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Abstract 
Recent advances in intelligent vehicles imply more sophisticated control laws. The standard concept of 

objective function and models of vehicle and driver represented by differential equations, are not anymore 

sufficient tools in a future scenario. The capability of reasoning of the machines imposes the use of logic as 

a fundamental tool to describe requirements of the behavior of the vehicle, and to characterize their response. 

However, logical statements exhibit a difficulty of integration with the differential physic laws to which the 

vehicle obeys. There is a clear heterogeneity between mathematics and logic, especially when they must 

fuse into a single model. The paper proposes an integrated model in which the physics and the logic fuse 

into a common model, able to generate a meaningful objective function to optimize the behavior through a 

physical-logic model of the vehicle in the context of control of hybrid dynamical systems. Not negligibly, a 

logic-statement design helps the autonomous driving to be more acceptable and comprehensible in an 

insurance and court law context.  

1 Introduction 

The present paper deals with the problem of autonomous vehicle control in the presence of logical 

constraints that drive the decision making of the on-board intelligence. Engineering control problems take 

form, in optimal control theory, in terms of an objective function that provides a measure of the 

performances and control cost [1]. Moreover, they use a mathematical model of the process to be controlled 

described by differential equations taking account of the physics laws to which the process obeys. In the 

case of an autonomous vehicle, the laws of mechanics (or mechatronics) represent the constraint between 

the vehicle state and its control [2-6]. However, in several circumstances, and not only for technical reasons, 

such for example because of algorithmic transparency [7] that becomes a crucial element for social and by 

law acceptability of autonomous vehicles, or of other forms of autonomous robotics [8], the introduction of 

logical rules to govern the robotic behaviour seems to be natural and preferable. The present paper uses 

propositional logic as a tool for translating natural language requirements into algebraic constraints [9-11]. 

The logical statements to prescribe the behaviour of the car are particularly significant and understandable, 

since they put behavioural rules expressed in terms of natural language. In the present paper, the use of 

logical statements is included into the decision process through a suitable combination of the physical and 

logical constraints leading to a hybrid dynamical system [12-18]. A simple example shows how one can 

operate in practice using logical statements in automated driving. 
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2 Decision making approach: logical statements and modelling of 
the physical world 

In this paper, automatic decisions of an intelligent route planner develop under the light of formal logic.  

The use of sentences coming from natural languages to condition the behaviour of robots has many 

advantages but at the same time exhibits strong difficulties.  

On one side, it requires a tremendous effort to translate the natural language into an artificial one with its 

own rules. Many problems arise in this context, since human language is a very evolved and complex tool 

of communications the interpretation and reduction of which into a set of rigid rules is practically 

impossible. The human way to intend part of the discourse terms and of the possible meaning of its recurring 

elements is a subject that largely goes beyond the limits of many branches of engineering and mathematics. 

Although formal logic dates back to the Aristoteles conception, and one of the most famous examples is the 

syllogistic reasoning scheme, the entire historical evolution of this branch of mathematics (that involves 

philosophy and linguistics) shows enormous difficulties, and an attempt of giving a mathematical structure 

to the human language is a hard task and a thorny adventure. Nevertheless, formal logic is the best historical 

experiment in this direction showing good abilities and success in performing such operation. The 

investigation of the relationship between human language and its logical translation is not a subject of 

competence of the authors and is outside the range and scopes of the present paper. 

However, the chance of using natural language prescriptions to constraint the operational behaviour of 

robots has a fundamental advantage with respect to the social acceptability of autonomous machines that 

will populate the future world. In fact, we can prescribe limits and rules for their behaviour closer to human 

understanding, even and especially when non engineering specialized people have to take decisions about 

their use, or a court has to judge their behaviour, or evaluate responsibilities in case of damages or injuries 

produced by the robot. The civil and criminal codes and the entire structure of the legal system are the most 

advanced and refined way a human society has given to rule its own life, and they express in terms of natural 

language. If human beings obey these rules, it is natural to ask machines to obey the same rules. Much less 

natural is to program machines following only mathematical schemes the translation of which in terms of 

natural language statements is frequently impossible. Robotic engineering must indeed take care of this 

problem. 

