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 Club sports, also known as recreational team sports, are prevalent in the metropolitan areas 

of United States nowadays. However, there is a key concern for organizers, which is how to reduce 

the time that players spend driving to and from matches while keeping league divisions 

competitive. We adopt a three-step approach to solve this problem. Initially, we analyze the drive 

time data between clubs’ locations to determine the geographic regions for the league. And then, 

clubs are assigned to divisions based on their rankings within in the league as well as their home 

facilities’ geographic regions. Finally, divisions are further subdivided to minimize the drive time. 

Alternatively, we present another two solutions using an integrated model as well as a heuristic.  

The integrated model focuses on optimizing competitiveness while keeping drive time as a 

constraint, and the heuristic attempts to improve the drive time while preserving competitiveness. 

Applying any of the three methods to the game planning to the Tennis Competitors of Dallas, a 

large and well-established sports league in Texas, USA, we demonstrate that all processes can 

rearrange the existing divisions in a way that not only shortens the drive time for players, but also 

maintains an acceptable level of competition. 
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INTRODUCTION 

1.1 Background 

Maureen Connolly was the first woman in history to win the Grand Slam of Tennis, and 

she founded the Maureen Connolly Brinker Tennis Foundation in 1968 with her friend Nancy 

Jeffett (The MCB Tennis Foundation, 2022). In 1977, the foundation started the Tennis 

Competitors of Dallas (TCD) league to promote women’s tennis in the Dallas/Fort Worth area 

(TCD, 2022). With 563 teams composed of approximately 7,800 players playing at 91 

facilities, TCD has grown to become the second largest such league in the United States (Goad, 

1999). Teams are placed into divisions, commonly called flights, based on their skill levels. 

There are typically ten teams in a flight in TCD. Each team plays twice against all the others 

in the same flight during a season: once at its home facility and another time at the other team's 

facility. The matches are held on Thursday mornings starting at 9:30 AM, so players on the 

visiting teams often must drive in rush-hour traffic. Figure 1 shows the locations of all the 

participating facilities in TCD.  
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Figure 1 The locations of TCD facilities 

 

 Figure 1 shows an area of roughly 400 square miles / 1,036 km2, which the facilities 

of TCD are spread across. Unsurprisingly, TCD members complain that the drive time to 

matches is too long. Looking at the drive time data of teams as an example flight in Table 1, 

players based at the facility labelled 58 must spend 68 minutes traveling to the facility labelled 

51 to compete with their opponents. The over-an-hour-long trip causes disadvantage for 

visiting teams before their games, and inconvenience to return home in time for players who 

also have school-age children to care for. 
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Table 1 Drive time between teams’ facilities in example flight 

 

Home Team's Facility Number on the Map in Figure 1 

51 51 12 28 43 05 49 58 02 28 

V
is

it
in

g
 T

ea
m

's
 F

ac
il

it
y
 N

u
m

b
er

 

51  0 29 34 29 33 31 49 39 34 

51 0  29 34 29 33 31 49 39 34 

12 32 32  21 5 22 41 31 8 21 

28 33 33 18  18 42 27 30 21 0 

43 32 32 5 21  22 41 31 8 21 

05 22 22 26 36 26  42 42 23 36 

49 36 36 34 25 34 64  42 36 25 

58 68 68 46 36 46 59 56  37 36 

02 38 38 9 21 9 30 37 28  21 

28 33 33 18 0 18 42 27 30 21  

Note: There are two teams based at facility 51 in this flight. 

 

1.2 Geographic Flighting 

Seeking a way to reduce the drive time for TCD’s members without sacrificing the 

competitiveness of flights, their placement organizers approached the department of 

Operations Research and Engineering Management at Southern Methodist University for help 

designing a new flighting system based on geography.  The concept of geographic flighting 

is to shorten drive times by forming flights of teams according to the locations of participating 

facilities in addition to players’ skill levels. Figure 2 illustrates a proposed geographic 

partition for TCD’s facilities split into three portions, which are referred to as the Western, 
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Central, and Eastern regions. Facilities in the Western region are represented by the red circles 

with white cross marks on the map, facilities in the Central region are represented by the 

yellow circles with white stars in the middle, and facilities in the Eastern region are 

represented by the blue circles with white dots. To minimize drive time for TCD’s members, 

the method of geographic flighting prohibits forming flights with teams from facilities in both 

the Western and Eastern regions. Ideally, any given flights consist of teams whose facilities 

are all in the same region, however this may not always be possible or desirable in terms of 

competition. 

Table 2 presents an example of the drive time data for a geographically designed flight 

containing six of the teams whose home facilities are listed in Table 1. In Table 1 The longest 

drive time is 68 minutes for the two teams based at facility 51 drive to facility 58. Whereas in 

Table 2, the longest drive time for these two teams is reduced to 39 minutes, which is a 

significant improvement of 43%. However, the drawback of the geographically designed flight 

is that it is not as competitive as the flight shown in Table 1. A flight with teams ranked 

consecutively is ideal for competition. The ten teams in the flight are ranked 101 through 110, 

whereas the teams in the geographically designed flight shown in Table 2 are ranked 101, 102, 

103, 105, 106, 109, 112, 116, 117, and 118. The four lowest ranked teams in the flight are at a 

competitive disadvantage. Thus, TCD must consider a tradeoff between drive time and 

competition while planning games using geographic flighting. 
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Figure 2 A proposed geographic partition of TCD facilities 
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Table 2 Drive time for facilities in the geographically designed flight 

 

Home Team's Facility Number on Map in Figure 2 

51 51 12 43 05 02 23 51 06 37 

V
is

it
in

g
 T

ea
m

's
 F

a
ci

li
ty

 N
u

m
b

er
 

51  0 29 29 33 39 39 0 39 5 

51 0  29 29 33 39 39 0 39 5 

12 32 32  5 22 8 12 32 12 32 

43 32 32 5  22 8 12 32 12 32 

05 22 22 26 26  23 24 22 24 22 

02 38 38 9 9 30  14 38 14 38 

23 36 36 11 11 21 14  36 5 36 

51 0 0 29 29 33 39 39  39 5 

06 36 36 11 11 21 14 5 36  36 

37 5 5 29 29 33 39 39 5 39  

Note: There are three teams based at facility 51 in this flight. 

