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Inspired by the equations of motion of the gyroscope, where a Lagrangian and
conservative system may appear to mimic a dissipative one when focusing on a
single degree of freedom for finite time intervals, we introduce a gyroscopic-type
coupling between harmonic oscillators. The aim is to propose a tentative scheme
of solution for the problem of finding a higher-dimensional Lagrangian system
approximating a lower-dimensional dissipative one. Specifically, we consider a
certain family of Lagrangian systems, for which the time evolution of the first
Lagrangian parameter is conjectured to be a good approximation for the evolution
of a one-dimensional linear dissipative system in finite time intervals, up to a
fixed precision. The behavior of the selected family of gyroscopic couplings
is compared with a given dissipative system, properly optimizing a family of
parameters according to a described scheme. Numerical calculations are reported,
suggesting the validity of the proposed conjecture.

1. Introduction

A classical problem in mathematical physics is the prediction of the motion of
gyroscopes when gravitational loads are applied. In [Arnold 1989] these motions
are qualitatively studied by exploiting their Lagrangian structure. In fact, when
explicitly formulating the equation of motion of gyroscopes with fixed point and
under the gravitational load as done, at first, by Euler, one observes immediately
that, in the second order evolution equation, for each Euler angle the first-order
time derivatives of the other Euler angles appear; see, for example, [Marsden and
Scheurle 1993; Eckardt 2018].

The specific case of the gyroscope’s motion gives an interesting example of evolu-
tionary equations which turn out to be the Euler–Lagrange stationarity condition for
an action functional. It is interesting to notice that, when considering the equation
for a single Euler angle, an apparent “energy subtraction or injection” from one
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degree of freedom towards the other degrees of freedom emerges. Indeed, the time
derivatives of the other degrees of freedom cause an acceleration (or deceleration)
of any degree of freedom.

Gyroscopic couplings do not appear only in the equations for the spinning top;
in fact, these are pervasive in many Lagrangian systems in which an exchange of
energy occurs among different degrees of freedom. We mention here, for instance,
some related studies about phenomena occurring in piezomechanical structures;
see [Alessandroni et al. 2004; Andreaus and dell’Isola 2004; Darleux et al. 2022;
Giorgio et al. 2009; Maurini et al. 2004; Olive and Auffray 2021; Rosi et al. 2010;
Shen et al. 2010].

Note that the idea of accounting for a coupling between micro and macro phe-
nomena by means of gyroscopic effect was already conceived in [Berezovski et al.
2020]. While it is well known that a variational approach is possible for describing
dissipative phenomena by using the Hamilton–Rayleigh dissipation potential (see,
for instance, [Abali et al. 2016; Capobianco et al. 2021; Baroudi et al. 2019]), we
believe that the purely conservative Lagrangian approach chosen in [Berezovski
et al. 2020] may often be preferable for its computational advantages.

Focusing on a single equation of the Euler–Lagrange system for the gyroscopic
motion, in properly chosen finite time intervals, implies only apparently the ap-
pearance of dissipation phenomena. Of course, in longer time intervals and due
to the Hamiltonian nature of the system (see the Poincaré recurrence theorem, for
instance, in [Arnold 1989]), the subtracted energy will be given back to each degree
of freedom. However, the so-called Poincaré recurrence time may be so long that
Hamiltonian systems can be suitable for describing dissipation at appropriate time
scales.

These considerations suggest an approach toward the goal of constructing an
enlarged Lagrangian system whose first Lagrange coordinate, in its evolution, is
intended to approximate the motion of a given dissipative system with one degree
of freedom. We will call the original dissipative system the master system, and the
added one the slave system. Of course the two systems must be suitably coupled,
and the slave system should be conservative. In the specific example examined
in this paper, (i) the master system is a harmonic oscillator; (ii) the slave system
harmonic oscillators; and (iii) the coupling between master and slave systems is
gyroscopic in nature. Both the gyroscopic-like couplings and the stiffnesses of the
slave system must be optimized to reproduce, as closely as possible, the evolution
of the master system when dissipation is considered.

We hope that this case study can serve as a springboard for the study of a more
general problem: Given a dissipative master system (i.e., a set of non-Hamiltonian
evolution equations), is it possible to find a higher-dimensional Lagrangian system,
consisting of a nondissipative slave system and a slave/master coupling, such that



APPROXIMATION BY GYROSCOPICALLY COUPLED OSCILLATOR CHAINS 267

some part of its dynamics shadows the evolution of the master system within a
prescribed error over a time interval of interest? Despite the specificity of the
gyroscopic-like coupling selected in solving the example problem considered here,
the encouraging numerical calculations that are reported seem to indicate that the
general case deserves further attention.

