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Integrating large-scale renewable energy resources into the power grid poses several op-

erational and economic problems due to their inherently stochastic nature. The lack of

predictability of renewable outputs deteriorates the power grid’s reliability. The power sys-

tem operators have recognized this need to account for uncertainty in making operational

decisions and forming electricity pricing. In this regard, this dissertation studies three aspects

that aid large-scale renewable integration into power systems. 1. We develop a nonpara-

metric change point-based statistical model to generate scenarios that accurately capture

the renewable generation stochastic processes; 2. We design new pricing mechanisms de-

rived from alternative stochastic programming formulations of the electricity market clearing

problem under uncertainty; 3. We devise a novel approach to coordinate strategic operations

of multiple noncooperative system operators.

The current industry practices are based on deterministic models that do not account for

the stochasticity of renewable energy. Therefore, the solutions obtained from these deter-

ministic models will not provide accurate measurements. Stochastic programming (SP) can

accommodate the stochasticity of renewable energy by considering a set of possible scenarios.

However, the reliability of the SP model solution depends on the accuracy of the scenarios.

We develop a nonparametric statistical simulation method to develop scenarios for wind

generation using wind speed data. In this method, we address the nonstationarity issues

that come with wind-speed time-series data using a nonparametric change point detection
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method. Using this approach, we retain the covariance structure of the original wind-speed

time series in all the simulated series.

With an accurate set of scenarios, we develop alternative two-stage SP models for the

two-settlement electricity market clearing problem using different representations of the non-

anticipativity constraints. Different forms of non-anticipativity constraints reveal different

hidden dual information inside the canonical two-stage SP model, which we use to develop

new pricing mechanisms. The new pricing mechanisms preserve properties of previously

proposed pricing mechanisms, such as revenue adequacy in expectation and cost recovery

in expectation. More importantly, our pricing mechanisms can guarantee cost recovery for

every scenario. Furthermore, we develop bounds for the price distortion under every scenario

instead of the expected distortion bounds. We demonstrate the differences in prices obtained

from the alternative mechanisms through numerical experiments.

Finally, we discuss the importance of distributed smart grid operations inside the power

grid. We develop an information and electricity exchange system among multiple distribu-

tion systems. These distribution systems participate/compete in common markets cohere

electricity is exchanged. We develop a standard Nash game treating each distribution system

(DS) as an individual player who optimizes their strategies separately. We develop proxi-

mal best response (BR) schemes to solve this problem. We present results from numerical

experiments conducted on three and six DS settings.
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Chapter 1

Introduction

Electricity usage has significantly increased over years all over the world from the house-

hold level to the industry level. Electricity has almost become a basic need of human life.

The reason behind this influx in demand for electricity is the increased use of electronic

devices that serve two purposes: 1. they save either money or time, and 2. they make

life comfortable. On the other hand, electricity generation disrupts human life by emitting

greenhouse gases that cause global problems such as climate change and global warming.

Fossil fuel is the primary resource for electricity generation. According to the US Energy

Information Agency (EIA), fossil fuel was the leading contributor to U.S. electricity produc-

tion in 2021, accounting for more than 60%. Burning fossil fuels is extremely harmful to the

environment. Further, electricity generation has to compete with other industries, such as

transportation, for the same depleting resource, fossil fuels. Therefore, consumers must pay

a premium price for electricity to keep up with other sectors [1]. To make matters worse, the

recent decision of the Organization of the Petroleum Exporting Countries (OPEC) to reduce

oil production by 2 million barrels per day has already impacted these price increases [2, 3].

Moreover, electricity generation is also one of the most significant contributors to green-

house gas emissions. The transportation industry has been the biggest over the past years,

accounting for about 27%. However, with the introduction of electric vehicles, the rate of

greenhouse gas emissions is slowly declining in the transportation industry. On the other

hand, the electricity needed for these vehicles adds up to the already fast-growing electricity

demand. Therefore, electricity generation is in dire need of a sustainable solution.

