The contract value at time t ≤ T is
denoted by v(t, T ), with v(T, T ) = 1.

According the above definition, if we are at time t, a risk-free zero-coupon
bond for the maturity T is a contract that establishes the present value of one
unit of currency to be paid at time T (the maturity of the contract).

Times t and T can be measured through real numbers expressed as years,
from an instant chosen as time origin. The time to maturity of the risk-free
zero-coupon bond is defined as T − t.

Risk-free zero-coupon-bond prices are the basic quantities in interest-rate the-
ory, then all interest rates can be defined in terms of risk-free zero-coupon-bond
prices (Brigo and Mercurio 2001). In moving from risk-free zero-coupon bond
prices to interest rates, and vice versa, the following definition is needed for our
purposes:

Definition (Yield to maturity intensity). The yield to maturity intensity,
prevailing at time t for the maturity T , is denoted by h(t, T ) and represents the
constant rate at which an investment of v(t, T ) units of currency at time t accrues
continuously to yield a unit amount of currency at maturity T:

h(t, T ) = − ln v(t, T )

T − t
. (1.1)

When a certain type of risk is introduced, for example the possibility that
payment obligation may not be satisfied or may be satisfied in part, instead of
risk-free zero-coupon bond, the following definition must be considered:

Definition (Zero-coupon bond). A T -maturity zero-coupon bond is a contract
that provides its holder the payment of one unit of currency at time T, with no
intermediate payments. The contract value at time t < T is denoted by v(t, T ).

The the yield-to-maturity intensity is denoted by:

h(t, T ) = − ln v(t, T )

T − t
. (1.2)

The last useful definition concern the money market account. Roughly speak-
ing, a money-market account represents a (locally) risk-free investments, where
profit is accrued continuously at the risk-free rate prevailing in the market at
every instant.

Definition (Money market account). LetB(t) be the value of a money market
account at time t ≥ 0. Assume B(0) = 1 and that the money market account
evolves according to the following differential equation:

6



dB(t) = rtB(t)dt, B(0) = 1, (1.3)

where rt ≥ 0. As a consequence,

B(t) = exp
( ˆ t

0

rsds
)
. (1.4)

The above definition tells us that investing a unit amount in a money market
account at time 0 yields at time t the value in (1.4), and rt is the instantaneous rate
at which the bank account accrues. Thus, rt is usually referred to as instantaneous
spot rate, or briefly as short rate, because is the instantaneous rate at which the
bank account accrues.

It can be seen that rt is also the yield to maturity intensity of a risk-free
zero-coupon bond when the time to maturity goes to zero.

1.2 Credit spread measures

As we have seen, when a certain type of risk is introduced, a zero-coupon bond
contract may be no longer risk-free.

In general, investors need measure to determine how much they are paid for
to assume the risk of a credit transaction. These metrics are commonly referred
to as credit spreads, because they attempt to measure the performance of a credit
asset against the performance of a credit quality benchmark.

The choice of benchmark is arbitrary: if the benchmark is represented by a
particular sovereign bond, the performance of a credit asset can be compared to
the rate of return of the sovereign bond; otherwise, if the benchmark is represented
by an interest rate curve, the performance of a credit asset can be compared to
one of the rate of the curve.

In the following, we focus on the most common credit spread measures for
fixed rate bonds, of which zero-coupon bond is a special case. For example,
credit risk may be embedded within a bond issued both by some corporate or
some sovereign, and credit spread measure should enable comparison between the
credit quality of:

• securities issued by an issuer, which may differ in terms of maturity, coupon
or seniority;

• securities issued by different issuers.

The yield spread is the first and the simplest credit spread measure. Its
advantage is its semplicy, as it is defined as the difference between two yields,
that of a defaultable bond and that of an associated treasury benchmark.

7



Definition (Yield spread). The yield spread is the difference between the yield
to maturity of a credit risky bond and the yield to maturity of an on-the-run
treasury benchmark bond with similar but not necessarily identical maturity.

To overcome the issue of the maturity mismatch, it is possible to use a bench-
mark yield where the correct maturity yield has been interpolated off the appro-
priate reference curve. Rather than choose a specific reference benchmark bond,
the idea is to use a reference yield curve which can be interpolated.

Definition (Interpolated spread). The Interpolated spread - or I-spread - is
the difference between the yield to maturity of a credit risky bond and the linearly
interpolated yield to the same maturity on an appropriate reference curve.

The Option Adjusted Spread (OAS) was originally conceived as a measure of
the amount of optionality embedded into a callable or puttable bond. However,
the calculation methodology has since been borrowed by the credit markets and
used for bonds which are not callable and so have no optionality. Used in this
sense, the OAS becomes a convenient way to measure the credit risk embedded
in a bond. For this reason, within a pure credit context, the OAS is often referred
to as the zero volatility spread (ZVS) or Z-Spread.

Definition (Option Adjusted Spread). The Option Adjusted Spread of a
fixed rate credit risky bond is the parallel shift to the benchmark curve required
in order that the adjusted curve reprices the bond.

Unlike the artificial spread measures described so far, among the traded spread
measure there is the asset swap spread. It is convenient to remember that, in a
par asset swap package, a credit investor combines a fixed rate asset with a fixed
floating interest rate swap in order to remove the interest rate risk of the fixed
rate asset. There are two components to the package:

1. At initiation the investor pays par, and in return, receives the bond which
is worth its full price.

2. The investor simultaneously enters into an interest rate swap, paying fixed,
where the fixed leg cashflows are identical in size and timing to the coupon
schedule of the bond. On the floating side of the swap, the investor receives
a fixed spread over a benchmark risk-free curve – the asset swap spread.
The floating leg of the swap is specified with its own frequency, basis and
settlement conventions.

If the asset in the asset swap package defaults, the interest rate swap continues
or can be closed out at market and the associated unwind cost is taken by the

8



asset swap buyer. The asset swap buyer also loses the remaining coupons and
principal payment of the bond, recovering just some percentage of the face value.

Definition (Asset swap spread). The Asset swap spread is the spread over a
benchmark curve paid on the floating leg in a par asset swap package.

In the following, we will only use the yield spread definition in order to mea-
sure credit spreads. In particular, the credit spread of a zero-coupon bond with
maturity T against a risk-free zero-coupon bond with the same maturity (i.e. the
benchmark) can be defined in terms of yield to maturity intensity:

s(t, T ) = h(t, T )− h(t, T ). (1.5)

1.3 Credit spread components

In the empirical literature of corporate bond it is shown that many factors can
affect the level and the volatility of the credit spreads observed in the market.
Even if the default risk is traditionally the main component, according to Elton et
al. 2001, Dignan 2003 and Driessen 2003, credit spreads between corporate bond
and treasury bonds - which can differ across rating classes - should be positive
for the following reasons:

• Credit risk premium - corporate bonds can default and investors require a
higher promised payment to compensate for the expected loss from defaults;

• Tax premium — interest payments on corporate and government bonds are
typically subject to a different tax regime;

• Liquidity risk premium - in order to take into account the liquidity risk
associated with the corporate security.

• Risk premium — the return on corporate bonds is riskier than the return on
government bonds, and investors should require a premium for the higher
risk;

Credit risk premium - or default risk premium - is intrinsically linked to the
payment obligation that the obligor have to honour. Generally speaking, the
behaviour of the obligor is regulated by the bankruptcy codes and the contract
law: thanks to these, one can speak of the obligor’s credit risk, without speci-
fying a particular payment obligation, because the debtor should honor all his
payment obligations as much as he is able to. However, obligors who are not
bound to bankruptcy code, for example sovereign borrowers and borrowers in
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countries without a functioning legal system, frequently use the possibility of
defaulting only on some of their obligations, sometimes without being in real
financial distress; in this cases, the link between the credit risk of and the partic-
ular underlying payment obligation should not be ignored. Therefore, a general
definition of the default risk covers both the obligor default risk and the particular
payment obligation default risk.

Tax premium occurs because the investor in corporate bonds is often subject
to a different and higher tax regime than the investor in government bonds. Thus,
corporate bonds have to offer a higher pre-tax return to yield the same after-tax
return. In Elton et al. 2001 it is shown that taxation explains between 28% and
73% of spreads - depending on rating and maturity - while in Driessen 2003, with
a different sample and an other method, this component ranges from 34% to 57%.

Liquidity risk premium arises from situations in which the investor is inter-
ested in trading the corporate bond instead of hold it until maturity. Otherwise,
liquidity risk premium can be ignored.

Regarding the last component, the risk premium, in Elton et al. 2001 it is
shown that corporate bonds require a risk premium because spreads and returns
vary systematically with the same factors that affect common stock returns. If
investors in common stocks require compensation for this risk, so should investors
in corporate bonds. According to Elton, this component occurs because a large
part of the risk on corporate bonds is systematic rather than diversifiable.

Hereafter, in order to build a model for measuring and managing spread risk,
the following assumption is adopted:

Assumption. The level of the observed credit spread is affect only by credit risk
component; other components are leaving as residuals.

Schönbucher 2003 identifies the most important components of credit risk with
the following:

• Arrival risk, as a term for the uncertainty whether a default will occur or
not. To allow comparisons, it is specified against a given time horizon, usu-
ally one year. The measure of arrival risk is the probability distribution of
the (indicator random) variable modelling default, before the time horizon.

• Timing risk, as the uncertainty about the precise time of default. Knowl-
edge about the time of default includes knowledge about the arrival risk for
all possible time horizons, thus timing risk is more detailed and specific than
arrival risk. The measure of the timing risk is the probability distribution
of the time of default.
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• Recovery risk, as the uncertainty about the severity of the losses if a
default has happened. In recovery risk, the uncertain quantity is the actual
payoff that a creditor receives after a default of the obligor of the payment
obligation. Market convention is to measure the recovery risk by a recovery
rate, as a fraction of the notional value of the payment obligation. Recovery
risk is described by the (conditional upond default) probability distribution
of the recovery rate.

Thus, in our framework, change in credit spreads are driven only by changing
in the distributions of the credit risk components, i.e., arrival risk, timing risk
and recovery risk.

1.4 Spread risk in Solvency II

Directive 2009/138/CE of the European parliament and of the council (“Solvency
II”) requires insurance companies to have a level of Own Funds consistent with
the risks to which they are exposed.

Own Funds should be at least equal to Solvency Capital Requirement (SCR),
which is defined as the Value-at-Risk (VaR) of the one-year distribution of the
company’s Basic Own Funds (BOF), with a probability level of 99.5%.