 

1.3 An Optimization-based Approach to Geographic Flighting 

Rather than thinking intuitively to set the boundaries for the regions as illustrated in Figure 

2, we propose a three-step process shown in Figure 3 for geographic flighting in which each 

step solves a mixed integer programming (MIP) model. The first step is to assign each TCD 

facility to one of the three regions. Even though we named the three regions as Western, 

Central, and Eastern regions, they are not necessarily determined by North-South boundary 

lines as in Figure 2. Instead, the regions are determined by solving a MIP that we refer to as 
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Model 1. The objective of Model 1 is to minimize the maximum drive time that could possibly 

result from the geographic flighting. Furthermore, the second step of the process is to assign 

teams to divisions called double flights. A double flight is a collection of teams whose size is 

as twice large as a standard flight’s. The teams' home facilities in a double flight must be 

geographically balanced, so that the teams can be split into two standard size flights in a way 

that no team whose home facility is in the Western region is required to drive to a match in the 

Eastern region, and vice versa. The assignment placing teams into double flights is done by 

solving another MIP called Model 2. The objective of Model 2 is to maximize the 

competitiveness of the double flights. Finally, the last step involves solving a third MIP called 

Model 3. It splits a given double flight into two standard flights in a way that minimizes the 

longest drive time for any visiting teams. 

The three-step model presented in this praxis builds on a Senior Design project by Cooney, 

Price, and Snyder (2019). Initially the Senior Design team updated the geographic boundary 

encompassing the facilities with teams participating in TCD using the latest data, conducted a 

survey on members’ attitudes towards the tradeoff between driving time and competition, 

collected the travel times, and proposed a geographic flighting strategy.  In this praxis, we 

propose refinements to the approach proposed by Cooney, Price and Snyder (2019) to reduce 

computation time and make the models more intuitive. An important finding in the survey is 

that most of the players in the top flights said that competition is much more important to them 

than drive time. So, those flights are not considered in this study and were not considered by 

the Senior Design team. The flights that are considered have names like 7A, 7B, 8A, 8B, etc. 

Flight 7A is the top flight, flight 7B is the second best flight, etc. The idea behind using double 

flights in Steps 2 and 3 in the three-step process is to replace flights 7A and 7B with flights 7 
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East and 7 West where flights 7 East and 7 West are mostly composed of teams from the 

current 7A and 7B flights.  

 

 

Figure 3 The three-step process 

 

1.4 Literature Review 

To the best of our knowledge, the problem posed to us by TCD has not been addressed in 

the literature.  As described in this section, certain parts of the problem have been studied in 

isolation. By integrating travel time and competition into the decision making, this praxis 

appears to fill a gap in the literature. 

Van Bulck et al. (2020) give a recent survey of the extensive literature on optimizing the 

schedule for round-robin sports tournaments. These papers typically propose an integer 

programming model to minimize the total travel time or cost for the teams in the tournament 

with constraints to ensure that the schedule is fair in various ways. A common measure of 

fairness is the number of so-called breaks each team has in its schedule. A home break, two 

consecutive matches played at a team’s home facility, is considered an advantage. An away 

break, two consecutive matches played at opponents’ home facilities, is considered a 

disadvantage.  Duran et al. (2021) describe an optimization model used by Argentinean youth 
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soccer leagues to balance the total travel distance for each team while ensuring that the 

schedule meets requirements on the number and timing of home and away breaks. Riberio and 

Urruita  (2012) describe a similar model for scheduling the top professional soccer league in 

Brazil that also considers requests from TV networks to have attractive matches played on 

weekends. Other examples include scheduling a professional league in Chile and the South 

American qualification round for the 2018 World Cup (Duran, Guajardo, & Wolf-Yadlin, 

2012) (Alarcon, et al., 2017) (Duran, Guajardo, & Sauré, 2017). TCD could use this type of 

model to schedule matches, but they would use it after they have determined which teams are 

in which flights.  

Knust (2010) designs an integer linear programming model to aid the Table-Tennis 

Federation of Lower Saxony (TTVN) in improving its schedule. Since TTVN is an amateur 

league, Knust’s model relaxes some of the strict requirements of professional leagues. For 

example, breaks are not as much of a concern to TTVN (Knust, 2010). Although they are both 

amateur leagues, TTVN’s scheduling problem is quite different than TCD’s. For example 

,TTVN teams may play on different days of the week and at different times. So, driving in rush 

hour traffic is not necessarily a major concern. 

Mitchell (2003), and Macdonald and Pulleyblank (2014) present models for changing 

divisions in the major professional North American leagues when teams move to new cities or 

when new teams join the league. These papers are related to this praxis since they are 

concerned with reassigning teams to divisions. However, these models aim to minimize travel 

time and do not consider competitive balance. 

Studies of player-ranking systems for tennis such as (Reid & Morris, 2013) and (Irons, 

Buckley, & Paulden, 2014) could be of interest to TCD, but are not directly related to this 
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praxis. Additionally, there are papers that study and/or propose systems for team ranking such 

as  (Stefani & Pollard, 2007), (Motegi & Masuda, 2012), and (Criado, Garcıa, Pedroche, & 

Romance, 2013). This stream of literature would be helpful to TCD if they decide to change 

the way they rank their teams in the future. In this praxis the team rankings are taken as given 

input from TCD.  

