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1. Introduction

The aim of this note is twofold: on one hand, we want to review the concept of differential calculus as
Lagrange understood it; on the other hand, we want to take seriously this old point of view to glimpse
at how Lagrange understood mechanical concepts and to try to use it, in a modern version, to recover
some results in Analytical Mechanics we are currently reflecting upon [1].

To our modern eye, derivatives are Gateaux and Fréchet ones, integrals are Lebesgue and Haar ones,
and analytical mechanics speaks the language of symplectic geometry and functional analysis [2]. At the
time of Lagrange instead, differential and integral calculus was essentially the one exposed in Euler’s
influential textbook Institutiones calculi differentialis [3] with which Lagrange was not satisfied since its
foundations lay on the infinitesimal calculus (which Euler exposed in his textbook appeared in 1748 [4]),
still cloaked in metaphysical mists that will dissolve only in the 19th century.

Lagrange proposal for the analytical foundations of differential calculus was largely in the spirit of
the Cartesian method, as the adjective analytique testifies: this approach has been superseded some
decades after by the 19th century theories of Abel and Cauchy and, most of all, Weierstrass, Dedekind
and Cantor foundation of real number theory as a fertile and stable ground for sprouting Real Analysis.
But we believe, historical interest aside, that Lagrange’s viewpoint can give some insight into how the
creator of Analytical Mechanics actually thought curves, functions, and differential equations which
appears in his immortal mechanical works.

This paper is organized in two parts which grosso modo correspond to a historical reconstruction of
Lagrange ideas on differential calculus and an application, with modern algebraic notations, of those
ideas to simple mechanical concepts.

In the first part of the paper, we recall and describe Lagrange approach, trying to recover the insight of his
analytical calculus as opposed to the geometric calculus of Euler, before him, and Cauchy, after him. In par-
ticular, we will give a look at variational calculus as expressed in these terms: of course, there are several anal-
yses of Lagrange work on the foundations of calculus on which we will rely (see, e.g., previous works [5–10]).

In the second part of the paper, we attempt to express some simple and modern concepts of
Analytical Mechanics à la Lagrange by means of the modern formalism which better approximates his
symbolic device. We will see that such an approach can provide hints to non-trivial questions. In partic-
ular, we will discuss integrability conditions, dealing with Helmholtz characterization of second-order
ordinary differential equations which can be expressed as Lagrangian systems [1], next we will focus on
the Rayleigh extension of Lagrangian formalism to take care of some dissipative systems [1,11].

Strictly speaking, this is neither a paper about history of Mathematics nor about Mathematics in itself:
it is an attempt to understand, in its historical context, the actual view of the founding father of Analytical
Mechanics about concepts that we are used today to interpret along viewpoints introduced after decades
and centuries of mathematical developments. The aim is to put on some 18th century lens and look at
mechanical objects the way Lagrange probably did. We share our reflections since they could be useful to
people dealing with Analytical Mechanics to appreciate and even read the Master of our subject. Being not
under the spell of philological constraints, we feel free to use modern notations both for the description of
Lagrange work and for our exercises on applying his analytical ideas to mechanical problems.

2. Lagrange avoidance of calculus metaphysics

Joseph Louis Lagrange masterpiece, Méchanique Analytique, aims at developing all mechanical theories
into a single framework whose cornerstone is the ‘‘principle of virtual velocities,’’ as he called it, that
now is known as principle of virtual works: when he wrote his book, in the 1780s, Lagrange considered
this principle more fundamental than the least action one [12,13], which was proposed by Euler and
Maupertuis and later formulated by Hamilton and Schwinger as it is still today employed as theoretical
foundation for mechanical theories [14,15].

The adjective analytique was actually intended to mean algebraic, and it is used along the Cartesian
tradition: Descartes, a century and a half before Lagrange, applied his method to ancient geometry, pro-
viding an algebraic description of loci, which now we would term as a particular case of plane real alge-
braic geometry [16,17].

The ‘‘analytical taste’’ which characterizes all Lagrange works, even and especially his mechanical
memoirs and treatises, is actually a rigorous mind-set, such as we will find in Weierstrass a century later,
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in which the development of mathematical theories is framed inside a finitistic description of mathemati-
cal terms. It is an attempt to rigor in times when infinitesimals and other metaphysical notions abounded
in differential calculus texts.

Lagrange is interested in dealing with differential and integral calculus in these same rigorous and
finitistic terms, with no reference to infinitesimals, fluxions, etc. as it can be seen in his masterpiece, the
Théorie Des Fonctions Analytiques [18], whose first edition was published in Paris in 1797 but which
indeed is the fruit of a long reflection upon the foundations of Analysis (as we call it today!) which stems
from the Turin and Berlin years [9,10].

Even the new foundations for variational calculus, settled by Lagrange when he was 19 and com-
pleted in the following years and applied to questions of Mechanics [16], share that algebraic flavor
which is typical of his way to intend mathematical rigor: of course, according to nowadays standards,
Lagrange treatises are no more rigorous, but they still stand as the most elegant and formally correct
pieces of Mathematics of 18th century.

2.1. Lagrange’s intensional concept of a function

Being probably the most rigorous and formally accurate mathematician of his age, Lagrange was not
satisfied with the status of differential and integral calculus that, since Newton, Leibniz and Bernoulli,
relied on the infinitesimal analysis, a subject not correctly understood until 19th century.