This subject is of inspiration for the present paper that makes an attempt of introducing, into the context of 

autonomous driving decision, a set of natural language statements, leading to a hybrid dynamical system. 

The technical problems emerging from this experiment are interesting. We use, as a first step, simple 

propositional logic. However, since the description of the car behaviour implies the need to introduce a 

mathematical model of the reality in which the car operates, i.e. of mathematical models of the physical 

world, the problem is the mixing of models of different nature: logical variables, and real variables, governed 

by logical rules and differential equations, respectively. They are part of a large family of hybrid control 

problems. 

Our investigation proposes practical examples to introduce natural language prescriptions into the behaviour 

of an autonomous car, discussing strategies and problems of this operation. 

3 Application examples of autonomous driving 

Let us formulate in natural language an elemental logical statement that could be the base of an autonomous 

driving behaviour to control a micro-fleet of vehicles. 

The elemental initial example applies to the vehicles V1 and V2, driving in the same direction on two parallel 

lanes 

  



Assume we desire to respect the rule expressed in natural language: 

 

If V1 and V2 are too close and they are on the same lane, then one of them must change lane (1) 

 

Moreover, we have the vehicles dynamics physical rule, described as: 

 𝑠′1 = 𝑠1 + 𝑣1,   𝑠′2 = 𝑠2 + 𝑣2  (2) 

    

These statements are particularly simple, but they are useful to clarify the way we operate.  

Equation (1) prescribes a logical rule of driving, equation (2) a mathematical law to describe the kinematics 

of V1 and V2. Symbols 𝑠′𝑖, 𝑠𝑖,𝑣𝑖 stand for position along the i-th lane at the next time, position along the i-

th lane at the actual time, speed of the i-th vehicle, respectively. The time increment is for simplicity taken 

as unit, since 𝑠′1 = 𝑠1 + 𝑣1∆𝑡, and 𝑣1, 𝑣2 can be in general variable with time. Therefore, in the 

following, the prime stands for “at the next time”. 

Let us introduce the following variables. 

Control logical state variables 𝐿1, 𝐿2 

𝑉(𝐿1) = 0   𝑚𝑒𝑎𝑛𝑠 𝑉1 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 𝑙𝑎𝑛𝑒 

𝑉(𝐿1) = 1   𝑚𝑒𝑎𝑛𝑠 𝑉1 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 𝑙𝑎𝑛𝑒 

𝑉(𝐿2) = 0   𝑚𝑒𝑎𝑛𝑠 𝑉2 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 𝑙𝑎𝑛𝑒 

𝑉(𝐿2) = 1   𝑚𝑒𝑎𝑛𝑠 𝑉2 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 𝑙𝑎𝑛𝑒 

Note  𝑙 = 𝑉(𝐿) is the value l of the logical variable L, where l can be 1 or 0; 𝑠1, 𝑠2 are instead usual real 

valued state variables. Therefore, the state of the system remains with four state variables of mixed nature, 

logical and real. 

Let us interpret a logical statement as a diadic function that associates to the pair of logical variables p and 

q (that can assume the values 0-false or 1-true) a logical value, 0 or 1. 

Propositional logic introduces some elemental operations among logical variables, such as the operators 

disjunction (symbolic notation ∨, 𝑂𝑅), exclusive disjunction (symbolic notation ∨̇, XOR) conjunction 

(symbolic notation ∧, AND), implication (symbolic notation →, 𝐼𝐹 − 𝑇𝐻𝐸𝑁), double implication 

(symbolic notation ↔, or also ≡, 𝐼𝐹 𝐴𝑁𝐷 𝑂𝑁𝐿𝑌 𝐼𝐹), negation (symbolic notation ~, NOT). Such 

logical operations establish the correspondence between the two logical variables p and q and the final 

logical result, following the rules: 

𝑝 ∨ 𝑞 = 1 𝑖𝑓 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑖𝑠 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑖𝑠 0 