As mentioned previously, TCD assigns teams to flights based on rankings to promote 

competitive balance.  Competitive balance in professional sports leagues is an active research 

area. In an evaluation of the competitive balance of the Confederation of North, Central 

America and Caribbean Association Football (CONCACAF) qualifying region for World Cup 

soccer, Rocke describes three types of balance: “(1) match uncertainty which describes the 

uncertainty about the result of a special match between two teams; (2) season uncertainty 

which describes the uncertainty about matches in a particular season; (3) championship 

uncertainty which describes the dominance of a limited number of teams over the league in a 

consecutive season as commonly seen in football (Szymanski, 2003)” (Rocke, 2019). In other 

words, a league, division, or flight is competitively balanced if it is difficult to predict at the 

beginning of the season which team will win which matches and which team will win the 

championship. Schelles, Francois, and Dermit-Richards (2022) and Ramchandani et al.  (2018) 

provide recent studies of competitive balance in the major professional European soccer 

leagues and surveys of related literature, and Plumley et al. (2020) provide a similar study of 

professional Asian soccer leagues.  The literature on competitive balance is mainly descriptive 

rather than prescriptive. So, it is not directly applicable to this praxis. However, it could be 

helpful to TDC for analyzing the actual versus predicted change in competitiveness after a 

switching to a new flighting process. 



 

11 

 

MODELING 

2.1 Facility Assignment 

 Model 1 assigns facilities to geographic regions in a way that minimizes the 

maximum potential drive for any teams. Geographic flighting is based on the idea that teams 

that are too far away from each other will not be placed in the same flight. Therefore, the model 

only considers drive time between pairs of facilities that are in the same region or in the 

adjacent regions. All the inputs to the model and decision variables are listed below. 

 

Sets and Parameters 

ℱ – Set of facilities 

ℛ – Set of regions 

𝒜 – Set of pairs of regions that might contribute to drive time; (𝑘, 𝑙) ∈ 𝒜 if teams based 

at facilities in region 𝑘 may be assigned to flights that also contain teams based in region 𝑙.  

𝑇𝑖 – Number of teams based at facility 𝑖 

𝑀𝑖 – Maximal number of facilities in region 𝑖 

𝑁𝑖 – Minimal number of facilities in region 𝑖 

𝐷𝑖𝑗 – Drive time from facility 𝑖 to facility 𝑗 (in minutes) 
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Decision Variables 

𝑥𝑘𝑖𝑙𝑗  – Binary variable equal to 1, if facility 𝑖 is assigned to region 𝑘, and facility 𝑗 is 

assigned to region 𝑙, and zero otherwise 

𝑦𝑘𝑖 – Binary variable equal to 1, if facility 𝑖 is assigned to region 𝑘, and zero otherwise 

𝑧 – Maximum potential drive time resulting from the geographic flighting 

 

The objective function (1) minimizes the maximum potential drive time for any team, 𝑧. If 

facility 𝑖 is assigned to region 𝑘, and facility 𝑗 is assigned to region 𝑙, then it is possible that 

teams from facility 𝑖 will be assigned to flights with teams from facility 𝑗. Constraint (2) forces 

𝑧 to be at least the drive time from facility 𝑖 to facility 𝑗. Constraint (3) is the logical connection 

between 𝑥  and 𝑦  variables. Constraint (4) assigns each facility to exactly one region. 

Constraints (5) and (6) ensure that each region has at least the minimum and at most the 

maximum number of teams. And constraints (7) and (8) set the decisions variables 𝑥 and 𝑦 as 

binary. 
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Objective Function 

Minimize 𝑧 (1) 

 

Constraints 

𝑧 ≥ 𝐷𝑖𝑗𝑥𝑘𝑖𝑙𝑗 ∀𝑖, 𝑗 ≠ 𝑖 ∈ ℱ, ∀(𝑘, 𝑙) ∈ 𝒜 (2)

𝑦𝑘𝑖 + 𝑦𝑙𝑗 ≤ 𝑥𝑘𝑖𝑙𝑗 + 1 ∀𝑖, 𝑗 ≠ 𝑖 ∈ ℱ, ∀(𝑘, 𝑙) ∈ 𝒜 (3)

∑ 𝑦𝑘𝑖

𝑘∈ℛ

= 1 ∀𝑖 ∈ ℱ (4)

∑ 𝑇𝑖𝑦𝑘𝑖

𝑖∈ℱ

≤ 𝑀𝑘 ∀𝑘 ∈ ℛ (5)

∑ 𝑇𝑖𝑦𝑘𝑖

𝑖∈ℱ

≥ 𝑁𝑘 ∀𝑘 ∈ ℛ (6)

𝑥𝑘𝑖𝑙𝑗 ∈ {0,1} ∀𝑖, 𝑗 ≠ 𝑖 ∈ ℱ, ∀(𝑘, 𝑙) ∈ 𝒜 (7)

𝑦𝑘𝑖 ∈ {0,1} ∀ 𝑘 ∈ ℛ, ∀ 𝑖 ∈ ℱ (8)

 

 

2.2 Double Flight Assignment 

Model 2 assigns teams to double flights in a way that minimizes a penalty function. Some 

of the original flights may have to be changed for geographic flighting. Model 2 finds 

preliminary flight reassignments that minimize a penalty sum for making the geographic flights 

less competitive than the original flights.   

The penalty function is a measure of overall competitiveness. A team will face more 

competitive opponents if it is moved to higher flights, and less competitive opponents in lower 

flights. For instance, a team in flight 9 that is moved up to flight 7 to play with stronger 

competitors gets a penalty of 2, and it would get a penalty of 3 if it is moved down from flight 
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9 to flight 12 to compete with weaker teams. The penalty function is the sum of the teams’ 

penalties. An ideal penalty function value is zero.    

The double flights produced by Model 2 are composed of 20 teams that are split into two 

flights of 10 teams for the east and west regions by Model 3. Model 2 ensures that there are 

enough teams from the east and west regions to allow the split in Model 3. For example, a 

group of 20 teams with 16 from the west region, two from the central region, and two from the 

east region cannot be split into two 10-team flights under the geographic flighting rules. 

Inputs and decision variable for Model 2 are listed below. 