Renewable energy resources such as geothermal, hydroelectric, wave, tidal, biofuel, solar

thermal, and wind have been gaining much attention since the late twentieth century as

viable and environmentally friendly solutions to this energy crisis. The U.S. EIA reported

that renewable energy resources contributed about 20% of the total electricity generation
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in 2021 [4]. Further, by 2050 the renewable contribution is projected to be around 42% of

the U.S. electricity generation [5]. Therefore, authorities have mandated using renewable

energy in the electricity generation portfolios. Wind energy is one of the most economical

renewable energy resources out of the bunch [6]. In the United States, electricity production

from wind resources contributes to over 7.3% of the total electricity generation. Solar is

another excellent resource that accounts for about 2.8% of the total electricity generation in

the United States. These resources are cheap and address the environmental issues raised

by fossil fuel burning.

Integrating large-scale renewable energy resources into the power grid poses several opera-

tional and economic challenges. These challenges are attributed to the inherently stochastic

nature of these resources. In addition to uncertainty, wind energy resources also exhibit

significant fluctuation in their output in a short duration of time. Such stochastic and in-

termittent nature is also a common characteristic in solar generation. These characteristics

also exacerbate the difficulty of obtaining an accurate forecast of wind and solar genera-

tion. To address these fluctuations, system operators must incorporate large amounts of

operating reserves in the power network [7]. These expensive operating reserves result in an

overall increase in operational costs negating the cost benefits of renewable wind and solar

generation.

1.1 Electricity Market

The Western, Eastern, and Texas power grids combine to form the United States power

grid. Within these interconnections, there are vertically integrated markets and wholesale

markets. The vertically integrated market is governed by a single body that oversees all

electricity generation, transmission lines, distribution lines, and delivery decisions within its

geographic borders. Since this is a centralized monopoly, there are many issues, especially

regarding reliability. Despite these issues, vertically integrated still exist in the U.S. power

grids. The federal government intervened to address these problems founding Federal Energy

Regulatory Commission(FERC) in 1977 to overlook the electricity market at the federal

level. The primary responsibility of the FERC is to deploy policies, maintain the markets’

reliability, and develop wholesale markets to sell and transport electricity across borders.
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This intervention did not sit well with the private sector, and hence in 1990, they came to

the consensus of developing Independent System Operators (ISO), non-profit organizations.

ISO allows privately owned generators, transmission lines, and distribution lines to compete

to sell their products to customers. This deregulated retail market incentivizes market

participants to keep their prices low and innovate operations. There are seven ISOs in the

U.S. power grid; 1. California Independent Service Operator (CAISO), 2. Electric Reliability

Council of Texas (ERCOT), 3. Independent Service Operator New England (ISO-NE), 4.

Midcontinent Independent System Operator (MISO), 5. New York Independent Service

Operator (NYISO), 6. PJM Interconnection (PJM), 7.Southwest Power Pool (SPP).

The power grids mentioned above have many entities separated by their geographical

locations and are extremely large to handle using a single authority. Therefore, the U.S.

power grid operates on several levels. Each level operates at different voltages to reduce

power losses during electricity transportation. Voltages are converted using transformers at

each level for safety before finally reaching the end users. This complex system is too large to

model as a single decision-making process. Thus, there are separate decision-making entities

at each level. Since the decisions of one level depend on the other’s decisions, overlapping

optimization models are implemented over several periods to give enough time to make

necessary adjustments.

Electricity market operations start at the Transmission System (TS) level (see Figure

1.1). A dedicated ISO controls the whole operation in the TS. The responsibility of the

TS is to ensure fast, safe, reliable, and economical electricity transportation from suppliers

to distributors/loads. To aid these transactions and to connect all TS entities, there are

substations known as buses. Typically, generators, large-scale power storage units, and

distributors are connected to their nearest substation depending on the distance and cost.

There are transmission lines connecting these buses, and altogether this is known as the TS

network.

Typically, large-scale generators are in remote areas. Therefore, the electricity must

travel long distances to meet the distributors. When electricity travels long distances, the

losses increase due to power flow phenomena. Thus, the TS network works at high voltages

to reduce these power losses. These voltages may vary between 11kV and 33kV depending

3



Figure 1.1: Electricity market setting.1

on the distance.

