
Experimental investigation on the use of multiple very low-cost inertial-based devices for 1 

comfort assessment and rail track monitoring 2 

 3 

Rafael Henrique de Oliveira, Giuseppe Loprencipe, Flavio Guilherme Vaz de Almeida Filho, 4 

Rodrigo de Sousa Pissardini 5 

ABSTRACT 6 

The periodic rail track inspection is mandatory to ensure ride comfort and operational safety. 7 

However, conventional monitoring technologies have high costs, stimulating research on low-cost 8 

alternatives. In this regard, this paper presents the first experimental results on the use of multiple 9 

very low-cost sensors aboard trains for vibration monitoring, proposing a collective approach to 10 

provide more accurate and robust results. Nine devices comprising commercial-grade inertial 11 

sensors were tested in different distributions aboard a track recording train. Frequency weighted 12 

accelerations were calculated in accordance with ISO 2631 standard as comfort and indirect track 13 

quality index. As expected, vertical and lateral results were correlated with, respectively, track 14 

longitudinal level (range D1, maximum correlation coefficient of 0.86) and alignment (range D2, 15 

maximum correlation coefficient of 0.60), with numerically similar results when considered the 16 

fused signal. The potentiality of the collective approach was proven as result of noise reduction 17 

and identification of discrepant sensors. 18 
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1 Introduction 22 

For railway infrastructure management, the periodic inspection of track quality is fundamental to 23 

ensure proper dynamic behaviour of the train-track system and, thus, a safe operation and a 24 

comfortable ride. For this inspection activity, the use of dedicated self-propelled or hauled vehicles, 25 

such as track recording (or track geometry) cars and trains, is a well-established technique [1–4] 26 

and a more productive alternative to the traditional survey with topographic instruments, the visual 27 

inspection, and the manual track geometry trolleys.  28 

In order to fit the inspection activity to average running speeds even in high-speed lines, the most 29 

modern track recording vehicles technologies mainly employ optical system (noncontact) and 30 

inertial sensors (response-based) to gather geometry data [4,5], i.e., the surveying of designed 31 

geometry and its defects/irregularities. Examples of these concepts are the modern track recording 32 

trains that are similarly designed or converted from commercial passenger trains or coaches 33 

[3,6,7]. These dedicated vehicles may carry dozens of sensors comprising optical lasers and 34 

inertial platforms for track inspections, strap-down inertial sensors to perform running behaviour 35 

and ride comfort, and complementary sensors to perform signalling, catenary, and 36 

telecommunication inspection. More affordable alternatives are the Unattended Geometry 37 

Measuring Systems (UGMS), compact modules that combine inertial sensors and laser 38 

triangulation surveying and are able to be installed underneath commercial trains [8].  39 

The main drawbacks of dedicated track inspection vehicles and systems are their high acquisition 40 

and maintenance costs, and the significant traffic impact. These factors hinder a regular, frequent 41 

cycle of inspections and curbs continuous or quasi-continuous monitoring, stimulating the search 42 

for alternative methods with lower costs. Alternatives such as the UGMS modules do not impact 43 

traffic but still demands a considerable investment of resources. Pursuing even lower costs and 44 

quasi-continuous monitoring, alternatives have arisen based on low-cost, small-size inertial 45 

sensors attached in the axle box [9–14], the bogie [15–18], or the car body [19–22] of in-service 46 

vehicles to measure vibration response to track irregularities. As an example of commercial 47 

application of this concept, Deutsche Bahn employs inertial sensors installed in the restaurant car 48 



of high-speed trains to perform track geometry, running behaviour and ride comfort assessment in 49 

complement to the inspection already performed by the standard track recording cars [3].  50 

Although these proposed inertial-based systems mainly employ industrial or navigation-grade 51 

strap-down inertial sensors due to minimum performance requirements, the use of very-low-cost 52 

sensors (consumer-grade) such as those embedded in smartphones in rail track monitoring has 53 

becoming considered [20,21,23,24], laying the groundwork for collective sensing activities under 54 

the crowdsensing concept. It makes use of the pervasive presence of mobile devices, such as 55 

smartphones and tablets, with built-in inertial sensors and positioning and communication 56 

capabilities that can transform vehicles and passengers into mobile sensing agents. 57 

Concerning inertial-based methods in railroad monitoring, the primary problems are related to the 58 

high vibration acting on sensors installed on the axle box [25], requiring more constant 59 

maintenance on sensors and more resistant devices. On the other hand, when the sensors are 60 

placed under the influence of suspension, as proposed for the very-low-cost devices, the 61 

appropriate definition of filters and processing methods to obtain realistic track geometry or track 62 

quality indexes in scenarios with speed and vehicle variations is pivotal. Moreover, considering 63 

future crowdsourced systems and the collective use of these very low-cost sensors (i.e., multiple 64 

sensors on board the same vehicle in different positions), issues such as the influence on the 65 

measurements of the longitudinal or transversal sensor position aboard the vehicle and the 66 

improvement in accuracy when integrating multiples similar sensors in the same vehicle were not 67 

utterly addressed.  68 

In this paper, the results of tests using multiples consumer-grade low-cost sensors are presented. 69 

Each apparatus comprises a combination of a micro-electrical-mechanical system (MEMS)-based 70 

Inertial Measurement Unit (IMU), a mini Global Positioning System (GPS) module, a single-board 71 

microcomputer to control sensors and store data in a dedicated system, and a battery for 72 

autonomous operation. Regarding the proposed tests, these devices are a more affordable and 73 

flexible option than smartphones, and their similarity in quality level allows for extrapolation of the 74 

conclusions to a collaborative smartphone-based system. Nine of these devices were attached to 75 

the track inspection trains of the Italian Railway Network and tested in different spatial 76 

configurations over four days of travel throughout the Italian high-speed network.  77 

This work presents two main analyses: a) comfort assessment by calculating vertical frequency-78 

weighted accelerations in accordance with ISO 2631 (standard for evaluation of human exposure 79 

to whole-body vibration), with comparison among sensors and analysis of improvement given by 80 

data fusion; and b) validation of the results considering reference data from the inspection train for 81 

one of the selected stretches. Besides the comfort analyses themselves, the proposed method 82 

allows for an indirect track quality assessment. As the main contribution, this work aims aim 83 

develop the basis for the collective track monitoring, dealing with issues such as the magnitude of 84 

influence of sensor position inside train cabins and the accuracy improvement when integrating 85 

data from different devices. Moreover, the device developed in this research is a relevant 86 

contribution as a possible dedicated low-cost tool for track monitoring. 87 

2 Background and related work 88 

2.1 Vehicle response to the track features 89 

The response-based track inspection principle has been used since the first track recording 90 

vehicles [26] and considers the relationship between vehicle displacements and railroad geometry 91 

features and irregularities. Rail vehicle excitation occurs at the wheel-rail interface, and the 92 

associated contact forces are nonlinear functions of variations of lateral and vertical track position 93 

and speed [27]. Besides track geometry, irregularities, and velocity, other aspects such as track 94 

stiffness, vibration isolation given by suspension, vehicle body features, and relative distance to 95 



bogie centreline also influence the amplitude of the irregularity-related linear and angular 96 

displacements inside the car body [24,27,28].  97 

Direct track geometry assessment can be performed using accelerometers installed on axle boxes, 98 

applying double integration on the acceleration data acquired,  in a simplified approach [3,25] or 99 

ideally considering the rail-wheel contact modelling in the transfer function [18,29–31] to estimate 100 

irregularities. Accelerometers installed on the bogie and inside the car body are widely used for 101 

running behaviour and ride comfort assessment [3,7,32]; at any rate, they also can be used for 102 

geometry analysis if the suspension displacements are known [4] or if the dynamic properties and 103 

the operating conditions are well known [33,34] and considered in the train-track dynamic model. 104 

To meet the data quality requirements, the use of tactical, industrial or navigation-grade inertial 105 

sensors (medium/high-cost) in such systems is preferred. Moreover, the georeferencing of track 106 

data is usually performed through GPS coordinates (often with differential correction) integrated 107 

with signalling information, odometry and inertial data.   108 

 An alternative approach is the analysis of vehicle vibration in terms of its expected spectral 109 

response to irregularities. In this approach, while track designed geometry can be mainly regarded 110 

as long-wavelength features, the deviations in geometry (irregularities) and the rail wear are 111 

described according to their typical wavelength ranges. Thus, the wheelset will be subjected to an 112 

exciting frequency f under the fundamental relationship f = v/L [35–37], where L is the considered 113 

irregularity wavelength modelled as sinusoidal function on which the train is running.  114 

For the sake of human sensitiveness, passenger coach suspension is usually designed to isolate 115 

the cabin for frequencies above about 2 Hz [38]. Moreover, there are the vibration transmission 116 

attenuation or amplification depending on the proximity of the excitation frequency to the natural 117 

frequency [28,38], being the resonance frequency of the sprung mass above the secondary 118 

suspension ranges is about 0.5-1 Hz for the main vibration modes [35,39] and 8-10 Hz for bending 119 