There are several studies which describe and provide interpretations of Lagrange attempts to lay the
foundations of differential calculus on algebraic bases, e.g., previous works [5–10]. Here, we will review,
in modern notations, some fundamental concepts put forth by Lagrange for his foundation of calculus.

The first sentence of Lagrange 1806 textbook Lecxons sur le calcul des fonctions [19]
1

is explicit about
Lagrange’s intentions:

Function calculus has the same object as the differential calculus taken in the broadest sense, but it is not subject
to the difficulties encountered in the principles and in the ordinary course of this calculus: it serves more to link
the differential calculus immediately to algebra, which can be said was a separate science so far.

2

Lagrange notices that Euler considered Leibniz infinitesimals as being null quantities, incurring in
0=0 expressions; he also mentions Mac Laurin and d’Alembert intuitive concepts of limit, which lead to
the same difficulty (since a general definition of limit will be given by Cauchy a quarter of century later)
[5,8]. It is worth to remind that Lagrange pays always much attention to the history of the subjects he
studies, summarizing and criticizing previous efforts: this is done for the concept of function and for dif-
ferential calculus in the introduction of his Théorie [18].

Moreover, Lagrange considers infinitesimals and limits as metaphysics, while he thinks that ‘‘analysis
must have no other metaphysics than that which consists in the first principles and in the first fundamen-
tal operations of the calculus’’

3

[19, p. 2].
On the contrary, Lagrange states that the truly science of functions is algebra: on extending algebraic

operations to embrace function developments, Lagrange believes that differential calculus may be well
founded as (polynomial) algebra is. Remember that Lagrange published important studies on the theory
of algebraic equations, paving the way to Cauchy and most of all to Galois [16].

Lagrange definition of a function obviously avoids any set-theoretical flavor: he defines a function
f (x1, :::, xn) depending on variables x1, :::, xn as an algebraic expression involving such variables and pos-
sibly numeric or symbolic constants: this expression is formed by elementary functions, variables, and
constants connected via algebraic operations.

We recognize in Lagrange point of view the approach of modern computability theory, started with
Alonzo Church’s l-calculus in 1936, which identifies functions with l-expressions formed inductively in
terms of elementary functions and composition rules [20]. In other terms, while, after 150 years of set
theory, our concept of a function is extensional, Lagrange had an intensional concept in the sense speci-
fied by Church [20, §I.2]: functions are not sets, they are not identified with their graphs, rather they are
symbolic algorithms which can be computed once unknowns are assigned to specific values. This is the
approach of Church’s theory, which has several applications in modern logic and computer science.
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It is worth to underline that for Lagrange a function is not a numerical object: for us a function is
‘‘built on numbers,’’ since we identify it with its graph and we usually think at it as a vector in an infinite
dimensional vector space, where its argument is the coordinate index and its value the coordinate itself.
On the contrary, for Lagrange, a function is not a numerical object but quite a symbolic one.

Lagrange fundamental assumption about functions is the following one (we state it in the case n = 1):
given a function f (x), if y is another indeterminate not depending on x, then one can always write:

f x + yð Þ= f xð Þ+
X
k ø 1

gk xð Þyk, ð1Þ

where gk are the functions not depending on y.
Since, if x = 0 in the previous development, we find f expressed as a power series:

f yð Þ= f 0ð Þ+
X
k ø 1

gk 0ð Þyk, ð2Þ

from our modern extensional point of view, we could be tempted to claim that Lagrange is assuming
each function f to be analytic at 0 (in the modern sense). But indeed this is not true, since analytic func-
tions cannot be defined without reference to local disks of convergence (again a rigorous theory will be
given by Weierstrass who correctly succeeded in founding complex variable theory upon power series,
see [5]) and Lagrange does not take into account any disk or domain for his functions, indeed he is not
concerned about convergence whatsoever.

Rather, we should consider a function according to Lagrange more as a formal power series, a purely
algebraic object: he was not concerned about convergence in general, even if he states time and again
that at specific values of their argument, functions may well be not defined. For these reasons, in his
1823 textbook Résumé des lecxons sur le calcul infinitésimal, Augustin-Louis Cauchy dismissed gracefully
but bluntly Lagrange’s approach, claiming that [21, p. v],

I thought I should reject the developments of functions in infinite series, whenever the series obtained are not conver-
gent; and I saw myself forced to return to integral calculus the formula of Taylor, this formula not being able to be
admitted as general any longer unless the series it contains is reduced to a finite number of terms and completed by a
definite integral. I am aware that the illustrious author of Analytical Mechanics took the formula in question as the basis
of his theory of derived functions. But, despite all the respect commanded by such a great authority, most geometers
now agree in recognizing the uncertainty of the results to which one can be led by the use of divergent series.4

Cauchy is right of course, his analysis is the 19th century one (for a complete discussion, see [8]):
however, our aim is to understand Lagrange viewpoint and stress that, according to his intensional
approach, analytic means that, as far as y is an indeterminate and to x is not assigned a specific value,
equation (1) holds true since f (x + y) is supposed to differ from f (x) by a quantity which is of the form
y � g(x, y), where g(x, y) can in turn be separated into the sum of a part depending only on x and a rest,
and so on. Thus, the series development is an algebraic recurrent device, not a topological property of
the function around a point in the complex plane.

