
Ecology and Evolution. 2023;13:e9752.	 		 	 | 1 of 11
https://doi.org/10.1002/ece3.9752

www.ecolevol.org

Received:	5	October	2022  | Revised:	2	January	2023  | Accepted:	4	January	2023
DOI: 10.1002/ece3.9752  

R E S E A R C H  A R T I C L E

A comparison of population viability measures

Mario Trouillier1,2  |   Katrin M. Meyer2  |   Luca Santini3  |   Guy Pe'er4,5

This	is	an	open	access	article	under	the	terms	of	the	Creative	Commons	Attribution	License,	which	permits	use,	distribution	and	reproduction	in	any	medium,	
provided	the	original	work	is	properly	cited.
©	2023	The	Authors.	Ecology and Evolution	published	by	John	Wiley	&	Sons	Ltd.

1Institute	for	Botany	and	Landscape	
Ecology,	University	Greifswald,	
Greifswald,	Germany
2Department	of	Ecosystem	Modelling,	
University	of	Göttingen,	Göttingen,	
Germany
3Department	of	Biology	and	
Biotechnologies	"Charles	Darwin",	
Sapienza	Università	di	Roma,	Rome,	Italy
4Department	of	Ecosystem	Services,	
UFZ	-		Helmholtz	Centre	for	Environmental	
Research,	Leipzig,	Germany
5German	Centre	for	Integrative	
Biodiversity	Research	(iDiv)	Halle-	Jena-	
Leipzig,	Leipzig,	Germany

Correspondence
Katrin	M.	Meyer,	Department	of	
Ecosystem	Modelling,	University	
of	Göttingen,	Büsgenweg	4,	37077	
Göttingen,	Germany.
Email:	kmeyer5@uni-goettingen.de

Funding information
Deutsche	Forschungsgemeinschaft,	
Grant/Award	Number:	DFG-		FZT	118,	
202548816

Abstract
The	 viability	 of	 populations	 can	 be	 quantified	with	 several	 measures,	 such	 as	 the	
probability	of	extinction,	the	mean	time	to	extinction,	or	the	population	size.	While	
conservation	management	decisions	can	be	based	on	these	measures,	it	has	not	yet	
been	explored	systematically	if	different	viability	measures	rank	species	and	scenar-
ios	similarly	and	if	one	viability	measure	can	be	converted	into	another	to	compare	
studies.	To	address	this	challenge,	we	conducted	a	quantitative	comparison	of	eight	
viability	measures	based	on	the	simulated	population	dynamics	of	more	than	4500	
virtual	species.	We	compared	(a)	the	ranking	of	scenarios	based	on	different	viability	
measures,	(b)	assessed	direct	correlations	between	the	measures,	and	(c)	explored	if	
parameters	in	the	simulation	models	can	alter	the	relationship	between	pairs	of	viabil-
ity	measures.	We	found	that	viability	measures	ranked	species	similarly.	Despite	this,	
direct	correlations	between	the	different	measures	were	often	weak	and	could	not	be	
generalized.	This	can	be	explained	by	the	loss	of	information	due	to	the	aggregation	
of	 raw	data	 into	 a	 single	 number,	 the	 effect	 of	model	 parameters	 on	 the	 relation-
ship	between	viability	measures,	and	because	distributions,	such	as	the	probability	
of	 extinction	over	 time,	 cannot	be	 ranked	objectively.	 Similar	 scenario	 rankings	by	
different	viability	measures	show	that	the	choice	of	the	viability	metric	does	in	many	
cases	not	alter	which	population	is	regarded	more	viable	or	which	management	option	
is	the	best.	However,	the	more	two	scenarios	or	populations	differ,	the	more	likely	it	
becomes	 that	different	measures	produce	different	 rankings.	We	 thus	 recommend	
that	PVA	studies	publish	raw	simulation	data,	which	not	only	describes	all	risks	and	
opportunities	to	the	reader	but	also	facilitates	meta-	analyses	of	PVA	studies.
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1  |  INTRODUC TION

Population-	viability	 analyses	 (PVAs)	 are	 broadly	 used	 in	 ecology	
to	 assess	 the	 potential	 development	 of	 populations	 over	 time,	 to	
characterize	 their	 current	 status	 and	 future	 development,	 and	
to	 suggest	 effective	 conservation	 interventions	 (Beissinger	 &	
McCullough,	 2002).	 Even	 though	 PVAs	 have	 been	 criticized	 for	
being	 too	 imprecise	or	are	of	 low	quality	 (Chaudhary	&	Oli,	2020,	
2021;	Morrison	et	al.,	2016),	they	are	still	considered	a	helpful	tool	
in	 conservation	 biology	 (Brook,	2000;	 Brook	 et	 al.,	2002),	 in	 par-
ticular,	 to	 evaluate	 the	 status,	 threats,	 and	 management	 options	
for	 populations	 (Lacy,	2019).	 Soulé	 (1987)	 defined	 viability	 as	 the	
minimum	 conditions	 for	 long-	term	 persistence	 and	 adaptation	 of	
populations,	 following	 the	concept	of	 the	minimum	viable	popula-
tion	(Shaffer,	1981).	According	to	Soulé	(1987),	population	viability	
involves	a	range	of	properties	beyond	persistence,	including	genetic	
properties,	 individual	 vigor,	 fertility,	 and	 fecundity.	 Various	 mea-
sures	exist	 to	quantify	population	viability,	among	 them	the	mean	
time	 to	 extinction	 and	 the	 probability	 of	 extinction.	 Multiple	 at-
tempts	 have	 been	made	 to	 improve	 existing	 viability	measures	 or	
to	introduce	new	measures,	e.g.,	the	expected	minimum	population	
size	Nmin	(t)	(McCarthy	&	Thompson,	2001)	or	the	intrinsic	mean	time	
to	extinction	Tm	(Grimm	&	Wissel,	2004).	However,	no	measure	has	
been	proposed,	or	broadly	adopted,	that	can	successfully	be	applied	
to	 a	 broad	 range	 of	 questions	 of	 conservation	 practitioners	 or	 to	
compare	different	viability	studies.	The	 lack	of	a	unifying	measure	
probably	 results	 from	 the	 complexity	 of	 the	 viability	 concept	 and	
reflects	the	multifaceted	nature	of	extinction	risk,	as	well	as	the	di-
versity	of	questions	that	PVA	is	used	to	answer.