[27,40]. The former frequency range prevails above the bogies, while the latter prevails at the 120 

centre of the car body [40].  121 

From [7,35,37,41], typical wavelengths associated with some of the main track aspects can be 122 

described as presented in Table 1. 123 

Table 1. Main track aspects and their corresponding wavelengths [7,35,37,41] 124 

Wavelength 
range [m] 

Track aspect 

0.03–0.06 Very short wavelength rail corrugation, rail joints, small size squats 
0.06–0.25 Short wavelength rail corrugation, medium size squats 
0.25–0.60 Medium wavelength rail corrugation, large size squats, turnout frog 
0.60-0.70 Sleeper spacing 

0.60–2 Long-wavelength rail corrugation 
0.60–2 Ballast fouling 

3-25 
European Committee for Standardization (CEN) wavelength range D1 for longitudinal level 

and vertical alignment (short wavelength) 

25-70 
CEN wavelength range D2 for longitudinal level and vertical alignment (medium 

wavelength) 

70-200 
CEN wavelength range D3 for longitudinal level [70-150m] and vertical alignment [70- 200 

m] (long wavelength) 

 125 

Irregularity-related lateral and vertical signals obtained may be simplified by the sum of multiples 126 

irregularity-related signatures, each of them approximated by a sinusoid. This spectral aspect 127 

enables Fourier Transform and wavelet-based analyses of responses to extract track features from 128 

vibration signals. On the other hand, the longitudinal vibration component associated with track 129 

irregularities is usually less relevant than its orthogonal counterparts. Regarding longitudinal 130 

models [42,43], it can be considered that this component is mainly due to coupler impact transients 131 



as an indirect effect of irregularity on adjacent coaches. In addition, this component is marginal 132 

when compared to the longitudinal travelling acceleration [44].  133 

As discussed in the European railway standards [41,45] considering the well-known theoretical 134 

consideration on the vehicle-track model and the practical experience, there are clear relationships 135 

between the dynamic quantities measured on each car body axis and the different track geometry 136 

parameters. Thus, the predominant influences on car body response are described as follows: 137 

• Vertical accelerations in the car body are mainly due to defects in longitudinal level. 138 

• Lateral accelerations are mainly affected by track alignment and twist/cross level.  139 

However, the relative motion between the wheelset and the track results that the lateral 140 

displacements do not fully follow the lateral irregularities [46,47], which may reduce the correlation 141 

between lateral irregularities and train cabin lateral accelerations. 142 

A practical issue regarding sensors positioned in the cabin is the influence of sensor position on 143 

signals. If a sensor is placed right over one of the sides of a given bogie, it is expected to follow 144 

more closely the track irregularities of this side. When displaced away from this bogie, the 145 

influence of the other bogies increases, and the signal presents a distinct form due to phase shifts 146 

and differences in magnitude. For example, considering an accelerometer over the rear bogie and 147 

another one over the front bogie on the same side, they will be in phase for bounce mode 148 

responses and out of phase for pitch mode responses [4]. Regarding magnitude, acceleration at 149 

coach extremities is expected to be more significant than at the body centre [40,48]. On the other 150 

hand, tendencies of vibration variation from the front to the rear coach of the train set are intricate 151 

and depend on factors such as the suspension parameters (mean value and variation between 152 

coaches), the equivalent conicity, the stiffness and damping coefficients of coaches coupling, the 153 

speed, the train length and the mass variation between coaches [40,48,49]. 154 

Another practical issue is the Nyquist sampling theorem, which states that a signal with a given 155 

bandwidth f0 can only be reconstructed from its sample values if the sampling frequency is over 156 

twice its bandwidth f0. [50]. From this theorem, the Nyquist sample rate fN = 2f0 is the minimum 157 

sample rate 2fS for a proper signal characterisation without aliasing. Moreover, the f0 frequency 158 

defines the low-pass filter’s minimum cut-off frequency applied as an antialiasing filter when 159 

sampling [51]. Adopting a reverse calculation, the minimum monitorable track irregularity λ for a 160 

fixed sample rate depends on the running speed v and is given by v / 2fS. 161 

Using some of the above-discussed characteristics, low and very low-cost inertial sensors have 162 

been the basis for many affordable experimental alternatives for track quality monitoring. These 163 

initiatives vary concerning the following main aspects:  164 

• Sensor location, i.e., whether in the axle box [9–14], bogie [15–18], or car body [19–22]. 165 

• Sensor grade: relative low-cost, comprising tactical, industrial, and automotive-grade 166 

accelerometers [9,11–13,18,19], and very low-cost, comprising consumer-grade sensors 167 

(smartphones and similar) [20,21,23,24,52]. 168 

• Signal processing approach, i.e., whether track profile is explicitly estimated by using 169 

detailed knowledge of the vehicle dynamic model and its parameters [31,53–55], or it is 170 

implicitly evaluated based on the effect of track irregularities on vehicle vibrations, 171 

considering signal-derived features in time or frequency domain [9,15,35,56,57], or indexes 172 

related to comfort [19] or safety [58]. 173 

2.2 Use of very low-cost inertial sensor in rail track monitoring 174 

[25] highlighted the noise levels and poor stability of consumer-grade sensors, similar to those 175 

proposed in the present paper, as restrictions for their use in track profile direct reconstitution. 176 

Dealing with these limitations and those due to suspension influence, [59] presented a solution 177 

based on an Arduino microcontroller and a consumer-grade IMU composed of accelerometer and 178 



gyroscope, which as applied on track misalignment identification through acceleration peaks and 179 

frequency spectrum over time analysis. [21] employed inertial sensors (accelerometer, gyroscope, 180 

and magnetometer) of eight smartphones attached to the car body of a track recording car to 181 

characterise track cant, curvature, and twist. These authors applied discrete wavelet transform and 182 

sub band coding algorithm to extract long and short wavelength features and yield results that 183 

were compatible with measurements of the state-of-the-art technique. 184 

[20] obtained a good correlation between the standard deviation of vibration gathered by a 185 

smartphone installed on the cabin floor and standard deviation track longitudinal level in D1 and D2 186 

ranges, enabling characterisation of structural performance and degradation in geometry. Based 187 

on the road impact factor, a track quality index based on the average g-force per unit of distance, 188 

[52] dealt with the inaccuracy of GPS from smartphones (in position and speed) and the non-189 

uniform sampling and proposed a windowed averaging of impact factors calculated from 190 

successive train traversals. 191 

2.3 Comfort analysis in railways and its relationship with track features 192 

Concerning the ISO 2631-based approach, its concepts have been used in rail transportation to 193 

relate comfort perception (combination of track irregularity and vehicle characteristics) with track 194 

features or quality parameters [19], in an indirect method to analyse the track quality, characterise 195 

the passenger comfort in accordance with ISO 2631 standard using an accelerometer installed on 196 

the floor of a subway train. With this approach and its geovisualization, multiple transversals 197 

exhibited a consistent correlation between high frequency-weighted vertical acceleration and the 198 

presence of switches. [60] created a smartphone application for comfort analysis and tested it on 199 

two devices. The authors applied an artificial neural network using data gathered by a more 200 

accurate piezoelectric accelerometer for training, and comparison between this technique output 201 

and track geometry parameters was recommended as further work. 202 

[61] developed a smartphone-based track and ride monitoring application that registers the 203 

perception of ride comfort in the cabin according to ISO 2631 and its relation with track features 204 

such as switches, crossings, track stiffness variations, and deteriorated turnouts. [23] performed a 205 

similar ISO-based analysis employing smartphones and concluding by the association between 206 

discomfort peaks and track stiffness transition zones. 207 

3 Materials and Methods 208 

In this research, the two main aspects tested within the proposed collective monitoring system are: 209 

a) the use of consumer-grade (i.e., smartphone-grade) sensors; and b) the use of trains that are 210 

similar to usual passenger trains in terms of the number of coaches, ideally train recording vehicles 211 

that can provide reference data for further validation. The material and methods adopted to meet 212 

these ideas and the proposed data processing methodology are described as follows.  213 

3.1 Device description 214 

The concept of a low-cost collective monitoring system is related to the crowdsensing idea and the 215 

use of smartphones sensors to describe vehicle vibrations and, consequently, enable track quality 216 

estimation. Therefore, viability tests for this monitoring tool consider the use of multiple sensors 217 

operating in parallel during the same train trip. The basic hypothesis considers that a set of low-218 

quality sensors can, in a combined way, offer a robust and accurate operation by minimising the 219 

variance fluctuation of individual sensors. Since the acquisition and use of smartphones present 220 

drawbacks such as cost of acquisition, power limitations, and restrictions on changing and handling 221 

proprietary hardware/software components, the option was to construct dedicated devices using 222 

sensors similar to smartphone-grade sensors to emulate these gadgets affordably. Moreover, 223 

these devices themselves are regarded as possible very low-cost, easy-to-operate tools for track 224 

quality monitoring, working together with traditional techniques or operating in a sensing system 225 

together with smartphones and tablets. 226 



Nine devices were developed based on these concepts, with each device composed of the 227 

following components (as described in a previous work that considered their use on road 228 

monitoring) [62]: 229 

• Raspberry Pi Zero W, a low-cost single-board microcomputer with a 16 GB micro-SD for 230 