Company’s BOF represents the difference between assets and liabilities and
should be evaluated according to a market consistent approach. In particular,
"assets shall be valued at the amount for which they could be exchanged between
knowledgeable willing parties in an arm’s length transaction" (marked-to-market
approach), and "liabilities shall be valued at the amount for which they could be
transferred, or settled, between knowledgeable willing parties in an arm’s length
transaction" (current exit value approach).

Therefore, in accordance with the principles of Solvency II, in order to calcu-
late SCR, valuation of BOF is carried out on a market consistent approach; on
the other hand, valuation of VaR of the one-year distribution of the company’s
BOF should be based on real-world assumptions.

The simplest approach proposed by Solvency II for calculating the SCR is
represented by the Standard Formula, a predefined model calibrated on data
relating to the European insurance market. This model has a modular approach
and its structure is shown in Figure (1.1).

The Standard Formula consists of a number of risk sub-modules, whose out-
come are aggregated by a correlation matrix to reach a SCR for each module
- the outcome of a risk sub-module is usually determined by calculating how a
prescribed scenario would affect the insurer’s balance sheet; SCR for each module
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Figure 1.1: Risk sub-modules and risk modules in Solvency II Standard Formula.

are then aggregated in order to calculate the BSCR, which shlould be adjusted
to reach the SCR, as a capital requirement for the insurance company.

Among the risks covered by Solvency II, we focus on spread risk, defined by
the directive as "the sensitivity of the values of assets, liabilities and financial
instruments to changes in the level or in the volatility of credit spreads over the
risk-free interest rate term structure".

In the context of Standard Formula, spread risk represent a sub-module of
market risk and the related capital requirement shall be equal to the following:

SCRspread = SCRbonds + SCRcd + SCRsec (1.6)

where

• SCRbonds denotes the capital requirement for spread risk on bonds (govern-
ment and corporate) and loans;

• SCRsec denotes the capital requirement for spread risk on securitisation
positions and covers, in particular, ABS;

• SCRcd denotes the capital requirement for spread risk on credit deriva-
tives, for example CDS and structured products based on synthetic credit
instruments.

It should be noted that, for the purposes of this thesis it is useful to focus
exclusively on the calculation of SCR related to loans and bonds.
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The capital requirement for spread risk on bonds and loans shall be equal to
the loss in the basic Own Funds that would result from an instantaneous relative
decrease in the value of each bond or loan. The decrease shall depend on the
modified duration of the bond or loan - denominated in years - and, if bonds and
loans have been subject to a credit assessment by an External Credit Assesment
Institution (ECAI), it also shall depend on credit quality step of the bond or loan.

In order to harmonize the different scales provided by the various ECAIs,
which follows internal agency assessment parameters, EIOPA, by means of Com-
mission Implementing Regulation 2016/1800, imposed a necessary correspon-
dence between the credit assessments of ECAIs and the objective scale of credit-
worthiness classes 1.

On the other hand, if bonds and loans are not subject to creditworthiness
assessment by an ECAI, stress factors are defined according to their modified
duration.

Subject to the approval of the competent supervisory authority, insurance
companies can use alternative methodologies for SCR calculation, the so-called
(partial) internal model; the choice of using internal methodologies is motivated
by different considerations, such as the fact that internal methods should repre-
sent - better than Standard Formula - the company risk profile.

In the case of (partial) internal models, data play a fundamental role of as the
starting point for the use of appropriate calibration methodologies for parameter
estimation.

1.5 Available data

According to principles of the directive, "member States shall ensure that in-
surance and reinsurance undertakings have internal processes and procedures in
place to ensure the appropriateness, completeness and accuracy of the data used
in the calculation of their technical provisions".

Thus, data must comply with the principles of:

• completeness, i.e. the database that contains data must have all the funda-
mental and relevant information to manage all the risks to which insurance
company is exposed; in addition, the database must be guaranteed in a
sufficient level of granularity;

1Commission Implementing Regulation (EU) 2016/1800 of 11 October 2016 laying down
implementing technical standards with regard to the allocation of credit assessments of external
credit assessment institutions to an objective scale of credit quality steps in accordance with
Directive 2009/138/EC of the European Parliament and of the Council
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• appropriateness i.e., whether the data is functional to manage the set of
risks;

• accuracy, in the sense of correctness and precision, i.e., data must be free
of material errors and must be aligned with the valuation date.

Especially in case of (partial) internal models, data play a fundamental role
for a proper calibration methodology. In general, there may be different method-
ologies to infer parameter values of these models.

For our purposes, in order to measure and manage spread risk and to calcu-
late the associated SCR, time series of data should be used. As we can see in
the following chapters, this allows for estimation of real-world and risk-neutral
parameters of a (partial) internal model; among the financial information, two
possible alternatives are available: 1) quotes from Credit Default Swap (CDS);
2) quotes from yield spreads.

As we will see in Chapter 5, for calibration purposes the IHS Markit data
provider is used, from which different kinds of data are available via standard
license.

Among the services provided, iBoxx is a financial division of IHS Markit that
designs, calculates and distributes fixed income indices, including credit spread
measures (for details, visit the iBoox documentation website).

The iBoxx product portfolio is global and is supported by multi-source pricing,
where IHS Markit’s proprietary Evaluated Bond Pricing Service (‘EVB’) aims to
improve pricing accuracy, minimise tracking error and safeguard the independence
of the indices. iBoxx coverage spans over 20000 bonds to date and includes
corporate, sub-sovereign and sovereign bonds, as well as loans and securitised
products.
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Chapter 2

Theoretical background

The assumption that credit spreads are influenced solely by credit risk enables us
to consider only to the default risk components, i.e., arrival risk, timing risk and
recovery risk.

For modelling purposes, stochastic models for credit risk should be taking into
account. In general, this models aim to describe the arrival of the default event
and to measure its impact on the value of securities subject to credit risk.

In this chapter we will provide mathematical notations and tools that we will
need to use in the rest of this thesis in the context of stochastic models for credit
risk, that will be presented in Chapter 3.

Considering our purposes, in the presentation of theoretical background, gen-
erality is sometimes avoid in favour of simplicity, without sacrificing mathematical
correctness. To fully understand the mathematics behind the models, Jacod and
Shiryaev 1988, Protter 1990 or the survey by Liptser and Shiryaev 1998 can be
considered.

In our framework, all processes and random variables are defined on a filtered
probability space (Ω,F,P) , where Ω is the set of possible states of nature and the
filtration {Ft}t≥0 represents the information structure of the setup; in particular,
Ft is the information available at time t, and random variables whose realisation
is known at time t are said to be measurable with respect to {Ft}t. P is the
probability measure that attaches probabilities to the events in Ω .

In general, when random variables will be introduced, a link with default risk
component will be provided.

2.1 Stopping times

In order to model the arrival risk of a default event, a random point in time
τ ∈ ℜ+ should be considered. For this random variable we require that, at every
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point in time t, it should be known if τ has already occurred or not, so we require
that τ has to be measurable with respect to {Ft}t:

(ω : τ(ω) ≤ t) ∈ Ft ∀t ∈ ℜ+. (2.1)

This property defines the random variable τ as a stopping time. An example
of stopping time is represented by the time of the first passage of any sequence
of random variables {Xn}n ∈ ℜ for a certain level a ∈ ℜ.

On the other hand, there are many examples of random times that are not
stopping times. For example, consider a Brownian motion W (t) on a fixed time
interval [0, T ], and let τ be the time at which W (t) attains its maximum. τ is
a random point in time but it is impossible to assert at time t if the maximum
really was attained; this is possible only at time T — after we have observed the
whole path of W (t) over [0, T ].

Among the properties of stopping times, the maximum and minimum of a set
of stopping times is again a stopping time, as the sum of two stopping times.

In order to represent a stopping time with a stochastic process, we define its
indicator process, i.e. a counting process, that jumps from zero to one at the
stopping time:

N = 1{t≥τ}.

2.2 Point process

If a stopping time is the mathematical description of one event, a point process
is a generalisation of stopping times for considering multiple events.

Let {Tn}n a collection of stopping times, with Tn < Tn+1. The counting pro-
cess associated with the collection of these stopping times is the random process:

N(t) =
∑
n≥1

1{t≥Tn} = #{n ≥ 1, Tn ≥ t}. (2.2)

Point processes should provide a good mathematical framework to analyse
timing risk of default event of obligations. In fact, as we will see in intensity-
based models, the time of the first jump of a point process can be seen as the
time at which a default occurs.

As we can see in (2.2), the process N(t) counts the number of point in time
that the process jumps before t. If Tn > 0 ∀n, then N(t) would be a step function
that starts at zero and increases by one at each Tn.

The advantage of using N(t) instead of a stopping time is that it is a stochastic
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process, so the machinery of stochastic process can be used.

There are several examples of counting process. For our purposes, consider a
sequence of random variables {Tn, n ≥ 1}, where Tn ∼ Gamma(λ, n) and λ > 0,
called the intensity of the process. Then:

Tk ≤ t⇔ N(t) ≥ k

and

P{N(t) = k} = P{Tk ≤ t < Tk+1}

= P{Tk ≤ t} − P{Tk+1 ≤ t} =
e−λt(λt)k

k!
.

When N(t) ∼ Poisson(λt), N(t) is said to be an homogeneous Poisson pro-
cess. Poisson process is a non-decreasing, integer-valued process with initial value
N(0) = 0 whose increments are independent and follow an exponential distribu-
tion.

Poisson processes are usually used to model either rare events (for example,
in insurance mathematics) or discretely countable events (e.g. radioactive decay,
the number of customers in a queue etc.). Both properties also apply to defaults:
they are rare and they are discrete.

If the intensity λ of the Poisson process is a (non-constant) deterministic
function of time λ(t), N(t) is said to be an inhomogeneous Poisson process. Its
properties are very similar to the properties of a homogeneous Poisson process
and the probability distribution fuction is:

P{N(t) = k} = e−
´ t
0 λ(s)ds

[´ t
0
λ(s)ds

]k
k!

. (2.3)

A further generalization of a Poisson process requires that λ(t) is a stochastic
process: in this case, the process N(t) with stochastic intensity λ(t) is called Cox
process.

The jumps of a Cox process are clearly correlated via the path taken by λ(t).
In fact, roughly speaking, if there is a jump at some time Ti, that makes it more
likely that λ(t) is large around Ti, which in turn means that the next jump is
more likely to happen sooner than later; however, this correlation is only indirect,
via the default intensity.