2.2. Lagrange algebraic foundation of differential calculus

For any function Lagrange supposes that f (x + y) can be written as:

f x + yð Þ= f xð Þ+ y � g1 x, yð Þ,

where g1(x, 0) is well defined (thus, it is an expression which can be computed to provide a number).
Therefore:

g1 x, yð Þ= f x + yð Þ � f xð Þ
y

,
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is the increment of f at x by y, and for Lagrange g1(x, 0) is the first derivative of f at x. For example, let
f (x) =

ffiffiffi
x
p

: then from: ffiffiffiffiffiffiffiffiffiffi
x + y
p

=
ffiffiffi
x
p

+ y � g1 x, yð Þ,

it follows that:

g1 x, yð Þ=
ffiffiffiffiffiffiffiffiffiffi
x + y
p �

ffiffiffi
x
p

y
=

x + y� x

y
ffiffiffiffiffiffiffiffiffiffi
x + y
p

+
ffiffiffi
x
p

ð Þ =
1ffiffiffiffiffiffiffiffiffiffi

x + y
p

+
ffiffiffi
x
p ,

so that g1(x, 0) = 1=(2
ffiffiffi
x
p

).
On iterating the same reasoning on g(x, y), writing it as:

g1 x, yð Þ= g1 x, 0ð Þ+ y � g2 x, yð Þ,

one gets the second derivative (1=2)g2(x, 0) and so on. In this way, we can also compute the exact rest of
the approximation: for example, if f (x) =

ffiffiffi
x
p

, then on writing:

g1 x, yð Þ= g1 x, 0ð Þ+ y � g2 x, yð Þ= 1

2
ffiffiffi
x
p + y � g2 x, yð Þ,

we get:

g2 x, yð Þ= 1

y

1ffiffiffiffiffiffiffiffiffiffi
x + y
p

+
ffiffiffi
x
p � 1

2
ffiffiffi
x
p =

ffiffiffi
x
p
� ffiffiffiffiffiffiffiffiffiffi

x + y
p

2y
ffiffiffi
x
p ffiffiffiffiffiffiffiffiffiffi

x + y
p

+
ffiffiffi
x
pð Þ

= � 1

2
ffiffiffi
x
p ffiffiffiffiffiffiffiffiffiffi

x + y
p

+
ffiffiffi
x
pð Þ2

:

Actually Lagrange does not use the full series development of equation (1) but performs this recursive
construction until needed, thus up to a power yk, writing the rest in an exact form. Indeed, while the
terms in the series (2) are, up to a k! factor, the derivatives of the function which we compute by limiting
processes defined pointwise, Lagrange computes them in terms of finite algebraic operations. In some
sense, the idea of Lagrange calculus is a global one (as expressed in intensional form) as opposed to the
local one which today we successfully use [7].

Building on these foundations, which are quite unstable from the modern point of view, Lagrange
proves several theorems of differential calculus in a purely algebraic way [9]. For example, the identifica-
tion of the terms g1(x, 0), (1=2)g2(x, 0), (1=3)g3(x, 0)... with f 0(x), f 00(x), f 000(x)... is done by a purely alge-
braic reasoning which involves essentially the principle of identity of two power series (they are equal if
their coefficients are: this is obvious by the extensional definition of power series as sequences).

By the same method, Lagrange proves that mixed partial derivatives of a function of several variables
are equal and other classic results which are today deduced via limit process (and which may fail if suit-
able hypotheses are not satisfied): see previous works [5,7]. Most of the geometric applications of calcu-
lus to Analytic Geometry (tangent computations, maxima and minima, constrained maxima and
minima, etc.) known at the time are deduced by Lagrange by these algebraic means: he was essentially
doing algebraic geometry on the real field, in the sense of Walker [22, p. iii].

2.3. Lagrange attempt to an algebraic foundation of variational calculus

It is well known [23, p. 110] that the term calculus of variations was coined by Euler after that Lagrange
in 1755, at the age of 19 years, communicated to the great Swiss mathematician his own algebraic
approach to the problem of maxima and minima of integrals [16]: Euler had developed geometric and
numerical methods while Lagrange found a symbolic device which is essentially still used in the books
of Analytical Mechanics. Euler liked the idea so much that he (already a renowned scientist) wrote to
the unknown Turin teenager that [24, p. 144],
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After reading your last letter, which saw you to erect the theory of maximum and minimum to the highest level
of perfection, I can’t stop admiring the distinguished sagacity of your ingenuity. [...] I immediately looked
through your analysis, which enabled me to formulate solutions to such problems through just analysis to a
much wider range than my method based on geometrical ideas.

5

The young Lagrange used formal expressions in his calculus of variations, not concerning about con-
vergence and always considering integrals as indefinite (i.e., antiderivatives) rather than definite integrals
as Cauchy will do later: thus, for Lagrange, the result of the process of integration is always a function,
never a number.

