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Rationale: The occurrence of N-heterocyclic carbenes in imidazolium-based ionic

liquids has long been discussed, but no spectroscopic evidence has been reported yet

due to their transient nature. The insertion of an ionizable acid group into the cation

scaffold of an ionic liquid which acts as a charge tag allows for the direct detection of

free carbenes by mass spectrometry.

Methods: Three different Brønsted acidic ionic liquids were synthesized:

1-methyl-3-carboxymethylimidazolium chloride (MAICl), 1-methyl-

3-carboxymethylimidazolium acetate (MAIAc) and the corresponding 2-(3-methyl-

1H-imidazol-3-ium-1-yl)acetate zwitterion (MAI � H). The speciation of these

compounds was then analysed by electrospray ionization ion-trap mass spectrometry

in the negative ion mode.

Results: The C2-H deprotonation of the imidazolium cation leading to the formation

of the corresponding carbene is highly affected by the basic properties of the

counter-anion. In the case of MAICl and MAI � H ionic liquids, no charged species

corresponding to the free N-heterocyclic carbene was detected. On the contrary, in

the presence of a sufficiently basic anion, such as acetate of MAIAc ionic liquid, an

intense signal related to the free carbenic species was observed without the addition

of an external base.

Conclusions: In situ formation of free N-heterocyclic carbenes from Brønsted acidic

ionic liquids was demonstrated, highlighting the crucial role of anion basicity in

promoting the C2-H proton abstraction from imidazolium cations with a carboxylic

side chain.

1 | INTRODUCTION

In recent years, task-specific Brønsted acidic ionic liquids (BAILs) have

become increasingly popular and widely used in industrial processes

since, as non-volatile materials, they are considered less harmful and

corrosive than traditional liquid acids.1,2 The presence of carboxylic

acid groups in the cation scaffold of BAILs represents indeed an

important opportunity for the discovery of novel applications and

new materials.3–5

Although BAILs are not liquid at room temperature and therefore

cannot be used as reaction media,6 they are still of great importance

in organocatalysis.7 Similarly to classic imidazolium-based ionic liquids
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(ILs),8,9 imidazolium BAILs can be a source of N-heterocyclic carbenes

(NHCs) generated from acidic imidazolium cations by a

C2-deprotonation reaction. Once formed, these species can act as

basic or nucleophilic catalysts enabling innovative strategies to

improve the effectiveness of chemical syntheses.10

Interestingly, in the presence of a sufficiently basic anion

(e.g. acetate), the IL cation is supposed to form in situ catalytic

amounts of NHC,11 as also demonstrated by the excellent yields of

products in NHC-catalysed reactions without the addition of an

external deprotonating agent (e.g. strong bases).12,13 Accordingly,

the occurrence of endogenous free NHCs in room temperature ILs

has long been experimentally and theoretically discussed.14 Also, an

electrochemical study probed the crucial effect of the

temperature in shifting the cation–NHC equilibrium towards the

generation of free carbene.15,16 However, to date, no spectroscopic

evidence for the direct formation of NHCs in neat ILs has been

reported.

Other than the above-described chemical advantages of BAILs,

the acidic carboxylic group inserted on the N-side chains of the

cation can act as a ‘charge tag’ for the direct detection of NHCs in

ILs by mass spectrometry (MS), otherwise blind to intrinsically

neutral species.17–19 In this context, the coupling of MS with soft

ionization techniques, such as electrospray ionization (ESI), allows

one to intercept elusive intermediates, and gently transfer them

from solution to the gas-phase environment for structural and

reactivity investigations.20–22 Therefore, the chemistry of NHCs has

been assessed in the gas phase,23–27 also in the view of knowing

their detailed reaction mechanism to gain desirable benefits for

solution chemistry. Free NHCs can be obtained in the gas phase, as

well as in solution, by adding strong bases28,29 or eventually forcing

a hydrogen transfer reaction by collisionally dissociating the ion

pair of the parent IL.30 Indirect evidence of the presence of NHCs

in ILs was adduced by the addition of an aldehydic substrate to

form the corresponding Breslow intermediate,13 by trapping

transient NHCs in stable metal complexes,31,32 or by stabilizing this

species through a hydrogen bond between the electron pair of the

carbene and the C2-H hydrogen of a surrounding imidazolium

cation.33 In the latter case, diazolium ILs were successfully

employed in the gas phase as a source of incipient NHCs since the

flexibility of the chemical linker connecting the two heterocyclic

heads (one carbenic and the other cationic) allows the folding of

the molecular structure and the formation of an intramolecular

hydrogen bond.34,35

We now report the straightforward detection of free

NHCs in neat BAILs by mass spectrometric techniques. To this

end, we have synthesized the following BAILs: 1-methyl-

3-carboxymethylimidazolium chloride (MAICl), 1-methyl-

3-carboxymethylimidazolium acetate (MAIAc) and the corresponding

2-(3-methyl-1H-imidazol-3-ium-1-yl)acetate zwitterion (MAI � H)