If the full realisation of λ(t) is known in advance, then the counting process
is an inhomogeneous Poisson process. This is also the basic idea of a formal
definition of a Cox process. Let:
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Ft = Gt ∨ FN
t ,

with the process:

• λ(t) adapted to the filtration {Gt}t;

• N(t) adapted to the filtration {FN
t }t;

then, a point process N(t) with intensity process λ(t) is a Cox process if, con-
ditional on the background information {Gt}t, N(t) is an inhomogeneous Poisson
process with intensity λ(t).

2.3 Pricing rules

In this section we will introduce the fundamental concepts behind pricing, absence
of arbitrage and equivalent martingale measures, using a minimum of jargon and
technicality. For more technical expositions consider J. Harrison and D. Kreps
1979, J. M. Harrison and S. R. Pliska 1981, Kabanov 2001 and Delbaen and
Schachermayer 1998.

The case of the so-called perfect market is considered, meaning that: all
investors are price-takers; all parties have the same access to the relevant infor-
mation; there are no restriction on short-selling; there are no costs for taxes or
transactions; all assets are assumed to be perfectly divisible and liquid.

Suppose that the possible evolution of this market, between the points in time
0 and T ∗, are described by a probability space (Ω,F,P) equipped with a filtration
{Ft}t≥0 . As usual, Ft contains all statements which can be made about behavior
of prices up to t, while P is either the “objective” probability of future scenarios
or the subjective view of an investor, and it also called real-world probability.

Assets in the market may then be described by a non-anticipating process:

S : [0, T ∗]× Ω → ℜd+1

(t, ω) →
(
S0
t (ω), S

1
t (ω), ..., S

d
t (ω)

)
,

(2.4)

where Sit(ω) represents the value of asset i at time t in the market scenario ω,
and S0

t := B is a numeraire (see definition in Chapter 1).
A contingent claim H with maturity T may be represented by specifying its

terminal payoff H(T ;ω) in each market scenario ω.
Let H be the set of contingent claims of interest. It is natural to assume

Sit ∈ H; other non-exhaustive examples are European call options and European
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put options, as well as path dependent options, where the payoff of the contingent
claim can depend on the whole path of the underlying assets.

In order to attribute a value to each contingent claim H ∈ H, adapted to the
filtration {Ft}t≥0 , a pricing rule - i.e. a valuation operator - should be defined, as
a procedure which attributes to each contingent claim H ∈ H a monetary value
Πt(H) at each point in time t ∈ [0, T ].

Minimum requirements of a pricing rule include:

• the possibility to compute the value using the information given at t (thus,
Πt(H) should be a non-anticipating process);

• positiveness, meaning that a claim with a positive payoff should naturally
have a positive value:

X ≥ 0 q.c. ⇒ Πt(X) ≥ 0 ∀t ∈ [0, T ∗];

• linearity, meaning that the value of a portfolio is given by the sum of the
values of its components:

Πt

(
J∑
j=1

Xj

)
=

J∑
j=1

Πt(Xj).

Another fundamental requirement for a pricing rule is that it does not generate
arbitrage opportunities. Roughly speaking, an arbitrage opportunity is a self-
financing strategy ϕ, which can lead to a positive terminal gain without any
probability of intermediate loss:

∀t ∈ [0, T ∗] P{Πt(ϕ) ≥ 0} = 1, P{ΠT (ϕ) ≥ Π0(ϕ)} ≠ 0.

It should be noted that the definition of the arbitrage opportunity involves P,
but this probability measure is only used to specify whether the profit is possible
or impossible, not to compute its probability of occurring, because only events
with probability 0 or 1 are involved. Thus, in the sequel will not require a precise
knowledge of probabilities of market scenarios under P.

Under certain condition (see Cont and Tankov 2004), it can be shown that
in an arbitrage-free market described by a probability space (Ω,F,P) , prices are
given by the following pricing rule:

Πt(H) = EQ{ Bt

BT

H|Ft} (2.5)

where Q is an equivalent martingale measure such that:

19



∀A ∈ F Q(A) = 0 ⇔ P(A) = 0, (2.6)

EQ{ŜiT |Ft} = EQ{S
i
T

BT

|Ft} =
Sit
Bt

= Ŝit .

Therefore, any arbitrage-free pricing rule is given by an equivalent martingale
measure Q, also called risk-neutral measure. Conversely, it can be shown that
any risk-neutral measure defines an arbitrage-free pricing rule (Cont and Tankov
2004).

Thus, there is a one-to-one correspondence between arbitrage-free pricing rules
and equivalent martingale measures: specifying an arbitrage-free pricing rule on
(Ω,F,P) is equivalent to specifying a probability measure Q ∼ P on market
scenarios such that the prices of traded assets are martingales.

Up to now we have assumed that an arbitrage-free pricing rule, i.e. an equiva-
lent martingale measure, does indeed exist, which is not obvious in a given market
model. In fact, the above must be interpreted as, if an equivalent martingale mea-
sure exists, then the market is arbitrage-free. The converse result, more difficult
to show, is sometimes called the Fundamental theorem of asset pricing.

It should be noted that a proper mathematical statement requires a careful
specification of this theorem: in fact, for a general unbounded semi-martingale
(such as an exponential-Levy models with unbounded jumps) “martingale mea-
sure” should be replaced by the notion of “σ-martingale measure”, the definition
of arbitrage opportunity should be modified to “no free lunch with vanishing risk,”
etc. For more details on this topic see Delbaen and Schachermayer 1998.

In general, the existence of an equivalent martingale probability measure de-
pends on the market model considered. In the models for credit risk discussed
in Chapter 3 the requirement is guaranteed, so it will be possible to evaluate
contracts by means of the (2.5).
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Appendix

The role of probability measures in Solvency II

As we have seen in Chapter 1, within Solvency II framework assets and liabilities
of an insurance company should be evaluated according to a market consistent
approach.

Let t be a point in time representing a valuation date, for example the end
of the financial year; let At and Vt be the market consistent values of assets and
liabilities, respectively.

Therefore, Own Fund at time t can be defined as:

OFt = At − Vt. (2.7)

When a time horizon from t is considered, for example a equal to one year,
with T = t + 1, capital requirement calculation is based on the quantity OFT ,
which is a random variable in t with its own probability distribution.

According to the principle of the Directive, let ϵ = 0.5% be a probability
such that WT can be defined as the ϵ-percentile of the distribution of OFT , as a
pessimistic value - a worst case value - of the Own Funds at the end of the time
horizon.

Since the SCR covers the unexpected loss, the difference

UT = Et{OFT} −WT (2.8)

express the maximum potential loss with respect to the expected value of the
Own Funds at the end of the time horizon, considering a confidence level equal
to 1 - 99.5%. In addition, since UT expresses a potential loss which may to occur
in one year from t, it should be financially referred to the time of valuation:

SCRt = v(t, T )UT = v(t, T )[Et{OFT} −WT ]. (2.9)

As pointed out in the first part of this chapter, P is the probability measure
that represents operators’ expectations of the future scenarios of the market, while
Q is a probability measure "imposed" by the valuation model and identified on
the basis of the principle of no arbitrage, representing a weighting structure of
future events and not a substitute for the natural probability measure.

Thus, the expected value appearing in relation (2.9) should be calculated un-
der the real-world probability measure. On the other hand, because of the prin-
ciple of the market consistent valuation, for the valuation of assets and liabilities
the risk-neutral probability measure should be use.
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Generally speaking, when one is interested only in pricing contracts, the risk-
neutral probability measure is needed. On the other hand, if one should measure
and manage risk and needs to formalize "real" expectations about the future
events, both probability measures should be considered.
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Chapter 3

Credit risk models

As we have seen in the previous chapters, for modelling spread risk we focus only
on credit risk components, i.e. arrival risk, timing risk and recovery risk, leaving
the others as residuals. Thus, in this chapter we will provide an overview of credit
risk models.

Roughly speaking, credit risk models are of two type: structural models and
intensity-based models. In structural models, the default event is defined in
terms of the (stochastic) process modeling the assets of an issuer, and default is
triggered when the assets hit (or fall below) some boundary. On the other hand,
intensity-based models are based on a default-arrival process.

With respect to the scope of application, models can be further catalogued in
two classes:

• models for the valuation of individual counterparties (which are structural
models). In industry there are several examples: EDF RiskCalc model
of Moody’s KMV (Moody’s KMV 2003 and KMV 2005) and the Credit-
Grades model (Group 2002, produced by a collaboration between RiskMet-
rics, Goldman Sachs, JP Morgan, and Deutsche Bank.

• models for the valuation of portfolios (which are both structural and inten-
sity model). In industry there are three major examples, represented by the
CreditMetrics models of J.P. Morgan (Morgan 1997, Credit Suisse’s Cred-
itRisk+ (CSFB 1997) and McKinsey’s CreditPortfolioView (Wilson 1997).

The first part of this chapter consists of the presentation of two particular
structural models, the Merton model and the Black-Cox model.

Intensity-based models are the subjects of the second part of this chapter.
Here, after providing general considerations about this kind of model, two par-
ticular intensity-based models will be presented, which will be the subjects of the
rest of this thesis.
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3.1 Structural models

This section reviews the valuation of corporate debt in a perfect market setting,
where the machinery of option pricing can be brought to use. For our purposes,
valuation of zero-coupon bond can be considered as a special case.

The starting point of the models presented in this section is to take as given
the evolution of the market value of a firm’s assets and to view all corporate
securities, including corporate debt, as contingent claims on these assets. This
approach dates back to Black and Scholes 1973 and Merton 1974.

Thus, models of this kind are based upon a stochastic process for the firm’s
value and upon a fundamental approach to valuing defaultable debt providing a
link between the prices of equity and all debt instruments issued.

More in particular, firm’s value models are built on the premise that there is
a fundamental process V (t), usually interpreted as the total value of the assets of
the firm that has issued a corporate bond, with V is used to pay off the debt at
maturity of the contract. A default occurs at maturity if V is insufficient to pay
back the outstanding debt; alternatively (and more realistically) one can assume
that a default is already triggered as soon as the value of the collateral V falls
below a barrier K. This latter feature is exactly identical to a standard knockout
barrier in equity options, and was first used in Black and Cox 1976, therefore we
will call models with this kind Black—Cox-type models.

3.1.1 The Merton model

Assume that the time horizon is [0, T ] and let (Ω,F,P) be a probability space
equipped with a filtration {Ft}t≥0 , on which a standard Brownian motion Z(t)

is defined.