It is worth to notice that Lagrange infers by his methods that each function of a single variable is
integrable; thus it has an antiderivative, while he claims that this is not true in the case of several vari-
ables [19, p. 401]. The integrability condition he found for the existence of the primitive in the general
case appears also to be the necessary condition for the stationarity of an integral in the Calculus of
Variations: for this reason, Lagrange, in his later works, changes his approach to Calculus of Variations,
which Euler liked so much, and uses his formal methods in the Théorie [18, p. 273ff], and in the Lecxons
[19, p. 441ff], with no reference to infinitesimal reasonings, which were used in his letters to Euler and
early papers, see Goldstine [23]: for an account of the classical exposition of Lagrange’s Calculus of
Variations [25]; for an account of the exposition that Lagrange gave of the Calculus of Variations using
his analytical function calculus [26]; for an analysis of these two different foundations that Lagrange
gave during the years.

Suppose f (x, y, y0, y00, :::) be a function where y is supposed to be a function of x; one cannot know the
primitive function of f unless y is known in terms of x. The idea of Lagrange is, as usual, to develop
f (x, y, y0, y00, :::) in series after adding an increment to its arguments as:

f x, y + v, y0+ v0, y00+ v00, :::ð Þ,

being v a function of x (which is nothing else than the first variation dy that Lagrange does not want to
use in this context to avoid any reference to infinitesimal reasonings). By algebraic manipulation of this
development, Lagrange shows that f (x, y, y0, y00, :::) has a primitive if and only if the following condition
holds true, independently on any relation between x and y:

f 0(y)� f 0 y0ð Þ½ �
0
+ f 0 y00ð Þ½ �

00
� � � � = 0:

In modern notation, this equation reads:

df

dy
� d

dx

∂f

∂y0
+

d2

dx2

∂f

∂y00
� � � � = 0, ð3Þ

i.e., the Lagrange equation.
The interesting fact is that this integrability condition is also the necessary condition on a curve y(x)

to be the maximum or minimum of the antiderivative of f (x, y, y0, y00, :::) in a given interval a ł x ł b.
Namely, one looks for the value of y(x) such that y(x) = 0 for x = a and y(x) is the maximum or mini-
mum of the primitive of f (x, y, y0, y00, :::) for x = b.

To illustrate that, Lagrange puts forth the following example [18, p. 281]:

f x, y, y0ð Þ= y02 + 2myy0+ ny2:

Then, equation (3) becomes:

2my0+ 2ny� 2y00 � 2my0= 0,

thus ny = y00, a differential equation which Lagrange solves easily by his algebraic methods as
y = g ex

ffiffi
n
p

+ he�x
ffiffi
n
p

if n ø 0 or as y = g sin (k x + h) if n = � k2. This is the primitive of f up to arbitrary
constants g, h such that, viewed as a curve, on its points, the original expression has maximum or mini-
mum value: Lagrange shows also how to determine such constants once values of x are bound to a cer-
tain interval.
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However, the proof that Lagrange provides for the necessary condition of stationarity of the integral
of f (x, y, y0, :::) is incorrect: indeed he does assume that a single primitive exists for the first variation of
this integral, which is in general false and invalidates his algebraic reasoning (for a historical and critical
account of Lagrange error when applying his formal computations to Calculus of Variations, see previ-
ous works [8,9,26]).

While algebraic computations performed by Lagrange are not quite satisfactory today, since they
leave aside existence, convergence, and uniqueness questions (in particular, the reasonings of Lagrange
are by no means correct to determine primitive and maxima and minima according to modern stan-
dards), nevertheless the unification of integrability conditions and stationarity necessary conditions for
the Calculus of Variations is noteworthy.

3. Formal Lagrangian mechanics

Hereinafter, we will try to recover some analytical mechanical concepts using Lagrange viewpoint: of
course we are aware, as Lagrange did not, that the formal approach can only address a restricted class
of differentiable functions and that our expressions may well not converge anywhere. However, we think
it is worth to experiment with this Lagrangian approach to the calculus behind Lagrangian Mechanics,
and the ease with which we will recover some results is, we believe, interesting to say the least.

It is worth to remind that some attempts at an algebraic description of Analytical Mechanics have
been done time and again (e.g., previous works [27–31]) but, we believe, with different spirit, methods,
and purposes w.r.t. those we are presenting here.

Let us fix our notations for differential calculus in the formal power series ring over a field K with zero
characteristic (we will not use any result from the theory of formal power series other than well-known
facts which are collected in standard references such as [32, iv.4]). We stick to the n = 1 degree of freedom
case in the following, therefore working in the algebra K½½x, _x��: in future works, we will extend our dis-
cussion to the general case.

If F =
P

r, s ø 0 ur, s xr _xs, its partial derivative w.r.t. variable x is the derivation:

∂F

∂x
=
X

r, s ø 0

r � ur, s xr�1 _xs =
X

r, s ø 0

r + 1ð Þur + 1, s xr _xs,

and similarly:

∂F

∂ _x
=
X

r, s ø 0

s � ur, s xr _xs�1 =
X

r, s ø 0

s + 1ð Þur, s + 1 xr _xs:

The maps ∂=∂x, ∂=∂ _x : K½½x, _x�� ! K½½x, _x�� are K-linear and surjective, being K½½ _x�� and K½½x�� their ker-
nels; thus, we have the exact sequences:

0! K½½ _x�� ! K½½x, _x�� ∂=∂x���! K½½x, _x��=K½½ _x�� ! 0,

0! K½½x�� ! K½½x, _x�� ∂=∂ _x���!K½½x, _x��=K½½x�� ! 0,

which induce isomorphisms:

K½½x, _x��
K½½ _x�� !