(Scheme 1). Once interrogated by ESI-MS in the negative ion mode,

these compounds show a speciation that provides clear experimental

evidence for the formation of NHCs, strongly influenced by the

basicity of the anion.

2 | MATERIALS AND METHODS

2.1 | Chemicals and reagents

Starting compounds were commercially available (Sigma-Aldrich) and

used as received. All solvents (HPLC-grade water, HPLC-grade

acetonitrile) were purchased from Carlo Erba Reagents S.r.l. and used

without further purification.

2.2 | Syntheses of ILs

2.2.1 | Procedure for synthesis of MAICl

MAICl was synthesized according to a literature procedure.6 MAICl:

Yield 80%. White solid, m.p. 210�C. 1H NMR (400 MHz, CD3OD): δ

(ppm) = 8.96 (s, 1 H), 7.61 (s, 1 H), 7.59 (s, 1 H), 4.97 (s, 2 H) 3.98 (s,

3 H). 13C NMR (101 MHz, CD3OD): δ (ppm) = 168.9, 137.7, 123.6,

122.9, 50.6, 35.1.

2.3 | Procedure for synthesis of MAI � H

In a typical procedure, a mixture of MAICl (0.5 mmol) and

triethylamine (0.55 mmol) in dichloromethane (1 mL) was stirred at

room temperature for 24 h under nitrogen atmosphere. The solid was

filtered and washed with the same solvent used for the synthesis

(3 � 1 mL) to give the product.6

MAI � H: Yield 90%. White solid, m.p. 271�C (decomp). 1H NMR

(400 MHz, D2O): δ (ppm) = 8.88 (s, 1 H), 7.55 (s, 1 H), 7.53 (s, 1 H),

4.87 (s, 2 H), 3.95 (s, 3 H). 13C NMR (101 MHz, D2O): δ (ppm)

= 172.3, 136.8, 123.3, 123.1, 51.8, 35.6.

SCHEME 1 BAILs synthesized in this work and their molecular
mass (Da). In the inset, the structure of the carbene obtained by C2-H
deprotonation and its m/z value are reported [Color figure can be
viewed at wileyonlinelibrary.com]

2 of 8 SALVITTI ET AL.

 10970231, 2022, 17, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/rcm

.9338 by U
niversity D

i R
om

a L
a Sapienza, W

iley O
nline L

ibrary on [15/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


2.4 | Procedure for synthesis of MAIAc

An ionic exchange chromatography column was used to obtain

hydroxide ion form of salts. A short glass column for chromatography

of 0.18 m in length and 0.01 m in diameter was loaded with resin

Amberlite® IRA-400 chloride (strongly basic gel-type resin, quaternary

ammonium functionality) from Sigma-Aldrich. This column was

packed using deionized distilled water and washed until free of

chloride (checked with AgNO3). The column was then slowly treated

with 20 mL of 1 M NaOH basic solution. The column was washed

with deionized distilled water (3 � 20 mL) until the eluent showed

neutral pH. A solution of MAICl (1 mmol) in 2 mL of water was then

introduced in the column containing the hydroxide exchange resin

and then the resin was washed with water until 50 mL of solution was

collected. The solvent was evaporated under reduced pressure and

the resulting white solid was kept overnight under high vacuum. The

white solid salt thus obtained was subjected to ion exchange with

acetic acid (1.0 equiv.) in a stirring solution of anhydrous methanol

(2 mL) for 6 h at room temperature. After completion, methanol was

removed under reduced pressure to afford colourless crystalline solid.

MAIAc: Yield 80%. Colourless crystalline solid, m.p. 199–207. 1H

NMR (400 MHz, CD3OD): δ (ppm) = 8.88 (s, 1 H), 7.56 (s, 1 H), 7.53

(s, 1 H), 4.77 (s, 2 H), 3.96 (s, 3 H), 2.01 (s, 3 H). 13C NMR (101 MHz,

CD3OD): δ (ppm) = 174.2, 169.9, 137.5, 123.5, 122.6, 51.9, 34.9,

19.7.