 

Sets and Parameters 

𝒯 – Set of teams 

ℱ̂ – Set of double flights 

W ⊂ 𝒯 – Set of teams assigned to the West region by Model 1 

C ⊂ 𝒯 – Set of teams assigned to the Central region by Model 1 

E ⊂ 𝒯 – Set of teams assigned to the East region by Model 1 

𝑃𝑖𝑗– Penalty for team 𝑖 is assigned to double flight 𝑗 

�̅�𝑗– Maximum number of teams that may be assigned to double flight 𝑗 

�̅�𝑖– Region of team 𝑖 based on the facility assignment from Model 1. The region code 

parameter can be -1, 0 or 1 indicating West, Central (either or East-Central, West-Central), and 

East regions, respectively. 

 

Decision Variable 

�̃�𝑖𝑗 – Binary variable equal to 1, if team 𝑖 is assigned to double flight 𝑗, and zero otherwise 
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Objective Function 

Minimize ∑ 𝑃𝑖𝑗�̃�𝑖𝑗

𝑖∈𝒯,𝑗∈ℱ 

(9) 

 

Constraints 

∑ �̃�𝑖𝑗

𝑗∈ℱ̂

= 1 ∀𝑖 ∈ 𝒯 (10)

∑ �̃�𝑖𝑗

𝑖∈𝒯

= �̅�𝑗 ∀𝑗 ∈ ℱ̂ (11)

∑ �̃�𝑖𝑗

𝑖∈𝒲 

≤
�̅�𝑗

2
∀𝑗 ∈ ℱ̂ (12)

∑ �̃�𝑖𝑗

𝑖∈ℰ 

≤
�̅�𝑗

2
∀𝑗 ∈ ℱ̂ (13)

∑ �̃�𝑖𝑗

𝑖∈ℰ∪𝒞 

≥  
�̅�𝑗

2
∀𝑗 ∈ ℱ̂ (14)

∑ �̃�𝑖𝑗

𝑖∈𝒲∪𝒞 

≥  
�̅�𝑗

2
∀𝑗 ∈ ℱ̂ (15)

�̃�𝑖𝑗 ∈ {0,1} ∀𝑖 ∈ 𝒯,  ∀𝑗 ∈ ℱ̂ (16)

 

 

The objective function (9) minimizes the penalty function. Constraint (10) assigns each 

team to exactly one double flight. Constraint (11) limits the number of teams in each double 

flight. Constraints (12) and (13) set the upper and lower limits on number of teams in regions. 

Constraints (14) and (15) balance the number of teams in the east and west regions in each 

double flight as described above. And constraint (16) sets the decisions variable �̃� as binary. 
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2.3 Flight Assignment 

Model 3 divides teams in a given double flight, 𝑓, into standard size flights in a way that 

minimizes the maximum drive time for all teams. For a given double flight, one of the standard 

size flights is considered the East flight, flight 𝑓𝐸, and the other is the West flight, 𝑓𝑊. Inputs 

and decision variable for Model 3 are listed below. 

 

Sets and Parameters 

�̂�𝑓 – Set of teams in double flight 𝑓 

𝒲f̂ ⊂ �̂�f  – Set of teams assigned to double flight f  by Model 2 whose home facility is 

assigned to the West region by Model 1 

Ef̂ ⊂ �̂�f  – Set of teams assigned to double flight f  by Model 2 whose home facility is 

assigned to the East region by Model 1 

�̅�𝑖𝑗 – Driving time from the home facility of team 𝑖 to the home facility of team 𝑗 (in minutes) 

�̅�𝑖– Region of team 𝑖 

�̅�𝑗– Maximal number of teams in flight 𝑗 

 

Decision Variables 

�̂�𝑖𝑗 – 1, if team 𝑗 is assigned to new region 𝑖, and zero otherwise 

�̂�𝑗 – Maximum driving time for team 𝑗 

�̂� – Maximum driving time for all teams 

 

Objective Function 

Minimize �̂� (17) 
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Constraints 

�̂�𝑗 ≥  �̅�𝑖𝑗  �̂�1𝑖�̂�1𝑗 ∀𝑖, 𝑗 ∈ �̂�𝑓 (18)

�̂�𝑗 ≥  �̅�𝑖𝑗 �̂�2𝑖�̂�2𝑗 ∀𝑖, 𝑗 ∈ �̂�𝑓 (19)

�̂� ≥ �̂�𝑗 ∀𝑗 ∈ �̂�𝑓 (20)

�̂�1𝑖 + �̂�2𝑗 = 1 ∀𝑗 ∈ �̂�𝑓 (21)

�̂�1𝑖 = 1 ∀𝑖 ∈ ℰ̂𝑓 (22)

�̂�2𝑖 = 1 ∀𝑖 ∈ �̂�𝑓   (23)

∑ �̂�𝑖𝑗≥ ⌈
|�̂�𝑓|

2
⌉    

𝑗∈�̂�𝑓

∀𝑖 ∈ {1,2} (24)

∑ �̂�𝑖𝑗≤ ⌈
|�̂�𝑓|

2
⌉    

𝑗∈�̂�𝑓

∀𝑖 ∈ {1,2} (25)

�̂�𝑖𝑗 ∈ {0,1} ∀𝑖 ∈ {1,2},  ∀𝑗 ∈ �̂�𝑓 (26)

�̂�𝑗 ∈ {0,1} ∀𝑗 ∈ �̂�𝑓 (27)

 

The objective function (17) minimizes the maximum drive time for all teams in the double 

flight. Constraints (18), (19), and (20) ensure that the objective function value is at least as 

large as the longest drive time in the resulting split of the double flight into two standard size 

flights. Constraint (21) ensures each team is assigned to the East region of the double flight 

(i.e., flight 𝑓𝐸) or the West region (i.e., flight fW), but not both. Constraints (22) and (23) 

preassign the teams whose home facilities are in the East and West regions to flights 𝑓𝐸 and 

fW, respectively. The last double flight in the TCD example has an odd number of teams. So, 

constraints (24) and (25) allow an exception so that the difference in the number of teams of 

the last two standard size flights is one. And constraints (26) and (27) sets the decisions variable 

�̃� and �̃�  as binary. 
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RESULTS 

3.1 General 

We used AMPL version 20210731 to generate the MIPs, which were then solved with 

Gurobi version 9.1.1 on a HP DL380 computer with Dual 16 Core Intel Xeon@2.9GHz 

processors and 380GB of RAM. Model 1 had 1 continuous and 58,500 binary variables and 

116,441 constraints and took 5 minutes of real time to solve. Model 2 had 1,575 binary 

variables and 220 constraints and took less than 60 seconds of real time to solve. It took a total 

of 540 seconds of real time to run the nine instances of Model 3. The instances of Model 3 had 

up to 21 continuous and 18 binary variables and 220 quadratic constraints. 