K½½x, _x��
K½½ _x�� and

K½½x, _x��
K½½x�� !

K½½x, _x��
K½½x�� ,

whose inverses we denote as: ð
F dx 2 K½½x, _x��

K½½ _x�� ,

ð
F d _x 2 K½½x, _x��

K½½x�� :
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Of course, we have (modulo K½½ _x�� and K½½x��, respectively):ð
F dx =

X
r, s ø 0

1

r + 1
ur, s xr + 1 xs,

ð
F d _x =

X
r, s ø 0

1

s + 1
ur, s xr xs + 1,

so that we have:
∂

∂x

ð
F dx = F,

∂

∂ _x

ð
F d _x = F:

3.1. Helmholtz conditions and Lagrange equations

We take seriously the idea of Lagrange that the fundamental equations of Calculus of Variations can be
understood as integrability conditions: therefore, we try to formulate in our setting this idea, which was
pursued by outstanding scientists after Lagrange, using his analytical methods in our modern notation.

Let us consider the ordinary differential equation:

F x, _xð Þ€x + G x, _xð Þ= 0, ð4Þ

where _x represents the derivative with respect to the time t, and suppose F and G to be defined as formal
power series in the indeterminates x, _x:

F =
X

r, s ø 0

ur, s xr _xs, G =
X

r, s ø 0

gr, s xr _xs,

with coefficients ur, s = ur, s(t) and gr, s = gr, s(t) functions of the variable t (possibly formal power series
in turn). From now on, we will leave the dependence of the coefficients on t out.

Let us not think to F and G as extensional functions but as formal power series, and to x, _x,€x as gen-
erators of our algebra subject to the relations:

dx

dt
= _x,

d _x

dt
=€x,

which extend the derivation on power series coefficients to indeterminates.
Next, consider a power series:

L =
X

r, s ø 0

lr, s xr _xs:

We will compute its Lagrangian derivative:

dL

dx
=

d

dt

∂L

∂ _x
� ∂L

∂x
:

Let us do that explicitly:

dL

dx
=

d

dt

X
r, s

s + 1ð Þlr, s + 1 xr _xs �
X
r, s

r + 1ð Þlr + 1, s xr _xs

=
X
r, s

s + 1ð Þ d

dt
lr, s + 1 xr _xs +

X
r, s

r s + 1ð Þlr, s + 1 xr�1 _xs + 1

+
X
r, s

s s + 1ð Þlr, s + 1 xr _xs�1 €x�
X
r, s

r + 1ð Þlr + 1, s xr _xs:
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Now let us observe that:X
r, s ø 0

r s + 1ð Þlr, s + 1 xr�1 _xs + 1 =
X
r ø 0

X
s ø 0

r + 1ð Þslr + 1, s xr _xs:

Hence, we obtain:

dL

dx
=
X
r, s

s + 1ð Þ d

dt
lr, s + 1 xr _xs +

X
r, s

r + 1ð Þslr + 1, s xr _xs

+
X
r, s

s + 1ð Þ s + 2ð Þlr, s + 2 xr _xs €x�
X
r, s

r + 1ð Þlr + 1, s xr _xs

=
X
r, s

s + 1ð Þ s + 2ð Þlr, s + 2 xr _xs

" #
€x

+
X
r, s

s + 1ð Þ d

dt
lr, s + 1 + r + 1ð Þ s� 1ð Þlr + 1, s

� �
xr _xs:

Notice that we have deduced an expression of the form F €x + G: on supposing the coefficients of F
and G to be given, let us determine, by means of the identity principle for formal power series, the lr, s

which fulfill the identity (dL=dx) = F €x + G.
First, we get:

lr, s + 2 =
1

s + 1ð Þ s + 2ð Þur, s: ð5Þ

In this way, all lr, s for each r ø 0 and each s ø 2 are uniquely determined.
Next, we have:

s + 1ð Þ d

dt
lr, s + 1 + r + 1ð Þ s� 1ð Þlr + 1, s = gr, s: ð6Þ

We use this condition to recover lr, 1 and to find out a necessary relation between F and G.
In the first place, on putting s = 0 in the previous identity, we get:

d

dt
lr, 1 � r + 1ð Þlr + 1, 0 = gr, 0,

so that lr, 1 are determined up to lr, 0, which we may choose arbitrarily.
For s = 1, we get a compatibility condition between F and G, since:

2
d

dt
lr, 2 = 2

d

dt

1

2
ur, 0 = gr, 1 ,

thus:

d

dt
ur, 0 = gr, 1 :

Moreover:

s + 3ð Þ d

dt
lr, s + 3 + r + 1ð Þ s + 1ð Þlr + 1, s + 2,

= s + 3ð Þ d

dt

1

s + 2ð Þ s + 3ð Þur, s + 1 + r + 1ð Þ s + 1ð Þ 1

s + 1ð Þ s + 2ð Þur + 1, s,

=
1

s + 2

d

dt
ur, s + 1 +

r + 1

s + 2
ur + 1, s:
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Therefore, from equation (6), the following integrability conditions, which correspond to the classical
Helmholtz conditions [1], have to hold for the differential equation (4):

d

dt
ur, s + 1 + r + 1ð Þur + 1, s = s + 2ð Þgr, s + 2:

We resume our findings in the following.