2.5 | Procedure for synthesis of ethyl (E)-2-cyano-
3-(4-methoxyphenyl)acrylateE

A mixture of p-anisaldehyde (0.5 mmol), ethyl cyanoacetate

(0.5 mmol) and a 10% amount of MAI � H was stirred at room

temperature in a 1.5 mL tube for 24 h under solvent-free conditions.

Upon completion of the reaction (monitored using thin-layer

chromatography), the reaction mixture solidified in the vial. Then the

solidified mixture was washed with cold water (5 mL) to remove the

catalyst and evaporated under reduced pressure to obtain the

product.

Ethyl (E)-2-cyano-3-(4-methoxyphenyl)acrylate36: Yield 60%.

Yellow crystalline solid, m.p. 79–81�C. 1H NMR (200 MHz, CDCl3): δ

(ppm) = 8.16 (s, 1 H), 7.99 (d, J = 9.0 Hz, 2 H), 6.98 (d, J = 8.8 Hz,

2 H), 4.36 (q, J = 7.0 Hz, 2 H), 3.89 (s, 3 H), 1.38 (t, J = 7.0 Hz, 3 H).
13C NMR (50.3 MHz, CDCl3): δ (ppm) = 163.7, 162.9, 154.2, 133.5,

124.2, 116.1, 114.7, 99.2, 62.3, 55.6, 14.1.

All the products except MAIAc are known compounds and were

identified by comparison of their spectroscopic data with those

reported. The new compound was properly characterized by its

spectroscopic data: 1H NMR and 13C NMR spectra (Figures S1–S4,

supporting information).

NMR spectra were recorded at ambient temperature with a

Bruker Avance spectrometer (400 MHz) or a Spinsolve

60 spectrometer operating at 60 MHz, using the solvent as internal

standard. The chemical shifts (δ) are given in ppm relative to

tetramethylsilane. An SMP2 (Stuart Science) apparatus was employed

to measure the melting points of the synthesized compounds.

2.6 | MS experiments

MS experiments were performed using an AmaZon SL ion trap

(Bruker Daltonics, Bremen, Germany) equipped with ESI and

atmospheric pressure chemical ionization (APCI) sources operating in

the positive or negative ion mode. Typical experimental conditions

were as follows: capillary, ±4 kV; endplate offset, ±400 V; nebulizer

(N2), 5.0 psi; dry gas (N2), 2.5 L min�1; dry temperature, 200�C.

Other instrumental parameters, such as RF level, trap drive and

the discharge current for the APCI process, were in turn optimized to

ensure maximum ion transmission in the m/z range of interest. The

acidic ILs MAICl, MAI � H and MAIAc were dissolved in a mixture of

H2O and CH3CN (1:5, V/V) at millimolar concentration and infused

into the ESI or APCI source by the onboard syringe pump at a flow

rate ranging between 5 and 20 μL min�1 depending on the source

mounted on the instrument. Full-scan mass spectra were acquired in

the 50–800 m/z range as an average of 50 scans using Compass

DataAnalysis software supplied with the instrument.

Low-energy collision-induced dissociation (CID) was performed

by applying an excitation AC voltage to the end caps of the trap to

induce multiple low-energy collisions of the trapped ions with helium

buffer gas. The resonance excitation voltage was applied for 30 ms at

an amplitude (indicated in the caption of selected CID spectra) that

allowed a reduction of the parent ion intensity to 30–50%, a

fragmentation delay of 10 ms and a standard cut-off of 27%. The

ionic species of interest were isolated with a width of 1 m/z or greater

to stabilize large-size cluster ions. The same parameters were set for

any further step of isolation and fragmentation (MSn) inserted into the

scan sequence to assess the complete dissociation pattern of the ionic

species under investigation.

3 | RESULTS AND DISCUSSSION

The gas-phase behaviour of the task-specific MAICl IL has been

investigated in the positive ion mode using ESI-MS techniques by

Mota et al,37 revealing aggregation phenomena characteristic of saline

compounds38,39 and analogous imidazolium-based ILs.30 Similar ESI-

(+) mass spectra were also obtained in our case and reported in

Figure S5 (supporting information) since not being indicative of the

presence of NHCs in the neat ILs under study.