Raspbian (Raspberry operating system) installation and data storage. The device has an 231 

802.11 wireless LAN (Wi-Fi) and a Bluetooth interfaces, facilitating the communication to 232 

set up the devices before trips and the parallel control during the experimental tests. 233 

• InvenSense MPU-9250, a MEMS-based Inertial Measurement Unit (IMU) with10 degrees-234 

of-freedom. Besides the three-axis inertial sensors (accelerometer and gyroscope), this 235 

model features a three-axis magnetometer and a pressure module BMP280 [63,64]. 236 

• U-blox mini GPS module, NEO-6M model [65]. This receiver model performs single-point 237 

positioning using the C/A code transmitted on the L1 frequency by the GPS constellation. 238 

• Portable charger with 10,400 mAh capacity as energy supply.  239 

GPS and IMU data were acquired and handled under two tools: the C++/Python library RTIMULib 240 

[66] was employed for the essential tasks involving MPU-9250 data gathering, namely sensors 241 

setup, initial calibration, and conversion of output values from hexadecimal to floating-point 242 

representation. Besides raw measurements, this library yields attitude (roll, pitch, and yaw, in 243 

degrees) estimation from accelerometer, gyroscope and magnetometer integration using Extended 244 

Kalman Filter. Considering the GPS module, the Python library GPSD [67] was used for the setup 245 

and the acquisition of position, velocity, and time (PVT) data using the United States National 246 

Marine Electronics Association (NMEA) protocol. 247 

Preliminary tests using mid-level smartphones running Android (Samsung GalaxyA30, Lenovo 248 

Vibe K5, and Samsung Galaxy J2 models) showed that the maximum stable sample rate was 249 

about 100 Hz for inertial data and 1 Hz for the GPS data (this being the maximum rate for these 250 

models). Thus, regarding optimum processing and storage performance, the vibration behaviour of 251 

the car body, and the usual sample rate for mid-level smartphones, the output data rate was set up 252 

at 100 Hz for inertial data and 1 Hz for the GPS data. Nevertheless, although maintaining 100 Hz 253 

for inertial data during the first ten seconds of operation, the actual mean sample rate was about 254 

83 Hz, probably due to hardware and software limitations. Furthermore, a full-scale range of ± 2g 255 

was adopted for the accelerometer considering the typical values for smartphones, suitability to 256 

expected maximum accelerations in train cabin (less than 1g disregarding gravity) [2,68], the trade-257 

off between range and sensitivity, and the exposure to significant non-linearity errors when 258 

operating near the limits of the range. 259 

GPS and IMU data are recorded in separate files since this configuration presented the most 260 

consistent performance during the preliminary tests. Given the lower rate compared to the IMU and 261 

the separated files, interpolation of PVT data using the operating system timestamp as the key 262 

attribute is necessary. Another relevant aspect is that the device presented an autonomy of about 263 

50 hours under the aforementioned configuration.   264 

3.2 Experimental tests within a track recording train 265 

The other central aspect of the collective concept is the use of in-service vehicles. This conditions 266 

how the test should be carried out, preferentially using diagnostic trains that are physically similar 267 

to commercial trains in terms of the number of coaches and can yield dynamic and geometric data 268 

as ground truth for further analyses. Thus, the experimental tests were performed on board the 269 

diagnostic train ETR500Y2 (Figure 1), owned by the Italian Railway Infrastructure Manager (Rete 270 

Ferroviaria Italiana, RFI) and is adapted from an ETR500 train model used exclusively on the high-271 

speed network. 272 



 273 

Figure 1. The developed device and the train used in the tests: (a) internal view of the device 274 

showing the IMU module (1) internally glued to the case and the Raspberry Pi Zero W (2); (b) 275 

external view highlighting the GPS antenna (3) and the u-Blox GPS module glued to the case; (c) 276 

the Diamante train and the axes orientation for the tests  277 

This train, also known as Treno Diamante (an acronym for Diagnostica e Manutenzione 278 

Tecnologica), consists of two locomotives (one at each extremity) and eight two-bogie trailer 279 

coaches, carrying more than 200 onboard sensors for the inspection of track, energy system, 280 

signalling, telecommunication and ride dynamics [7,69,70]. The running dynamic characterisation 281 

comprises lateral and vertical acceleration monitoring in the axle box, the bogie, and the train cabin 282 

by 12 high-grade mono-axial MEMS accelerometers, which operate at 1 kHz and are distributed 283 

over the coach dedicated to this purpose. Moreover, laser-based systems and inertial platforms are 284 

employed for track geometry recording, surveying the track irregularity parameters described in 285 

Table 2. 286 

Table 2.  Track irregularity parameters surveyed by Treno Diamante and their features [7] 287 

Parameter 
Measurement 

technology 
Chord length 

Spatial 

resolution 

Measurement 

uncertainty (2 σ) 

Longitudinal level – right/left 

(range D1: 3-25 m) 
Optical laser 23.220 m 0.5 m ± 1 mm 

Longitudinal level – right/left 

(range D2: 25-70 m) 
Optical laser 23.220 m 0.5 m ± 3 mm 

Longitudinal level – right/left 

(range D3: 70-150 m) 
Optical laser 23.220 m 0.5 m ± 5 mm 

Alignment - right/left 

(range D1: 25-70 m) 
Optical laser 23.220 m 0.5 m ± 1.5 mm 

Alignment - right/left 

(range D2: 25-70 m) 
Optical laser 23.220 m 0.5 m ± 4 mm 

Alignment - right/left 

(range D3: 70-200 m) 
Optical laser 23.220 m 0.5 m ± 10 mm 

Twist 
Optical laser + 

inertial platform 

3.000 m and 

9.000 m 
0.5 m ± 1.5 mm 

Cross level Inertial platform - 1 mm ± 5 mm 

Gauge Optical laser - 0.5 mm ± 1 mm 

 288 

The Diamante system also outputs the longitudinal level (LL) and alignment (A) on a 10-metres 289 

chord. Moreover, combinations and derived parameters are also calculated on board or offline and 290 

delivered by the RFI system, namely: 291 



• LL and A standard deviations for D1 (combining right and left) within 200 metres sections. 292 

• From raw cross level, the system also outputs the cross-level deviation within a 10-m 293 

window and the superelevation deviation (difference between design superelevation and 294 

cross level)  295 

Diamante’s position data is obtained from a Differential GPS receiver and an odometer. The train 296 

performs a 5-days inspection throughout the Italian high-speed, high-capacity network every two 297 

weeks and can operate at speeds up to 330 km/h (compatible with maximum commercial speeds 298 

of about 300 km/h).   299 

This paper describes the results of the experimental tests performed from 14th to 17th January 300 

2020 through the Italian high-speed, high-capacity rail network. It comprises two corridors: Milan-301 

Salerno and Turin-Venezia (excluding the future high-speed stretch between Padua and Brescia). 302 

For the sake of logistic restrictions, tests were carried out only during the last four days of the 5-303 

days inspection work, which itineraries are presented in Table 3. The considered track has a gauge 304 

of 1435 mm (international gauge), maximum design speed varying from 200 to 300 km/h 305 

depending on the stretch and varies between ballasted and slab track stretches. 306 

Table 3.  Itinerary of the tests performed within the Diamante train through the Italian rail network. 307 

Test 

day 
Date Origin Intermediary stops Destination 

Approx. 

length (km) 

#1 Jan 14th 2020 Naples Rome > Florence > Bologna Milan 800 

#2 Jan 15th 2020 Milan Turin > Brescia > Milan > Brescia Vicenza 640 

#3 Jan 16th 2020 Vicenza Venice > Padua > Venice Milan 410 

#4 Jan 17th 2020 Milan Bologna > Florence > Rome Naples 800 

The sensors were directly attached to the train floor using a double-sided adhesive tape. As 308 

illustrated in Figure 1, the IMU x-axis was aligned to the vehicle longitudinal axis, while the y-axis 309 

was aligned to the lateral axis and the z-axis to the vertical axis in the vehicle frame. Moreover, to 310 

enable analyses regarding the influence of the sensors positions on measurements, we adopted a 311 

different sensors distribution inside the train for each day test. These distributions, depicted in 312 