A bond B issued by a firm should be priced. For this purpose, assume that
the firm’s value follows a geometric Brownian motion:

dVt = µVVtdt+ σVVtdZt, V0 = V (0), (3.1)

so that

Vt|V0 ∼ LN

(
(µV − 1

2
σ2

V)t, σ
2
Vt

)
. (3.2)

Assuming that the firm has issued at time 0 two type of claims, an equity and
a debt, as a zero-coupon bond with a face value of D and maturity date T .

At time T , if the firm’s value VT is less than D, equity owners, which have
limited liability, do not honour the payment obligation represented by the bond.
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At best, bond holders take over the remaining asset and receive a “recovery” of
VT instead of the promised payment.

With these assumptions, at date T payoffs of the corporate bond and the
equity are:

BT = min(VT , D) = D − max(D − VT , 0) (3.3)

and

ST = max(VT −D, 0). (3.4)

Thus, corporate debt issued by the firm can be viewed as the difference be-
tween a risk-free bond and a put option, while equity can be viewed as a call
option on the firm’s assets. In particular, both options are written on V (T ) with
strike-price equal to D.

Therefore, under the Black–Scholes model, values at time t of the claims are:

Bt = Dv(t, T )− P (t) (3.5)

and

St = C(t), (3.6)

where P (t) and C(t) are the value of the European put and call options defined
above.

It can be shown (Lando 2004) that, in Merton model, when the value of
assets is greater than the amount of the debt, yield spreads goes to zero as time
to maturity goes to 0.

3.1.2 The Black-Cox model

The Black-Cox model is an extension of the Merton model, in which defaults can
occur prior to the maturity of the bond.

Even in this model, let [0, T ] be the time horizon and (Ω,F,P) be a probability
space equipped with a filtration {Ft}t≥0 , on which a standard Brownian motion
Z(t) is defined.

A bond B issued by a firm should be priced; the assumptions about the firm’s
value remain the same as in the Merton model. Nevertheless, defaults can occur
prior to the maturity of the bond and they will happen when the level of the asset
value hits a lower boundary K, modelled as a deterministic function of time:
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Kt =

Ke−γ(T−t) t ∈ [t0, T )

D t = T
(3.7)

In this framework, default event is defined as the time of the first passage of
the firm’s value process V (t) for the lower boundary Kt:

τ = inf{t ∈ (t0, T ] : Vt < Kt}

The payoff of the corporate debt B is then given by:

BT = min{VT , D}1τ>T
= D1τ>T −max{D − VT , 0}1τ>T .

Thus, the value of the corporate debt at time t < T is given by:

Bt = EQ [1τ>T e−r(T−t)D + 1τ≤T e
−r(T−t)Kτ |Ft

]
= EQ [1τ>T e−r(T−t)D + 1τ=T e

−r(T−t)VT + 1τ<T e
−r(T−t)Ke−γ(τ−t)|Ft

]
Recovery risk is closely related to timing risk in the Black-Cox model. In fact,

the default instant defines the payoff recovered by the holder of the risky bond
because in this point in time the value of the assets is equal to the value of the
barrier, which evolves in a deterministic way.

3.2 Intensity-based models

In intensity-based models, default time is defined as the time of the first jump
of a point process. In our framework, the default instant τ coincides with the
instant at which a point process N(t) with intensity λt makes the first jump:

τ = inf{t ∈ ℜ+ : N(t) > 0} (3.8)

It is possible to show that the value at time t of a contract subject to credit
risk with maturity in T and payoff XT is (Schönbucher 2003):

Xt = EQ{e−
´ T
t rudu1{τ>T}XT + e−

´ τ
t rudu1{τ≤T}gτ |Ft}, (3.9)

where Q is a martingale measure equivalent to the real-world probability mea-
sure P, τ is the instant of default, 1A is the indicator function of event A, gτ is the
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value of the contract in case of default, and the spot rate rt uniquely determines
term structure of interest rates. Assuming that gτ is a deterministic fraction δ

(Recovery Rate) of the value of the contract at the instant immediately preceding
the default:

g(τ) = δXτ− δ ∈ [0, 1), (3.10)

the price of the contract X can be rewritten as (Duffie and Singleton 1999):

Xt = EQ{e−
´ T
t [ru+(1−δ)λu]duXT |Ft}, (3.11)

Let v(t, t + u) be the value at time t of a risk-free zero-coupon bond with
maturity t+ u and vR(t, t+ u) be the value at time t of a zero-coupon bond with
maturity t + u, issued by an issuer with rating R and conditional on the issuer
not going bankrupt in [0; t].

From (3.11), assuming independence between interest rate risk and credit risk:

vR(t, t+ u) = EQ{e−
´ t+u
t [rz+(1−δ)λz ]dz|Ft}

= v(t, t+ u)EQ{e−
´ t+τ
t (1−δ)λzdz|Ft}.

(3.12)

Therefore, the yield-to-maturity intensities are given by:

h(t, t+ u) = −1

u
log v(t, t+ u), (3.13)

h
R
(t, t+ u) = −1

u
log vR(t, t+ u). (3.14)

In terms of yield to maturity, yield credit spreads can be defined as:

sR(t, t+ u) = h
R
(t, t+ u)− h(t, t+ u)

= −1

u
EQ{e−

´ t+u
t (1−δ)λzdz|Ft}

:= −1

u
Q(t, t+ u)

(3.15)

for every t and u > 0. In the rest of this thesis, we omit the reference R of
the rating for credit spreads and we assume δ = 0.

According to the above relations, in order to specify an intensity-based model
we should specify the evolution of the intensity λt.
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3.2.1 The Duffie-Singleton model

The first model we point out is a one-dimensional version of the CIR-style model
proposed by Duffie and Singleton (DS) in Duffie and Singleton 1999.

Real-world dynamic

Let (Ω,F,P) be a probability space equipped with a filtration {Ft}t≥0 . We define
P as the real-world probability measure. Under (Ω,F,P) , in DS we model the
instantaneous default intensity as the unique solution to the following stochastic
differential equation (SDE):

dλt = α(γ − λt)dt+ ρ
√
λtdZ

P
t , (3.16)

where α, γ, ρ > 0 and λ0 = λ(0) > 0. We also impose the Feller condition
2αγ ≥ ρ2, so that zero is an unattainable boundary for the process λt.

The dynamics of the deterministic component f(t, λt) = α(γ − λt) ensures
mean reversion of the values towards the long run value γ, with speed of adjust-
ment governed by the strictly positive parameter α.

On the other hand, the form of the stochastic component g(t, λt) = ρ
√
λt

avoids the possibility of negative values for all positive values of α and γ, and it
characterizes a disturbance term proportional to the value of the intensity itself,
which allows great volatility in periods of high spreads.

SDE (3.16) implies for the conditional distribution of λt+u|λt a non-central
chi-squared distribution, making the process stationary. In particular, we have:

p(λt+u|λt) =
ρ2(1− e−αu)

4α
χ2(d, v) u ∈ ℜ+, (3.17)

where χ2(d, v) is the probability distribution function of a non-central chi-

squared distribution with d =
4bα

ρ2
degrees of freedom and non-centrality param-

eter v =
4αe−αu

ρ2(1− e−αu)
λt.

Equivalent measure change

Using the the following market price of risk:

ϱ(t, λt) = −π
√
λt
ρ

π > 0, (3.18)

it is possible to show that the dynamic of the process λt under the risk-neutral
probability Q is still a mean-reverting process:
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dλt = α̂(γ̂ − λt)dt+ ρ
√
λtdZ

Q
t , (3.19)

where

α̂ := α− π (3.20)

and

γ̂ :=
α

α− π
γ. (3.21)

Pricing formulas

Under (Ω, F, Q), it can be shown that credit spreads defined in (3.15) are given
by (Jeanblanc M. 2009):

s(t, t+ u) = h(t, t+ u)− h(t, t+ u) =
1

u
a(u; q⃗) +

1

u
λtB(u; q⃗), (3.22)

with a(u;q) = − logA(u;q) and:

A(u; q⃗) =

[
2de(α̂+d)u/2

(α̂ + d)(edu − 1) + 2d

]ν
(3.23)

B(u; q⃗) =
2(edu − 1)

(α̂ + d)(edu − 1) + 2d
(3.24)

d =
√
α̂2 + 2ρ2 ν =

2α̂γ̂

ρ2
(3.25)

3.2.2 The GMAC-JCIR process

The second model we point out is a generalization of the DS model, developed by
Li, Linetsky, and Mendoza-Arriaga 2016 in the context of electricity spot price
modelling and properly adapted to model credit risk.

Set up within the one-dimensional Markovian framework, the model is based
on the Cox-Ingersoll-Ross (CIR) diffusion process, interspersed with compound
Poisson’s jumps with exponentially distributed jump size and a subordinated
process as a random clock. These results allow to obtain both tractability and
interesting features in sample paths: process’ jumps are state-dependent and
contribute to the return to the long-time average level, together with the mean-
reversion drift component.
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Real-world dynamic

Let (Ω,F,P) be a probability space equipped with a filtration {Ft}t≥0 . We
define P as the real-world probability measure. Under (Ω,F,P) , we model the
instantaneous default intensity as:

λϕ(t) = λ(Tt), (3.26)

where λ(t) is a jump-CIR process (JCIR) and Tt is a random clock.
A JCIR process is the unique solution to the following SDE:

dλt = α(γ − λt)dt+ ρ
√
λtdZ

P
t + dJt (3.27)

where α, γ, ρ > 0 and λ0 = λ(0) > 0. As in DS, we impose the Feller condition
2αγ ≥ ρ2, so that zero is an unattainable boundary for λ(t); J(t) is a compound
Poisson process, independent from Z(t), with arrival rate ω > 0 and the jump
size which follows an exponential distribution with mean µ > 0.

We choose the random clock Tt as an additive subordinator, i.e. a non-negative
and non-decreasing additive process (Sato 1999). In particular, let Tt be a Gamma
process (Madan and Chang 1998), independent from (λt)t; its Lévy measure is
given by:

ν(dτ) =
m2/υ

τ
e−

m
υ
τdτ, (3.28)

where m = E[T1]− γT and υ =Var[T1] are the mean and variance rate of the
stochastic part of the Gamma process respectively, while γT ≥ 0 is the drift of T .
In the rest of this thesis, we adopt the following parametrization:

ν(dτ) =
C

τ
e−ητdτ, (3.29)

where C =
m2

υ
and η =

m

ν
.