On the contrary, it is of greatest interest to investigate the

speciation of these salts in negative polarity, although commonly less

explored than the positive one.40–42

Accordingly, the ESI-(�) mass spectrum of MAICl in the 50–

800 m/z range is characterized by ionic aggregates of the general

formula A�[MAI � H]n with n = 1–4, showing chloride ion as a

clustering anion A (Figure 1A). Ionic species of the type

MAICl2
�[MAI � H]n (n = 0–2) result in a minor series of 36 Da right-

SALVITTI ET AL. 3 of 8
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shifted with respect to the corresponding Cl�[MAI � H]n + 1 ionic

peaks. Mass-to-charge attribution was verified by the characteristic
35Cl/37Cl isotope pattern and CID experiments, describing these

species as a series of [MAI � H] zwitterions coordinated to a Cl� core

(Figure S6, supporting information). It is worth noting that no ion at

m/z 139, corresponding to the negatively charged NHC [MAI � 2H]�,

was detected in the MAICl mass spectrum. The chloride anion, in fact,

is not able to deprotonate the C2 carbon of the MAI � H zwitterion

neither in solution nor in the gas phase, as also demonstrated by the

CID mass spectrum of the ionic species at m/z 175 corresponding to a

charged cluster between the neutral MAI � H zwitterion and the

chloride anion, Cl�[MAI � H], displayed in Figure 1B. The cleavage of

the imidazolium side chains, exemplified by the alternative loss of a

CO2 (44 Da, fragment ion at m/z 131) or a CH3
35Cl (50 Da, fragment

ion at m/z 125) portion, prevails over the release of the H35Cl (36 Da)

neutral counterpart since no [MAI � 2H]� ion at m/z 139 was

observed, even providing high collision energies. The same

fragmentation channels were also probed for the 37Cl-isotopologue,

thus confirming the attribution of both product ions and the actual

lack of the diagnostic ion at m/z 139 (Figure S7, supporting

information).

Since the pKa value for the deprotonation of C2-H is in the

21–23 range,43 the only way to obtain a significant amount of

carbene from MAICl is by adding a strong base to the IL solution,29,44

such as potassium tert-butoxide (KOtBu; pKa = 17)45 or

1,8-diazabicyclo[5.4.0]undecane (DBU; pKa = 13.5).46 The latter is

also considered a ‘super base’ in the gas phase, since its proton

affinity (PA) exceeds 239 kcal mol�1 (DBU, PA = 250.45 kcal mol�1),

thus allowing the measurement of important gas-phase

thermochemical properties of NHCs.47

Interestingly, passing to the ESI-(�) mass spectrometric analysis

of MAIAc IL under soft ionization conditions (Figure 2A), an intense

ion at m/z 139, [MAI � 2H]�, attributable to the free negatively

charged carbene, was detected. To the best of our knowledge, this is

the first time that a free carbene has been observed from a BAIL, such

as MAIAc. The carbenic species [MAI � 2H]� can reasonably originate

from C2-H deprotonation of the MAI � H zwitterion performed in

solution by the acetate anion (pKa AcOH = 4.76).48,49

Moreover, the fragmentation pattern of the ion at m/z 139 is

consistent with that of [MAI � 2H]� obtained by the DBU-

deprotonation of MAI cation in MAICl (Figure S8, supporting

information).

The MAIAc spectrum of Figure 2A also shows two series of ionic

aggregates of the general formula A�[MAI � H]n (A� = [MAI � 2H]�

with n = 1–3; A� = AcO� with n = 1–4), in which the MAI � H

zwitterion is clustered by either AcO� or [MAI � 2H]�. A close

inspection of the CID mass spectrum of the AcO�[MAI � H] cluster

ion at m/z 199 (Figure 2B) shows only a fragmentation channel

consisting of the easy release of an AcOH (60 Da) portion giving rise

to the negatively charged NHC [MAI � 2H]� at m/z 139. Fragment

ions originating from the breakage of the imidazole scaffold were

indeed not observed, contrary to the corresponding ionic aggregate

Cl�[MAI � H] at m/z 175 (Figure 1B). Therefore, the ionic species at

m/z 199 can be described as an acetic acid–carbene aggregate of the

AcOH�[MAI � 2H]� type. Likewise, the CID spectra from larger

clusters (m/z 339 and 479) show preferential loss of acetic acid over

F IGURE 1 (A) ESI-(�) mass spectrum of the
MAICl IL and (B) ESI-(�) CID mass spectrum of
the ion at m/z 175, corresponding to
35Cl�[MAI � H]. Fragmentation amplitude 0.27 V
[Color figure can be viewed at wileyonlinelibrary.
com]
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that of zwitterion (Figure S9, supporting information). The ‘naked’
[MAI � 2H]� ion in the ESI-(�) full-scan mass spectrum of MAIAc IL

