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Deferred correction with mono-implicit Runge–Kutta methods
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Abstract

To reach a high order of accuracy for numerical solutions of IVPs with mono-implicit Runge–Kutta (MIRK) methods,
the technique of deferred correction is used. Special attention is paid to the possible increase of the order and the stability
of such schemes. Several schemes are given. c© 1999 Elsevier Science B.V. All rights reserved.

MSC: 65L05; 65L06; 65L20

Keywords: Deferred correction; Mono-implicit Runge-Kutta method; Stability

1. Introduction

For the numerical solution of �rst-order IVPs

y′ = f(x; y); y(x0) = y0; y ∈ Rd and f :R× Rd → Rd ; (1.1)

the following representation of s-stage implicit Runge–Kutta methods (IRK), known as parameter-
ized IRK methods, was presented by Burrage et al. [1]:

yn+1 = yn + h
s∑

i=1

bif(xn + cih; Yi);

Yi = (1− vi)yn + vi yn+1 + h
s∑

j=1

xijf(xn + cjh; Yj); i = 1; : : : ; s:
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Hence, a s-stage parameterized IRK method is completely determined by the tableau

(1.2)

Comparing this representation with the description of a general IRK method by means of its Butcher
tableau (c; A; b) [2], it is easy to verify that the relationship A = X + v:bT holds. For all methods
considered, we will assume that the row-sum condition holds, i.e. A:e = c where e is the s-vector
with unit entries. By imposing that X (or X after a rearrangement of its rows and columns according
to a same permutation) is a strictly lower triangular matrix one obtains mono-implicit Runge–Kutta
(MIRK) methods [1].
Several results concerning MIRK methods have been established. Well-known are the following

bounds: the order p6s+1 and the stage order is 3 at most. Also, in [1] a complete characterization
is given of methods of order p66 with s6p stages. Another family of MIRK methods is given in
[7]: here s= p and ci = 0; 1; : : : ; s− 1.
Also, there is no problem to �nd stable MIRK methods: when a MIRK method is applied to the

test problem y′ = �y; y(x0) = y0 with �xed stepsize h, one obtains yn = Rn(�h)y0 where R(z) =
P(e− v; z)=P(−v; z) with P(w; z)=1+

∑s
i=1 zibT:X i−1:w. This reveals one of the main problems one

is confronted with when using MIRK methods: the Jacobian of the implicit system to be solved
(which is of dimension d), is in practice approximated by the following non-linear expression in
J = @f=@y:

I −
s∑

i=1

hiJ ibT:X i−1:v:

This requires the computation of powers of J (an operation with complexity O(d3)). To avoid the
computation of high powers of J , we propose to use the technique of deferred correction (DC).
While Cash [3,4] used this technique for BVPs, we will apply it to IVPs.

2. The DC algorithm

Suppose we want to approximate the solution of IVP (1.1) on the mesh x0¡x2¡x2¡ · · · and
let h=maxi hi where hi:=xi+1− xi. Let �y be the restriction of the continuous solution y(x) to the
grid and let � and �∗ be approximations to �y.
We rely on a theorem proven by Skeel [6], which we reformulate in a slightly modi�ed form.

Theorem 2.1. Consider the DC scheme:

�(�) = 0;

�(�∗) =  (�):
(2.3)
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Suppose (i) �=�y+O(hp); (ii)  (�y) =�(�y) +O(hp∗
); and (iii)  (�w) =O(hr) for arbitrary

functions w having at least r continuous derivatives; then

�∗ =�y + O(hmin(p
∗ ;p+r)): (2.4)

As already mentioned, in our case � will correspond to a MIRK method of order p and  :=�−�∗

where �∗ corresponds to a MIRK method of order p∗ ¿p (we will systematically denote the
quantities that relate to �∗ with a ∗-superscript: s∗; a∗ij ; b∗i ; c∗i ; : : :). The interesting thing about �

∗

being a MIRK method is that  (�) =−�∗(�) can be computed directly. Although one could argue
that � can be any RK method, we also choose it to be a MIRK method since in that case all
systems to be solved have dimension d.
For � we have �(�y)n:=(yn+1 − yn)=hn −∑s

i=1 bif(xn + cihn; Yi), with yi:=y(xi) and

Yi = (1− vi)yn + viyn+1 + hn

i−1∑
j=1

xijf(xn + cjhn; Yj)

= yn + hn

s∑
j=1

aijf(xn + cjhn; Yj) + O(hp
n ):