Figure 2, are described as follows:  313 

• Day #1. The nine sensor sets were installed at the same approximate point. They are 314 

distributed over an area of 0.3 m x 0.5 m. The sensors were attached to the car floor under 315 

the ninth right window in the eighth coach (right over the rear bogie). 316 

• Day #2. The nine sensors were distributed along the eighth coach under each of the ninth 317 

window. Since the distance between bogies is about 19 m, the distance between two 318 

consecutive sensors is about 1.9 m. 319 

• Day #3. We installed a sensor in each coach at homologue positions: under the ninth right 320 

window in the given coach (right over the rear bogie). The distance between two 321 

consecutive sensors is equal to the coach length: 26.1 m.   322 

• Day #4. The nine sensors were distributed along the same transversal section (2.8 m) 323 

aligned with the ninth right window in the eighth coach. To not obstruct RFI staff’s passage, 324 

eight sensors were equally spaced along the right half of the transversal section (1.4 m), 325 

while the ninth sensor was installed at the left extremity of this section.  326 



 327 

Figure 2. Formation of the Diamante train and the sensors distributions for the four test days. 328 

The analysis considers only trip intervals in which the trains travelled at a quasi-constant speed to 329 

eliminate the influence of speed variation on measurements. The Augmented Dickey-Fuller test 330 

(ADF) [71] was applied for these trip intervals, and the hypothesis of non-stationary was rejected at 331 

a significance level of 1%. Table 3 shows the selected trip intervals for statistical comparison, 332 

which are also regarded as road sections in the space domain.  333 

Table 4. Trip intervals/road stretches selected for the proposed analyses 334 

Test 

day 
Stretch 

Start 

time (s) 

End 

time (s) 

Length 

(m) 

Average 

speed (m/s) 

Std. deviation 

speed (m/s) 

Approximate 

location 

Train 

direction 

#1 A 8400 8600 13260 66.3 0.7 Montepulciano Forwards 

#1 B 13200 13500 20090 67.0 1.6 Modena Forwards 

#2 A 4600 5250 53940 83.0 0.7 Novara Forwards 

#2 B 18100 18380 15180 54.2 1.4 Milano Forwards 

#3 A 6710 6940 13961 60.7 1.6 Padova Backwards 

#3 B 23200 23430 10189 44.3 0.7 Soave Forwards 

#4 A 9850 10050 10080 50.4 1.0 Parma Backwards 

#4 B 23200 24300 73191 66.5 0.8 Arezzo Backwards 

3.3 IMU measurement model 335 

To characterise the measurable quantities using the proposed devices, a basic model of the inertial 336 

measurements based on vehicle kinematics is built considering the influence of track geometry and 337 

irregularities on perceived accelerations in the train cabin. Based on elements presented in 338 

previous works (cited as follows) and considering the vehicle-track behaviour discussed in Section 339 

2, the simplified acceleration vector 𝒂 perceived in the sensor frame s attached to the train cabin is 340 

obtained as:  341 

𝒂𝒔 = 𝒈𝒔 + 𝒄𝒔 + 𝒕𝒔 +  𝒏𝒔 +  𝒃𝒔 + µ𝒔 = 

[

−𝑔 𝑠𝑖𝑛 θ
𝑔 𝑐𝑜𝑠 θ 𝑠𝑖𝑛 φ
𝑔 𝑐𝑜𝑠 θ 𝑐𝑜𝑠 φ

]

𝑠

+  [

�̇�
𝑐H v² cos γ - 𝑐V v² cos γ 

𝑐H v sin γ - 𝑐V v² cos γ
]

𝑠

+  [
𝑖X

𝑖𝑌

𝑖𝑍

]

𝑠

+ 𝒏𝒔 +  𝒃𝒔 + µ𝒔, 
(1) 

where: 342 

• g is the gravity component in the sensor frame using the XYZ rotation sequence applied to 343 

the gravity vector [72,73]. While g is the gravitational acceleration, θ is the vehicle pitch 344 

angle, and φ is the vehicle roll angle. Pitch and roll angles are measured in relation to the 345 

horizontal plane and are mainly associated, respectively, with the track slope and the cant 346 

angle plus the suspension effect on these angles (pitch and roll stiffnesses). 347 



Complementary, high-frequency variations in these angles also depend on rolling and 348 

pitching car body vibration modes due to track irregularities.  349 

• c is the kinematic component associated with vehicle displacement on the road regardless 350 

of deviations from design geometry. Whenever the vehicle is moving, the speed variation �̇� 351 

is perceived in the x-direction. Concurrently, the horizontal (cH) and the vertical (cV) 352 

curvatures produce a centrifugal acceleration in the vehicle frame given by the relation c∙v, 353 

where v is the vehicle speed. In addition, the centrifugal accelerations are decomposed 354 

according to the roll angle γ [73]. 355 

• t is the track irregularity component. Regarding the x and y axes, components can be 356 

regarded as the sums iY and iZ of multiples irregularity-related sinusoidal signatures. The 357 

component iX is different in form and considerably less significant than their orthogonal 358 

counterparts. 359 

• n is the background vibration due to the traction motor vibration, the auxiliary power system 360 

and the heating, ventilation, and air conditioning (HVAC) system [4,74]. For the considered 361 

trailer coaches, there is not component due to the traction motor. Furthermore, for the 362 

considered tests, the preliminary analysis of the signals for intervals with stationary train 363 

demonstrated the absence of relevant vibration components due to the other subsystems. 364 

Thus, this component will be ignored in further considerations.  365 

• b is the slowly time-varying sensor bias [73,75]. 366 

• µ is the sensor noise [73,75]. 367 

Under this model and considering a quasi-constant speed during the selected stretches, the 368 

different arrangements adopted in the tests can be read according to the following aspect: 369 

• Day 1: sensors yield similar data in terms of g, c, and t since they are in the approximately 370 

same position. There are differences among them in terms of b even after the calibration 371 

(eventual thermal, mechanical, and electrical variations among the sensors) and µ 372 

(stochastic nature of noise) [76]. 373 

• Day 2: sensors yield similar data in terms of g and c (coach as a whole perceiving 374 

approximately the same pitch and roll angles and the same curvatures) and different data in 375 

terms of t (phase shifts and differences in amplitude due to distance to bogies centrelines), 376 

b, and µ.  377 

• Day 3: sensors yield signals with similar shape in terms of t, with expected magnitude 378 

variations due to suspension parameters variation from one car to another and expected 379 

train set dynamics (higher vibration in the last cars). The signals are also similar in terms of 380 

g and c, with discrepancies in magnitude due to possible differences in roll and pitch 381 

coefficients. For these three components, there is a phase shift proportional to the distance 382 

among sensors. Moreover, they produce different data in terms of b and µ. 383 

• Day 4: sensors yield similar data in terms of g and c, and different data in terms of b and µ. 384 

Regarding t, variation in transversal position results in major or minor influence of a specific 385 

track side. 386 

It is noteworthy that bias can be reasonably handled as a constant within the eight selected 387 

intervals with slow variation during the trips. Thus, offset error can be estimated and corrected 388 

considering accelerometer readings during trip intervals in which the sensor is motionless and 389 

horizontal. However, offset is not critical for frequency-weighted accelerations since it is perceived 390 

as a long-wavelength feature outside the comfort frequency boundaries. Furthermore, sensor 391 

lateral distance to track centreline in curves results in negligible discrepancy in centrifugal 392 

accelerations. 393 

3.4 Data processing 394 

Firstly, for each sensor, GPS data were linearly interpolated at IMU updates intervals between two 395 

consecutive GPS updates (1 s interval), which yields a maximum error of about 0.15 m in the worst 396 



case. Moreover, the chainage is calculated as the horizontal travelled distance incrementally 397 

calculated from the stretch starting point. For this task, the geographic coordinates (WGS84 398 

datum) were transformed to projected coordinates (UTM Zones 32N and 33N, WGS84 datum). 399 

3.4.1 Time-lagged cross-correlation 400 

The main goals of the described analyses are the comparison among sensors in different 401 

experimental arrangements and the comparison of them with reference data. Since there are 402 

possible synchronisation errors and phase shifts due to the differences in position among the 403 

sensors, the similarity between two signals in the time domain is measured through time-lagged 404 

cross-correlation [50,77]. The normalised linear cross-correlation coefficient r between two signals 405 

x and y with N samples is defined as: 406 

r = 
∑ (𝑥𝑖−�̅�).(𝑦𝑖+𝐿−�̅�)

𝑁

1

√[∑ (𝑥𝑖−�̅�)2𝑁

1
][∑ (𝑦𝑖−�̅�)2𝑁

1
]

 (2) 

where �̅� and �̅� are the mean values of x and y, respectively, and L is the lag between the signals. 407 

The numerator is the cross-correlation function, while the denominator performs its normalisation 408 

by the standard deviation of both series. For each pair of signals from the same trip, the time-409 

lagged cross-correlation algorithm calculates r for L varying within a sample window and searches 410 

for the maximum r and the associated lag. This lag is assumed to be due to the synchronisation 411 

errors and the differential position between sensors. 412 

3.4.2 Data fusion 413 

Firstly, the n different signals were resampled to a common and equally spaced time vector. 414 