𝑝 ∨̇ 𝑞 = 1 𝑖𝑓 𝑜𝑛𝑒 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑖𝑠 1, 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑏𝑜𝑡ℎ, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑖𝑠 0 

𝑝 ∧ 𝑞 = 1 𝑖𝑓 𝑏𝑜𝑡ℎ 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑎𝑟𝑒 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑖𝑠 0 

𝑝 → 𝑞 = 1 𝑖𝑓 𝑝 = 0 𝑤ℎ𝑎𝑡𝑒𝑣𝑒𝑟 𝑞, 𝑜𝑟 𝑖𝑓 𝑝 = 1 𝑎𝑛𝑑 𝑞 = 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑖𝑠 0 

𝑝 ↔ 𝑞 𝑖𝑠 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 (𝑝 → 𝑞) ∧ (𝑞 → 𝑝) 

The true tables condense these results explicitly: 

 



Table 1: OR-operator truth table 

p q 𝒑 ∨ 𝒒 

1 1 1 

1 0 1 

0 1 1 

0 0 0 

Table 2: XOR-operator truth table 

p q 𝒑 ∨̇ 𝒒  

1 1 0 

   

1 0 1 

0 1 1 

0 0 0 

Table 3: AND-operator truth table 

p q 𝒑 ∧ 𝒒 

1 1 1 

1 0 0 

0 1 0 

0 0 0 

Table 4: IF THEN-operator truth table 

p q 𝒑 → 𝒒 

1 1 1 

1 0 0 

0 1 1 

0 0 1 

 

From these tables it is possible to formalize a complex logical statement involving logical variables. An 

equivalent form of these tables can reproduce, by using the Boolean expressions, the logic operators result 

in an algebraic fashion. Direct verification shows the following correspondence: 



Table 5: Boolean Expressions of Previous Truth Tables 

LOGICAL OPERATION BOOLEAN OPERATION 

𝒑 ∨ 𝒒,     𝒑 ∨̇ 𝒒 p+q-pq,     p+q-2pq 

𝒑 ∧ 𝒒 pq 

𝒑 → 𝒒 1-p+pq 

𝒑 ↔ 𝒒;  𝒑 ≡ 𝒒 2pq-p-q+1 

~𝒑 1-p 

 

Using the previously introduced operators and variables, we can translate the natural language sentence (1) 

into a formal logical expression: 

𝐼𝑓 𝐵(𝑑) ∧ (𝐿1 ≡ 𝐿2)  

𝑡ℎ𝑒𝑛 {[(𝐿′1 ≡∼ 𝐿1) ∧ (𝐿′2 ≡ 𝐿2)] ∨ [(𝐿′1 ≡ 𝐿1) ∧ (𝐿′2 ≡∼ 𝐿2)]} 

or in a more compact form: 

 [𝐵(𝑑) ∧ (𝐿1 ≡ 𝐿2)] → {[(𝐿′1 ≡∼ 𝐿1) ∧ (𝐿′2 ≡ 𝐿2)] ∨ [(𝐿′1 ≡ 𝐿1) ∧ (𝐿′2 ≡∼ 𝐿2)]} (3) 

Where 𝐵(𝑑) is the boolean variable associated to the cars distance 𝑑 = |𝑠1 − 𝑠2|. Namely: 

 

𝐵(𝑑) = 1, 𝑖𝑓 𝑑 < 𝑑0 

𝐵(𝑑) = 0, 𝑖𝑓 𝑑 ≥ 𝑑0 

i.e.: 

 𝐵(𝑑) =
1

2
(1 −

𝑑−𝑑0

|𝑑−𝑑0|
)  (4) 

 

Then, following Boolean transformations, the elemental relationships hold: 