Viability	measures	can	be	roughly	categorized	into	three	classes,	
namely	probabilistic	measures,	time	measures,	and	population-	size	
measures.	(1)	Probabilistic	measures,	especially	the	probability	of	ex-
tinction	P0	(t),	were	the	earliest	and	most	widely	used	class	of	viabil-
ity	measures.	Probabilities	of	extinction,	quasi-	extinction	(Ginzburg	
et	al.,	1982),	or	the	risk	of	decline	focus	on	the	likelihood	of	extinc-
tion	or	falling	below	critical	population-	size	thresholds	within	a	de-
fined	time	horizon.	Therefore,	 they	require	setting	population	size	
(N)	and	time	thresholds	(t),	thus	incorporating	a	subjective	decision	
into	 viability	 assessment.	 (2)	 Time	measures,	 especially	 the	 mean	
time	 to	 extinction,	 are	 frequently	used	 as	well	 (Foley,	 1994; Reed 
et	 al.,	 2002).	 They	 highlight	 the	 temporal	 component	 of	 viability	
and	the	crucial	role	of	population	survival.	The	importance	of	time	
measures	was	underlined	by	the	development	of	the	intrinsic	mean	
time	to	extinction	Tm	(Grimm	&	Wissel,	2004),	which	considers	the	
skewness	of	the	distribution	of	extinction	times	(Ludwig,	1996)	and	
the	probability	of	 reaching	 the	established	phase.	 (3)	Examples	of	
population-	size	measures	are	the	expected	average	population	size	
NE	(t)	and	the	expected	minimum	population	size	Nmin	(t)	(McCarthy	
&	Thompson,	2001).	In	addition	to	these	three	rough	categories,	the	
population	growth	rate	λ	is	not	a	traditional	viability	measure	but	a	
very	important	population	property	which	is	clearly	related	to	viabil-
ity,	as	it	describes	the	trend	of	a	population	size	(declining,	stable,	or	

increasing)	(Lande,	1993).	We	therefore	regard	it	here	as	a	viability	
measure	as	well.

Together,	 over	20	different	 viability	measures	have	been	used	
in	the	literature	(Pe'er	et	al.,	2013),	demonstrating	the	multidimen-
sionality	of	the	viability	concept.	It	has	been	argued	(e.g.,	Burgman	
et	al.	(1993))	that	different	viability	measures	might	address	differ-
ent	questions.	For	 instance,	 the	probability	of	extinction	can	help	
decision-	makers	assess	how	necessary	 it	 is	 to	act,	while	 the	mean	
time	to	extinction	might	be	suitable	to	assess	how	urgent	an	inter-
vention	may	be.	Choosing	the	best	of	several	conservation	actions	
could	be	done	based	on	the	expected	population	size	at	a	given	time	
(e.g.,	10 years)	after	an	intervention	was	taken.

Attempts	to	compare	the	results	from	multiple	PVA	studies	that	
used	different	viability	measures	concluded	that	quantitative	com-
parisons	 and	 generalizations	 remain	 virtually	 impossible,	 and	 little	
progress	has	been	made	over	time	(Burgman	&	Possingham,	2000; 
Crone	et	al.,	2011;	Naujokaitis-	Lewis	et	al.,	2009;	Pe'er	et	al.,	2013; 
Shaffer	et	al.,	2002).	There	remains	a	need	to	assess	different	mea-
sures	in	terms	of	their	consistency	and	suitability	for	different	pur-
poses.	Ideally,	such	an	assessment	could	guide	the	choice	of	viability	
measures	 and	help	mitigating	 the	 risk	 that	 the	 choice	of	 a	 certain	
measure	over	another	may	affect	the	outcomes	(e.g.,	in	terms	of	the	
proposed	intervention).	Furthermore,	it	would	be	useful	to	identify	
the	quantitative	relationships	between	viability	measures,	 in	order	
to	advance	potential	attempts	for	integration	and	quantitative	anal-
yses	 across	 studies	 to	 foster	 generalizations.	 If	 different	 viability	
measures	ranked	the	same	set	of	populations,	species,	or	scenarios	
differently,	this	would	complicate	decision-	making	in	nature	conser-
vation.	By	contrast,	a	consistent	ranking	of	viability	measures	would	
enhance	comparability.