Afterwards, the fusion of the multiple sensors operation simultaneously considered two main 415 

aspects to obtain a combined (or mean) signal: 416 

• Spatio-temporal alignment of the signals. Besides the GPS time-based synchronisation 417 

correction and the data georeferencing for each sensor, the lag from time-lagged cross-418 

correlation results for each axis is applied to maximise correlation among signals. This 419 

approach is usual for signal alignment [50]. Since only intervals with quasi-constant speed 420 

are considered, this match can be done in the time or space domain with the remotion of 421 

lags obtained for each axis.  422 

• Combination of the signals by using the mean calculation., and the mean signal is 423 

calculated. Considering a scenario where sensors are redundant and measurements 424 

present approximately the same variance, there is a theoretical decrease of noise (or 425 

variability of the mean) when averaging N independent measurements by a 1/√𝑁 factor 426 

under Central Limit Theorem (CLT) [72,78].   427 

This combination is firstly done for the roll and pitch estimates (section 3.4.3) to provide a unified 428 

inclination estimation. From this result and the subsequent gravity compensation, the combination 429 

process is also done for the compensated acceleration to obtain a unified acceleration signal on a 430 

signal level fusion process. In parallel with this process, comfort analysis using the individual 431 

signals is performed, and the mean comfort indexes are calculated at the end, i.e., on a feature 432 

level fusion process. This alternative process emphasises how the mean signal reduces noise 433 

impact on results in contrast to the mean index. 434 

3.4.3 Gravity compensation 435 

In order to compensate gravity components from measurements, roll and pitch estimates are 436 

required. Due to noise and bias instability associated with gyroscope, the simple integration of 437 

angular velocities to estimate roll and pitch angles results in an angular random walk. On the other 438 

hand, acceleration-based inclination estimations do not present drift but are unusable whenever 439 

the monitored object experiences sustained accelerations, such as the centrifugal acceleration in 440 



curves. In these cases, the residual acceleration may indicate an inclination opposite to the real 441 

track bank, a behaviour verified with the RTIMULib estimations from accelerometer-gyroscope 442 

fusion).  443 

Since the present approach considers the collective use of sensors, we propose a simplified way to 444 

estimate angles considering the fused response of the sensor population. For roll angle, the first 445 

step is the numerical integration of the angular speed combination (mean signal) around the x-axis. 446 

This integration can be done for small inclination angles (ruled by the small slope and cant rail 447 

track angles) since the angular speed ω in the sensor frame can be considered approximately 448 

equal to the angular speed in the navigation frame. The second step is the random-walk effect 449 

correction regarding track constraints: when travelling on a tangent, the roll angle must be about 450 

0°. Under this concept, integration drift is estimated through the best fitting line for considering only 451 

tangent sections and the remotion of this value, enforcing an angle about 0° on these sections. 452 

Thus, the ith roll value (φi) at the instant ti is given by: 453 

𝜑𝑖 = 𝜑𝑖−1 + ∫ 𝜔𝑋

𝑡𝑖

𝑡𝑖−1

(𝑡)𝑑𝑡 − 𝑦(𝑡𝑖) (4) 

where ωX(t) is the angular speed around the x-axis and y(t) is the best fitting linear function for 454 

tangent sections. 455 

In addition, pitch estimation is done through a complementary filter (alpha = 0.98) combining 456 

angular speed signals for high-frequency variations and inclination from combined barometer 457 

heights for low-frequency variation, once again using the mean signal from the sensor population. 458 

Barometric height is obtained from RTIMULib height output, which approximately follows the 459 

datasheet relationship of ± 0.12 hPa for ± 1 m and the conventional barometric formula considering 460 

a constant temperature. Variations in temperature impact absolute values but does not affect the 461 

height variations approximation. In the end, an additional correction step is necessary to identify 462 

and eliminate data linked to pressure transient (i.e., when crossing a tunnel), once again using 463 

track constraint: inclination derived from barometer should not be greater than the maximum slope 464 

angle (about 1.1°). Thus, ith pitch value (θi) is given by: 465 

𝜃𝑖 = (1 −  0.98).(𝑔𝑦𝑟𝑖) + 0.98. (𝑏𝑎𝑟𝑖) =  

(1 −  0.98). (𝜃𝑖−1 + ∫ 𝜔𝑌

𝑡𝑖

𝑡𝑖−1

(𝑡)𝑑𝑡 ) + 0.98. (𝑎𝑟𝑐𝑡𝑎𝑛 
ℎ𝑖 − ℎ𝑖−1

𝑑𝐻
)  

(5) 

where gyri is the pitch estimation from angular speed ωY(t) and bari is the pitch estimation from the 466 

barometric height variation (hi - hi-1) and the horizontal distance dH between i-1 and i calculated 467 

from GPS coordinates. 468 

3.4.4 Frequency weighted accelerations according to the ISO 2631  469 

The ISO 2631-1:1997 (Mechanical vibration and shock — Evaluation of human exposure to whole-470 

body vibration) [68] was established by the International Organization for Standardization (ISO) to 471 

provide methods for whole-body vibration assessment regarding human health and comfort, 472 

vibration perception, and incidence of motion sickness. The standard comprises guidance on 473 

vibration measurement and evaluation using frequency weighted root-mean-square accelerations. 474 

Since one of his motivations is the comfort perception in vehicles, its parameters were used in the 475 

road [79–84] and rail transportation [19,23,24,85] to analyse merely comfort or to relate comfort 476 

perception (combination of track irregularity and vehicle characteristics) with track features or 477 

quality parameters.  478 

The considered standard defines that vibration frequencies should be weighted according to 479 

human sensitivity for each frequency. Therefore, the acceleration signal is analysed through 480 

frequency-weighting of acceleration spectra, considering the frequency range of interest for the 481 



human response to vibrations (from 0.5 to 80 Hz) and its respective 23 one-third octave bands, 482 

each of them with a specific weighting factor. Thus, the resultant frequency-weighted root-mean-483 

square acceleration aw for a given axis is given by: 484 

𝑎𝑤 = √∑(𝑊𝑖 ∙ 𝑎𝑖)2

23

𝑖=1

 (3) 

where Wi is the recommended weighting factor for the ith one-third octaves band and ai is the rms 485 

acceleration for the ith one-third octaves band for the given axis. There are different frequency 486 

weighting curves depending on the application, position, and axis, reflecting the different ways 487 

vibration affects humans. Wk is the recommended curve for the z-direction and Wd for the x and y 488 

directions for the main comfort analysis. However, the curve Wb is recommended for comfort 489 

evaluation in rail vehicles. Figure 3 depicts these weighting curves, being remarkable the slight 490 

difference between Wk and Wb. 491 

For the present work, as an algorithm mathematically equivalent to recommended by ISO 2631 492 

(Eq. 3), the frequency weighting of acceleration spectra was performed through signal 493 

decomposing into each one-third octave band and the subsequent weighted sum of data of these 494 

bands, resulting in a weighted signal in the time domain [86,87]. For signal decomposing, 495 

Butterworth 6th order passband digital filters were applied under ISO 2631 specifications with 496 

forward and backward pass to curb phase shift. In the end, the root-mean-square of the weighted 497 

accelerations is calculated within segments with the given lengths of analysis: 20, 50, 100, 200, 498 

and 500 m. Besides the 200 meters length recommended by the European Standard and the 499 

Italian manuals [7,88] and the 500 m length adopted for some high-speed networks such as the 500 

Chinese one [89], other lengths were tested regarding coherence with the usual wavelengths of the 501 

monitorable track features. 502 

 503 

Figure 3. Weighting factors versus central frequency of each one-third octave band 504 

The RMS values can be compared with the values indicated by ISO 2631 concerning the expected 505 

reaction to vibration in public transportation (Table 4). This standard emphasises that these values 506 

are not limits for accelerations but only approximations since other relevant factors need to be 507 

considered, such as exposure time, the activity performed when exposed to the vibration, acoustic 508 

noise, and temperature. This fact explains the superposition of the value ranges presented in Table 509 

4. 510 



Table 5. Likely reactions regarding comfort in public transportation 511 

aWZ values (m/s2) Likely reaction 

less than 0.315 Not uncomfortable 

0.315-0.63 Little uncomfortable 

0.5-1.0 Fairly uncomfortable 

0.8-1.6 Uncomfortable 

1.25-2.5 Very uncomfortable 

more than 2 Extremely uncomfortable 

Given the sample rate during tests (around 83 Hz), close to the usual maximum frequency 512 

sampling for average smartphones, only 19 of the 23 one-third octaves bands of interest (from 0.5 513 