Table 6: Lanes Boolean Expressions 

Logical Expression Algebraic Translation 

𝑳𝟏 ≡ 𝑳𝟐 2𝑙1𝑙2 − 𝑙1 − 𝑙2 + 1 

𝑳′𝟏 ≡ ~𝑳𝟏 𝑙′1 + 𝑙1 − 2𝑙
′
1𝑙1 

𝑳′𝟐 ≡ 𝑳𝟐 2𝑙2𝑙′2 − 𝑙2 − 𝑙
′
2 + 1 

𝑳′𝟏 ≡ 𝑳𝟏 2𝑙1𝑙′1 − 𝑙1 − 𝑙
′
1 + 1 

𝑳′𝟐 ≡ ~𝑳𝟐 𝑙′2 + 𝑙2 − 2𝑙
′
2𝑙2 

 

To complete the algebraic transformation of the sentence (3), we have (looking at the Table 5): 



Table 7: Sentence Boolean Expressions 

Logical Expression Algebraic Translation 

[𝑩 ∧ (𝑳𝟏 ≡ 𝑳𝟐)] ≡ 𝑯𝒑 𝐵(2𝑙1𝑙2 − 𝑙1 − 𝑙2 + 1) = ℎ𝑝 

(𝑳′𝟏 ≡∼ 𝑳𝟏) ∧ (𝑳′𝟐 ≡ 𝑳𝟐) (𝑙′1 + 𝑙1 − 2𝑙
′
1𝑙1)(2𝑙2𝑙

′
2
− 𝑙2 − 𝑙

′
2 + 1)

= 𝑒1𝑒2 

(𝑳′𝟏 ≡ 𝑳𝟏) ∧ (𝑳′𝟐 ≡∼ 𝑳𝟐) (2𝑙1𝑙′1 − 𝑙1 − 𝑙
′
1 + 1)(𝑙′2 + 𝑙2 − 2𝑙

′
2𝑙2) =

𝑟1𝑟2 

{[(𝑳′𝟏 ≡∼ 𝑳𝟏) ∧ (𝑳′𝟐 ≡ 𝑳𝟐)]
∨ [(𝑳′𝟏 ≡ 𝑳𝟏) ∧ (𝑳′𝟐 ≡∼ 𝑳𝟐)]}
≡ 𝑻𝒉 

𝑒1𝑒2 + 𝑟1𝑟2 − 𝑒1𝑒2𝑟1𝑟2 = 𝑡ℎ 

 

The final logical expression we desire to implement is: 

𝑉(𝐻𝑝 → 𝑇ℎ) = 1 

This means, whatever the variables values, the sentence is true, meaning the rule of driving (3) holds. 

Algebraically it transforms as: 

1 − ℎ𝑝 + ℎ𝑝 ∙ 𝑡ℎ = 1 

i.e.: 

 ℎ𝑝 ∙ (𝑡ℎ − 1) = 0 (5) 

and  

𝐵(𝑑)(2𝑙1𝑙2 − 𝑙1 − 𝑙2 + 1)(𝑒1𝑒2 + 𝑟1𝑟2 − 𝑒1𝑒2𝑟1𝑟2 − 1) = 0 

i.e.: 

 𝐵(𝑑)(2𝑙1𝑙2 − 𝑙1 − 𝑙2 + 1)(𝑒1𝑒2 − 1)(1 − 𝑟1𝑟2) = 0 (6) 

This is the product of four factors. It is the algebraic representation of the considered logical constraint by 

using a Boolean reduction. 

Since B depends on 𝑑 = |𝑠1 − 𝑠2|, and 𝑒1, 𝑒2, 𝑟1, 𝑟2 are each functions of 𝑙1, 𝑙2, 𝑙
′
1, 𝑙

′
2, we can write the 

previous logical constraint as: 

 𝐸(𝑙1, 𝑙2, 𝑙
′
1, 𝑙

′
2, 𝑠1, 𝑠2) = 0 (7) 

Note that: 

-It appears that the logical decision variables are not uniquely determined in order to satisfy the logical 

constraint. In other words, different possibilities exist to satisfy it. In fact, we have four state variables, 

𝑠1, 𝑠2, 𝑙1, 𝑙2 constrained by only three equations: 

{

𝐵(𝑑)(2𝑙1𝑙2 − 𝑙1 − 𝑙2 + 1)(𝑒1𝑒2 − 1)(1 − 𝑟1𝑟2) = 0

𝑠′1 − 𝑠1 − 𝑣1 = 0

𝑠′2 − 𝑠2 − 𝑣2 = 0

 

 

that makes it impossible to find a unique solution. 