This	 study	 compares	 eight	 viability	 measures:	 probability	 of	
extinction	 P0	 (t),	 risk	 of	 decline	 to	 a	 threshold	 population	 size	 PN 
(t),	 probability	 of	 quasi-	extinction	 PQE,N	 (t)	 (Ginzburg	 et	 al.,	 1982),	
mean	 expected	 population	 size	 NE	 (t),	 expected	 minimum	 popu-
lation	 size	Nmin	 (t)	 (McCarthy	&	Thompson,	2001),	 expected/mean	
time	 to	 extinction	TE,	 intrinsic	mean	 time	 to	 extinction	Tm	 (Grimm	
&	Wissel,	2004),	and	population	growth	rate	λ.	These	eight	viability	
measures	were	chosen	because	they	are	commonly	used	in	the	liter-
ature	or	proposed	to	be	key	measures	for	extracting	important	infor-
mation	from	PVA	simulations	(Grimm	&	Wissel,	2004;	IUCN,	2012).	
We	put	emphasis	on	measures	that	represent	the	classes	mentioned	
above,	namely	probabilistic,	time,	and	population-	size	measures,	as	
well	as	the	growth	rate	as	a	measure	to	characterize	populations'	tra-
jectory	over	time.

To	evaluate	the	differences	between	these	measures	we	simu-
lated	virtual	species	with	diverse	 life	histories	on	different	habitat	
maps.	From	the	model	output,	we	computed	the	eight	viability	mea-
sures	 and	 tested:	 (a)	 if	 different	 viability	measures	 ranked	 species	
and	 scenarios	 differently,	 (b)	 if	 viability	measures	 correlate	 and	 if	
one	measure	can	directly	be	computed	from	another,	and	(c)	if	the	
simulation	model	 and	 scenario	 parameters	 affect	 the	 relationship	
between	two	viability	measures.
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    |  3 of 11TROUILLIER et al.

2  |  MATERIAL S AND METHODS

2.1  |  Simulating virtual species

Viability	 measures	 are	 computed	 from	 modeled	 population-	size	
time	 series.	 Thus,	 we	 first	 parametrized	 the	 agent-	based	 model	
RangeShifter	 (Bocedi	 et	 al.,	 2014)	 to	 simulate	 populations.	 The	
model	allows	a	detailed	parameterization	that	fits	the	life	histories	of	
a	wide	variety	of	species.	For	the	parameterization,	we	used	a	pub-
lished	dataset	that	covers	the	parameters	of	4574	virtual	mammals.	
This	dataset	was	created	to	cover	the	diversity	of	sizes	and	life	histo-
ries	of	real	animals	while	accounting	for	the	collinearity	of	different	
characteristics	(Santini	et	al.,	2016).	The	simulated	species	vary	with	
respect	to	body	mass,	sexual	maturity	age,	litters	per	year,	litter	size,	
home	range	area,	population	density,	dispersal	distance,	and	annual	
survival	 rate.	 All	 species	 were	 simulated	with	 100	 repetitions	 for	
100 years	on	three	artificial	fractal	habitat	maps.	The	habitat	maps	
were	created	with	RangeShifter	(65 × 65	cells,	Hurst	exponent	=	0.1)	
with	5%,	10%,	and	20%	habitat	cover	 to	 reflect	 landscapes	of	dif-
ferent	 suitability	 to	 the	 species.	 This	 resulted	 in	 13,722	 scenarios	
(3	maps	× 4574	species).	Map	 resolution	and	extent	were	adapted	
to	account	for	the	large	differences	in	species	size	and	life	histories.	
The	RangeShifter	model	returned	100	time	series	of	population	sizes	
over	100 years	for	each	species.	These	time	series	were	then	used	to	
calculate	the	viability	measures.

To	assess	 if	 the	parameters	of	the	simulation	model	can	affect	
the	relationship	between	two	viability	measures,	we	created	three	
additional	sets	of	scenarios:	In	each	set,	we	varied	either	the	carry-
ing	capacity	of	habitat	patches,	the	mean	dispersal	distance,	or	the	
fraction	of	habitat	patches	in	the	map,	while	not	changing	any	of	the	
other	parameters.

All	RangeShifter	parametrization	files	and	outputs	can	be	found	
in	the	Appendix	S1.

2.2  |  Computing viability measures

For	each	simulated	scenario,	we	calculated	eight	viability	measures	
in	the	following	way:

1.	 Probability	 of	 extinction	 P0	 (t):	 the	 share	 of	 simulation	 runs	
in	 which	 an	 extinction	 (population	 size	 =	 0)	 occurred	 within	
the	 specified	 time	 horizon	 t.

2.	 Risk	of	decline	PN	(t):	the	proportion	of	simulation	runs	in	which	
the	population	size	was	equal	to	or	lower	than	a	population-	size	
threshold N	after	the	specified	time	horizon	t.

3.	 Probability	of	quasi-	extinction	PQE,N	(t)	(Ginzburg	et	al.,	1982):	the	
fraction	of	simulation	runs	in	which	the	population	size	dropped	
at	least	once	below	a	population-	size	threshold	N	within	the	spec-
ified	time	horizon	t.

4.	 Expected	population	size	NE	(t),	also	referred	to	as	the	mean	pop-
ulation	size,	was	calculated	as	the	average	population	size	of	all	
simulation	runs	at	time	t.