To be more precise, we start by considering a nonconservative one-dimensional
autonomous system in normal form with prescribed initial conditions

ẍ = f (x, ẋ),

x(t0) = x0,

ẋ(t0) = ẋ0.

(1)

It is well known that precise conditions need to hold for a second order dynamical
system to be Lagrangian, the so-called Helmholtz conditions, which in the case
of autonomous normal systems can be formulated as follows (see [Bersani and
Caressa 2021] for a complete discussion in the general case):

Theorem 1.1. Given a set of differential equations

ẍk = fk(x, ẋ), k = 1, 2, . . . , N ,

necessary and sufficient condition for the existence of a Lagrangian function L =

L(t, x, ẋ) such that

ẍk − fk =
d
dt

∂L
∂ ẋk

−
∂L
∂xk

, k = 1, 2, . . . , N ,

are

(I) ∂ fk/∂ ẋh + ∂ fh/∂ ẋk = 0,

(II) ∂ fh/∂ ẋk − ∂ fk/∂ ẋh =
1
2

∑n
l=1 ẋl∂/∂xl(∂ fh/∂xk − ∂ fk/∂xh),

for each h, k = 1, . . . , N.

In the particular case of one degree of freedom, condition (II) identically vanishes,
while condition (I) reduces to

∂ f
∂ ẋ

= 0,

so we recover the well known fact that an autonomous system with one degree of
freedom is Lagrangian if its potential does not depend on the velocity.

These conditions are generally violated by dissipative systems, in which terms
depending on the velocities appear. However, two related questions arise in connec-
tion with such a system: whether a different system having the same trajectories
and a Lagrangian formulation exists, and whether one can somehow approximate
the dissipative system by a conservative one, which is by definition Lagrangian.
We refer to [Bersani and Caressa 2021] for the first problem; for the second, some
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progress has been made using classical elastic chains in [Bersani et al. 2022].1

Here, by contrast, we approach the second question using gyroscopic approximating
systems.

In principle, we could deal with Cauchy problems (1) for general second-order
equations in normal form. However, it is well known that if f (x, ẋ) satisfies
suitable hypotheses for (x, ẋ) ∈ R2 (for example continuity and sublinearity), the
problem (1) has a global solution. Here, as in [Bersani et al. 2022], we will focus
on linear equations, for which an existence and uniqueness theorem in global form
is guaranteed. In the future we hope to extend our research to nonlinear systems,
where only local existence can, in general, be guaranteed, and problems concerning
the extendability of the solutions could arise.

To be specific, we ask: given ε > 0 and a compact time interval [t0, t1], is it
possible to find a skew-symmetric matrix A and a symmetric matrix S such that
the first component q1(t) of the solution vector q(t) of the Lagrangian system

q̈ + A · q̇ + S · q = 0,

q(t0) = q0,

q̇(t0) = q̇0,

(2)

satisfies
∥q1 − x∥∞ := sup

[t0,t1]
|q1(t) − x(t)| < ε, (3)

where x(t) is the solution of system (1)?
In Section 2, we describe in detail the gyroscopic system we are studying and

write it in a Hamiltonian form suitable for our computations. In Section 3, we
illustrate the results of our numerical simulations aimed at optimizing the coefficients
of A and S to force inequality (3) to hold. In particular, we focus on two special
forms for the matrices involved which make computations more feasible. Finally, in
Section 4, we draw some conclusions from our work. Details about the numerical
scheme are reported in the supplemental material (see Appendix).

2. A gyroscopic system

Let us fix a dimension N and consider two matrices G, K ∈ MN (R), such that

(1) G is skew-symmetric (hence G2 is a symmetric negative semidefinite matrix);

(2) K is symmetric and definite positive.

1It seems that the more general problem of a master system having k degrees of freedom elastically
coupled with a slave one having N ≫ k degrees of freedom could also be treated in a similar way.
The metamaterial designs developed in [Turco et al. 2022; Turco 2021a; 2021b] are based on this
principle.
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Next define the Lagrangian function

L(q, q̇) =
1
2∥q̇∥

2
− ⟨G · q̇, q⟩ −

1
4⟨G2

· q, q⟩ −
1
2⟨K · q, q⟩,

where ⟨u, v⟩ = uT
· v denotes the Euclidean scalar product and ∥u∥ =

√
⟨u, u⟩ the

Euclidean norm in RN .
The Euler–Lagrange equations induced by this Lagrangian are straightforward

to compute in vector notation:

d
dt

∂L
∂ q̇

−
∂L
∂q

= q̈ + 2G · q̇ +
1
2 G2

· q + K · q = 0.