This is a direct consequence of the fact of introducing logical rules. In fact, we meet frequently problems in 

which they do not define scenarios with a unique solution, but they leave open different possible alternatives. 

If these alternatives can be equivalent under the point of view of satisfaction of the equation E=0, they can 

be instead different under some other respects, suggesting some decision can be better than others.  



-The previous remark suggests an additional criterion, aimed at solving the problem of the alternatives, 

should appear indicating the most convenient choice among those possible to respect the same logical 

constraint. 

-The additional criterion can have different form and inspiration. We analyse in the following two types of 

integration requirements. The first consists in introducing an additional logical constraint. The second, more 

closely resembling the optimal control theory, instead minimizes a penalty function. 

3.1 Alternatives disambiguation: Additional logical constraints or logical rules 
modifications 

Let us examine the first chance to eliminate the disambiguation problem. 

For example, we can introduce the criterion to make the lane change operating on the slowest vehicle, a 

reasonable criterion inspired to safety, since a slower vehicle can operate a safer steering. This is a logical 

criterion, which can take the form: 

If a change of lane is needed,, then is the slowest car to change lane 

Let us put this sentence into an additional logical statement form. Introducing the Boolean variable 

 𝐵(∆𝑣) =
1

2
(1 −

𝑣1−𝑣2

|𝑣1−𝑣2|
) (8) 

that implies 𝐵(∆𝑣) = 1 𝑖𝑓 𝑣1 < 𝑣2, 𝐵(∆𝑣) = 0 𝑖𝑓 𝑣2 < 𝑣1, we have: 

𝐼𝐹  

𝐻𝑝 = 𝐵(𝑑) 

𝑇𝐻𝐸𝑁 

𝑇ℎ = [(𝐼𝐹 (𝐵(∆𝑣)) 𝑇𝐻𝐸𝑁 ((𝐿′1 ≡∼ 𝐿1)] ∨̇ [(𝐼𝐹 (∼ 𝐵(∆𝑣)) 𝑇𝐻𝐸𝑁 ((𝐿
′
2 ≡∼ 𝐿2)] 

 

That, following the same considerations previously illustrated, becomes: 

𝑉(𝐻𝑝 → 𝑇ℎ) = 1 

𝑉(𝐻𝑝)𝑉(𝑇ℎ) − 𝑉(𝐻𝑝) = 0 

i.e.: 

𝑉(𝐻𝑝)𝑉(𝑇ℎ) − 𝑉(𝐻𝑝) = 0 

Then: 

 𝐵(𝑑)𝑉(𝑇ℎ) = 𝐵(𝑑) (9) 

It is: 



𝑉(𝑇ℎ) = [1 − 𝐵(∆𝑣) + 𝐵(∆𝑣)(𝑙′1 + 𝑙1 − 2𝑙
′
1𝑙1)]

+ [1 − (1 − 𝐵(∆𝑣)) + (1 − 𝐵(∆𝑣))(𝑙′2 + 𝑙2 − 2𝑙
′
2𝑙2)]

− 2[1 − 𝐵(∆𝑣) + 𝐵(∆𝑣)(𝑙′1 + 𝑙1 − 2𝑙
′
1𝑙1)][1 − (1 − 𝐵(∆𝑣))

+ (1 − 𝐵(∆𝑣))(𝑙′2 + 𝑙2 − 2𝑙
′
2𝑙2)]

= [1 + 𝐵(∆𝑣)(𝑒1 − 1)] + [𝑟2 + 𝐵(∆𝑣)(1 − 𝑟2)]
− 2[1 + 𝐵(∆𝑣)(𝑒1 − 1)][𝑟2 + 𝐵(∆𝑣)(1 − 𝑟2)]
= [1 + 𝐵(∆𝑣)(𝑒1 − 1)] + [𝑟2 + 𝐵(∆𝑣)(1 − 𝑟2)]
− 2[1 + 𝐵(∆𝑣)(𝑒1 − 𝑟2) + 𝐵(∆𝑣)(1 − 𝑟2)(𝑒1 − 1)]
= [1 − 𝑟2 + 𝐵(∆𝑣)(−𝑒1 + 3𝑒1𝑟2 − 2𝑟2)] 