5.	 Expected	minimum	population	size	Nmin	(t)	was	obtained	by	calcu-
lating	the	mean	of	every	simulation	run's	minimum	population	size	
within	the	time	horizon	t	(related	to	the	concept	of	the	minimum	
viable	population	(Gilpin	&	Soulé,	1986)).

6.	 Intrinsic	mean	time	to	extinction	Tm	was	calculated	from	the	prob-
ability	of	extinction	over	time,	as	the	inverse	slope	of	the	linear	
regression	 through	 the	 tail	 of	 the	 – ln	 (1	 − P0)	 graph	 (Grimm	 &	
Wissel,	2004).

7.	 The	mean	time	to	extinction	TE	was	extrapolated	from	the	mean	
population	size	and	the	growth	rate	λ	(intercept	at	NE	(t)	=	0).	This	
allowed	to	compute	TE	even	when	not	all	simulation	runs	led	to	
extinction	within	the	simulated	time	frame.

8.	 The	growth	rate	λ	was	calculated	as	the	slope	of	the	linear	regres-
sion	line	of	the	mean	population-	size	time	series.

The	 viability	 measures	 1–	5	 require	 further	 specifications	 of	 a	
time	horizon	(t)	and/or	a	population-	size	(N)	threshold.	We	used	25,	
50,	75,	and	100 years	as	time	horizons	and	population-	size	thresh-
olds	of	1%,	5%,	and	10%	of	the	initial	population	size.

2.3  |  Comparing viability measures

In	this	study,	we	(a)	compared	scenario	rankings	to	find	out	if	viability	
measures	ranked	scenarios	the	same,	(b)	explored	if	viability	meas-
ures	correlated	directly	or	whether	it	was	possible	to	calculate	one	
measure	from	another,	and	(c)	evaluated	if	the	relationship	between	
any	 two	viability	measures	was	affected	by	 the	parameters	 in	 the	
simulation	model.

First,	 we	 evaluated	 if	 the	 rankings	 produced	 by	 the	 different	
measures	were	consistent	with	each	other.	To	this	end,	we	ranked	
all	 species	based	on	each	of	 the	eight	viability	measures	and	used	
Kendall	 rank	 correlation	 coefficients	 to	 compare	 if	 different	mea-
sures	 resulted	 in	a	similar	 ranking.	Ties	were	handled	by	assigning	
the	same	rank	and	skipping	one	level	(e.g.,	two	species	with	rank	1	
were	followed	by	a	rank	of	3).

Second,	we	explored	direct	correlations	and	mathematical	rela-
tionships	between	different	viability	measures	that	might	allow	for	
converting	 one	measure	 into	 another.	 To	 do	 so,	we	 fitted	 various	
linear	and	nonlinear	models	using	the	nls2	package	(Baty	et	al.,	2015; 
R	Core	Team,	2015)	in	R	(R	Core	Team,	2015).

Lastly,	 for	 a	more	 detailed	 assessment	 of	 the	 relationship	 be-
tween	two	viability	measures,	we	explored	if	changes	in	single	model	
parameters	altered	these	relationships.	In	particular,	we	changed	the	
carrying	capacity	per	habitat	patch	and	the	mean	dispersal	distance	
(negative	exponential	dispersal	kernel),	and	we	used	different	hab-
itat	maps	with	different	fractions	of	habitat	(Appendix	S2).	If	single	
model	parameters	caused	changes	in	the	relationship	between	via-
bility	measures,	it	would	indicate	that	fixed	functional	relationships	
between	viability	measures	might	not	exist.	We	thus	computed	the	
probability	 of	 extinction	 and	 the	 expected	 population	 size	 for	 all	
100 years	and	plotted	these	values	against	each	other	for	each	pa-
rameter	setting.
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3  |  RESULTS

3.1  |  Viability rankings

The	 computed	 viability	 measures	 show	 that	 each	 measure	 only	
worked	 for	 a	 fraction	of	 all	 scenarios	 (Figure 1).	 For	 example,	 the	
population-	size	 measures	NE	 (100)	 and	Nmin	 (100)	 returned	 0	 for	
more	than	50%	of	all	scenarios.	In	those	scenarios,	the	populations	
always	went	 extinct	 before	 100 years.	 Similarly,	 the	 probability	 of	
extinction	after	100 years,	P0	(100),	returned	either	0	or	1	for	93.6%	
of	all	scenarios.	For	the	same	reason,	the	mean	(extrapolated)	time	
to	 extinction	 could	 only	 be	 calculated	 for	 77.65%	 of	 all	 scenarios	
because	the	remaining	scenarios	were	stable	or	showed	a	positive	
growth	trend.

Pairwise	correlations	of	viability	measures	showed	positive	cor-
relations	of	varying	strength	(Figure 2).	Kendall	rank	correlation	co-
efficients	were	only	computed	for	those	scenarios	where	the	pairs	
of	viability	measures	both	returned	meaningful	values.	Correlation	
coefficients	ranged	from	0.65	to	0.88,	except	when	the	growth	rate	
was	 involved.	 Growth	 rate	 versus	 mean	 time	 to	 extinction	 had	 a	
correlation	coefficient	of	0.57	and	the	correlation	between	growth	

rate	and	probability	of	extinction	got	as	low	as	0.08	(Figure 2).	Most	
species	and	scenarios	were	ranked	relatively	similarly	by	the	differ-
ent	viability	measures,	and	the	relationship	was	often	mostly	linear	
but	rarely	was	the	ranking	exactly	the	same	for	two	measures.	The	
growth	rate	λ	was	a	notable	exception	to	this	trend	because	its	rank-
ings	differed	greatly	from	all	other	rankings	(Figure 2).