Assumption (i) is a representation of the global error of the method � with p the order of the
method. If y′(x) = f(x; y(x)), then a Taylor series expansion gives

�(�y)n = (1− bT:e)fn + (12(1− 2bT:A:e)fn
yfn + (1− 2bT:c) xfn)hn + O(h2n);

whereby the superscript denotes the derivation and the subscript n means that all evaluations are
taken in x= xn. One notices that, if the series expansion is carried out as far as O(hp

n ), in this way
all the order conditions to achieve order p can be recognised. It thus becomes clear that the term in
hi
n, 06i6p−1 becomes zero when the method is of order p. We thus have �(�y)=O(hp

n ). In the
same way condition (ii) of Theorem 2.1 expresses the order of the residual with the higher-order
method �∗. Analogous to the previous derivation, �∗(�y)n = O(hp∗

n ) can be deduced. The value r
from assumption (iii) follows from the expansion of

 (�w)n =
s∑

i=1

bif(xn + cihn; Yi)−
s∗∑
i=1

b∗i f(xn + c∗i hn; Y ∗
i ):

One �nds

Yi =wn + (viw′
n + (X:e)ifn)hn

+(12viw
′′
n + (X:c)i

xfn + [(X:v)iw′
n + (X:X:e)ifn] yfn)h2n + O(h3n)

and

f(xn + cihn; Yi)

=fn + (ci xfn + (viw′
n + (X:e)ifn) yfn)hn

+(12c
2
i
xxfn + ci(viw′

n + (X:e)ifn)xyfn + 1
2(viw

′
n + (X:e)ifn)2 yyfn

+1
2viw

′′
n

yfn + (X:c)i xfn
yfn + (X:v)iw′

n(
yfn)2 + (X:X:e)ifn( yfn)2) h2n

+O(h3n);
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such that
s∑

i=1

bif(xn + cihn; Yi) = bT:efn + (bT:c xfn + (bT:vw′
n + bT:X:efn) yfn)hn

+(12b
T:c2 xxfn + (bT:(cv)w′

n + bT:(cX:e)fn) xyfn

+1
2b
T:(vw′

n + X:efn)2 yyfn + 1
2b
T:vw′′

n
yfn

+bT:X:c xfn
yfn + bT:X:vw′

n(
yfn)2 + bT:X:X:efn( yfn)2)h2n + O(h3n):

Doing the same kinds of operations for the higher-order method and substracting, one �nds that
 (�w) = �(�w)− �∗(�w) is O(hr

n) where r =min(p; q) and

q=




1 if bT:v 6= b∗T:v∗

2 if bT:v= b∗T:v∗

but |bT:(cv)− b∗T:(c∗v∗)|+ |bT:X:v− b∗T:X ∗:v∗|+ |bT:v2 − b∗T:v∗2| 6= 0
3 if bT:v= b∗T:v∗

and |bT:(cv)− b∗T:(c∗v∗)|+ |bT:X:v− b∗T:X ∗:v∗|+ |bT:v2 − b∗
T

:v∗2|= 0
but : : :

: : : :

We thus �nd that, while the value r in condition (iii) is 1 in general, it can be raised to 2 or even
higher. In [3,4], where symmetric methods are used, the value r=2 is obtained since for all symmetric
methods bT:v = 1

2 . Combining the three conditions of Theorem 2.1, is it clear that there will be a
gain O(hg) with the DC technique based on � and �∗, where g=min(r; p∗−p)=min(p; q; p∗−p).
Since one may expect that, if p= q=p∗ − q, the ratio accuracy=computational cost is optimal, we
will call these schemes optimal.
The basis of coupling two methods by DC, can be enlarged to several methods. The general

scheme of DC by coupling m methods is of the following form:

�1(�1) = 0;

�1(�i) = �1(�i−1)− �i(�i−1); i = 2; : : : ; m:
(2.5)

We will call �1 the basic method while �i; i= 2; : : : ; m are called the composing methods. Adding
an extra method can, despite the extra computational cost, be interesting for reasons of accuracy
and=or stability. In this paper we will restrict ourselves to schemes for which each of the composing
methods raises the accuracy. For such schemes, we will analyze the stability.

3. Linear stability of DC-schemes

To analyze the linear stability properties of the method obtained, we introduce some new notations.
Let Ri(z) = Ni(z)=Di(z) whereby Ni(0) =Di(0) = 1 denote the linear stability function associated to
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method �i, then the linear stability function Zm associated to scheme (2.5) is recursively de�ned by

Z1(z):=R1(z);

Zi(z):=
(D1(z)− Di(z))Zi−1(z) + Ni(z)

D1(z)
; i = 2; : : : ; m:

In this way, it is clear that the denominator of Zm(z) is Dm
1 (z).