Therefore, the final logical expression is: 

 𝐵(𝑑)[1 − 𝑟2 + 𝐵(∆𝑣)(−𝑒1 + 3𝑒1𝑟2 − 2𝑟2)] = 𝐵(𝑑) (10) 

This permits to complete and summarize our model as: 

{
 

 
𝐵(𝑑)(2𝑙1𝑙2 − 𝑙1 − 𝑙2 + 1)(𝑒1𝑒2 − 1)(1 − 𝑟1𝑟2) = 0

𝐵(𝑑)[1 − 𝑟2 + 𝐵(∆𝑣)(−𝑒1 + 3𝑒1𝑟2 − 2𝑟2)] = 𝐵(𝑑)

𝑠′1 − 𝑠1 − 𝑣1 = 0

𝑠′2 − 𝑠2 − 𝑣2 = 0

 

The first two represents two logical statements, the second two physical kinematic rules. The technique of 

solution implies the first two should be solved with respect to 𝑙′1, 𝑙′2, updating at each time step the two 

Boolean variables 𝐵(∆𝑣), 𝐵(𝑑) depending on the last two kinematic equations. 

The solution of the logical expressions is very simple in the present context, since only four possibilities 

exist for the logical state variables: 𝑙′1 = 0, 𝑙′2 = 0; 𝑙′1 = 0, 𝑙′2 = 1; 𝑙′1 = 1, 𝑙′2 = 0; 𝑙′1 = 1, 𝑙′2 = 1. 

Therefore, in general, the sequential check of all the possible logical variable combinations is a possible 

simple option of solution.   

Note, in this case we did not introduce any distinction between state variables and control variables. 

The use of the implication operator implies, under the logical point of view, that there are further conditions 

that produce ambiguity, and again not unique mathematical solutions. In fact, the if-then table shows the 

known rule for implication: if the premise is false, then conclusion con be equally false or true. Latin rule 

to illustrate this fact is ex falso sequitur quodlibet, i.e. from a false premise everything can follow (false or 

true). This implies that, when imposing  𝑉(𝐻𝑝 → 𝑇ℎ) = 1 , for 𝑉(𝐻𝑝) = 0, this condition becomes an 

identity, whatever the values of the involved logical variables, and in this way, it does not add any useful 

information to the decision model. In fact if 𝑉(𝐻𝑝 → 𝑇ℎ) = 1 then 𝑉(𝐻𝑝 → 𝑇ℎ) = 1 − 𝑝𝐻𝑝 + 𝑝𝐻𝑝𝑞𝑇ℎ =

1, i.e. 𝑝𝐻𝑝(𝑞𝑇ℎ − 1) = 0 , that for 𝑝𝐻𝑝 = 0, vanishes collapsing into a trivial identity. This suggests 

modifying or correct the implication operator for this application looking at the expression 1+p-q instead of 

1-p+pq that is capable to eliminate the ambiguity never collapsing into an identity if the premise is false (i.e. 

when p=0). 

The decision model modifies as: 

{
 
 

 
 𝐵(𝑑)(2𝑙1𝑙2 − 𝑙1 − 𝑙2 + 1) − 𝑒1𝑒2 − 𝑟1𝑟2 + 𝑒1𝑒2𝑟1𝑟2 = 0

𝐵(𝑑)(2𝑙1𝑙2 − 𝑙1 − 𝑙2 + 1) − [𝐵(∆𝑣)𝑒1 + (1 − 𝐵(∆𝑣))𝑟2 − 2(𝐵(∆𝑣)𝑒1(1 − 𝐵(∆𝑣))𝑟2)] = 0

𝑠′1 − 𝑠1 − 𝑣1 = 0

𝑠′2 − 𝑠2 − 𝑣2 = 0

 

 

The numerical solution of this system of conditions produces valid results. In Figure 1 the two logical 

variables are plotted as function of time, considering the logical additional condition: 



If a change of lane is needed,, then is the slowest car to change lane 

and in with Figure 2 an additional condition: 

If a change of lane is needed,, then is the fastest car to change lane 

It appears that the logical variables make the jump when the Boolean variable of the distance is 1, i.e. when 

the cars become closer. 