The Laplace transform of the Gamma process is given by:

E[e−wTt ] = eψ(w)t, (3.30)

with the Laplace exponent:

ψ(w) = wγT + C ln(1 +
w

η
). (3.31)

Following Li, Linetsky, and Mendoza-Arriaga 2016, we call λϕ(t) "GMAC-
JCIR process". We now calculate the Laplace transform of the GMAC-JCIR
process λϕ(t).
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First, the Laplace transform of the JCIR process λ(t) is well known (Duffie
and Singleton 1999):

Eλ[e−zλt ] = C(z, t)A(z, t)e−B(z,t)λ, (3.32)

where:

C(z, t) = (e−αt +
(2α + zρ2)(1− e−αt)

2α(1 + zµ)
)−ωa, (3.33)

B(z, t) =
2αz

2α + (2α + zρ2)(eαt − 1)
, (3.34)

A(z, t) = (
2αeαt

2α + (2α + zρ2)(eαt − 1)
)b, (3.35)

and

a =
2µ

ρ2 − 2µα
, b =

2αγ

ρ2
. (3.36)

Therefore, the Laplace transform of λϕ(t) can be written as:

E[e−zλϕ ] =
ˆ +∞

0

Ex[e−zλu ]qs,t(du). (3.37)

Now, let gt(du) be the transition probability distribution of a Gamma subor-
dinator with zero drift, mean m and variance rate ν, then gt(du) is given by the
following Gamma distribution:

gt(du) =
ηCt

Γ(C)
uCt−1e−ηudu (3.38)

Equation (3.37) can be rewritten as:

E[e−zλϕ ] =
ˆ +∞

0

Ex[e−zλγT (t−s)+u ]gt−s(du) (3.39)

The integral (3.39) can be efficiently computed by the Gauss-Laguerre quadra-
ture. A high level of accuracy can be obtained with a small number of quadrature
points.

Availability of the Laplace transform of λϕt allows to recover the transition
probability density of the process through an efficient numerical Laplace inversion
algorithm (see Appendix: Numerical inversion of Laplace transform).
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Equivalent measure change

Li, Linetsky, and Mendoza-Arriaga 2016 show that λϕ(t) is a Markov semi-
martingale on (Ω, F, P), and derive general explicit conditions under which λϕ(t)
is Markov semi-martingale on (Ω, F, Q), where Q a probability measure equiva-
lent to P.

In general, for the tempered stable family of Lévy subordinators - which in-
cludes the Gamma process as a special case - the Lévy measure ν(dτ) is given
by:

ν(dτ) = Cτ−1−pe−ητdτ. (3.40)

Let (α̂, γ̂, ρ̂, ω̂, µ̂, Ĉ, p̂, η̂, γ̂) be the parameters which identifies the probability
distribution of λϕ(t) under Q, when the random clock belongs to the tempered
stable family of Lévy subordinator. Suppose the following conditions are satisfied:

• p̂ = p

• γ̂ρ̂2 = γρ2

• Ĉρ̂2p̂ = Cρ2p

Then Q|Ft ∼ P|Ft for every t ≥ 0 (Li, Linetsky, and Mendoza-Arriaga 2016).

Pricing formulas

Under GMAC-JCIR process, closed-form expression for the value of a ZCB - so,
for credit spread in (3.15) - is not available. Therefore, evaluation of the quantity
Q(t, t+ u) is carried out through Monte-Carlo simulation (Glasserman 2000).

In order to calibrate the model on historical data (Chapter 7), number of
Monte-Carlo simulations (equal to 1000) was selected taking into account numer-
ical accuracy - measured by a comparison between simulated values and "true"
values, setting jump and subordinator parameters almost equal to 0 (so, we had
DS model) - and overall computational time of calibration procedure.

In Li, Linetsky, and Mendoza-Arriaga 2016 is available an exact simulation
algorithm, which can be used to generate sample paths from the GMAC-JCIR
process. For a complete discussion on simulation algorithm of Lévy process, see
Cont and Tankov 2004.

Given λϕ(s) = λ, in order to simulate the random variable λϕ(t) (t > s), the
following steps must be carried out:

1. Draw a value for the subordinator Tt. We denote the realization by ι;
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2. Simulate the random variable λϕ(ι) (i.e. the value of the JCIR process at
time ι) given it starts at λ:

• Simulate N from the Poisson distribution with parameter ωι. N gives
the total number of jumps on the interval [0, ι];

• Simulate N independent random variable, U1, ..., UN , uniformly dis-
tributed on the interval [0, ι]. These variables mark the jump times;

• Simulate N independent random variable, J1, ..., JN , from the Expo-
nential distribution with mean µ. These variables correspond to the
jump sizes;

• Let Y denote the process and set UN+1 = ι. Simulate YU1 given Y0 = λ.
Then, for i = 2, ..., N + 1, simulate YUi

given the value of the process
at time Ui−1 is YUi1

+ Ji1.

3. Set λϕ(t) = YN+1.
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Appendix

Numerical inversion of Laplace transform

Numerical inversion of Laplace transform of the GMAC-JCIR process can be
performed by the Euler algorithm due to Abate and Whitt 1992. In this appendix
we give a brief description of the algorithm.

The object is to calculate values of a real-valued function f(x) from its Laplace
transform:

f̂(s) =

ˆ +∞

0

e−sxf(x)dx, (3.41)

where s is a complex number.

The method uses Euler summation and is based on Bromwich contour inver-
sion integral, which can be expressed as the integral of a real-valued function of
real variable by choosing a specific contour.

Letting the contour be any vertical line s = a such that f̂(s) has no singular-
ities on or to the right of it, we obtain:

f(x) =
1

2πi

ˆ a+∞

a−∞
esxf̂(s)ds =

1

2π

ˆ +∞

−∞
e(a+iu)xf̂(a+ iu)du

=
2eax

π

ˆ +∞

0

Re(f̂(a+ iu)) cosut du.
(3.42)

We numerically evaluate (3.42) by means of trapezoidal rule:

f(x) = fh(x) =
heax

π
Re(f̂)(a) +

2heax

π

+∞∑
k=1

Re(f̂)(a+ ihk) cos(kht). (3.43)

Letting h = π
2x

and a = A
2x

:

fh(x) =
eA/2

2x
Re(f̂)(

A

2x
) +

eA/2

x

+∞∑
k=1

(−1)kRe(f̂)(
A+ 2kπi

2x
). (3.44)

In order to numerically evaluate the latter formula, which involves an infinite
sum, we use Euler summation.

Euler summation can be described as the weighted average of the lastm partial
sums by a binomial probability distribution with parameters m and p = 1/2. In
particular, let sn(x) by the approximation fh(x) with the infinite sum truncated
to n terms, we apply the Euler summation to m terms after an initial n, so that
the approximation of (3.43) is
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E(m,n, x) =
m∑
k=0

(
m

k

)
2−msn+k(x). (3.45)

Laplace inversion in intensity-based models

For calibration purposes, in (3.44) and (3.45) we imposed A = 18.4, n = 150 and
m = 11.

The numerical accuracy of the algorithm can be seen through a numerical
inversion of the Laplace transform of the GMAC-JCIR process, obtained by set-
ting the contribution of the jump and the subordinator processes to zero (in this
way, the probability distribution function should coincide with the density of DS
process).

In figures (3.1) and (3.2), the yellow solid line shows the probability distri-
bution function and the cumulative distribution function of the GMAC-JCIR
process obtained by inverting the Laplace transform, setting the contibution of
the jump and the subordinator components to zero (so, it is the case of a numer-
ical inversion of the DS process); on the other hand, the black solid line shows
the probability distribution function and the cumulative distribution function of
the DS process, obtained through the corresponding closed-form expressions.

Red lines show the probability distribution function and the cumulative dis-
tribution function of the GMAC-JCIR process, which has the same parameters as
the DS model, with the exception of γ, which has been modified so that the two
distributions have the same expected value. The other parameters are: ω = 1;
µ = 0.0002; C = 3; η = 0.1. We can see the larger extension of the right tail of
the distribution with respect to the DS model.
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Figure 3.1: Probability distribution functions of the GMAC-JCIR process and of
the DS process, the latter obtained by inverting the Laplace transform and by
using its closed-form expression.

Figure 3.2: Cumulative distribution functions of the GMAC-JCIR process and
of the DS process, the latter obtained by inverting the Laplace transform and by
using its closed-form expression.
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Chapter 4

Particle filtering technique

State space modelling provides a unified methodology for treating a wide range
of problems in time series analysis. It is assumed that the development over
time of a dynamic system is determined by an unobserved series of quantities
with which are associated a series of observations, where the relation between
the unobserved and the observed ones is specified by the state space model. In
general, the main purpose of state space analysis is to infer the relevant properties
of unobserved quantity from the characteristics of the observations (Durbin and
Koopman 2001).

Within state space modelling, the Kalman filter is an estimator of the state
of a linear dynamic system perturbed by white noise. The estimation is based
on the measurement of observable variables that are linearly related to the state
disturbed by the white noise. As reported by Grewal and Andrews 2001, the
Kalman filter is considered one of the greatest discovery of the twentieth century
in the field of statistical estimation theory.

Among its most known application there are the control of complex dynamic
systems such as continuous manufacturing processes, aircraft, ships or spacecraft.
The Kalman filter allows to control variables that drive these dynamic systems
inferring missing information from observable measures. It is also used for predic-
tion purposes, for instance, widely applied to control flows of rivers during flood,
trajectories of asteroids or commodities prices.

Kalman 1960 discovered this useful tool combining the notion of state variables
to the Wiener filtering problem. In 1960 it was presented at the Ames research
center of NASA and one of its extension was implemented as part of the Apollo
onboard guidance system. Subsequently, it became very popular and started to
be widely used in “modern” control systems, in tracking and navigation of all sort
of vehicles and also for predictive analysis.

Several extension of the Kalman filter have been developed over years aiming
at its application in case the assumptions of linearity and Gaussian distribution
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of the disturbances are released. For instance, the Extended Kalman filter intro-
duced by McGee and Schmidt 1985 and the Unscented Kalman filter by Wan and
Merwe 2000 allows to manage non-Gaussian nonlinear problems either linearising
the observation and the state equation or applying functional approximation to
the iterative formulas of the Kalman filter.