3.2  |  Functional relationships between 
viability measures

The	 quantitative	 relationship	 between	 viability	measures	was	 in	
some	 cases	 linear	 but	 more	 often	 nonlinear	 (Figure 3,	 Table 1).	
Often,	 these	 functions	 describe	 asymptotes,	 for	 example,	 the	
probability	of	extinction	approaches	zero	at	high	population	sizes	
(Figure 3a).	This	is	related	to	the	same	issue	described	above,	that	
certain	viability	measures	only	returned	meaningful	values	within	
a	limited	viability	range.	Additionally,	various	issues	impeded	the	
conversion	of	one	viability	measure	into	another.	For	example,	the	
variance	between	NE	and	Nmin	(Figure 3c)	increased	greatly	toward	
larger	values.	Another	example	was	the	relationship	between	Tm 

F I G U R E  1 Frequency	distributions	of	the	eight	viability	measures	that	were	computed	for	the	13,722	scenarios.	Percentage	values	
indicate	the	fraction	of	scenarios	for	which	each	measure	could	be	calculated	and	returned	meaningful	values.
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F I G U R E  2 Relationships	between	different	viability	measures'	scenario	rankings.	Percentage	values	indicate	the	fraction	of	scenarios	
where	both	measures	returned	meaningful	values.	Additionally,	Kendall's	correlation	coefficient	(τ)	is	shown.	We	selected	a	broad	range	of	
all	possible	pairwise	combinations	of	measures	representative	of	all	possible	relationships.
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6 of 11  |     TROUILLIER et al.

F I G U R E  3 Relationships	between	different	viability	measures.	For	some	measures,	the	functional	relationship	can	roughly	be	described	
with	adapted	reciprocal	functions	(e.g.,	a,	b,	k,	l),	logistic	functions	(e.g.,	d,	e),	or	simple	linear	functions	(e.g.,	h),	as	shown	in	Table 1.	However,	
significant	variance	and	heteroscedasticity	rendered	even	these	relationships	mostly	useless	to	reliably	calculate	one	measure	from	another.
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and	TE,	which	 showed	a	breakpoint	 (Figure 3f),	which	 is	 an	 arti-
fact	related	to	the	length	of	the	modeled	time	period	(100 years),	
while	 the	 relationship	 before	 this	 breakpoint	was	 approximately	
linear	(Table 1).	A	positive	growth	rate	always	corresponded	to	a	
P0	(100)	of	zero.	On	the	other	side,	even	strongly	negative	growth	
rates	were	sometimes	linked	to	a	P0	(100)	of	zero,	if	the	population	
size	was	very	 large.	Lastly,	some	measures	showed	a	distinct	re-
lationship	when	one	or	both	measures	were	log-	transformed	(e.g.,	
Figure 3e,f).	On	a	log–	log	scale	even	very	coarse	correlations	can	
look	meaningful,	but	in	practice,	this	will	hardly	be	useful	to	com-
pute	one	measure	from	another	because	it	hides	the	large	variance	
(e.g.,	NE vs. TE).

3.3  |  The effect of model parameters on 
relationships between viability measures

We	 found	 that	 changing	 parameters	 in	 the	 simulation	model	 al-
tered	 the	 relationship	 between	 viability	 measures.	 In	 particular,	
changing	 the	 carrying	 capacity,	 mean	 dispersal	 distance,	 or	 the	
habitat	map	altered	the	relationship	between	P0	and	NE	(Figure 4).	
For	example,	at	a	given	P0,	NE	 increased	with	increasing	carrying	
capacity	(Figure 4a)	and	with	decreasing	mean	dispersal	distance	
(Figure 4b).	 This	 dependence	 was	 slightly	 weaker	 when	 consid-
ering	 the	change	 in	P0	 at	a	given	NE	 (Figure	4a–	c).	We	also	note	
that	 there	 were	 threshold	 behaviors,	 such	 as	 a	 decrease	 in	 the	
maximum	 possible	 P0	with	 decreasing	mean	 dispersal	 distances	
(Figure 4b)	and	a	complete	absence	of	extinctions	when	the	pro-
portion	of	suitable	habitat	exceeded	about	10%	(Figure 4c).	This	
means	that	the	same	population	size	can	correspond	to	different	
probabilities	 of	 extinction,	 which	 likely	 also	 partly	 explains	 the	
low	 correlation	 strength	 between	 different	 viability	 measures	
(Figure 3).	Consequently,	we	did	not	 find	 any	universal	 relation-
ship	 between	 viability	measures,	 that	would	 not	 be	 sensitive	 to	
simulation	model	parameters.

4  |  DISCUSSION

Our	 systematic	 comparison	 of	 eight	 different	 population-	viability	
measures	 across	 different	 scenarios	 and	 species	 showed	 three	
main	 results:	 First,	 all	 viability	 measures,	 except	 the	 growth	 rate	
λ,	ranked	the	population	viability	of	the	simulated	species	similarly	
but	 not	 identically.	 Second,	 we	 found	 rough	 correlations,	 but	 no	
fixed	 relationships	 between	 viability	 measures,	 that	 would	 allow	
the	 conversion	 of	 one	 measure	 into	 another.	 Third,	 species	 and	
scenario	parameters	of	the	simulation	model	(including	the	habitat	
map)	altered	 the	 relationship	between	any	 two	viability	measures.	
Consequently,	it	appears	to	be	impossible	to	compute	one	viability	
measure	directly	from	another	one.	At	best,	functional	relationships	
between	two	measures	could	be	approximated	for	very	similar	sce-
narios.	Hereafter,	we	outline	 the	causes	and	 implications	of	 these	
findings	and	discuss	whether	a	single	number	can	represent	viability.