Hence the equations of motion of the Lagrangian system described by L are

q̈ + 2G · q̇ +
( 1

2 G2
+ K

)
· q = 0; (4)

hence they are in the form of the gyroscopic system (2), since 1
2 G2

+ K is still a
symmetric matrix.

Moving to the canonical formalism and writing the corresponding Hamiltonian
function for the system (4) is straightforward too: let us define

p =
∂L
∂ q̇

= q̇ + G · q =⇒ q̇ = p − G · q.

Therefore (since GT
= −G we have GT G = −G2)

H(q, p) = ⟨ p, q̇⟩ − L(q, q̇) = ⟨ p, p − G · q⟩ −
1
2⟨ p − G · q, p − G · q⟩

+ ⟨G · ( p − G · q), q⟩ +
1
4⟨G2

· q, q⟩ +
1
2⟨K · q, q⟩

=
1
2⟨ p, p⟩ − ⟨ p, G · q⟩ + ⟨G · q, p⟩ −

1
2⟨G · q, G · q⟩

+ ⟨G · p, q⟩ − ⟨G2
· q, q⟩ +

1
4⟨G2

· q, q⟩ +
1
2⟨K · q, q⟩

=
1
2∥ p∥

2
+ ⟨G · p, q⟩ −

1
4⟨G2

· q, q⟩ +
1
2⟨K · q, q⟩.

Thus, the Hamilton equations associated with H are readily written as

q̇ =
∂ H
∂ p = p − G · q, ṗ = −

∂ H
∂q = −G · p +

1
2 G2

· q − K · q.

The second equality is just the Euler–Lagrange equations (4) written in terms of
canonical coordinates, since

0 = ṗ − (−G · p +
1
2 G2

· q − K · q)

= (q̇ + G · q)· + G(q̇ + G · q) −
1
2 G2

· q + K · q = q̈ + 2G · q̇ + ( 1
2 G2

+ K ) · q.

We can express Hamilton equations as a block-matrix linear system as(
q̇
ṗ

)
=

(
−G I

1
2 G2

− K −G

) (
q
p

)
.
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We will use this canonical reduction to a first order system for our original gyroscopic
system to perform some numerical computations.

3. Numerical computations

The Hamiltonian system we have written depends on 1
2 n(n + 1)+

1
2 n(n − 1) = n2

parameters, namely the entries of the matrices G and K .
To lower the complexity of the problem we will make the assumption that G

is tridiagonal and that K is diagonal. The latter assumption is not severe, since a
change of coordinates can diagonalize K . We will write G = tridiag(g1, . . . , gn−1)

and K = diag(k1, . . . , kn), where

tridiag(g1, . . . , gn−1) :=



0 g1 0 · · · 0 0
–g1 0 g2 · · · 0 0

0 –g2 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 gn−1

0 0 0 · · · –gn−1 0


.

The square of G is the symmetric matrix

G2
=



−g2
1 0 g1g2 0 · · · 0 0

0 −g2
1−g2

2 0 g2g3 · · · 0 0
g1g2 0 −g2

2−g2
3 0 · · · 0 0

0 g2g3 0 −g2
3−g2

4 · · · 0 0
0 0 g3g4 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · gn−3gn−2 0
0 0 0 0 · · · 0 gn−2gn−1

0 0 0 0 · · · −g2
n−2−g2

n−1 0
0 0 0 0 · · · 0 −g2

n−1


.

with entries

[G2
]i, j =



−g2
1 if i = j = 1,

−g2
i−1 − g2

i if i = j = 2, . . . , n − 1,

−g2
n−1 if i = j = n,

gi gi+1 if i = 1, . . . , n − 2, j = i + 2,

gi−2gi−1 if i = 3, . . . , n, j = i − 2,

0 otherwise.
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With these definitions, the gyroscopic Hamiltonian system of the previous section
may be written componentwise as (for r = 2, . . . , n − 1 and h = 3, . . . , n − 2):

q̇1 = p1 − g1q2,

q̇r = pr + gr−1qr−1 − gr qr+1,

q̇n = pn + gn−1qn−1,

ṗ1 = −
( 1

2 g2
1 + k1

)
q1 +

1
2 g1g2q3 − g1 p2,

ṗ2 = −
( 1

2 g2
1 +

1
2 g2

2 + k2
)
q2 +

1
2 g2g3q4 + g1 p1 − g2 p3,

ṗh = −
( 1

2 g2
h−1 +

1
2 g2

h + kh
)
qh +

1
2 gh−2gh−1qh−2 +

1
2 ghgh+1qh+2

+ gh−1 ph−1 − gh ph+1,

ṗn−1 = −
( 1

2 g2
n−2 +

1
2 g2

n−1 + kn−1
)
qn−1 +

1
2 gn−3gn−2qn−3 + gn−2 pn−2 − gn−1 pn,

ṗn = −
( 1

2 g2
n−1 + kn

)
qn +

1
2 gn−2gn−1qn−2 + gn−1 pn−1.