After applying the three-step model to TCD’s data, geographic result produced by Model 

1 is shown as a graph in figure 4 to present a visualization as well as an overall summary 

comparing to the original plan in table 3. In figure 4, the three regions are marked by dots, 

stars, and crosses respectively. Table 3 gives the mean drive time for teams in the given 

(original) TCD flights compared to the flights determined by our three-step process. There is 

not a significant change in the minimum drive times; the minimum value is about 16 minutes 

in each case. The three-step process reduces the averages of the mean and median drive times 

by approximately two minutes each. The most significant result in this example is that 

geographic flighting reduces the average of the maximum driving times from over an hour 

(66.22 minutes) to less than an hour (54.78). Additionally, geographic flighting improves 

equity by reducing the variation (standard deviation) in driving times.  
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Table 3 Comparison of drive time statistics between original TCD flighting and the 

geographic solution for the Fall 2021 Season 

 Average over all TCD Teams 

Statistic (per team) Original Flighting Geographic Flighting Change 

Minimum 16.89 16.11 -4.62% 

Average 31.73 29.14 -8.16% 

Median 29.89 27.00 -9.67% 

Maximum 66.22 54.78 -17.28% 

Standard Deviation 8.76 7.37 -15.87% 

 

We also produced a “visual” solution was by manually assigning facilities to regions to 

create a more visually intuitive geographical partition (see Figure 2) than one produced by the 

complete three-step process (see Figure 4).  The minimum, average, median, and maximum 

drive times in the visual solution were 12 minutes, 27.67 minutes, 26.50 minutes, and 62.25 

minutes, respectively. 
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Figure 4 Facility assignment determined by the three-step process for the Fall 2021 Season 
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3.2 Validation 

To check the robustness of the system, a few more sets of data are applied to it, which are 

from the Fall season of 2019 to Spring 2021. Note that the input data for the five seasons in 

our experiment have significant differences. The team rankings change each season. 

Additionally, some teams leave TCD each year and new teams join the league. Tables 4 

through 7 give the drive time statistics for geographic fighting produced by the three-step 

process for the other four TCD seasons.  Across the five seasons, the reduction in the average 

maximum drive time resulting from geographic flighting ranges from a low of 4.55% to a high 

of 19.96%. The reduction in the average drive time ranges from 3.81% to 11.86%.  In all five 

cases, the maximum final penalty per team is two units.  

 

Table 4 Comparison of drive time statistics between original TCD flighting and the 

geographic solution for the Fall 2019 Season 

 Average over all TCD Teams 

Statistic (per team) Original Flighting Geographic Flighting Change 

Minimum 15.00 16.33 8.89% 

Average 30.42 27.84 -8.50% 

Median 29.44 26.67 -9.43% 

Maximum 64.00 52.00 -18.75% 

Standard Deviation 9.51 7.86 -17.30% 
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Table 5 Comparison of drive time statistics between original TCD flighting and the 

geographic solution for the Spring 2020 Season 

 Average over all TCD Teams 

Statistic (per team) Original Flighting Geographic Flighting Change 

Minimum 16.67 16.33 -2.00% 

Average 30.59 29.43 -3.81% 

Median 28.83 28.11 -2.50% 

Maximum 61.22 49.00 -19.96% 

Standard Deviation 8.91 7.96 -10.71% 

 

Table 6 Comparison of drive time statistics between original TCD flighting and the 

geographic solution for the Fall 2020 Season 

 Average over all TCD Teams 

Statistic (per team) Original Flighting Geographic Flighting Change 

Minimum 15.88 14.78 -6.91% 

Average 30.98 27.30 -11.86% 

Median 29.66 26.06 -12.15% 

Maximum 53.43 51.00 -4.55% 

Standard Deviation 8.15 7.43 -8.76% 
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Table 7 Comparison of drive time statistics between original TCD flighting and the 

geographic solution for the Spring 2021 Season 

 Average over all TCD Teams 

Statistic (per team) Original Flighting Geographic Flighting Change 

Minimum 18.33 17.78 -3.03% 

Average 31.42 29.18 -7.14% 

Median 29.78 27.78 -6.72% 

Maximum 55.67 52.67 -5.39% 

Standard Deviation 8.32 6.88 -17.32% 

 

Table 8 presents summary statistics of the range of penalty values for all teams in the 

geographic flighting solution across five seasons. The largest penalty is never more than 2 and 

the minimum is 0 in the three of the five seasons. And the mean penalty is 1 in all five seasons, 

and mean penalty ranges from 0.88 to 1.05 this shows that the penalties are consistently in 

narrow range for various data sets. 

 

Table 8 The penalty comparison across five seasons 

 Fall 2019 Spring 2020 Fall 2020 Spring 2021 Fall 2021 

Minimum 1 1 0 0 0 

Average 1.05 1.00 0.88 0.94 1.00 

Median 1 1 1 1 1 

Maximum 2 1 1 1 2 
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ALTERNATIVES TO GEOGRAPHIC FLIGHTING 

4.1 Integrated Model 

 So far, TCD has not adopted geographic flighting. They reviewed the results 

summarized in Chapter 3 and decided that many teams would not consider their individual 

drive time savings to be large enough to convince them to switch from the current flighting 

system to geographic flighting. The three-step process has some limitations. It alternates 

between optimizing drive time and optimizing competition. A model that considers both 

objectives at the same time could produce better results. Geographic flighting places all teams 

that share a given home facility in the same region, which limits the possibilities for assigning 

teams to double flights.  For these reasons, we developed the integrated model described in 

this chapter. Instead of using geographic flighting, the integrated model assigns teams to flights 

in a way that minimizes the maximum penalty per team subject to a user-specified limit on the 

maximum drive time. All the inputs to the model and decision variables are listed below. 