Several stability properties can be proven. A property which is useful in the construction of
optimal DC schemes is given in the following theorem:

Theorem 3.1. If Ri(z) = exp(z) +O(zg i+1); i= 1; : : : ; m then Zm(z) = exp(z) +O(zg m+1) if and only
if D1(z)− Di(z) = O(zg); i = 1; : : : ; m.

Proof. Let Ri(z) = Ni(z)=Di(z) = exp(z) + Ei(z) and Zi(z) = Ñ i(z)=D̃i(z) = exp(z) + Ẽi(z) where
Ei(z) = O(zg i+1) and Ẽi(z) = O(zg i+1). Then

Ñ i(z)
D̃i(z)

=
(D1(z)− Di(z))(exp(z) + Ẽi−1(z)) + Di(z)(exp(z) + Ei(z))

D1(z)

= exp(z) +
D1(z)− Di(z)

D1(z)
Ẽi−1(z) + O(zg i+1)

from which is follows that (D1(z)− Di(z))=D1(z) = O(zg):

If a DC scheme is set up consisting of m MIRK methods this condition means that, for
i = 0; 1; : : : ; g− 1; bT:X i:v has the same value for all m methods.
We recall that our �rst aim is to reduce the computational work associated to the computation

of high powers of J . Since the number of powers is determined by the degree of D1(z), we may
want to choose a method �1 for which D1(z) is linear. In this respect, the trapezoidal rule looks
very interesting since it is the only A-stable MIRK method for which D1(z) is linear which allows
g= 2. Unfortunately, we have the following result:

Theorem 3.2. The DC scheme (2:3) where � is based on the trapezoidal rule and �∗ is a Runge–
Kutta method M of order p¿3; cannot be A-stable.

Proof. Let N (z)=D(z) where N (0) = D(0) = 1 be the stability function of M . Then the stability
function Z2 of the DC scheme is

Z2(z) =
1− z2=4 + [(1− z=2)N (z)− (1 + z=2)D(z)]

(1− z=2)2
:

Since (1 + z=2)=(1 − z=2) = exp(z) + O(z3) and N (z)=D(z) = exp(z) + O(zp+1), the term between
brackets in Z2(z) is O(z3), hence the resulting method is not A-stable.

From the above result, it follows that if D1 is linear, �1 can only be of �rst order if A-stability
is required and thus only g = 1 is possible. If one looks for accurate A-stable schemes, it is thus
necessary to consider schemes for which the denominator of the basic method is quadratic at least. In
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Fig. 1. −log10 h vs. log10 of the global error in x=1 with (a) �=0 (left), (b) �=−1 (middle) and (c) �=−1000 (right)
for the methods of case A.

this case, it is still possible to avoid the computation of J 2 if D1 is factorizable in linear terms. Then
several systems (for which the iteration matrices are linear in J ) have to be solved consecutively.

4. An example

Case A: We select MIRK methods for which ci = i − 1; i = 1; 2; : : : ; s. These methods, which
still contain some parameters, are described in Section 3 of Van Daele [7] and used in a code in
Van Hecke [8]. Since D1 has to be quadratic at least, we look for a method �1 which is already
of third order. It turns out that within the family considered it is possible to construct a L-stable
�fth-order method M345, based on three methods of orders 3, 4, and 5, respectively, for which D1

is factorizable and, if we call M3 (resp. M34) the method based on the third-order (resp. third and
fourth order) method alone, M3 and M34 are A-stable. The values of the parameters to obtain this
are t=2(

√
3+1) for m=3; t=0 and s=2(

√
3+1) for m=4 and s=−2−4√3=19 and t=7=2+2

√
3

for m= 5 (with stage order 3).
As it is the case with RK methods in general, one can expect a possible order reduction when

applying the method to sti� problems. Therefore, we apply the method to the Prothero–Robinson
test problem [5]:

y′(x) = �(y(x)− g(x)) + g′(x); y(0) = g(0) (4.6)

with g(x) = 10− (10 + x)exp(−x). We integrate this problem whose solution is y(x) = g(x), up to
x=1 and we consider the global error for di�erent values of the sti�ness parameter � and di�erent
values of the constant stepsize h. For � = 0 the problem becomes explicit and the results obtained
with deferred correction are those obtained with the last method used. The slopes of the lines in
Fig. 1(a) con�rm the theoretical order of the methods M3; M4; M5.
For � ≈ 0, the problem is non-sti� and from Fig. 1(b) one can easily deduce the expected order