Moreover, further developments in filtering techniques have led to the defi-
nition of the Particle filter: the term particle appeared for the first time in the
work by Kitagawa 1996. The Particle filter allows to manage highly nonlinear
and non-Gaussian problems where the Extended Kalman filter and the Unscented
Kalman filter fail to provide reasonable estimates.

From a practical point of view, as we will see below, filtering in state-space
models concerns computing a series of linked numerical integrals, where output
from one is input to the other. Particle filtering, in particular, can be regarded
as a technique for solving these integrals by discrete approximations, based on
particles. In the following we only consider the case of deterministic particle
filtering. In contrast to Monte-Carlo filtering, it could be the preferred method
when the state process has low dimension and high numerical accuracy is desired
(Bolviken and Storvik 2001).

In our framework, the dynamic system for which measurements are avail-
able is represented by the market, where the measurements represented by credit
spreads can happen in discrete time instants. From the independence between
interest rate risk and credit risk, at every time the state of the dynamic system
is determined only via the instantaneous default intensity: in this way, changes
in the dynamic system are governed by real-world probability distribution of the
instantaneous default intensity, while the risk-neutral probability distribution al-
lows to take into account the relationship between the state of the system and
the measurements, i.e. the observed credit spreads.

4.1 Exact filter

Suppose in a dynamic system we deal with a state variable which follows a Markov
stochastic process λϕ(t), observed indirectly through a discrete-time process:

(st)t := (s(t, t+ τ))t = (h(t, t+ τ)− h(t, t+ τ))t, (4.1)

for some τ > 0. We also denote the collection of the observations until T as:

st0:T := {s(t0, t0 + τ), ..., s(T, T + τ)}. (4.2)

Let:
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• p(λϕt |λ
ϕ
t−1) be the state equation, which represents the transition probability

distribution of the state variable λϕ(t) and describes the dynamic charac-
teristics of the system at time t. The state equation is governed by the
real-world probability distribution;

• p(st|λϕt ) be the observation equation, which represents the likelihood and de-
scribes the relationship between the latent variable and the observed ones at
time t. The observation equation is governed by the risk-neutral probability
distribution.

The above equations uniquely define the dynamic system as:p(λ
ϕ
t |λ

ϕ
t−1)

p(st|λϕt ).
(4.3)

The exact filter for the process λϕ(t) can be written as a set of recursive
integration equations. Starting with the prior distribution of the state variable
at time t0 = 0:

p(λϕ0 |s0) := p(λϕ0), (4.4)

we can calculate recursively the following equations for all t ≥ 1 (Bolviken
and Storvik 2001), which represent, respectively, the predictive distribution and
the posterior distribution:

p(λϕt |s1:t−1) =

ˆ
ℜ+

p(λϕt |λ
ϕ
t−1)p(λ

ϕ
t−1|s1:t−1)dλ

ϕ
t−1 (4.5)

p(λϕt |s1:t) = C−1
t p(st|λϕt )p(λ

ϕ
t |s1:t−1), (4.6)

Thus, starting from the prior distribution, we have an increase of knowledge
about the unknown parameter λ, i.e. the state variable, when an observation
is made, as the "new" information is represented by the posterior density. In
this sense, the procedure is dynamic: when a new observation is obtained, the
posterior distribution is used as the initial distribution in order to update the
information and to calculate a new posterior distribution.

This approach is very computationally advantageous because it allows esti-
mates to be updated in real time without having to retain the entire sample of
observed values.
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The normalisation constants Ct is defined as follows:

Ct =

ˆ
ℜ+

p(st|λϕt )p(λ
ϕ
t |s1:t−1)dλ

ϕ
t (4.7)

and produces the log-likelihood function of the observations (st)t through:

log(p(st0:T)) =
T∑
t=t0

log(Ct) (4.8)

4.1.1 Estimation of the state variable

Variable estimation is the problem of determining the trajectory of the unobserved
state of a dynamic system, given its observable measurements.

Let t∗ be a point in time and st0:t∗ := {st0 , ..., st∗} be the vector of measure-
ment. The estimation of the state variable at time t can be referred to:

• the prediction problem, if t > t∗;

• the filtering problem, if t = t∗;

• the smoothing problem, if t < t∗.

The prediction and filtering problems can be defined as an "on-line" problems,
upon the conditional density of the state variable given all measurements until
t∗; they are relevant in monitoring, control and optimization process.

On the other hand, the smoothing problem can be defined as an "off-line"
problem, because it is defined as the estimation of past states with a knowledge
of the history of all measurements collected at both past and future instances.
For further discussion of the this problem, which will not be considered in the
following, see Ungarala 2012.

As one might expect, prediction problem is based on predictive distribution
(4.5), while filtering problem on posterior distribution (4.6).

For state estimation purposes, we need to identify an evaluation criterion of
decision procedures. From decision-theoretic foundations in Bayesian framework
(for details, see Robert 2007), in order to estimate the state variable in prediction
and filtering problems, we choose the expected value of the above probability
distributions, which is equivalent to assume a quadratic loss function for point
estimation.

4.2 Deterministic particle filter

Computation of the integral in equations (4.5), (4.6) and (4.7) can be difficult.
When all distributions are Gaussian and the relationship between the observed
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variables and the latent one is represented by a linear function, then there are
closed-form solutions to the recursive equations (Kalman 1960, Kalman and Bucy
1961, Kalman and Bucy 1963).

In general, when the integrals must be calculated with numerical techniques or
the relationship is not linear, the recursive equations do not admit a closed-form
solution. In this case we must deal with particle filter, a methodology that allows
to calculate numerically the integrals through discrete approximations, based on
the definition of points (particles) over the integration set.

In the context of deterministic particle filter, i.e. when the points are defined
through a non-stochastic approach, evaluations of integrals can be efficiently car-
ried out by Gaussian quadrature (Quarteroni, Sacco, and Saleri 2000); the sim-
plest among these rules is the Gauss-Legendre method. In this way, quadrature
filters are constructed by replacing the densities in (4.5) and (4.6) by a particle
approximation based on the quadrature formulas.

Let (i)λ
ϕ
t be the particles (abscissas) defined over the integration set within

the Gauss-Legendre method and (i)ϵ be the correspondent positive wheigts, for
i = 1, ..., N . Let p̂ be some discrete analogue to the exact density p, then we have
the following recursive scheme:

p̂((i)λ
ϕ
0 |s0) = (i)ϵ p((i)λ

ϕ
0) (4.9)

p̂((i)λ
ϕ
t |s1:t−1) =

N∑
j=1

p((i)λ
ϕ
t |(j)λ

ϕ
t ) p̂((j)λ

ϕ
t−1|s1:t−1), (4.10)

p̂((i)λ
ϕ
t |s1:t) =

p(st|(i)λϕt ) (i)ϵ p̂((i)λ
ϕ
t |s1:t−1)

Ĉt
(4.11)

for t ≥ 1 and i = 1, ..., N , where:

Ĉt =
N∑
i=1

p(st|(i)λϕt ) (i)ϵ p̂((i)λ
ϕ
t |s1:t−1), (4.12)

Then, the approximate likelihood function is defined as:

log p̂(s1:t) =
t∑

k=1

log Ĉk (4.13)

We now point out that, with the particle filtering technique, we approximate
the probability distribution of an absolutely continuous random variable with
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the probability distribution of a discrete one, with support on the particles and
probability distribution given by ϵp.

4.2.1 An illustrative example (Doucet 1998)

Suppose we deal with the Gaussian one-dimensional dynamic system:xt = 0.5xt−1 + 25
xt−1

1 + xt−1

+ 8 cos(1.2t) + et

zt = 0.05x2t + vt,
(4.14)

where:

• et ⊥ vt, with et i.i.d. ∼ N(0, 10) and vt i.i.d. ∼ N(0, 1).

• x0 ∼ N(0, 5).

Then, the state equation and the observation equation are:p(xt|xt−1) ∼ N

(
0.5xt−1 + 25

xt−1

1 + xt−1

+ 8 cos(1.2t), 10

)
p(zt|xt) ∼ N(0.05x2t , 1)

Now, suppose we have observed a path of z(t) from t = 1, ..., T = 100 and we
don’t know the true value of parameters governing the dynamic system (4.14).
In this regard, we implement the deterministic particle filter in order to:

• calibrate the model;

• solve the filtering problem (i.e. estimate the entire path of the state vari-
able).

Model calibration

According to the above assumption, for calibration purpose suppose we deal with
the following dynamic system:

p(xt|xt−1) ∼ N

(
p1xt−1 + p2

xt−1

1 + xt−1

+ p3 cos(1.2t), 10

)
p(zt|xt) ∼ N(q1x

2
t , 1).

(4.15)

Then, we want to estimate the parameters:

ψ = (p⃗, q⃗) = (p1, p2, p3, q1)
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Where p⃗ = (p1, p2, p3) represents the real-world parameters and q⃗ = q1 the
risk-neutral parameter.

Calibration is carried out through maximum likelihood estimation:

ψ∗ = ψmv = argmaxψ∈Ψ log{p̂(z1:T )} Ψ :=
(
ℜ+
)4
, (4.16)

where log{p̂(z1:T )} is calculated by particle filtering technique with the fol-
lowing assumption:

• [−25, 35] is the integration set;

• N = 100 is the number of particles over the integration set;

• the N particles and the corresponding weights are defined by the Gauss-
Legendre method over the integration set.

The starting point of Cobyla algorithm (for details, see Chapter 5), cho-
sen as the numerical optimization procedure, is represented by the point ψ0 =

(1.13, 11.99, 6.62, 0.06). Setting a maximum number of iterations, equal to 1000,
the result of the algorithm is:

ψ∗ = (0.57, 26.38, 9.28, 0.04) (4.17)

Filtering

Once the calibration procedure has been completed, we consider the problem
involving the estimation of the state variable. Using the parameters in (4.17), as
we have seen in this section, we estimate the state variable through the expected
value of the posterior density in the context of the particle filtering equations. A
comparison between the "real" and the "estimated" path of the state variable are
displayed in Figure (4.1).

In addition, a comparison between the "real" and the "estimated" path of
the observations are displayed in Figure (4.2). The estimated ones are calculated
through the estimated state variable, as ẑt = q∗1x̂t.
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Figure 4.1: Comparison between the "real" and the "estimated" path of state
variable.

Figure 4.2: Comparison between the "real" and the "estimated" path of the
observations.
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Chapter 5

Calibration on historical data

The purpose of this chapter is to provide the tools used to analyze the estimation
process of the intensity-based models presented in the previous chapter.