could in principle result from an in-source fragmentation process of

the AcOH�[MAI � 2H]� precursor species, also considering the low

excitation voltage necessary to dissociate the cluster ion at m/z

199 (see Figure 2B). The source voltages may indeed act on AcOH�
[MAI � 2H]� ionic aggregate by further shifting the acid–base

equilibrium towards the formation of [MAI � 2H]�. Nevertheless, in

the ESI-(�) mass spectrum of MAIAc, the intense ionic distribution of

([MAI � 2H]�[MAI � H]n)
� (n = 0–3) cluster ions accounts for the

formation of free carbene in solution and its solvation by n units of

MAI � H zwitterions. Considering the first cluster of the series, the

([MAI � 2H]�[MAI � H])� ion at m/z 279, it is undoubtedly composed

of a [MAI � 2H]� carbene and a zwitterionic unit, as demonstrated by

its CID mass spectrum reported in Figure 2C (see also Figure S9,

supporting information).

A further question is whether the deprotonated carboxylic lateral

chain of the MAI � H zwitterion can generate the corresponding

carbene. However, the pKa value for the acidic lateral chain of the

MAI cation of 1.90, about 2.5 times lower than that of free acetate,6

would exclude this possibility, in agreement with the experimental

results. Predictably, the mass spectrum of the MAI � H solution in the

F IGURE 2 (A) ESI-(�) mass spectrum of the MAIAc IL, (B) ESI-(�) CID mass spectrum of the ion at m/z 199, fragmentation amplitude 0.12 V,
and (C) ESI-(�) CID mass spectrum of the ion at m/z 279, fragmentation amplitude 0.35 V [Color figure can be viewed at wileyonlinelibrary.com]
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negative ion mode did not show any ionic signal owing to the neutral

nature of MAI � H species, not even the ion at m/z 139, thus

excluding the occurrence of a proton transfer reaction between two

zwitterion moieties.

Finally, to obtain more information about the chemical properties

of neutral MAI � H zwitterion, we used this compound as a catalyst

in the Knoevenagel condensation. In this regard, we have recently

highlighted two different mechanisms for this reaction depending on

the chemical features of the IL.50 In the presence of chloride-based

ILs, such as MAICl, the condensation proceeds through a classic base-

catalysed pathway characterized by the formation of an aldolic

intermediate between the aldehyde and the activated methylene

substrate. On the contrary, in the presence of acetate-based ILs, such

as 1-butyl-3-methylimidazolium acetate, the incipient carbene drives

the reaction to the final product by adding the aldehydic carbonyl and

giving rise to the Breslow intermediate.

In this case, by reacting p-anisaldehyde, ethyl cyanoacetate and

10% mol of MAI � H zwitterion catalyst under the same experimental

conditions previously used,36 we only detected the negatively

charged aldolic intermediate characteristic of the classic base-

catalysed mechanism (Figure S10, supporting information). No

Breslow intermediate between the [MAI � 2H]� carbene and the

aromatic aldehyde was intercepted, thus excluding even the possible

shift of the equilibrium towards the NHC in the presence of p-

anisaldehyde. The evolution of the aldolic intermediate into the

corresponding ethyl (E)-2-cyano-3-(4-methoxyphenyl)acrylate was

verified by its isolation in 60% yield and characterization by 1H NMR,
13C NMR and MS (Figures S4 and S11, supporting information). Other

synthetic applications with the MAIAc catalyst synthesised in the

work reported in this paper are currently underway.

4 | CONCLUSIONS

We have reported herein the direct evidence of a free NHC in a BAIL.

Considering the deep-rooted use of NHCs in synthetic chemistry and

catalysis, the question related to the presence of these reactive

species in the reaction medium is still of utmost importance.

This experimental study demonstrates the possibility of using

acetate anions to furnish proper amounts of stable NHCs from BAILs,

possibly also with different acetate-based ILs opportunely designed

for task-specific applications. The ESI-(�) mass spectrometric analysis

of MAIAc IL allowed us to detect the presence of free NHC, pointing

out that its generation in MAIX is strongly affected by the basicity of

the anion (X = AcO or Cl). This result paves the way for the use of the

novel MAIAc and other customized BAILs as catalysts in carbene-

mediated reactions, avoiding the use of other bases with important

benefits for organic synthesis, and highlights the usefulness of MS

studies in the detection of highly reactive species.
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