Hz to 80 Hz) can be analysed under the Nyquist theorem. However, the resulting inaccuracy is of 514 

small magnitude. Figure 5 depicts the weighting curves and highlights the non-analysable bands 515 

with cross markers and dashed lines, which shows that humans are less sensitive to vibrations 516 

over 10 Hz. Moreover, the more remarkable frequencies for high-speed lines are usually under 20 517 

Hz [90], which is related to the fact that a passenger coach suspension aims to isolate the car body 518 

from frequencies above about 2 Hz [38]. 519 

Figure 4 presents the schematic flowchart of the analysis procedure applied for the present work.  520 

    521 

Figure 4. Schematic flowchart of the analysis procedure for data fusion and comfort assessment 522 

3.4.5 Validation using Treno Diamante data 523 

Furthermore, the comfort results are compared through correlation analysis with the standard 524 

deviation of the track parameters diagnosed by Treno Diamante. The discrete calculation (i.e., 525 

within segments of equal length) of the standard deviation as a track quality index is used in Italia, 526 

United Kingdom, Australia, and China [7,89,91]. 527 



Ideally, validation would consider all the selected stretches in all the considered sensors 528 

distributions. However, due to reference data unavailability issues for the present paper, it was 529 

possible only to perform analyses for the fourth day, stretch B.  530 

4 Results and discussion 531 

Firstly, the preliminary analysis and comparison among signals allowed for the identification of 532 

discrepant signals. It was identified that sensors 3 and 4 malfunctioned for all test days. Moreover, 533 

sensor 1 presented a discrepant behaviour during the second test day and was excluded from this 534 

day’s analyses.  535 

4.1 Roll and pitch estimation 536 

The quality of the roll and pitch estimates is estimated through comparison with track angles 537 

obtained from reference data. It is known that these angles are mainly conditioned by cant and 538 

slope angles plus the suspension influence. Regarding roll, this influence is described by a roll 539 

coefficient that correlates vehicle body roll angle. Thus, the comparison between calculated 540 

inclination and track angles obtained from reference data provides a measure of estimation quality.  541 

The proposed accelerometer-free algorithms yielded promising results, being the calculated roll 542 

and pitch vehicle angles highly correlated with, respectively, cant (r = 0.99) and slope (r = 0.86) 543 

angles for the validation stretch. Figure 5 illustrates the comparison between vehicle roll and track 544 

cant angles, with differences in magnitude due to the suspension roll coefficient. In turn, Figure 6 545 

depicts the comparison between vehicle pitch and track slope angles, as well as highlights the 546 

tunnel impact on pressure-based measurements, also presenting the pitch estimation without 547 

correction for pressure transients. 548 

  549 

Figure 5. Roll angle estimate vs. reference track cant angle for 4th day, stretch B 550 

 551 

Figure 6. Pitch angle estimate vs. reference track slope angle for 4th day, stretch B 552 



4.2 Comparison between individual and fused signals  553 

Figures 7 and 8 depict, respectively, time and frequency domain (through Fast Fourier Transform) 554 

representations of the individual acceleration signals and the mean (fused) signal for the first day, 555 

stretch A. The first day was selected for this analysis because the sensors are theoretically 556 

redundant (under a similar solicitation), and the differences after offset correction are due only to 557 

the noise. This example is representative of the raw output obtained in other stretches and its 558 

relationship with the mean signal, which presents a notable smaller variance in amplitude that is 559 

convergent with the expected noise reduction. For this stretch, variance in the z-axis ranges from 560 

0.06 to 0.14 m/s² and has a mean equal to 0.11, while the fused signal variance is equal to 0.04 561 

m/s² (reduction factor of about 1/√𝑁 in relation to the mean, with N = 7 sensors). The same 562 

reduction factor is identified for the x-axis, while for the y-axis a smaller reduction factor is obtained 563 

due to the significant influence on variance of the high magnitude accelerations in a curve.  564 

 565 

Figure 7. Individual and mean (fused) acceleration signals for the first day, stretch A 566 

 567 

Figure 8. Frequency content of individual and mean (fused) acceleration signals for the first day, 568 

stretch A 569 



4.3 Comfort analysis 570 

The roll and pitch estimates were used to compensate the gravity from raw accelerations. To 571 

eliminate synchronisation errors, spatio-temporal alignment was enforced through time-lagged 572 

cross-correlation and lag correction for each axis. Afterwards, root mean square (RMS) frequency 573 

weighted accelerations in accordance with ISO 2631 were calculated for different sections lengths. 574 

Initially, Figures 9 and 10 compare the RMS frequency weighted results for different sections 575 

lengths considering the stretch B on the first day as a representative example. The vertical and 576 

horizontal scales for these graphs are the same to allow for magnitude comparisons.  577 

 578 

Figure 9. Lateral RMS frequency weighted acceleration for different section lengths, section B on 579 

the first day 580 

The natural result of lengthening the sections is the increase of the correlation between sensors 581 

due to peak attenuation. Another relevant aspect is the ever-smallest result for the mean signal 582 

due to noise reduction. It can be concluded that noise variation among sensors may influence the 583 

average aW (represented by vertical shifts between the curves), but the general behaviour of its 584 

variation along the trip (i.e., form of the acceleration curves) is fairly preserved. When comparing 585 

the y and the x axes, it is also concluded that the expected smaller vibration in the lateral direction 586 

yields a greater concordance among the sensors. 587 

 588 



 589 

Figure 10. Vertical RMS frequency weighted acceleration for different section lengths, section B on 590 

the first day 591 

The following results are presented in terms of the 200-m section since this is the current practice 592 

for most railway infrastructure managers. Figures 11 and 12 compare lateral and vertical RMS 593 

frequency weighted accelerations for extracts of the eight stretches with the same x and y scales 594 

for all graphs. Moreover, Tables 6 and 7 list the mean RMS frequency weighted lateral acceleration 595 

by sensor and ranked by magnitude. In these Tables, M stands for the mean signal calculated from 596 

the sensors group.  597 

 598 



 599 

Figure 11. Root-mean-square frequency weighted lateral acceleration comparison, excerpts for 600 

the eight stretches 601 

Table 6. Ranked mean RMS frequency weighted lateral acceleration by sensor 602 

 603 

 604 
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6 0.09  9 0.09  9 0.09  9 0.07  9 0.11  1 0.09  9 0.18  9 0.14 
9 0.09  6 0.09  2 0.08  2 0.06  2 0.11  9 0.09  5 0.14  2 0.10 
7 0.08  7 0.08  6 0.08  8 0.05  7 0.11  2 0.08  2 0.14  6 0.09 
5 0.08  5 0.08  8 0.07  6 0.05  6 0.10  7 0.08  6 0.14  1 0.09 
8 0.08  1 0.08  7 0.07  5 0.05  1 0.10  6 0.07  7 0.14  5 0.09 
1 0.08  2 0.07  5 0.07  7 0.05  5 0.10  5 0.07  M 0.13  8 0.09 
2 0.08  8 0.07  M 0.05  M 0.04  M 0.09  8 0.07  1 0.13  7 0.09 
M 0.07  M 0.07  - -  - -  8 0.09  M 0.06  8 0.13  M 0.09 



 606 

Figure 12. Root-mean-square frequency weighted vertical acceleration comparison, excerpts for 607 

the eight stretches 608 

Table 7. Ranked mean RMS frequency weighted vertical acceleration by sensor 609 
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6 0.33  7 0.41  6 0.41  6 0.22  7 0.28  7 0.30  9 0.27  9 0.34 
9 0.33  6 0.37  7 0.35  2 0.21  2 0.27  2 0.25  5 0.20  5 0.31 
7 0.31  8 0.34  2 0.35  8 0.15  6 0.23  1 0.23  8 0.20  1 0.29 
8 0.29  1 0.28  9 0.29  7 0.14  1 0.22  6 0.22  2 0.19  8 0.23 
1 0.25  2 0.26  8 0.27  9 0.13  8 0.20  5 0.17  6 0.17  2 0.23 
2 0.24  9 0.20  5 0.25  5 0.11  9 0.18  8 0.17  7 0.16  6 0.22 
5 0.19  5 0.18  M 0.19  M 0.10  5 0.18  9 0.17  1 0.16  7 0.22 
M 0.17  M 0.17  - -  - -  M 0.14  M 0.14  M 0.15  M 0.17 