4.1  |  The relationships between viability measures

Our	result	that	different	viability	measures	rank	species	or	scenarios	
similarly	 and	 that	 at	 least	 some	 viability	measures	 correlate,	 indi-
cates	that	most	measures	are	based	on	a	similar	concept	of	viability.	
As	a	result,	identifying	the	best	management	option	for	a	population	
seems	to	be	robust	with	respect	to	the	choice	of	the	viability	meas-
ure.	By	contrast,	 some	scenario	 rankings	were	not	 identical	and	 it	
was	not	possible	to	determine	fixed	relationships	between	viability	
measures.	 Thus,	 there	 are	 cases	where	 the	 choice	 of	 the	 viability	
measure	 will	 affect	 which	 management	 option	 is	 considered	 the	
best	 for	 a	population	or	which	population	 is	deemed	more	viable.	
Furthermore,	our	results	 imply	that	two	studies	that	reported	two	
different	 viability	 measures	 cannot	 directly	 be	 compared	 by	 con-
verting	one	measure	into	the	other.

The	 relationships	 between	 viability	measures	 seem	 to	 depend	
on	 species	 traits,	 carrying	 capacity,	 and	habitat	 configuration.	For	
example,	increasing	the	species	trait	dispersal	distance	reduced	the	
population	size	NE	at	a	given	extinction	probability	P0.	This	may	be	
due	to	more	intra-		and	interspecific	interactions	when	species	cover	
greater	distances.	This	explanation	is	in	line	with	our	observation	of	
decreasing	maximum	possible	values	of	P0	with	decreasing	disper-
sal	distances.	Furthermore,	carrying	capacity	and	the	proportion	of	
suitable	habitat	modified	the	relationship	between	NE	and	P0	 in	an	
intuitive	way,	i.e.,	NE	increased	with	increasing	carrying	capacity	and	
P0	became	zero	beyond	a	10%	threshold	of	habitat	suitability.	These	
are	interesting	theoretical	interdependencies,	but	conservation	sci-
entists	may	 often	 not	 have	 enough	 species	 trait	 and	 habitat	 data	
to	 assess	 these	 dependencies	 in	 detail.	 Thus,	 a	 pragmatic	 recom-
mendation	 for	conservation	scientists,	especially	when	supporting	
on-	the-	ground	measures	 for	population	management,	would	be	to	
choose	(several)	viability	measures	that	show	the	least	dependence	
on	traits.	In	our	case,	P0	should,	for	example,	be	chosen	over	NE be-
cause	it	was	relatively	less	affected	by	differences	in	the	traits	we	

TA B L E  1 Approximated	functional	relationships	between	
selected	viability	measures	as	shown	in	Figure 3

Viability 
measure 1

Viability 
measure 2

Approximated functional 
relationship

P0	(100) NE	(100) P0 (100) =
2

1+ 1.295
NE (100)

P0	(100) Nmin	(100) P0 (100) =
2

1+ 1.518
Nmin (100)

P0	(100) TE Po(100) =
1

1+ e
0.965×(TE−72.285)

P0	(100) Tm P0 (100) =
1

(

1+e1.272×(Tm−11.753)
)0.014

Tm TE Tm = 4.521 × TE − 10.371

Tm NE	(100) Tm = 6.914 × NE + 15.622

λ TE λ =
1

− 0.0004 × TE

λ Tm λ =
1

− 0.0062 × Tm
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8 of 11  |     TROUILLIER et al.

investigated	(Figure 4).	However,	such	dependencies	may	not	always	
be	as	straightforward	nor	as	intuitive	as	in	our	study.	Moreover,	re-
lationships	of	viability	measures	may	respond	differently	to	distinct	
trait	 syndromes,	 such	 as	 fast	 versus	 slow	 pace-	of-	life	 syndromes	
(Healy	et	al.,	2019),	and	these	dependencies	may	be	subject	to	spatial	
or	temporal	variability.	Taken	together,	this	calls	for	more	research	
into	the	trait	dependence	of	viability	measures	and	the	relationships	
between	viability	measures.

The	lack	of	fixed	relationships	between	viability	measures	can	
be	 explained	 by	 how	 viability	measures	 process	 raw	 data.	 First,	
many	viability	measures	are	only	based	on	a	data	subset,	for	exam-
ple,	NE	(100)	only	requires	the	population	size	of	all	scenario	repe-
titions	after	100 years	but	discards	all	other	information.	Similarly,	
P0	 (100)	only	evaluates	the	fraction	of	simulation	runs	that	went	
extinct	after	100 years.	Second,	each	viability	measure	aggregates	
the	data	in	a	unique	way	into	a	single	number.	Of	course,	the	goal	
of	a	viability	measure	is	exactly	this,	to	describe	viability	in	a	single	
number,	but	this	necessarily	entails	a	loss	of	information	regarding	
the	underlying	data	distribution.	A	useful	analogy	 is	 the	compu-
tation	of	mean	and	median:	Both	can	be	calculated	for	the	same	
distributions	and	both	values	will	correlate	when	computed	for	a	
number	of	datasets.	However,	 it	 is	arguably	not	very	meaningful	
to	compute	the	mean	from	the	median	and	vice	versa.	The	same	