Sets and Parameters 

𝑇 – Set of teams 

𝐹 – Set of facilities 

�̂� – Set of flights 

𝐻𝑖 – Home facility of team 𝑖 

𝑀𝑖 – Number of teams in flight 𝑖 

𝐷𝑖𝑗 – Drive time (in minutes) from facility 𝑖 to facility 𝑗 

𝐷 – Maximum allowable drive time (in minutes) 
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𝑃𝑖𝑗 – Penalty if team i is assigned to flight 𝑗 

Decision Variables 

𝑝 – Maximum penalty 

𝑥𝑖𝑗 – Binary variable equal to one if team i is assigned to flight j, and zero otherwise 

𝑦𝑖𝑗  – Binary variable equal to one if team drives from facility 𝑖 to facility 𝑗, and zero 

otherwise 

 

 

Objective 

Minimize 𝑝 (29) 

 

Constraints 

∑ 𝑃𝑖𝑗𝑥𝑖𝑗
𝑗∈�̂�

≤ 𝑝 ∀𝑖 ∈ 𝑇 (30) 

∑ 𝑥𝑖𝑗
𝑗∈�̂�

= 1 ∀𝑖 ∈ 𝑇 (31) 

∑ 𝑥𝑖𝑗
𝑖∈𝑇

= 𝑀𝑗 ∀𝑗 ∈ �̂� (32) 

𝐷𝑖𝑗  𝑦𝑖𝑗 ≤ 𝐷 ∀𝑖, 𝑗 ≠ 𝑖 ∈ 𝐹 (33) 

Link X and Y: 𝑥𝑖𝑘 + 𝑥𝑗𝑘 ≤ 𝑦𝐻𝑖𝐻𝑗
+ 1 ∀𝑖, 𝑗 ≠ 𝑖 ∈ 𝑇,  ∀𝑘 ∈ �̂� (34) 

𝑥𝑖𝑗  ∈ {0,1} ∀𝑖 ∈ 𝑇,  ∀𝑗 ∈ �̂� (35) 

𝑦𝑘𝑖 ∈ {0,1} ∀𝑖, 𝑗 ≠ 𝑖 ∈ 𝐹 (36) 

 

The objective function (29) minimizes the highest potential penalties for all teams, 𝑝. 

Constraint (30) limits the total penalty for moving teams in and out of a flight. Constraint (31) 
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assigns teams to flights. Constraint (32) sets the size of flights. Constraint (33) ensures the 

drive time in each facility-to-facility trip not exceed the maximum. Constraint (34) links 

variables 𝑥 and 𝑦. And constraints (35) and (36) set the decisions variables 𝑥 and 𝑦 as binary. 

 

4.2 Model Result 

Table 9 compares TDC’s flighting for the fall 2021 season (original) with the results of 

solving the integrated model for a range of maximum drive time values.  By design, the solution 

to the integrated model has a maximum penalty of p = 0 when the maximum drive time D is 

set to the largest drive time in the facility-to-facility drive time matrix. Starting with this value, 

we decreased D by increments of one minute until the problem became infeasible for D = 30 

minutes.  As indicated by the last column in Table 9, TCD could arrange the flights in a way 

that limits the maximum drive time to 31 minutes for all teams. This is a significant reduction 

from the average maximum drive time of 54.78 minutes resulting from geographic flighting 

(see Table 3). However, the maximum penalty p = 18 is too high for practical use. Setting D = 

47 minutes produced a solution with p = 2, which is the same as the maximum penalty for 

geographic flighting.  This shows the advantage of using the integrated model over geographic 

flighting. 
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Table 9 Comparison of average drive time between the original and new flighting 

𝐷 (minutes) 77 57 47 44 38 31 

Minimum (minutes) 16.89 18 17.22 13 9.22 3.22 

Median (minutes) 29.89 28 29.11 22.89 20.11 16.33 

Mean (minutes) 31.74 29.01 29.75 22.87 20.32 16.11 

Maximum (minutes) 66.22 50.67 48 36.22 30.78 28.89 

Standard Deviation (minutes) 8.76 6.51 6.79 5 4.34 4.96 

𝒑 0 1 2 3 8 18 

 
Change Compared to TCD’s Flighting 

Minimum (minutes) 0 6.57% 1.95% -23.03% -45.41% -80.94% 

Median (minutes) 0 -6.32% -2.61% -23.42% -32.72% -45.37% 

Mean (minutes) 0 -8.60% -6.27% -27.95% -35.98% -49.24% 

Maximum (minutes) 0 -23.48% -27.51% -45.30% -53.52% -56.37% 

Deviation (minutes) 0 -25.68% -22.49% -42.92% -50.46% -43.38% 

 

Table 10 shows the distribution of penalties for five different 𝐷 values. When 𝐷 = 47 

minutes, most of the teams have a penalty of 0 or 1, and 82 out of 185 (44%) have a penalty of 

2.  Decreasing D below 47 minutes not only increases the maximum penalty, but also 

dramatically increases the number of teams with a penalty of 2 or larger.  
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Table 10 Number of teams for each penalty in Fall 2021 

185 Teams 

Maximum Drive Time 

57 

Mins 

47 

Mins 

44 

Mins 

39 

Mins 

31 

Mins 

Penalty 

1 72 57 47 25 23 

2  82 52 20 20 

3   54 33 17 

4    21 18 

5    15 11 

6    10 16 

7    35 12 

8    13 10 

9     10 

10     12 

11     5 

12     8 

13     3 

14     4 

15     2 

16     3 

17     3 

18     1 
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We used the integrated model to make plots for TCD that show the tradeoff between 

competition and drive time over multiple seasons. In each case we started with the largest D 

value in the drive time matrix and reduced 𝐷 by increments of one minute until the problem 

became infeasible. Each time a decrease in 𝐷 caused an increase in p, we recorded the 

combination of 𝐷 and 𝑝 to make the plot. For example, Figure 5 shows that for the fall 2021 

season, decreasing the maximum drive from 77 minutes to 57 minutes increases the 

maximum penalty from zero to 1. Decreasing the maximum drive time from 57 minutes to 47 

minutes increases the maximum penalty from 1 to 2, and so on. Figures 6 through 9 show the 

plots for the spring 2021, fall 2020, spring 2020, and fall 2019 seasons. In our conversations 

with TCD it was determine that penalties larger than 2 are not acceptable. Figures 5 through 

9 indicate that acceptable flights can be obtained for maximum drive times in the range of 44 

to 54 minutes. 