 610 

 611 



Regarding arrangements in which sensors were distributed, it is not possible to identify a clear 612 

correlation between sensor position and a higher/smaller vibration magnitude since the magnitude 613 

of variation among the sensors is similar to those presented for the first day and thus may be 614 

mainly due to the sensor characteristics. For example, the sensor 5 yields for both stretches on the 615 

second day the smallest or the second smallest magnitude, expected behaviour for a sensor 616 

placed at the centre of the coach. However, its nearest neighbour does not present the same 617 

behaviour, contrary to the expected influence of sensor position on the obtained magnitude. For 618 

the third day, vertical acceleration, the sensors 7 and 2 have the greatest vibration for both 619 

stretches, but the magnitude of the difference could also be explained by sensor variation instead 620 

of possible suspension variation from a coach to another one. The same is said about the higher 621 

acceleration yielded by the sensor 9 on the fourth day, which should be investigated whether this is 622 

due to its position.  623 

Table 8 presents the statistical summary of the correlation coefficients calculated for the RMS 624 

vertical and lateral frequency weighted accelerations for all selected stretches. In turn, Table 9 625 

shows the ranking of the cross-correlation coefficients for each pair of RMS frequency weighted 626 

vertical accelerations also for all stretches. In this table, pair stands for the sensor pair with which 627 

the coefficient is associated. Moreover, Table 10 has the mean correlation coefficients by sensor to 628 

enable the identification of grating sensors. In complement, Figure 13 presents the same 629 

information as in Table 9 in boxplots to illustrate the sensor population dispersion and enable 630 

comparisons between days and between stretches. For brevity, the detailed correlation analysis 631 

considers only the vertical acceleration as a representative example.    632 

This statistical analysis on correlation coefficients shows that the different sensor arrangements 633 

yielded similar collective behaviour, i.e., similar dispersions. It was expected that arrangements in 634 

which sensors were at approximately the same point or on the same transversal section would 635 

yield a greater agreement among sensors. Moreover, the coefficients’ ranking and the boxplot do 636 

not reflect the position influence on measurements on the second day. Regarding this day, the high 637 

correlations between sensors even at positions with different vibration signatures (i.e., sensor 5 at 638 

the centre section of the coach and sensor 9 over the bogie) evidence the prevalence of sensor 639 

inherent variation on the results. 640 

These remarks contribute to the conclusion that sensor-to-sensor variability (linked to sensor-to-641 

sensor repeatability) influence is at least of the same magnitude of the variability driven by the 642 

position variation influence. The exception to be analysed during validation is the isolated 643 

behaviour of the sensor 9 on the fourth day. 644 

Table 8. Statistical summary of the correlation coefficients 645 

Day Stretch 
Mean r  Standard deviation r 

Y Z  Y Z 

Day #1 
A .90 .74  .06 .09 
B .86 .66  .06 .12 

       

Day #2 
A .78 .84  .08 .05 
B .92 .75  .04 .18 

       

Day #3 
A .90 .66  .06 .13 
B .86 .86  .07 .05 

       

Day #4 
A .94 .92  .06 .06 
B .84 .75  .18 .17 

  646 



Table 9. Ranking of the correlation coefficients for the RMS frequency weighted vertical 647 

acceleration 648 

Day #1  Day #2  Day #3  Day #4 

A  B  A  B  A  B  A  B 

Pair r  Pair r  Pair r  Pair r  Pair r  Pair r  Pair r  Pair r 

5-9 .85  2-9 .85  5-8 .91  7-9 .95  5-8 .96  5-9 .89  2-7 .91  6-7 .98 

7-8 .82  1-5 .85  8-9 .89  5-9 .94  6-8 .94  8-9 .85  7-8 .91  1-7 .98 

2-8 .80  7-9 .84  2-8 .89  5-7 .94  5-6 .94  5-8 .83  6-7 .91  2-6 .97 

1-8 .76  8-9 .81  5-7 .88  8-9 .94  2-5 .91  1-5 .77  2-6 .90  1-6 .97 

1-7 .75  7-8 .81  2-5 .87  5-8 .93  2-8 .90  6-9 .71  6-8 .90  1-2 .97 

1-2 .74  6-9 .80  5-9 .87  7-8 .93  1-6 .89  5-6 .71  2-8 .90  2-7 .97 

2-9 .73  1-8 .80  7-8 .87  5-6 .74  8-9 .88  2-9 .68  1-2 .84  5-6 .96 

8-9 .73  1-2 .79  2-9 .85  6-8 .73  2-6 .87  1-8 .68  5-8 .84  5-7 .96 

6-8 .72  2-7 .79  5-6 .82  6-7 .70  1-5 .87  1-9 .67  2-5 .83  2-5 .96 

2-7 .70  1-9 .77  2-7 .82  6-9 .69  5-9 .86  2-5 .66  5-7 .83  5-8 .95 

6-7 .69  2-8 .76  7-9 .81  2-7 .63  1-8 .86  1-6 .66  5-6 .82  1-5 .94 

2-6 .68  1-7 .73  6-8 .80  2-8 .61  7-8 .86  6-7 .65  1-7 .80  7-8 .92 

2-5 .65  6-7 .72  6-7 .76  2-5 .59  1-2 .85  5-7 .65  1-8 .80  8-9 .92 

1-9 .64  2-6 .72  2-6 .75  2-9 .58  2-9 .84  1-7 .64  1-5 .79  2-8 .91 

5-8 .61  5-8 .72  6-9 .75  2-6 .38  6-9 .84  7-9 .62  1-6 .77  6-8 .91 

1-5 .59  6-8 .70  - -  - -  5-7 .83  6-8 .62  8-9 .52  1-8 .88 

1-6 .59  2-5 .69  - -  - -  7-9 .83  2-8 .62  5-9 .50  5-9 .87 

6-9 .57  5-7 .63  - -  - -  6-7 .83  7-8 .58  7-9 .49  7-9 .84 

7-9 .53  5-9 .61  - -  - -  1-9 .78  2-6 .52  2-9 .49  6-9 .83 

5-6 .42  1-6 .61  - -  - -  2-7 .78  1-2 .52  1-9 .48  2-9 .81 

5-7 .37  5-6 .48  - -  - -  1-7 .74  2-7 .31  6-9 .47  1-9 .78 

 649 

Table 10. Statistical summary of the correlation coefficients by sensor for the vertical acceleration 650 

Day Stretch 
Mean r by sensor 

1 2 5 6 7 8 9 

Day #1 
A .76 .77 .67 .67 .75 .77 .78 
B .68 .72 .58 .61 .64 .74 .68 

                

Day #2 
A - .84 .87 .78 .83 .87 .83 
B - .56 .83 .65 .83 .83 .82 

               

Day #3 
A .66 .55 .75 .65 .58 .70 .74 
B .83 .86 .90 .89 .81 .90 .84 

                

Day #4 
A .92 .93 .94 .94 .94 .92 .84 
B .75 .81 .77 .79 .81 .81 .49 

 651 



 652 

Figure 13. Boxplot of the correlation coefficients for the RMS frequency weighted vertical 653 

acceleration 654 

4.4 Comfort results validation  655 

Ideally, validation should be performed for all sensor configurations, but only data for the fourth 656 

day, stretch B, was made available. To provide an overview of the track quality on this stretch, 657 

Figure 14 depicts the longitudinal level and alignment data for ranges D1 and D2 gathered by the 658 

Treno Diamante. The figure also shows the maximum alert limits for speeds between 230 and 300 659 

km/h as stated by the EN 13848-5 [92]. These limit values are merely indicative and reflect the 660 

common European practice but may change according to the infrastructure managers’ 661 

maintenance policy. 662 



 663 

Figure 14. Track longitudinal level and alignment (ranges D1 and D2) for the fourth day, stretch B. 664 

For this validation, the comparison with reference data considered calculating the correlation 665 

coefficients between each sensor response (including the mean signal and the mean RMS) and 666 

the track parameters (standard deviation). Validation results are presented in Tables 11 and 12 for, 667 

respectively, the lateral and vertical directions. For brevity, only parameters that present 668 

coefficients greater than 0.4 for the mean signal are presented. Besides the mean signal for all 669 

signals, it was also analysed the mean signal excluding the sensor 9 since its performance was 670 

discrepant. From validation tables, sensor 9 presents a much smaller correlation with track 671 

parameters, and it can be concluded that its discrepant behaviour on stretch B is probably due to 672 

sensor malfunctioning rather than to a more irregular track on the right side. Another relevant 673 

aspect is that, for the vertical direction, the mean signal without the sensor 9 yields a result almost 674 

as good as the best sensor in terms of correlation with track features, which indicates the suitability 675 

of measuring strategies based on the mean signal.  676 

As an expected validation result, the lateral and vertical accelerations are significantly correlated 677 

with, respectively, alignment and longitudinal level. In addition, a higher correlation is observed 678 

with left side parameters than with their homologues on the right side, a predictable result given 679 

their installation on this side on the train cabin (left side considering the normal train orientation, 680 

right side considering train moving backwards on 4th day). It can also be concluded that 681 

longitudinal short and medium wavelengths (10-m chord, D1 and D2) contribute most to frequency 682 



weights results, another expected result given the high-pass filter used in ISO-2613 analysis with a 683 

corner frequency of about 0.4 Hz. Thus, features with wavelengths over about 160 m are not 684 

considered.  685 

Table 11. Correlation between sensors responses and track parameters, lateral acceleration 686 