effect	 applies	 to	 viability	measures.	 Each	modeled	 scenario	will	
result	in	a	unique	population-	size	frequency	distribution	over	time	
(Figure 5).	 These	3D	distributions	are	 characterized	by	different	
means,	skewness,	kurtosis,	and	how	these	characteristics	change	
over	 time.	 Viability	measures	 intend	 to	 summarize	 all	 the	 infor-
mation	 from	 these	 distributions	 into	 a	 single	 number,	 but	 from	
this	 number,	 one	 cannot	 reconstruct	 the	 original	 distribution.	
Consequently,	one	cannot	accurately	calculate	one	viability	mea-
sure	from	another.

4.2  |  Can a single number describe viability?

Given	 that	 there	 are	 many	 ways	 to	 aggregate	 raw	 population-	
viability	data	 into	a	 single	number	and	 that	 they	all	 entail	 an	 in-
formation	 loss	 (Table 2),	 it	 seems	questionable	 if	viability	can	or	
should	be	expressed	as	a	single	number.	However,	if	viability	is	not	
expressed	as	a	single	number,	it	is	also	not	possible	to	objectively	
rank	different	scenarios	because	only	single	numbers,	not	distri-
butions,	can	be	ranked	at	all.	Thus,	if	we	want	to	rank	scenarios	to	
support	management	decisions,	what	would	be	the	most	suitable	
single	number	viability	measure	(acknowledging	that	none	of	them	
will	be	perfect)?

F I G U R E  4 The	relationship	between	the	expected	population	size	(NE)	and	the	probability	of	extinction	(P0)	depends	on	scenario	
parameters.	Here,	all	RangeShifter	parameters	were	kept	constant,	except	(a)	the	carrying	capacity	per	habitat	patch	(K2),	(b)	the	mean	
dispersal	distance	(meanDistI),	and	(c)	the	map	with	different	fractions	of	suitable	habitats	in	the	landscape	(scenarios	that	are	not	plotted	
showed	no	extinctions).

F I G U R E  5 Three	examples	of	probability	distributions	(P)	of	population	sizes	(N)	over	time	t.	The	distributions	show	(a)	a	population	that	
stabilizes	very	early	at	a	high	level	and	also	shows	a	high	variance,	(b)	a	population	whose	size	first	decreases	but	then	stabilizes	with	a	low	
variance	at	a	certain	population	size,	and	(c)	a	population	that	declines	and	where	some	simulation	runs	already	led	to	extinction.
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Extinction	and	survival	are	at	the	core	of	the	viability	concept.	
At	 first	 sight,	 this	 might	 imply	 that	 population	 sizes	 or	 growth	
rates	are	nonideal	proxies	of	viability,	because,	by	definition,	a	sin-
gle	 surviving	 individual	 is	 sufficient	 to	prevent	 the	extinction	of	 a	
species.	However,	 population	 sizes	 and	growth	 rates	do	 affect	 vi-
ability	via	their	effect	on	the	occurrence	and	timing	of	extinctions.	
Nevertheless,	measures	 related	 to	 population	 size	 or	 growth	 rate	
capture	viability	 less	explicitly	than	measures	related	to	extinction	
probability.	Thus,	 the	extinction	probability	distribution	over	 time,	
P0	(t),	is	the	most	fundamental	description	of	viability.

To	rank	scenarios	by	P0	(t)	requires	to	aggregate	a	distribution	into	
a	 single	 number.	 The	 probability	 of	 extinction	 at	 one	 (more	 or	 less	
arbitrary)	point	 in	time,	e.g.,	100 years,	 is	one	way	to	summarize	the	
P0	 (t)	distribution.	Time	measures	 like	TE	 and	Tm	are	another	way	 to	
summarize	the	P0	(t)	distribution	into	a	single	number.	But	TE	has	been	
criticized	because	the	P0	(t)	distribution	is	often	right-	skewed	(Grimm	&	
Wissel,	2004;	Ludwig,	1996),	and	Tm	only	works	in	stable	environments	
(because	if	the	environment	changes	in	the	simulated	time	period,	the	
tail	of	the	–	ln	(1	− P0)	graph	will	not	be	linear,	as	required	by	Tm).

Aggregating	the	P0	(t)	distribution	into	a	single	number	essen-
tially	means	that	the	risks	at	different	time	periods	are	weighted	

against	 each	 other.	 This	 weighting	 is	 subjective	 and	 depends	
on	 a	 person's	 risk	 affinity.	 For	 example,	would	 you	 trade	 a	 1%	
higher	extinction	 risk	at	 time	 t	 for	a	1.1%	 lower	extinction	 risk	
at	 time	 t +	 1?	What	 about	 a	 2%,	 5%,	 or	 10%	 lower	 extinction	
risk	at	t +	1?	While	some	pairs	of	P0	(t)	distributions	reflect	clear	
differences	 in	 viability,	 distributions	 that,	 for	 example,	 mostly	
differ	by	lower	or	higher	variance	cannot	be	ranked	objectively	
(Figure 6).	These	idiosyncrasies	of	P0	(t)	distributions	may	be	due	
to	 stochasticity	 effects	 on	 population	 dynamics	 (Melbourne	 &	
Hastings,	2008),	as	well	as	the	typically	right-	skewed	extinction-	
time	distributions.