behaviour of the three methods M3; M34 and M345. However, as � decreases, the behaviour changes.
In Fig. 1(c) we show the case where �=−1000, in which case the problem is moderately sti�. One
notices that M34 does not perform better than M3, while M345 performs very badly. To understand
the behaviour of the di�erent schemes, we consider the LTEs and we look at the behaviour in the
case z =−�h → ∞ and h → 0 (this is what Prothero et al. call the sti� order).
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5. The sti� order of DC schemes

When a parameterized RK method is applied to (4.6) with steplength h one obtains,

y1 =
(1 + ĥBT:(e − v))y + BT:(hG′(0)− ĥG(0))

1− ĥBT:v
; (5.7)

where ĥ:=�h, BT:=bT:(I − ĥX )−1 and G(x) and G′(x) are the s-vectors with entries g(cix) and
g′(cix).

Theorem 5.1. If a parameterized RK method of order p with stage order q6p is applied to (4:6);
then

y(h)− y1 =
hq+1

(q+ 1)!
Cq+1(ĥ)y(q+1)(0) + O(hq+2); (5.8)

where

Cq+1(ĥ) = 1− (q+ 1)bT:cq + ĥBT:(cq+1 − (q+ 1)A:cq)
1− ĥBT:v

:

Proof. Developing (5.7) in a Taylor series for h, one obtains on account of y(x) = g(x)

y2 = y +
1

1− ĥBT:v

∞∑
j=1

BT:
(
c j−1 − ĥ

cj

j

)
y(j)(0)

hj

(j − 1)! :

Order p and stage order q imply F :=(q+ 1)A:cq − cq+1 6= 0 and f:=(q+ 1)bT:cq − 1 and

X:c j−1 =
cj − v

j
; j = 1; : : : ; q;

X:cq =
cq+1 − v
q+ 1

+
F − fv
q+ 1

such that

cj−1 − ĥ
cj

j
= (I − ĥX ):c j−1 − ĥ

v
j
; j = 1; : : : ; q;

cq − ĥ
cq+1

q+ 1
= (I − ĥX ):cq − ĥ

v
q+ 1

+ ĥ
F − fv
q+ 1

:

Multiplying each equation in both sides with BT gives

BT:
(
c j−1 − ĥ

cj

j

)
=
1
j
(1− ĥBT:v); j = 1; : : : ; q;

BT:

(
cq − ĥ

cq+1

q+ 1

)
=

1
q+ 1

(1− ĥBT:v) +
1− ĥBT:v
q+ 1

f + ĥ
BT:F
q+ 1

:

The result now follows.
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Remark. It may happen that, if q¡p, Cq+1(ĥ) = 0.
If a method is �tted to solve sti� problems, the rational function C(z) ∼ z−pz with pz¿0 as

z → ∞. For DC-schemes we need to know how the corresponding expression grows out of the ex-
pressions for the composing methods. Therefore, we de�ne for each method in the scheme a function
S(h; ĥ):=BT:(hG′(0)−ĥG(0)), such that we obtain from (5.7) that y1=[N (ĥ)y+S(h; ĥ)]=D(ĥ). When
the scheme (2.5) is applied to problem (4.6), one obtains the approximations ỹ 1; i=Zi(ĥ)y+Wi(h; ĥ),
i = 1; 2; : : : ; m, where

Zi(z):=
(D1(z)− Di(z))Zi−1(z) + Ni(z)

D1(z)
; Z1(z):=

N1(z)
D1(z)

;

Wi(z; ẑ):=
(D1(z)− Di(z))Wi−1(z; ẑ) + Si(z; ẑ)

D1(z)
; W1(z; ẑ):=

S1(z; ẑ)
D1(z)

:

If we now consider the case where h → 0 and ĥ → ∞ and we de�ne q̃m:=min16i6m{qi |Cqi+1(ĥ) 6=
0} where qi and Ci;qi+1(ĥ) follow from (5.8) for method �i, then

y(h)− ỹ 1;m =
hq̃m+1

(q̃m + 1)!
y(q̃m+1)(0)C̃m;q̃m+1(ĥ) + O(hq̃m+2);

where C̃1;q̃m+1(z):=C1;q̃m+1(z) and

C̃i;q̃m+1(z):=
(D1(z)− Di(z))C̃i−1;q̃m+1(z) + Di(z)Ci;q̃m+1(z)