Parameter 
Sensor 

1 

Sensor 

2 

Sensor 

5 

Sensor 

6 

Sensor 

7 

Sensor 

8 

Sensor 

9 

Mean 

signal 

(1-9) 

Mean 

signal 

(1-8) 

Mean 

RMS 

(1-8) 

Alignment, left, D2 .60 .60 .57 .60 .59 .58 .28 .51 .50 .60 

Alignment, right, D2 .59 .59 .57 .60 .59 .59 .25 .50 .49 .60 

Alignment, total, D1 .48 .52 .48 .51 .50 .49 .22 .43 .42 .51 

Alignment, left, D1 .43 .48 .45 .46 .47 .44 .32 .44 .42 .46 

Superelevation 

deviation 
.39 .44 .42 .42 .41 .42 .05 .38 .40 .42 

Table 12. Correlation between sensors responses and track parameters, vertical acceleration 687 

Parameter 
Sensor 

1 

Sensor 

2 

Sensor 

5 

Sensor 

6 

Sensor 

7 

Sensor 

8 

Sensor 

9 

Mean 

signal 

(1-9) 

Mean 

signal 

(1-8) 

Mean 

RMS 

(1-8) 

Longitudinal level, total, D1 .69 .84 .70 .86 .85 .82 .30 .84 .85 .85 

Longitudinal level, left, D1 .65 .80 .65 .82 .82 .80 .36 .83 .82 .81 

Longitudinal level, left, 10-m .64 .79 .65 .81 .82 .79 .36 .82 .82 .80 

Longitudinal level, right, D1 .66 .75 .64 .76 .78 .74 .21 .75 .76 .77 

Longitudinal level, right, 10m .65 .75 .64 .76 .77 .74 .22 .75 .76 .77 

Cross level .59 .66 .56 .67 .66 .63 .33 .60 .61 .67 

Superelevation deviation .58 .64 .55 .63 .66 .62 .35 .6 .61 .66 

Cross level deviation, 10-m .58 .65 .55 .63 .65 .62 .33 .59 .60 .65 

Longitudinal level, left, D2 .37 .49 .43 .53 .51 .51 .27 .54 .52 .51 

Longitudinal level, right, D2 .39 .46 .43 .48 .48 .48 .19 .50 .49 .49 

Twist, 3-m .41 .50 .40 .48 .50 .46 .23 .45 .46 .49 

Moreover, Figures 15 and 16 depict the mean lateral and vertical signals (sensors 1 to 8) and 688 

compare them with the most correlated track parameters, allowing for visual confirmation of the 689 

concordance between results and reference data. For clarity, this comparison was separated into 690 

two graphs for each axis. 691 



 692 

Figure 15. Root-mean-square frequency weighted lateral acceleration (mean signal) versus 693 

alignment (standard deviation, range D2 on top subplot and total range D1 on bottom subplot)   694 

 695 

Figure 16. Root-mean-square frequency weighted vertical acceleration (mean signal) versus 696 

longitudinal level (standard deviation, range D1 and 10-m on top subplot, total 10-m on bottom 697 

subplot)   698 

Regarding lateral acceleration, the worse performance of the mean signal may result from the 699 

discrepant behaviour of some sensors during subintervals of the considered stretch (intervals with 700 

more significant discordance among sensors from about 30-km chainage). Therefore, the same 701 

comparison with reference data was performed only for the first 130 sections for lateral 702 

acceleration, in which sensors are the most concordant. The results presented in Table 13 show 703 

similar individual behaviour for the majority regarding the most correlated parameters but a 704 

considerably better performance of the mean signal. By adopting this subset, the mean signal 705 



behaves like for the vertical direction and yields results that virtually are as good as those of the 706 

best sensors. Thus, collective result quality depends on a previous analysis for sensor group 707 

concordance. Furthermore, the smaller coefficient correlation for lateral is expected given the 708 

relative motion between wheelset and the consequent smaller correlation between lateral 709 

displacements and lateral irregularities.  710 

Table 13. Correlation between sensors responses and track parameters, lateral acceleration for 711 

the first 130 sections 712 

Parameters 
Sensor 

1 

Sensor 

2 

Sensor 

5 

Sensor 

6 

Sensor 

7 

Sensor 

8 

Sensor 

9 

Mean 

signal 

(1-9) 

Mean 

signal 

(1-8) 

Mean 

RMS 

(1-8) 

Alignment, right, D2 .58 .59 .58 .59 .60 .60 .34 .59 .60 .60 

Alignment, total, D1 .55 .55 .57 .57 .60 .59 .34 .58 .58 .58 

Alignment, left, D2 .60 .57 .57 .58 .59 .59 .30 .57 .58 .60 

Alignment, right, D1 .54 .51 .54 .54 .57 .55 .34 .54 .55 .56 

Alignment, right, 10-m .50 .47 .51 .50 .54 .52 .35 .50 .51 .52 

Superelevation deviation .32 .49 .45 .44 .43 .42 .29 .46 .46 .43 

Alignment, left, D1 .36 .45 .43 .43 .44 .44 .33 .47 .46 .44 

Longitudinal level, right, D2 .40 .41 .51 .40 .44 .38 .34 .43 .43 .43 

Longitudinal level, right, D3 .36 .42 .46 .39 .41 .38 .30 .42 .41 .41 

Longitudinal level, total, D1 .39 .40 .43 .41 .42 .40 .30 .41 .41 .42 

Longitudinal level, left, D3 .37 .40 .44 .39 .40 .38 .31 .40 .40 .40 

Cross level .42 .37 .41 .41 .41 .38 .25 .38 .40 .41 

 713 

Lastly, it is noteworthy that some of the significant correlations obtained and presented in the 714 

tables above may be due not to direct causation but due to indirect relationship given by the 715 

intrinsic correlation between track parameters since irregularities can develop from common local-716 

dependent causes such as ballast and subgrade conditions or they are geometrically dependent. 717 

As expected, left and right measurements of longitudinal level are highly correlated (greater than 718 

0.87 for the analysed stretch). As another example, the alignment in range D1 has correlations 719 

varying from 0.18 with longitudinal level in range D2 to 0.58 with gauge. In addition, the cross level 720 

and its derived parameters (cross-level deviation within a 10-m window and the superelevation 721 

deviation) are obviously highly correlated (r > 0.92). Nevertheless, controlling for the spurious 722 

associations is not in the present scope since the aim is merely to verify whether comfort results 723 

are adherent to track quality in general terms. 724 

5 Conclusions 725 

The tests carried out aboard a track recording vehicle of the Italian railway high-speed network 726 

assessed the feasibility of a track monitoring system based on very low-cost sensors. The coherent 727 

behaviour of the sensor collectivity in different arrangements, which aimed to test the influence of 728 

sensor position on the quality of the measurements, evidenced the limitations and potentialities of 729 

the proposed collective use of sensors. Since the expected influence of sensor position on 730 

measurements was not identified, it can be concluded that the sensor-to-sensor variability of the 731 

very low-quality sensors does not allow for this nuanced vibration differentiation. On the other 732 

hand, the good agreement among the sensors shows that the proposed device can yield 733 

repeatable outputs and that the collective approach enables the identification of discrepant 734 

measurements.    735 

The validation of root-mean-square frequency weighted accelerations demonstrated a strong 736 

correlation between vertical measurements and longitudinal level (range D1, total, r = 0.86 for the 737 

best signal), as well as a moderate correlation between lateral measurements and alignment 738 

(range D2, right, r = 0.60 for the best signal). These results are coherent with expected train 739 

behaviour under track solicitation. Regarding the collective approach and the mean vibrations 740 

response (excluded the discrepant signal), the resulting correlation was almost as good as that 741 



yielded by the best matching sensor, which indicates the suitability of using the fused signal of a 742 

sensor group as a robust comfort or track quality index. Hence, since the mean signals preserved 743 

the group relationship with track features, it can be concluded that the smaller RMS estimates from 744 

the sensor combination may be mainly due to noise reduction than to information loss. However, 745 

unexpected behaviour on validation of lateral vibration demonstrated the need for outlier detection 746 

algorithms to curb the influence on calculated mean not only of the discrepant sensors but also of 747 

the momentarily discrepant signal, probably through windowed cross-correlation analysis and 748 

elimination of discrepant measurement by each section. 749 

Further work will encompass analyses of the relationship between other aspects of the 750 

measurement context (train speed and track quality level) and the quality of measurements 751 

(variation within the sensor population and correlation of result with reference data). The methods 752 

presented in this work proved to be suitable for such analyses and will be replicated for the entire 753 

trips. Complementary, a windowed algorithm for discrepant signal identification should be studied 754 

considering an entire trip to define the most appropriate thresholds for sensor exclusion. For these 755 

tasks, reference data should be made available for all the high-speed network for the appropriate 756 

continuation of the research. 757 
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