 

Figure 1: Logical Inputs to the Controller (case of lane change operated by the slowest car) 

 

Figure 2: Logical Inputs to the Controller (case of lane change operated by the fastest car) 



3.2 Alternatives disambiguation: Cost function minimization 

Let us introduce a different approach to solve the disambiguation problem and let us describe the problem 

with three cars using a more complex model. 

The introduction of a minimizing cost function is an effective way to eliminate disambiguation. In fact, 

when more than one solution exists, if one asks to determine the best solution that minimizes the objective 

function, a ranking of the different solutions is produced on the basis of the value of the objective function 

of each of the considered solutions. This allows selection, among the possible alternatives, of the one 

minimizing the objective function, solving the disambiguation problem. 

We start with an analogous logical requirement illustrated at the beginning of the paper, now specified for 

three vehicles: 

 

P=If V1 and V2 are too close and they are on the same lane, then one of them must change lane;  

OR 

Q=If V1 and V3 are too close and they are on the same lane, then one of them must change lane; 

OR 

R=If V2 and V3 are too close and they are on the same lane, then one of them must change lane; 

  

i.e. 𝑉(𝑃 ∨ 𝑄 ∨ 𝑅) = 1 . 

 

The formal algebraic form of the three previous statements becomes: 

𝑝 = 1 + 𝐵(𝑑12)(2𝑙1𝑙2 − 𝑙1 − 𝑙2 + 1)(𝑒1𝑒2 − 1)(1 − 𝑟1𝑟2) 

𝑞 = 1 + 𝐵(𝑑13)(2𝑙1𝑙3 − 𝑙1 − 𝑙3 + 1)(𝑒1𝑒3 − 1)(1 − 𝑟1𝑟3) 

𝑟 = 1 + 𝐵(𝑑23)(2𝑙2𝑙3 − 𝑙2 − 𝑙3 + 1)(𝑒2𝑒3 − 1)(1 − 𝑟2𝑟3) 

Therefore, 𝑉(𝑃 ∨ 𝑄) =  𝑝 + 𝑞 − 𝑝𝑞 and 𝑉(𝑃 ∨ 𝑄 ∨ 𝑅) = ( 𝑝 + 𝑞 − 𝑝𝑞)(1 − 𝑟) + 𝑟 = 1. 

Thus, we have the logical statement: 

 ( 𝑝 + 𝑞 − 𝑝𝑞)(1 − 𝑟) + 𝑟 − 1 = 0 (11) 

Assume each car obeys the dynamics rule 𝑣′𝑖 − 𝑣𝑖 = 𝐹𝑖, where the force 𝐹𝑖  (braking or accelerating) is 

now a control parameter. The kinematic rule 𝑠′𝑖 − 𝑠𝑖 = 𝑣𝑖  still holds. Suppose one desires to have a “fast” 

traffic, i.e. possibly the three speed would be high, so it is desirable the value  ∑ 𝑣𝑖
2(𝑡𝑘)

3
𝑖=1  is possibly large. 

However, we do not want to increase the transportation cost too much, that we assume to be proportional to 

∑ 𝐹𝑖
2(𝑡𝑘)

3
𝑖=1  that implies accelerations (negative or positive) are penalized. Assume that also “fast steering” 

maneuvers are penalized, for example including into the penalty function the term  ∑ 𝑣𝑖(𝑡𝑘)[𝑙𝑖(𝑡𝑘) −
3
𝑖=1

𝑙𝑖(𝑡𝑘−1)]
2, that is a mixed term, including logical and real state variables: a change of lane is more penalized 

when the speed is high. Therefore, one builds up the objective function: 

 𝐽 = ∑ [𝐴∑ 𝑣𝑖
2(𝑡𝑘)

3
𝑖=1 − 𝐵∑ 𝐹𝑖

2(𝑡𝑘) − 𝐶 ∑ 𝑣𝑖(𝑡𝑘)[𝑙𝑖(𝑡𝑘) − 𝑙𝑖(𝑡𝑘−1)]
23

𝑖=1
3
𝑖=1 ]𝑁

𝑘=1  (12) 

where A,B,C are three weighting parameters.  