While	 measures	 like	 the	 P0	 (100)	 or	 the	 (intrinsic)	 mean	 time	
to	 extinction	 can	 be	 seen	 as	 established	 conventions	 on	 how	 to	
summarize	the	P0	(t)	distribution	into	a	single	number,	the	inherent	
subjectivity	 of	 this	 process	 poses	 a	 problem	 to	 any	 viability	 rank-
ing	 and	 to	 any	 comparisons	 of	 populations,	 species	 or	 scenarios.	
Conservation	scientists	who	support	population	management	need	
to	be	clear	about	how	a	viability	measure	deals	with	probabilities,	
risks,	 and	 chances.	 This	 further	 supports	 that	 conservation	 scien-
tists	should	assemble	and	report	the	raw	simulated	population-	size	
time	series	to	facilitate	the	comparison	of	different	studies	because	

TA B L E  2 Advantages	and	disadvantages	of	the	analyzed	viability	measures.

Measure Advantages Disadvantages

Probabilistic measures

P0	(t)—	probability	of	extinction •	 focuses	on	population	survival •	 extinctions	need	to	happen	within	the	modeled	time	horizon
•	 requires	defining	a	time	horizon
•	 only	returns	meaningful	values	(0	< P0	(t) < 1)	for	a	fraction	of	all	
scenarios

PN	(t)—	risk	of	decline •	 incorporates	that	small	
population	sizes	are	almost	
certainly	doomed	(extinction	
vortex	(Gilpin	&	Soulé,	1986))

•	 requires	defining	a	time	horizon
•	 requires	population-	size	threshold
•	 only	returns	meaningful	values	(0	< PN	(t) < 1)	for	a	fraction	of	all	
scenarios

PQE,N	(t)—	probability	of	
quasi-	extinction

•	 gives	even	more	weight	to	the	
extinction	vortex	than	the	risk	
of	decline

•	 requires	defining	a	time	horizon
•	 requires	population-	size	threshold
•	 only	returns	meaningful	values	(0	< PQE,N	(t) < 1)	for	a	fraction	of	all	
scenarios

Time measures

Tm—	intrinsic	mean	time	to	
extinction

•	 aggregates	population	sizes	
and	growth	rate

•	 considers	skewness	in	the	
extinction-	time	distribution	
(Grimm	&	Wissel,	2004)

•	 extinctions	need	to	happen	within	the	modeled	time	horizon
•	 if	the	probability	of	reaching	the	established	phase	is	<1	viability	
rankings	are	not	possible

Te— (extrapolated)	mean	time	
to	extinction

•	 aggregates	population	sizes	
and	growth	rate

•	 does	not	consider	skewness	in	the	extinction-	time	distribution

Population- size measures

NE	(t)—	expected	population	
size

•	 focuses	on	the	state	of	a	
population

•	 requires	defining	a	time	horizon
•	 neglects	growth	rate

Nmin	(t)—	expected	minimum	
population	size

•	 changes	more	gradually	than	
the	risk	of	decline	(McCarthy	&	
Thompson,	2001)

•	 considers	extinction	vortices

•	 requires	time	horizon
•	 requires	population-	size	threshold
•	 neglects	growth	rate

λ—	growth	rate •	 focuses	on	the	change	in	
population	size

•	 must	be	interpreted	in	combination	with	population	size
•	 only	stable	if	model	parameters	do	not	change	over	time
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10 of 11  |     TROUILLIER et al.

population-	size	time	series	are	the	basis	for	computing	the	P0	(t)	dis-
tribution	or	any	other	required	viability	measure.

5  |  CONCLUSIONS

In	this	study,	we	show	that	viability	measures	rank	species	or	sce-
narios	 similarly	 but	not	 identically.	 To	 rank	 species	or	 scenarios,	
viability	measures	have	to	aggregate	the	raw	population-	size	time	
series	 into	single	numbers.	This	aggregation	cannot	be	objective	
because	it	depends	on	how	future	risks	and	chances	are	weighted	
against	 each	 other.	 Furthermore,	 viability	 measures	 cannot	 be	
converted	 into	each	other	because	the	specific	parameterization	
of	 the	 population	 model	 affects	 the	 relationships	 between	 any	
two	viability	measures.	Current	viability	measures,	which	have	dif-
ferent	 advantages	 and	disadvantages,	 represent	established	and	
useful	 conventions	 on	 how	 to	 quantify	 population	 viability	 into	
single	numbers.	For	the	future,	however,	 it	 is	advisable	that	PVA	
studies	publish	raw	simulated	population-	size	time	series	because	
they	have	many	benefits	not	only	for	theory	but	also	for	conserva-
tion	practice:	First	and	foremost,	raw	population-	size	time	series	
are	the	basis	of	a	thorough	probabilistic	analysis	including	the	pos-
sibility	to	determine	all	viability	measures	presented	here;	second,	
they	make	all	risks	and	chances	of	the	different	analyses	transpar-
ent,	and	finally,	they	allow	for	comprehensive	and	valid	compari-
sons	 between	 studies,	 facilitating	meta-	analyses	 of	 studies	 that	
assess	population	viability.
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