Data for model estimation are presented, as well as the tools for determining
the goodness of fit of the models to these data.

In the final part of this chapter is proposed a practical application of the
calibration in the Solvency II framework for SCR calculation.

5.1 Calibration procedure

The calibration procedure of intensity-based models presented in Chapter 3 via
deterministic particle filtering technique, consists of maximization of the likeli-
hood function (4.13); as we have seen, it depends on parameters of both proba-
bility measures. Therefore, the calibration procedure can be defined as:

max
ψ∈Ψ

log(p̂(s1:t)), (5.1)

where ψ = (ψP, ψQ).
We recall usuful considerations on state equations and observation equations

of intensity-based models we have considered.
For the state equation p(λϕt |λ

ϕ
t−1) of the DS model, a closed-form expression

is available (see Chapter 3) and the real-world parameters are:

ψP
m1 = (α, γ, ρ) (5.2)

On the other hand, for GMAC-JCIR process, the state equation p(λϕt |λ
ϕ
t−1) is

derived by Laplace inversion of (3.39) through the algorithm proposed by Abate
and Whitt 1992 (see Chapter 3).

By Li, Linetsky, and Mendoza-Arriaga 2016, we also note that the parameters
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of the GMAC-JCIR model are identified up to a constant; hence, we set γT = 1

for the jump-diffusion specification to fix the scale. Then, the state equation
depends on real-world parameters, identified by:

ψP
m2 = (α, γ, ρ, ω, µ,m, ν) (5.3)

With regard the observation equations, for both models we assume for p(st|λϕt )
a Gaussian distribution:

p(st|λϕt ) ∼ N(st,Σ), (5.4)

where st is defined by (3.15) and Σ = σ2I is a diagonal matrix.

The risk-neutral parameters of the DS model are identified by:

ψQ
m1 = (α̂, γ̂, ρ̂, σ2). (5.5)

Unlike the DS model, for the GMAC-JCIR model the quantity Q in (3.15)
cannot be obtained in closed form, so the model credit spreads st can be derived
through Monte-Carlo simulation. The observation equation depends on risk-
neutral parameters, identified by:

ψQ
m2 = (α̂, γ̂, ρ̂, ω̂, µ̂, Ĉ, η̂, σ2). (5.6)

We emphasize that ψP and ψQ have to meet the conditions for which Q|Ft ∼
P|Ft .

For the maximization problem, we assume the following:

• P (λϕt ∈ [0, 0.1]) ∼= 1;

• Over the integration set [0, 0.1], we define N = 256 particles through the
Gauss-Legendre method;

• λϕ0 ∼ Unif[0; 0.1].

The calibration procedure is implemented in R. For the solution of the op-
timum is used the library "nloptr", in particular the derivative-free algorithm
Cobyla (Constrained Optimization By Linear Approximations) proposed by Pow-
ell 2007. The choice is justified by the fact that the likelihood function is very
irregular and a gradient optimization algorithms do not allow stability of the
solution. The maximum number of iterations has been set equal to 1000.
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5.2 Historical data

Data used for the calibration purpose of the two models are obtained from the
Markit provider; in particular, the iBoxx EUR indices of the corporate finan-
cial sector and rating "A" are considered, represented by the following codes
DE000A0JZA12, DE000A0JZA38, DE000A0JZA53, DE000A0JZA79.

The observation of the daily term structure of credit spreads, with maturities
equal to 2, 4, 6 and 8 years, starts on January 3, 2007 and ends on December 31,
2021, so the latter represents the valuation date. Therefore, the number of input
observations is equal to 15520.

Figure (5.1) shows the surface of the spreads observed in the market; Figure
(5.2) shows that the correlation is very high between the spreads when maturities
are near, while it decreases when credit spreads with short and long maturities
are considered.

In Table (5.1) there are means, volatilities and quantiles at 99.5% calculated
over the entire period of observation, while in Tables (5.2)-(5.5) the same calcu-
lation is presented considering sub-periods of annual amplitude.

P-values of the Ljung–Box test on the first difference of historical series (Mat-
teson and Ruppert 2015) are almost equal to zero. Therefore, at the significance
level of 0.5%, the (weak) stationarity hypothesis of the Ljung-Box test is rejected.
If stationarity was verified, the time series would be characterized by a single co-
variance matrix; otherwise, one would have to define a covariance matrix for each
time instant.

However, for simplicity we assume that the times series are governed by a
single covariance matrix. In order to investigate a possible dimensional reduction,
we apply a principal component analysis, which shows that one factor explains,
approximately, 98.3% of the total variability; on the other hand, the first two
principal components, explain the 99.7% (see Figure (5.3)).

For this reason we have proceed to model credit spreads using a one-factor
model; we should also have taken into account multifactorial models (as also
noted by Duffie and Singleton 1999).

Figures (5.4 - 5.7) show the trend of first difference of credit spreads (black
continuous line) over the observation period; it can be seen that volatility is
significantly lower in the more recent past. In the same figures on the right-hand
scale, the values of the observed credit spread are also represented (red line); the
volatility of credit spreads is higher in the periods when they are higher. This
aspect is consistent with the assumptions of the intensity-based models we have
considered.

To measure the goodness of fit to the input data, a graphical comparison
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between the market and model time series for each time to maturity will be
made, as well as an analysis of the histograms and QQ-Plots of the residuals,
defined as the difference between market values and model values. In addition,
coefficient of determination (R2) and root mean square error mean square error
(RMSE) will be evaluated:

R2 = 1− RSS

TSS
= 1−

∑N
i=1 e

2
i∑N

i=1(si −
∑N

i=1

si
N
)
, (5.7)

RMSE =

√√√√ 1

N

N∑
i=1

e2i , (5.8)

where ei = si − si.

5.3 SCR calculation

Once the calibration has been performed, an out-of sample analysis can be made
through a comparison between:

• the value of the spread risk SCR of a ZCB for each maturities, calculated
within a (partial) internal model framework as the VaR of the predictive
probability distribution of the price of the 1-year ZCB;

• the corresponding SCR curve, obtained through the Standard Formula ap-
plied to the A rating, calculating the statistics of the 1-year distribution of
the spread structure for the remaining times to maturity.

Calculation of the spread SCR of a ZCB within (partial) internal model frame-
work can be made taking into account that the spread risk component at time
t+∆t is obtained by modifying the formula (3.15). We note that:

Q(t+∆t, t+∆t+ τ) = f(λt+∆t, ψ
Q), (5.9)

so, it is a random variable depending on risk-neutral parameters.
Then, spread SCR whitin (partial) internal model framework can be defined

as:

SCRIM =
E[Q(t+∆t, t+∆t+ τ)]−Q∗(t+∆t, t+∆t+ τ)

Q(t, t+ τ)
(5.10)

where Q∗(t + ∆t, t + ∆t + τ) is the quantile at 0.5% of the distribution of
Q∗(t+∆t, t+∆t+ τ).
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Figure 5.1: Credit spreads surface trend.

Time to maturity Mean St. Dev. Quantile

2 166.8381 163.219 827.456
4 176.8903 150.7311 863.793
6 201.498 165.1883 908.1179
8 215.6286 165.8232 939.1012

Table 5.1: Means, standard deviations and quantiles of confidence interval equal
to 99.5% of historical credit spreads.
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Figure 5.2: Correlation of market credit spreads.

Year Mean St. Dev. Quantile

2007 46 27 110
2008 315 197 692
2009 560 186 859
2010 246 56 344
2011 329 129 597
2012 254 96 498
2013 104 9 122
2014 84 15 132
2015 76 10 98
2016 91 8 109
2017 82 10 100
2018 78 13 110
2019 79 11 117
2020 102 45 236
2021 61 5 83

Table 5.2: Means, standard deviations and quantiles of confidence interval equal
to 99.5% of historical credit spreads for time to maturity equal to 2 years.
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Year Mean St. Dev. Quantile

2007 77 43 176
2008 388 178 754
2009 518 212 907
2010 223 37 291
2011 264 88 435
2012 273 82 452
2013 139 13 166
2014 95 12 117
2015 93 12 117
2016 108 11 137
2017 88 12 109
2018 92 19 135
2019 101 15 149
2020 118 45 265
2021 78 6 102

Table 5.3: Means, standard deviations and quantiles of confidence interval equal
to 99.5% of historical credit spreads for time to maturity equal to 4 years.

Year Mean St. Dev. Quantile

2007 97 47 198
2008 444 208 847
2009 547 229 979
2010 275 40 367
2011 335 113 558
2012 284 88 473
2013 143 11 175
2014 108 9 129
2015 114 17 147
2016 127 19 171
2017 102 14 126
2018 112 23 160
2019 117 18 174
2020 133 47 291
2021 92 7 116

Table 5.4: Means, standard deviations and quantiles of confidence interval equal
to 99.5% of historical credit spreads for time to maturity equal to 6 years.
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Year Mean St. Dev. Quantile

2007 129 58 256
2008 488 221 941
2009 548 240 994
2010 283 39 362
2011 315 95 512
2012 302 82 469
2013 157 13 187
2014 115 10 136
2015 132 22 177
2016 150 19 196
2017 118 16 145
2018 124 21 168
2019 127 18 182
2020 145 45 300
2021 107 8 134

Table 5.5: Means, standard deviations and quantiles of confidence interval equal
to 99.5% of historical credit spreads for time to maturity equal to 8 years.

Figure 5.3: Sree plot of a principal component analysis on historical credit
spreads.
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Figure 5.4: Historical trend of credit spreads (red line) and their first difference
(black line) for time to maturity equal to 2 years.

Figure 5.5: Historical trend of credit spreads (red line) and their first difference
(black line) for time to maturity equal to 4 years.
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Figure 5.6: Historical trend of credit spreads (red line) and their first difference
(black line) for time to maturity equal to 6 years.

Figure 5.7: Historical trend of credit spreads (red line) and their first difference
(black line) for time to maturity equal to 8 years.
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Chapter 6

Calibration of DS model

6.1 Goodness of fit on historical data

The initial value, upper and lower bounds, as well as the set of parameter result
of the optimization procedure are reported in Table (6.1). The optimization
algorithm stopped at 1000 iterations and the computational time was equal to 1
hour, 37 minutes and 26 seconds.

It can be seen that the value of the γ parameter is stands at about 46 b.p.;
this value is reasonable when compared with the averages of the observed time
series (see Chapter 5), especially with shorter maturity.