For a simpler example of two cars, analogous to the previous, we desire minimize J subject to the 

constraints: 



{
 
 

 
 
𝐵(𝑑)(2𝑙1𝑙2 − 𝑙1 − 𝑙2 + 1) − 𝑒1𝑒2 − 𝑟1𝑟2 + 𝑒1𝑒2𝑟1𝑟2 = 0

𝑠′1 − 𝑠1 − 𝑣1 = 0

𝑠′2 − 𝑠2 − 𝑣2 = 0
𝑣′1 − 𝑣1 = 𝐹1
𝑣′2 − 𝑣2 = 𝐹2

 

 

Under the mathematical point of view, this problem exhibits the difficulty of involving the two logical 

variables 𝑙𝑖, which are not real and assumes only the two values 0 and 1. This does not permit the direct 

application of the Pontryagin approach and leads the problem on the ground of hybrid systems. Specific 

methods are available in this field (see for example [16-18]). 

Let us solve here the problem dealing with the logical variables introducing them in the context of real 

variables by inserting a continuous form also for them. Let us replace 𝑙1, 𝑙2 by 𝜉1, 𝜉2 with the definition: 

𝑙1 = 1 + 𝛽 𝑎𝑡𝑎𝑛(𝛼𝜉1),  𝑙2 = 1 + 𝛽 𝑎𝑡𝑎𝑛(𝛼𝜉2) 

Where the new variables 𝜉1, 𝜉2 are now real, and with a suitable choice of 𝛼, 𝛽, they give back 𝑙1, 𝑙2 that 

are in the range (0,1). Their values except for a small interval close to zero, produce the desired values 0 

and 1. 

Therefore, with this variable change our problem is characterized by real variables and solved using the 

standard procedures. 

The numerical solution of the previous minimization problem is implemented. In Figure 3, the real control 

variables, i.e. the forces applied to the two cars, appear together with the logical variables. The forces start 

with a high intensity to accelerate the two cars, then their speed (see Figure 4) stabilize at some optimal 

values. When their distance becomes smaller and reaches the threshold for the lane change, the fastest car 

changes its lane (see Figure 3). Figure 4 shows the state variables of the system. 

 

Figure 3: Physical and Logical Inputs to the Controller 



 

Figure 4: State Variable 

4 Conclusions 

The present paper attacks an important problem in the context of autonomous driving and more in general 

of autonomous robotics. In fact, there is an increasing pressure from the society for a better understanding 

of the behavior rules adopted by autonomous robots not under the human supervision. Some of the classical 

formulations of control, such as optimal control theory, based only on physical laws constraints do not make 

explicit the rules at which the robot obeys. Frequently, the translation into natural language of their behavior 

is impossible and this produces legal and ethical problems in the acceptability of governing robotics laws. 

The courts will be faced soon with the problem of evaluating the responsibility of damages and injuries 

produces by autonomous robots, and a clear statement of the rules at which the device obeys becomes a 

crucial question. 

The present paper makes very elemental examples of decision models that use differential equations and 

propositional logic statements applied to the autonomous driving of a car. The statement of logical rules that 

translate natural language behavior requirements shows a different nature with respect to differential laws. 

Using propositional logic to translate the natural language sentences, we show these translate in turn into a 

Boolean arithmetic representation, and mix with the differential models, describing the dynamics of the car 

in the physical environment. Numerical results show the process works correctly. 

Our team is at work to implement this method on much more complex examples, using the illustrated method 

to drive the experimental car platform Auto Sapiens, the real autonomous car in our lab. 
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