Theorem 1. Given F =
P

r, s ur, s xr _xs and G =
P

r, s gr, s xr _xs, then, if the Helmholtz conditions:

_ur, 0 = gr, 1,
_ur, s + 1 + r + 1ð Þur + 1, s = s + 2ð Þgr, s + 2,

�

are fulfilled for each r, s ø 0, then, on putting:

lr, 1 =

ð
gr, 0 + r + 1ð Þlr + 1, 0

� �
dt, lr, s + 2 =

1

s + 1ð Þ s + 2ð Þur, s,

we determine L =
P

r, s lr, s xr _xs up to lr, 0 = (1=r!)(∂rL=∂xr)(0, 0), so that:

dL

dx
= F €x + G :

Remark 1. Helmholtz conditions in Theorem 1 may be written in terms of F and G as follows:

∂F

∂t
+

∂F

∂x
_x =

∂G

∂ _x
: ð7Þ

Indeed,

∂F

∂t
+

∂F

∂x
_x =

X
r, s

_ur, sx
r _xs +

X
r, s

r + 1ð Þur + 1, s xr _xs + 1,

=
X

r

_ur, 0xr +
X
r ø 0

X
s ø 1

_ur, s + r + 1ð Þur + 1, s�1

	 

xr _xs,

and

∂G

∂ _x
=
X
r, s

s + 1ð Þgr, s + 1 xr _xs =
X

r

gr, 1 xr +
X
r ø 0

X
s ø 1

s + 1ð Þgr, s + 1 xr _xs,

whose equality let us recover, term-wise, Helmholtz conditions as we stated in Theorem 1.
Notice that Helmholtz conditions require:

∂G

∂ _x
x, 0ð Þ= ∂F

∂t
x, 0ð Þ:

This is surely fulfilled if G does not depend on _x.
In particular, if we require the coefficients lr, s to be constant with respect to t, the conditions (5) and

(6) on L simplify to:

lr, s + 2 =
1

s + 1ð Þ s + 2ð Þur, s, gr, 1 = 0, lr + 1, s =
1

r + 1ð Þ s� 1ð Þgr, s (s 6¼ l),

while
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Corollary 1. Given F =
P

r, s ur, s xr _xs and G =
P

r, s gr, s xr _xs, with ur, s and gr, s constant with respect t,
then, if the Helmholtz conditions:

gr, 1 = 0

r + 1ð Þur + 1, s = s + 2ð Þgr, s + 2

�
,

are fulfilled for each r, s ø 0, then on putting:

lr + 1, s =
1

r + 1ð Þ s� 1ð Þ gr, s, lr, s + 2 =
1

s + 1ð Þ s + 2ð Þur, s,

we determine L =
P

r, s lr, s xr _xs up to l0, 0 = L(0, 0) and l0, 1 = (∂L=∂ _x)(0, 0), so that:

dL

dx
= F €x + G :

3.2. Simple examples

Using theorems deduced in the previous section, let us determine in some examples whether a Lagrange
function for a Newtonian dynamical system F €x + G = 0 does exist, and in this case to build it. Notice
how easy is to prove or disprove Helmholtz conditions and to build a Lagrangian when it is possible by
this purely algebraic method.

Example 1. Consider the simplest Newtonian system: m€x = 0. This is just a uniform motion on a line.
We have F = m and G = 0, so that Corollary 1 applies and provides lr, s = 0 but for l0, 2 = u0, 0=2 = m=2,
hence:

L =
m

2
_x2 :

Example 2. Now consider the equation m€x + a + bx = 0, thus F is constant and G is linear in x. This is a
harmonic motion on a line. Again it is easy to check that Helmholtz conditions do hold, since they
reduce to 0 = 0! The Lagrangian is built as:

lr + 1, s =

�a if r = s = 0

�b

2
if r = 1, s = 0

0 otherwise

8>><
>>: :

Moreover, l0, 2 = u0, 0=2 = m=2. Therefore:

L = � ax� b

2
x2 +

m

2
_x2 :

Example 3. Let us consider the so-called damped harmonic oscillator, whose equation is
m€x + ax + b _x = 0 [1]. Here still F = m but G = ax + b _x, so that the only non-zero coefficients are
u0, 0 = m, g1, 0 = a and g0, 1 = b. This last identity violates Helmholtz conditions! Therefore, there is no
Lagrangian L for this dynamical system.

The Lagrangian in the latter case would be:

l2, 0 = � a

2

l0, 2 =
m

2

8><
>: ,

Bersani et al. 11



with l0, 0 and l0, 1 arbitrary, thus:

L = l0, 0 + l0, 1 _x� a

2
x2 +

m

2
_x2 :

But, of course,

d

dt

∂L

∂ _x
� ∂L

∂x
= m€x + ax + l0, 1 6¼ m€x + ax + b _x :

Example 4. Another variant of the harmonic motion equation is:

€x� x3 + x = 0 :

In this case u0, 0 = 1, g1, 0 = 1, g3, 0 = � 1, therefore:

L =
1

2
_x2 +

1

4
x4 � 1

2
x2 :

Example 5. More generally, we can also recover the Lagrangian for the pendulum equation:

€x + a sin x = 0:

Since F = 1 and G = a sin x in this case, we have urs = 0 but for u00 = 1. Moreover:

G =
X
r ø 0

a
�1ð Þr

2r + 1ð Þ! x2r + 1,

thus, for r ø 0, g2r, 0 = 0 and g2r + 1, 0 = a(� 1)r=(2r + 1)!; moreover gr, s = 0 if s . 0. Combining these
relations with our definition for l in terms of u, we get:

l2r + 1, 0 = 0

l2r + 2, 0 =
1

2r + 2
a

�1ð Þr

� 2r + 1ð Þ! = � a
�1ð Þr

2r + 2ð Þ!
lr + 1, s = 0 if s . 0 :

8>>><
>>>:

Furthermore, since the only non-zero urs is u00 = 1, we have:

l0, 2 =
1

2

lr, s + 2 = 0 if r . 0 or s . 0,

8<
:

so that, on choosing l00 = a, we get:

L = l00 �
X
r ø 0

a
�1ð Þr

2r + 2ð Þ! x2r + 2 +
1

2
_x2 =

1

2
_x2 � a cos x :

Example 6. Another classical example is the equation of motion of a point along a parabola rotating
around its vertical axis (cf. [33, p. II.5.2]):

1 + lx2
� �

€x + a + l _x2
� �

x = 0:
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In this case: u0, 0 = 1, u2, 0 = l, g1, 0 = a, g1, 2 = l, so that Helmholtz conditions reduce to 0 = 0 and
2l = 2l, and the Lagrangian is:

L = � a

2
x2 +

1

2
_x2 +

l

2
x2 _x2 :

3.3. Dissipative systems à la Rayleigh

In some cases, dissipative systems may be described via Lagrangian formalism as well: this kind of sys-
tems stems from the classical Rayleigh dissipative systems and have been studied still in recent times (for
a review, see Bersani and Caressa [1]).

The idea of Rayleigh [11] was to generalize Lagrangian potentials, which depend only upon x, to
potentials which also take _x into account, as follows: let us suppose that on the Lagrangian system with
potential energy U (x) acts also an external generalized potential R(x, _x) =

P
r, s rr, sx

r _xs, so that motion
equations are:

d

dt

∂L

∂ _x
� ∂L

∂x
� ∂R

∂ _x
= 0 :

If we try to ask whether:

d

dt

∂L

∂ _x
� ∂L

∂x
� ∂R

∂ _x
= F €x + G,

then, by computations which slightly extend the ones we did before in the case R = 0, we get the follow-
ing conditions:

lr, s + 2 =
1

s + 1ð Þ s + 2ð Þur, s

s + 1ð Þ _lr, s + 1 + r + 1ð Þ s� 1ð Þlr + 1, s � s + 1ð Þrr, s + 1 = gr, s

8><
>: ,

which, if we look for Lagrangians not explicitly depending on t, reduce to:

lr, s + 2 = 1
s + 1ð Þ s + 2ð Þur, s

r + 1ð Þ s� 1ð Þlr + 1, s � s + 1ð Þrr, s + 1 = gr, s

�
:

Next, as we did before, we may compute special cases of the differential condition (for s = 0, 1, 2) to
get:

_lr, 1 � r + 1ð Þlr + 1, 0 � rr, 1 = gr, 0,

rr, 2 =
1

2
_ur, 0 � gr, 1

� �
,

rr, s + 3 =
1

s + 3

_ur, s + 1

s + 2
+

r + 1

s + 2
ur + 1, s � gr, s + 2

� �
:

Theorem 1 and its corollary may be formulated as follows.

Theorem 2. Given F =
P

r, s ur, s xr _xs and G =
P

r, s gr, s xr _xs, then on putting:

rr, 2 =
1

2
_ur, 0 � gr, 1

� �
, rr, s + 3 =

1

s + 3

_ur, s + 1

s + 2
+

r + 1

s + 2
ur + 1, s � gr, s + 2

� �
,
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we determine R =
P

r, s rr, s xr _xs up to rr, 0 = (1=r!)(∂rR=∂xr)(0, 0), and on putting:

lr, 1 =

ð
gr, 0 + rr, 1 + r + 1ð Þlr + 1, 0

� �
dt, lr, s + 2 =

1

s + 1ð Þ s + 2ð Þur, s,

we determine L =
P

r, s lr, s xr _xs up to lr, 0 = (1=r!)(∂rL=∂xr)(0, 0), so that:

dL

dx
� ∂R

∂ _x
= F €x + G:

In particular, if we require the coefficients of L and R to be constant with respect to t, the conditions
simplify to the following corollary.

Corollary 2. Given F =
P

r, s ur, s xr _xs and G =
P

r, s gr, s xr _xs, then on putting:

rr, 2 = � 1

2
gr, 1, rr, s + 3 =

1

s + 3

r + 1

s + 2
ur + 1, s � gr, s + 2

� �
,

we determine R =
P

r, s rr, s xr _xs up to rr, 0 = (1=r!)(∂rR=∂xr)(0, 0), and on putting:

lr + 1, s =
gr, s + s + 1ð Þrr, s + 1

r + 1ð Þ s� 1ð Þ , lr, s + 2 =
ur, s

s + 1ð Þ s + 2ð Þ ,

we determine L =
P

r, s lr, s xr _xs up to lr, 0 = (1=r!)(∂rL=∂xr)(0, 0), so that:

dL

dx
� ∂R

∂ _x
= F €x + G :

Conditions expressed in the previous theorem and corollary almost automatically imply the form of
the L and R series, if they exist.