 

 

Figure 5 Penalty versus drive time for Fall 2021 
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Figure 6 Penalty versus drive time for Spring 2021 

 

 

Figure 7 Penalty versus drive time for Fall 2020 
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Figure 8 Penalty versus drive time for Spring 2020 

 

 

Figure 9 Penalty versus drive time for Fall 2019 
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Table 11 shows the distribution of penalties for each of the five seasons with 𝐷 values that 

produced solutions with a maximum penalty of 1 or 2. Recall that the average penalty using 

geographic flighting was 1.05, 1.00, 0.88, 0.94, and 1.00 for fall 2019, spring 2020, fall 202, 

spring 2021, and fall 2021. And the average of the maximum driving times in the geographic 

solutions was 52, 49, 41, 52.68 and 54.78 minutes for fall 2019, spring 2020, fall 202, spring 

2021, and fall 2021, respectively. Since those time are averages, there are some teams in each 

season with larger maximum driving times in the geography solutions. Thus, we argue that 

overall, the integrated model produces better solutions than geographic flighting.  

 

Table 11 Number of teams for each penalty for five seasons 

Season 

Maximum Drive 

Time 

Highest 

Penalty 

Number of Teams with of Average 

Penalty 0 1 2 

Fall 2021 

57 minutes 1 113 72 / 0.39 

47 minutes 2 51 82 52 1.01 

Spring 2021 

56 minutes 1 93 76 / 0.45 

49 minutes 2 43 66 60 1.10 

Fall 2020 

56 minutes 1 96 56 / 0.37 

47 minutes 2 37 70 45 1.05 

Spring 2020 

56 minutes 1 58 112 / 0.66 

47 minutes 2 34 72 64 1.18 

Fall 2019 

56 minutes 1 71 107 / 0.60 

54 minutes 2 84 65 29 0.69 
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4.3 Heuristic 

For the ease of TCD’s organizers, we introduce a technique that helps solve their problem 

in drive time and competitiveness without adopting using integer programming. The design 

relies on using spreadsheets and applying specific rules to the drive time matrices between the 

home facilities of their tennis teams. Teams are needed to be placed into flights based on their 

rankings to get it started. The method aims to reduce the longest drive time in each flight by 

moving teams to either up or down one flight, in such a way that the competitiveness within 

the flights is sustained. 

Teams in all flights are available for swapping in the beginning. An adjacent flight pair is 

chosen at each iteration, and the heuristic attempts to reduce the maximum drive time in at 

least one of the two flights by swapping teams causing the maximum drive times in both flights. 

Division ranking determines which flights are neighbors. For instance, flight 7B is one rank 

lower than flight 7A, so they are adjacent, and flight 7B is adjacent to flight 8A, etc. An 

iteration of the heuristic follows the sequence of the steps listed below. 

1. Select an available flight that has the largest maximum drive time. 

2. Select another available flight that is adjacent to the flight selected in Step 1. 

If there are two choices in this step, Then 

  If the two flights have different maximum drive times, Then   

    Select the flight with the larger maximum drive time 

  Else  

    Select the one of the two neighboring flights with the higher rank 

3. Let 𝑓 be the higher ranked flight of the two selected in steps 1 and 2. 

4. Let 𝑔 be the lower ranked flight of the two selected in steps 1 and 2. 
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5. If it is possible, swap a team in flight 𝑓 with a team in flight 𝑔; this step is described in more 

detail below. 

6. Mark flights 𝑓and 𝑔 as unavailable for swapping. 

Step 5 of the heuristic has two objectives. The first one is to reduce the maximum drive 

time in the selected flights, and the other one is to keep the resulting flights as competitive as 

possible. For the first objective, Step 5 makes a list, 𝐼, of the pairs of teams (row-column entries 

in the drive time matrix) in flight 𝑓 that cause the maximum drive time for the flight, and a 

corresponding list, 𝐽, of the team pairs in flight 𝑔 with maximum drive times. For the second 

objective, Step 5 makes an ordered list of pairs of teams (𝑖 ∈  𝐼,  𝑗 ∈  𝐽) to be considered for 

swapping. The pairs of teams are considered in order until an acceptable swap is found, or the 

list is exhausted (i.e., no swap is possible). Let 𝑡𝑓 and 𝑡𝑔 be the maximum drive times in flights 

𝑓 and 𝑔 before the swap and let 𝑡�̂� and 𝑡�̂� be the maximum drive times after the swap. A swap 

is acceptable if one of the two maximum drive times is reduced and the maximum drive time 

in the other flight is not increased. Mathematically, a swap is acceptable if max(𝑡�̂� , 𝑡�̂�) <

max(𝑡𝑓 , 𝑡𝑔),  𝑡�̂� ≤ 𝑡𝑓 and 𝑡�̂� ≤ 𝑡𝑔. The next paragraph explains how the list of the swapping 

team pairs is ordered. 