As stated in Section 1, we want to use the q1-component of the solution of this
system to approximate x(t), the solution of (1). As the main system, we are dealing
with the simple and well known damped harmonic oscillator ẍ + 2γ ẋ + ω2x = 0.

The numerical computation we implement aims to optimize both the gr and the
kh towards the minimum of ∥x(t)−q1(t)∥∞. We consider the constants γ = 0.5 and
ω = 4 and fix [t0, t1] := [0, 5] as the time interval, with initial conditions x(0) = 1
and ẋ(0) = 0. The initial conditions of the gyroscopic system are 0 for all the initial
Lagrangian coordinates and velocities, except for q1, for which we take q1(0) = 1,
the same as for the damped system.

The gyroscopic system has been calibrated, with the double simulated annealing
algorithm (see [Xiang et al. 1997; Bersani et al. 2022]) for N = 3, 4, . . . , 10 degrees
of freedom: the resulting trajectories are plotted against the damped one in Figure 1.
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Figure 1. Approximation of a damped harmonic motion via the
gyroscopic system for different numbers of degrees of freedom N ,
when we optimize the entries of both K and G.
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Figure 2. Optimization of entries of both G and K . Left: ap-
proximation of the damped oscillator by a gyroscopic system with
N = 10 degrees of freedom. Right: approximation error as a
function of degrees of freedom.

It is clear that for N = 3 the result is too rough and that to obtain a reasonable
approximation one needs, in this case, at least a gyroscopic system with four
degrees of freedom. The case of 10 degrees of freedom, on the other hand, is
quite satisfactory. Indeed, in this case, the approximation error decreases up to
∥x(t)− q1(t)∥∞ = 0.0171. The comparison plot of x(t) with q1(t) for N = 10 is
shown in Figure 2, left.

Most importantly, as shown in Figure 2, right and Table 1, the error curve plotted
as a function of the number of degrees of freedom shows a decreasing trend. This
supports the intuition that as the number of degrees of freedom increases, the
accuracy of the approximation improves.

Note that we used an efficient optimization algorithm, which is rather expen-
sive in computational terms, while simpler algorithms are much less efficient in
approximating the damped system with the gyroscopic one up to the same accuracy.

To decrease the complexity, at least in this specific case, one could try to set
the matrix K as a fixed matrix, not subject to optimization, halving the parameters
to be optimized, reduced to only the super-diagonal elements of G. However, the
numerical calculations we performed here seem to indicate that in general the
optimization of the elements of the G-matrix alone is not sufficient to hope for an
arbitrary reduction in the difference between the trajectories.

Indeed, when we fix the entries of K and optimize only those of G, we find that
the approximation error does not show a decreasing trend as the degrees of freedom
increase, as shown in Table 2 and Figure 3, right, where the approximation error

N 3 4 5 6 7 8 9 10
error 0.3163 0.0932 0.0480 0.0454 0.0334 0.0294 0.0290 0.0171

Table 1. Approximation error as a function of degrees of freedom,
when we optimize the entries of both K and G.
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N 3 4 5 6 7 8 9 10
error 0.2638 0.2394 0.2454 0.2454 0.2450 0.2450 0.2449 0.2449

Table 2. Approximation error as a function of degrees of freedom.
Case of fixed K and optimization on G entries only.

0 1 2 3 4 5
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−0.50

−0.25

0.00

0.25

0.50

0.75

1.00 N=4
damped

3 4 5 6 7 8 9 10

0.2638

Figure 3. Case of fixed K and optimization on G entries only. Left:
approximation of the damped oscillator by a gyroscopic system
with N = 4 degrees of freedom. Right: approximation error as a
function of degrees of freedom.

as a function of degrees of freedom is illustrated. In Figure 3, left, the best fitting
we found in this case, corresponding to 4 degrees of freedom for the gyroscopic
system, is plotted against the actual solution of the damped oscillator.