Example 7. Let us again consider the damped pendulum equation:

m€x + ax + b _x = 0 :

We have F = u0, 0 = m, G = g1, 0 x + g0, 1 _x = ax + b _x as only non-zero terms. From the previous corol-
lary, it follows immediately that r0, 2 = � g0, 1=2 = � b=2, while rr, s = 0 for s ø 3. Next, we find lr, s = 0
for s ø 2 but for l0, 2 = m=2, and l2, 0 = � (g1, 0 + r0, 1)=2 = � a=2. Therefore, we have:

L =
m

2
_x2 � a

2
x2, R = � b

2
_x2 :

Example 8. A signum variation in Example 6 leads to a non-conservative equation:

1 + lx2
� �

€x + a� l _x2
� �

x = 0:

Indeed, u0, 0 = 1, u2, 0 = l, g1, 0 = a, g1, 2 = � l, so that Helmholtz conditions are 0 = 0 and
2l = � 2l, so that they holds if and only if l = 0. However, the recipe in the previous corollary provides
us with L and R as follows:

L = � a

2
x2 +

1

2
_x2 +

l

2
x2 _x2, R =

2

3
lx _x3 :

It is interesting to notice that the equation in the previous example stems from field-theoretical works
in chiral Lagrangian theories of pion interactions [34] and are studied in the classical setting in Mathews
and Lakshmanan [35]: therein, a Lagrangian is exhibited for the equation, and built by means of an
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integrating factor, a well-known procedure related to the inverse problem of variational calculus [1].
More precisely, a Lagrangian for the equation:

€x + x
a� l _x2

1 + lx2ð Þ = 0,

is

L =
1

2

_x2 � ax2

1 + lx2

� �
:

This Lagrangian is not a classical L = T � U Lagrangian, but nevertheless it provides the motion
equation by the classical procedure.

Example 9. Van der Pol equation:

€x + m x2 � 1
� �

_x + x = 0,

is another important dissipative generalization of the harmonic motion: indeed, Helmholtz conditions
are violated, as a simple check by means of Corollary 1 shows, but we may write down Lagrange and
Rayleigh functions by noticing that u0, 0 = 1, g1, 0 = 1, g0, 1 = � m, and g2, 1 = m, getting:

L =
_x2

2
� x2

2
, R =

m

2
_x2 1� x2
� �

:

It is interesting to notice that Corollary 2 does not impose any condition on r0, 1 but for the relation
1 + r0, 1 = � 2l2, 0: we find it a posteriori to match the original equation.

Example 10. More generally, let us consider Liénard’s equation:

€x + f xð Þ _x + g xð Þ= 0:

In this case, with the previous notations, f =
P

r gr, 1xr and g =
P

r gr, 0xr. Therefore, we find:

rr, 2 = � 1

2
gr, 1

rr, s + 3 = � 1

s + 3
gr, s + 2

l0, 2 =
1

2

lr + 1, 0 = �
gr, 0 + rr, 1

r + 1
= �

gr, 0

r + 1

lr + 1, 1 = �
gr, 1 + 2rr, 2

r + 1
= �

gr, 1 � gr, 1

r + 1
= 0

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

:

These relations may be expressed as:

R = � _x2

2
f xð Þ, L =

_x2

2
�
ð

g xð Þdx:
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Notes

1. We will quote from the most recent editions of Lagrange’s books published when he was still alive.
2. Le calcul des fonctions a le même objet que le calcul différentiel pris dans le sens plus étendu, mais il n’est point sujet aux diffi-

cultés qui se rencontrent dans les principes et dans la marche ordinaire de ce calcul: il sert de plus à lier le calcul différentiel

immédiatement à l’algèbre, dont on peut dire qu’il fait jusq’à présent une science séparée.

3. l’analyse ne doir avoir d’autre métaphysique que celle qui consiste dans les premier principes et dans ler premières opérations

fondamental du calcul.

4. J’ai cru devoir rejeter les développemens des fonctions en série infinies, toutes les fois que les séries obtenues ne sont pas conver-

gentes; et je me suis vu forcé de renvoyer au calcul intégral la formule de TAYLOR, cette formule ne pouvant plus être admise

comme générale qu’autant que la série qu’elle renferme se trouve réduite à un nombre fini de termes, et complétée par un inté-

grale définie. Je n’ignore pas que l’illustre auteur de la Mécanique analytique a pris la formule dont il s’agit pour base de sa thé-

orie des fonctions dérivées. Mais, malgré tout le respecte que commande une si grande autorité, la plupart des géomètres

s’accordent maintenant à reconna tre l’incertitude des résultats auxquels ou peut être conduit par l’emploi des séries divergentes.

5. Perlectis tui postremi litteris, quibus Theoriam maximorum ac minimorum ad summum fere perfectionis fastigium erexisse

videris, eximiam ingenii tui sagacitatem satis admirari non possum. [...] Statim autem perspexi analysin tuam, qua meas hujus-

modi problematum solutiones per sola analyseo præ cepta elicuisse multo latius patere mea methodo ideis geometricis innixa.
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