Regarding goodness of fit, Figures (6.1 - 6.4) show the comparison between
model and market values, while Tables (6.2-6.3) and Figures (6.5-6.6) provide a
summary of the values of means and standard deviations of the time series of the
market and model time series: means are very close, while standard deviations
are more close when shorter maturities are considered.

The overall prediction error is measured by the Root Mean Squared Error
(RMSE), reported in Table (6.4) for all maturities: the goodness of fit of the
model is better when central maturities are considered. This is evident even from
Table (6.5), where coefficients of determination are reported: R2 is close to 99%

for central maturities, greater than others.
On the other hand, Figures (6.7-6.14) show histograms and QQ-plots of the

residual distributions for the various maturities. It can be seen that residuals are
inconsistent with the hypothesis of Gaussian distribution.

6.2 SCR calculation

From Figure (6.16), it can be seen that the calculation of SCR made within
(partial) internal model framework is almost equal than that of the Standard
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Plow Pupp Par0 ParOptim

α 0.001 5 0.2 0.2871
γ 0.001 0.08 0.003 0.0046
ρ 0.01 0.8 0.03 0.0472
α̂ 0.001 0.2 0.04 0.0088
γ̂ 0.001 0.4 0.09 0.2247
σ 0.00001 0.03 0.001 0.0023

Table 6.1: Initial values (Par0), lower constraints (Plow), upper constraints
(Pupp) and output of estimation of model parameters (ParOptim).

Figure 6.1: Historical series of model credit spreads (red line) and market credit
spreads (black line) for time to maturity equal to 2 years.

Formula.
Figure (6.15) show the probability distributions function of the 1-year credit

spreads structure for different times to maturity.
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Figure 6.2: Historical series of model credit spreads (red line) and market credit
spreads (black line) for time to maturity equal to 4 years.

Figure 6.3: Historical series of model credit spreads (red line) and market credit
spreads (black line) for time to maturity equal to 6 years.

Table 6.2: Means of historical market and model values

Maturity Means MKT (b.p) Means MDL (b.p.)
2 166.83 164.45
4 176.89 181.85
6 201.49 198.51
8 215.63 214.39
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Figure 6.4: Historical series of model credit spreads (red line) and market credit
spreads (black line) for time to maturity equal to 8 years.

Table 6.3: Standard deviations of historical market and model values

Maturity SD MKT (b.p) SD MDL (b.p.)
2 163.21 163.09
4 150.73 160.97
6 165.18 158.45
8 165.82 155.57

Table 6.4: RMSE of the residuals

Maturity RMSE (b.p)
2 30.32
4 17.64
6 17.18
8 25.13

Table 6.5: Coefficient of determination

Maturity R2

2 96.54%
4 98.62%
6 98.91%
8 97.70%
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Figure 6.5: Mean analysis of historical and model credit spreads

Figure 6.6: Standard deviation analysis of historical and model credit spreads
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Figure 6.7: Distribution of the residuals for time to maturity equal to 2: histogram

Figure 6.8: Distribution of the residuals for time to maturity equal to 4: histogram
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Figure 6.9: Distribution of the residuals for time to maturity equal to 6: histogram

Figure 6.10: Distribution of the residuals for time to maturity equal to 8: his-
togram
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Figure 6.11: Distribution of the residuals for time to maturity equal to 2: qq-plot

Figure 6.12: Distribution of the residuals for time to maturity equal to 4: qq-plot
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Figure 6.13: Distribution of the residuals for time to maturity equal to 6: qq-plot

Figure 6.14: Distribution of the residuals for time to maturity equal to 8: qq-plot
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Figure 6.15: Predictive probability distribution functions of s(t, t+u) for different
times to maturity u.

Figure 6.16: Comparison between SCR of a (partial) internal model and SCR
calculated via Standard Formula.
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Chapter 7

Calibration of GMAC-JCIR model

7.1 Goodness of fit on historical data

The initial value, upper and lower bounds, as well as the set of parameter result of
the optimization procedure are reported in Table (7.1). As in the DS model, the
optimization algorithm stopped at 1000 iterations, but the computational time
was 5 hours, 37 minutes and 42 seconds.

Goodness of fit is similar than the DS model. Figures (7.1 - 7.4) show the
comparison between model and market values, while Tables (7.2-7.3) and Figures
(7.5-7.6) provide a summary of the values of means and standard deviations of
the time series of the market and model time series. RMSE and R2 are reported
in Table (7.4) (7.5) for all maturities; as in DS model, the goodness of fit is better
when central maturities are considered.

Figures (7.7-7.14) show histograms and QQ-plots of the residual distributions
for the various maturities. Even in this model, residuals are not consistent with
Gaussian distribution.

7.2 SCR calculation

From Figure (7.16), it can be seen that the calculation of SCR made within
(partial) internal model framework is greater than that of the Standard Formula,
therefore higher than that of the DS model.

Figure (7.15) shows the probability distributions function of the 1-year credit
spreads structure for different time to maturities.
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Plow Pupp Par0 ParOptim

α 0.001 5 0.2 0.1508
γ 0.001 0.08 0.003 0.0050
ρ 0.01 0.8 0.03 0.0256
ω 0 5 1 2.1411
µ 0 0.1 0.00002 0.0002
C 0 5 3 4.5069
η 0 0.5 0.1 0.1794
α̂ 0.001 0.2 0.04 0.0777
γ̂ 0.001 0.4 0.09 0.0843
ω̂ 0 1 0.03 0.0329
µ̂ 0 0.5 0.015 0.0294
η̂ 0 30 15 15.1462
σ 0.00001 0.03 0.001 0.0023

Table 7.1: Initial values (Par0), lower constraints (Plow), upper constraints
(Pupp) and output of estimation of model parameters (ParOptim).

Table 7.2: Means of historical market and model values

Maturity Means MKT (b.p) Means MDL (b.p.)
2 166.83 165.49
4 176.89 182.29
6 201.49 198.70
8 215.63 214.48

Figure 7.1: Historical series of model credit spreads (red line) and market credit
spreads (black line) for time to maturity equal to 2 years.
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Figure 7.2: Historical series of model credit spreads (red line) and market credit
spreads (black line) for time to maturity equal to 4 years.

Figure 7.3: Historical series of model credit spreads (red line) and market credit
spreads (black line) for time to maturity equal to 6 years.

Table 7.3: Standard deviations of historical market and model values

Maturity SD MKT (b.p) SD MDL (b.p.)
2 163.21 164.56
4 150.73 160.74
6 165.18 157.16
8 165.82 153.67
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Figure 7.4: Historical series of model credit spreads (red line) and market credit
spreads (black line) for time to maturity equal to 8 years.

Table 7.4: RMSE of the residuals

Maturity RMSE (b.p)
2 30.25
4 17.54
6 17.14
8 25.47

Table 7.5: Coefficient of determination

Maturity R2

2 96.56%
4 98.66%
6 98.92%
8 97.64%
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Figure 7.5: Mean analysis of historical and model credit spreads

Figure 7.6: Standard deviation analysis of historical and model credit spreads
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Figure 7.7: Distribution of the residuals for time to maturity equal to 2: histogram

Figure 7.8: Distribution of the residuals for time to maturity equal to 4: histogram
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Figure 7.9: Distribution of the residuals for time to maturity equal to 6: histogram

Figure 7.10: Distribution of the residuals for time to maturity equal to 8: his-
togram
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Figure 7.11: Distribution of the residuals for time to maturity equal to 2: qq-plot

Figure 7.12: Distribution of the residuals for time to maturity equal to 4: qq-plot
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Figure 7.13: Distribution of the residuals for time to maturity equal to 6: qq-plot

Figure 7.14: Distribution of the residuals for time to maturity equal to 8: qq-plot
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Figure 7.15: Predictive probability distribution functions of s(t, t+u) for different
times to maturity u.

Figure 7.16: Comparison between SCR of a (partial) internal model and SCR
calculated via Standard Formula.
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Conclusions

The purpose of this thesis is to calibrate a model for measuring and managing
spread risk in a partial internal model framework, as a possible alternative to
the Standard Formula. Then, for this type of calibration particularly relevant is
the behavior of the model on the tails of the distribution of the risk driver, that
contributes to the tails of the loss distribution and then to the SCR calculation.

Results shown in the previous chapters highlighted that the use of particle
filtering is able to capture the large number of observations used for calibration
purpose and that both models had a satisfactory goodness of the estimates. As
pointed out, the GMAC-JCIR model provided the same goodness of fit to the data
as the DS model but - even if the projected data (SCR) seem to be reasonable
when compared with the Standard Formula - it allowed for more conservative
results in the description of tail events, which is relevant in the insurance context.

Regarding the tail events, GMAC-JCIR model seems to be preferred when
a comparison between observed credit spreads and Value-at-risk of predictive
probability distributions is made (Figures (7.17-7.20) and Table (7.6)).

The particle filter was found to be a valid and versatile tool for estimating
the models, and has a large number of advantages: from a computational point
of view, once the estimate is updated, the memory location that contains its
value can be overwritten; on the other hand, the link between state variables and
observations allows to take into account a wide range of models for describing
time series, both stationary and non-stationary.

However, the use of filters also involves a number of difficulties. Indeed, one
is the choice of the depth of the time series, which can substantially influence the
result of the estimation. In addition, the computational time for calibration is
much longer than with classical estimation procedure, referring to a single date.
Finally, the implementation of particle filtering requires numerical calculation
of integrals, whose stability and speed depends on the type of implementation
carried out.

Further in-depth analysis inherent in the study of the dependence of the solu-
tion on the depth of the time series and its stability with respect to the presence
of local minima will be explored further in future research.
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Figure 7.17: Comparison between observed credit spreads and 99.5% quantile of
the day-ahed predictive distribution for time to maturity equal to 2 years

Table 7.6: Number and incidence of violations at confidence level equal to 99.5%

tau DS (#) GMAC-JCIR (#) DS (%) GMAC-JCIR (%)
2 682 65 17.58% 1.68%
4 91 27 2.35% 0.70%
6 503 30 12.97% 0.77%
8 556 174 14.33% 4.49%
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Figure 7.18: Comparison between observed credit spreads and 99.5% quantile of
the day-ahed predictive distribution for time to maturity equal to 4 years

Figure 7.19: Comparison between observed credit spreads and 99.5% quantile of
the day-ahed predictive distribution for time to maturity equal to 6 years
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Figure 7.20: Comparison between observed credit spreads and 99.5% quantile of
the day-ahed predictive distribution for time to maturity equal to 8 years
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