The team numbers used in the notation correspond to the team rankings. For example, team 

1 is ranked higher than team 2, team 2 is ranked higher than team 3, etc. A team moved from 

flight 𝑓 to flight 𝑔 in a swap is “demoted” to a lower ranked flight and the team moved in the 

other direction is “promoted” to a higher ranked flight. Ideally, the teams being selected for 

the swap from lists 𝐼 and 𝐽 are the “closest” in terms of ranking to the flights they are moved 

into. Therefore, the list order of the team pairs for swapping is determined by taking all pairs 

(𝑖 ∈  𝐼,  𝑗 ∈  𝐽), sorting the pairs by decreasing order of 𝑖 (the team from flight 𝑓) and then 
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sorting by increasing order of 𝑗 (the team from flight 𝑔). For instance, if 𝐼 =  {35, 39} and 

𝐽 =  {41, 42, 43, 44}, then the ordered list of swaps to consider is 1𝑠𝑡 (39, 41), 2𝑛𝑑 (39, 42),

3𝑟𝑑 (39, 43), 4𝑡ℎ (39, 44), 5𝑡ℎ (35, 41), 6𝑡ℎ (35, 42), 7𝑡ℎ (35, 43),  and finally 

8𝑡ℎ  (35, 44). 

Since Step 6 marks both flights unavailable, the heuristic stops after seven or eight 

iterations. If it is desired, further potential reduction in the maximum drive time for the flights 

can be executed by repeating the heuristic. Comparing to integer programming approaches, 

one advantage of the heuristic is that the placement committee can monitor the overall 

competitiveness of the flights and stop the procedure at any point they like.  

Table 11 shows an example of drive time in two adjacent flights. Teams 54, 56, and 57 in 

flight 9B on the left cause the maximum drive time of 77 minutes, while teams 62 and 69 in 

the adjacent flight 10A cause the maximum drive time of 71 minutes. Team 56 is the largest 

number of pairs causing the maximum drive time in its flight, and team 62 in the other flight 

is closer to flight 9B than team 69. Therefore teams 56 and 62 are chosen to swap to get the 

new maximum drive times, which are 56 minutes in the new flight 9B and 68 minutes in the 

new flight 10A. 
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Table 12 Drive time between teams' home facilities in flights 9B and 10A 

Flight 9B T. 51 T. 52 T. 53 T. 54 T. 55 T. 56 T. 57 T. 58 T. 59 T. 60 

Team 51  20 25 28 5 54 28 37 20 5 

Team 52 21  17 21 21 59 21 44 0 21 

Team 53 27 17  28 27 54 28 49 17 27 

Team 54 37 25 34  37 77 0 56 25 37 

Team 55 5 20 25 28  54 28 37 20 0 

Team 56 64 62 59 77 64  77 67 62 64 

Team 57 37 25 34 0 37 77  56 25 37 

Team 58 36 46 51 42 36 74 42  46 36 

Team 59 21 0 17 21 21 59 21 44  21 

Team 60 5 20 25 28 0 54 28 37 20  

Flight 10A T. 61 T. 62 T. 63 T. 64 T. 65 T. 66 T. 67 T. 68 T. 69 T. 70 

Team 61  23 42 36 33 14 14 40 56 23 

Team 62 33  68 59 52 28 28 52 71 47 

Team 63 34 49  33 39 41 41 18 40 23 

Team 64 27 42 22  15 28 28 16 39 26 

Team 65 27 40 34 16  24 24 33 34 27 

Team 66 13 22 49 37 28  0 38 51 29 

Team 67 13 22 49 37 28 5  38 51 29 

Team 68 28 35 17 16 30 25 25  42 14 

Team 69 54 71 44 32 39 51 51 51  59 

Team 70 16 29 21 27 27 22 22 18 49  
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4.4 Heuristic Result 

The heuristic was implemented by hand for each of the five seasons from fall 2019 to fall 

2021. Since it was very consuming, the heuristic was stopped after all flights were marked 

unavailable for swapping; this required 6 to 8 iterations depending on the season. The results 

are presented in table 13. The heuristic decreased the minimum of the maximum drive time by 

about 20%; the largest decrease is in the Spring 2021 season. However, there was very little 

change in the largest maximum drive time values. In practice, we would recommend allowing 

each flight to be involved in more than one swap before making it unavailable. That would 

allow more opportunity to reduce the largest drive times. As shown in table 13, the heuristic 

did decrease the median and mean of the maximum driving times by 1.64% to 13.24% and 

3.6% to 12.35%, respectively. 
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Table 13 Comparison of maximum drive time across five seasons 

 Season Minimum Median Mean Maximum Iterations 

Original 

Fall 21 44 68 67.79 77 

 

Spring 21 56 68 67.06 77 

Fall 20 49 61 62.56 77 

Spring 20 49 61 62.06 77 

Fall 19 44 67 62.78 77 

Heuristic 

Fall 21 39 59 59.42 74 8 

Spring 21 46 64 62.65 77 7 

Fall 20 46 60 60.31 77 6 

Spring 20 46 56 57.38 77 7 

Fall 19 44 62 58.12 74 8 

Change 

Fall 21 -11.36% -13.24% -12.35% -3.90% 

 

Spring 21 -17.86% -5.88% -6.58% 0 

Fall 20 -6.12% -1.64% -3.60% 0 

Spring 20 -6.12% -8.20% -7.54% 0 

Fall 19 0 -7.46% -7.42% -3.90% 
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CONCLUSION 

The three-step process for geographic flighting significantly reduces drive time while 

maintaining an acceptable level of competition for TCD. Rather than producing a strictly 

geographic partition of the facilities, our process allows for overlapping regions as shown in Figure 

3. A strictly geographic partition like the one illustrated in Figure 2 would be easier for TCD to 

implement and for its members to understand. However, we found that such a partition is too 

limiting in terms of competition. The integrated model presented in Chapter 4 gives even more 

significant improvements in drive time. In particular, it reduces the maximum drive time by over 

20% in some cases.  However, the user must manually set the limit on drive time and then adjust 

it for competitiveness if needed. The heuristic is also able to lower the drive time, but it would 

have to be implemented in code to be practical. It was implemented by hand for a the praxis to 

valid that concept, which was much more time consuming than running the integer programming 

models. 

There are two areas can be worked on in the future. One direction is to implement the heuristic 

as an application such as a spreadsheet that uses Visual Basic, or other computer programming 

languages like Python or Java. Another one is to adapt the models and heuristic to take carbon 

emissions into account (Demir, Hrušovský, Jammernegg, & Van Woensel, 2019). 
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