D1(z)
:

If we now return to Case A, we �nd that q̃3 = 2 since q1 = 2 and q1 = q3 = 3 and

C1;3(z) =

√
3z

6− 2(3 +√
3)z + (2 +

√
3)z2

; C2;3(z) = 0; C3;3(z) = 0;

C̃2;3(z):=

√
3(3 + 2

√
3)(z − 2)z2

2(6− 6z − 2√3z + 2z2 +√
3z2)2

;

C̃3;3(z) := (3 + 2
√
3)(−2 + z)z3

(−312− 84√3 + (624 + 312√3)z − (488 + 272√3)z2 + (157 + 90√3)z3)
20

√
3(6− (6 + 2√3)z + (2 +√

3)z2)3

from which one can conclude that for z → ∞ C̃1;3 ∼ z−1 and C̃2;3 ∼ z−1 but C̃3;3 ∼ z1, which can
be veri�ed from Fig. 2.
Case B: Taking into account the results concerning sti� order, another choice of the parameters,

for which M3 and M34 are A-stable M345 is quasi L-stable (there is a very small area in the complex
plane near the imaginary unit where the method is unstable) is made: t = 0 for m = 3, s = t = 0
for m= 4, t = 0 and s= 4

57 for m= 5. In this case D1 is quadratic but no longer factorizable. This
di�erent behaviour of the global error (see Fig. 3) compared to Case A is due solely to the choice
of the parameters, which causes LTE ∼ h4ĥ

−1
for all methods.
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Fig. 2. log10 z vs. log10 of the global error in x = 1 with h= 1
10 for the methods of case A.

Fig. 3. −log10 h vs. log10 of the global error in x = 1 with (a) � =−1 (left) and (b) � =−1000 (right) for the methods
of case B.

Case C: A third and last example illustrates the possibility to have a stable DC-scheme with
gain g= 3 with a stable s1-stage method of order 3 and a s2-stage method of order 6 both having
the maximum stage-order 3. To construct this scheme, we �rst examined the cases where the total
number of stages s1 + s2 is minimal, taking into account that s2¿5 to obtain order 6 and s1¿3 to
obtain order 3 and stage order 3 and we made use of the fact that expressions of the form bT:X i:v
and bT:X i:e are connected to each other by the order equations. This technique showed that it was
impossible to have A-stability for s1 = 3 and s2 = 5 or s2 = 6. We thus chose s1 = 4 and s2 = 5.
For the sixth-order method, we used the family in [1]. This family contains two parameters c(6)3 and
c(6)4 . A family of third-order methods with four stages which has stage order 3 and for which the
denominator of the stability function has �xed linear and quadratic coe�cients also contains two
parameters c(3)3 and c(3)4 , whereby stability requires that |(c(3)3 − 1)=c(3)3 |¡ 1. There is one possibility,
c(6)4 = 1 − c(6)3 , to make the DC scheme A-stable and L-stability can be obtained for c(3)3 =

√
2.

Considering the C̃-expressions reveals that both the basic method and the DC-scheme are ∼ z−1

irrespective of the choice made for c(3)3 . The two remaining conditions, which express that b
T:(cv)

and bT:(v2) should have a �xed value for both methods, are then used to determine c(6)3 and c(3)4 .
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Fig. 4. −log10 h vs. log10 of the global error in x = 1 with (a) � =−1 (left) and (b) � =−1000 (right) for the methods
of case C.

Fig. 5. log10 z vs. log10 of the global error in x = 1 with h= 1=10 for the methods of case C.

We mention the following solution:

where c(6)3 =−0:5322765429 and v(6)3 = 1:151562344.
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A �nal analysis shows that, apart from small regions of instability along the imaginary axis, the
basic method of order three is A-stable and the DC-scheme itself is L-stable. The results are shown
in Figs. 4 and 5.

6. Conclusion

In this paper we considered the construction of DC schemes out of MIRK methods for the
numerical solution of IVPs. It is shown that high-order schemes can be constructed, but that it is
insu�cient to consider only linear stability. One can make sure that the stability of the DC scheme
is ensured also for non-linear systems of equations, but a new problem, which we did not consider
so far, is present: for the non-sti� case, there is a natural mechanism present in the DC scheme to
perform error control and stepsize selection. For the sti� case, this mechanism is no longer present
due to order reduction. This problem will be considered in future work.
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