We consider the final case where K is a scalar matrix (i.e., a nonzero matrix
multiple of the identity matrix). Thus, we have a problem that is computationally
much simpler than the general one, since in this case we optimize only N parameters
(the nonzero entries of G and the diagonal identical entries of K ), instead of 2N −1.
Our numerical simulations show that, although with about three times the error of

the general case, the gyroscopic system can still approximate the damped system
with an error that has a decreasing trend as the number of degrees of freedom
increases. Figure 4, left, plots the best-fitting case, corresponding to N = 10. The
error as a function of the number of degrees of freedom is reported in Table 3 and
Figure 4, right.

Therefore, numerical simulations seem to suggest that in the case of G tridiagonal
and K diagonal, for the considered gyroscopic coupling, one could reduce the
optimization to N parameters to approximate the dissipative system, within the
fixed time interval and the desired accuracy.

N 3 4 5 6 7 8 9 10
error 0.3592 0.1428 0.1216 0.0978 0.0970 0.0683 0.0844 0.0527

Table 3. Approximation error as a function of degrees of freedom:
case of optimization of G and K entries, K being scalar.
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Figure 4. case of optimization of G and K entries, K being scalar.
Left: approximation of the damped oscillator by a gyroscopic
system with N = 10 degrees of freedom. Right: approximation
error as a function of the number of degrees of freedom.

4. Conclusions

The problem of finding a Lagrangian higher-dimensional system that can be used to
approximate a lower-dimensional dissipative system has both a theoretical interest,
since its solution may aid in understanding the fundamental nature of dissipative
phenomena, and practical applications, since it may yield interesting developments
in methods for formulating numerical codes for the study and prediction of many
types of natural phenomena. In this paper, given a 1-dimensional dissipative system,
we investigated the possibility of constructing a triplet: a master system, a slave
system, and a coupling scheme. The effect of the interaction in the slave system
seems to be effective in producing apparent dissipation, mimicking the master system
thanks to the designed coupling scheme, at least in given finite time intervals. The
coupling scheme used is based on gyroscopic Lagrangian terms and is found to be
suitable, at least in the linear case that has been treated.

The mentioned choice has been motivated by the very interesting characteristics
shown by the equations describing the gyroscopic phenomena and it is possible to
say that the conjecture on which we have based the presented investigation seems
quite well-grounded. In fact, it was possible to optimize the stiffnesses of the slave
system and the coefficients needed in the specific class of gyroscopic couplings used
to approximate the linear damping in the chosen linear master system with an error
that numerically appears to be reducible to any small amount. The reported positive
results seem to motivate further investigations. In particular, one should address
the case of master systems with dimension greater than one, more complicated
gyroscopic couplings, nonlinear master systems coupled to linear slave systems
via linear gyroscopic couplings, and the effects of nonlinearities in gyroscopic
coupling terms. The future investigation should in our opinion involve the need of
reconciling the Lagrangian extension for the coupled master and slave systems with
the Hamilton–Rayleigh approach. This approach has been systematically exploited
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for describing a variety of phenomena. This includes phenomena occurring in
porous media [dell’Isola et al. 2009; 2019; dell’Isola and Hutter 1997; Giorgio et al.
2017a], thermomechanical phenomena [Giorgio 2021; Cuomo 2017; Altenbach
et al. 2012], biomechanical phenomena in bone growth [Giorgio et al. 2017b],
friction phenomena in mechanical systems [Ciallella et al. 2021; Giorgio et al. 2009;
Giorgio 2020; Scerrato et al. 2015; Giorgio and Scerrato 2017; Spagnuolo and
Cazzani 2021], damage phenomena Placidi and Barchiesi 2018; Timofeev et al.
2021; Placidi et al. 2021; 2018; Contrafatto and Cuomo 2006; Cuomo et al. 2014].
In addition, the study of the theoretical motivations behind the numerical evidence
shown should be pursued, with the aim of both understanding the limitations to
the extension to more general systems of the approximation scheme studied and
exploring the possibility of a constructive a priori estimation results about the
number of degrees of freedom needed to achieve the desired accuracy.

Appendix: Code used to perform numerical computations

To perform numerical computations we used the scipy Python package under
the Python 3.8 compiler. We used the simulated annealing optimization function
which implements a generalized annealing [Xiang et al. 1997] by using its default
parameters both for annealing temperature, number of iterations etc.

The code can be found on the GitHub page of one of the authors2 and it can
be executed in a Python 3 environment which provides standard libraries numpy,
scipy and matplotlib, easily installed via the pip tool.

The script optimizes parameters of a coupled system to approximate a damped
one: results are either written on png files or plotted interactively; further information
is printed. The functions defined in this script may be easily engineered to run
several classes of simulations and collect results.
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