The next level of the power grid is the Distribution System (DS). The decision at the

DS level mainly depends on the TS decisions, and hence typically, they make their decisions

after TS decisions. DSs also have access to small generators, which usually produce cheaper

electricity than buying from the TS. Therefore, it is safe to assume that these generators

consistently generate the maximum capacities. Similar to the TS, DS also has buses and

distribution lines to create the distribution network. However, these networks are small

compared to the transmission network and closer to the consumers. Therefore, the network

is operated at lower voltage levels.
1Source: By MBizon - Own work Originally derived from de:Datei:Stromversorgung.png, CC BY 3.0,

https://commons.wikimedia.org/w/index.php?curid=9676556
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1.1.1 Market Operations and Models

To start the operations, the ISO solves an optimization model known as the day-ahead

Unit Commitment (UC) problem [8]. The day-ahead UC decisions are available to the market

participants a day before the actual dispatch. Similarly, there is a real-time UC problem

which solves hours before the actual market. The real-time UC decisions fine tunes the day-

ahead UC decisions. The exact nature of problems (day-ahead, real-time UC, etc.) differs

among various ISO [9,10]. The UC problem determines the most economical order of power-

generating unit operations while meeting the demand forecast. The UC model decisions allow

the ISO to select or switch on cost-effective generators and switch off expensive generators

while maintaining the system’s reliability. Generators’ start-up costs, shutdown costs, and

ramping capabilities affect these on-off decisions. Hence, these are modeled as constraints in

the UC problem. The UC problem contains both continuous and binary variables resulting

in a MIP.

We can find extensive work on the UC problem in the literature. An integer programming

(IP) approach has been proposed in [11] to decide UC decisions. A mixed-integer program-

ming (MIP) formulation for the UC problem has been discussed in [12] and [13]. A two-stage

stochastic programming model has been employed to handle the uncertainty in wind gener-

ation in [14]. The authors have discussed the benefits of combining reserves with stochastic

decisions that can lead to more robust solutions. A similar approach has been taken in [15],

where they discuss the importance of reserves with large-scale wind generation by ignoring

transmission network constraints. A mixed-integer stochastic programming model and a

progressive-hedging algorithm based solution method with tractable solving time have been

developed for the UC problem in [16]. In [17], the authors have discussed the advantages

of stochastic programming (SP) models over the deterministic models for the UC problem.

A SP-based UC model for a single bus system has propped in [18]. Including sub-hourly

dispatch constraints, a SP UC model has been developed in [19]. To ease computational diffi-

culties with added constraints, authors have used a modified Benders decomposition method

to solve the model. In [20], a chance constraint SP model has been developed for the UC

problem. The model exhibits both chance constraints SP and two-stage SP features. A ro-

bust optimization approach has been proposed for the UC problem in [21]. A comprehensive
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review of the UC problem can be found in [22], and different UC models can be found in [23].

Once the UC decisions are fixed, the ISO solves another optimization problem known

as the economic dispatch (ED) model. The objective of this model is to decide the most

economical generation amounts for each generator while meeting the demand. The capacity

limits and power flow laws restrict these decisions. Similar to the UC problem, the ISO solves

a day-ahead ED model and a real-time ED model. For instance, California ISO (CAISO)

releases the day-ahead dispatch schedule at 1:00 PM on the prior day of the actual trading

and real-time results 45 minutes prior to the start of the trading hour. The current practice

in the industry is to solve a deterministic model using forecasted generation amounts for

renewable generation. We provide a thorough review of renewable energy forecasting in

section 2.

To coordinate the day-ahead and real-time decisions, a deterministic approach has been

discussed in [24, 25]. In [25], the day-ahead model provides economical operating direction,

and the real-time model provides optimal dispatch decisions. The benefits of using SP models

over deterministic ones for ED problems have been discussed in [26,27].

A SP framework has been proposed in [28] to address the uncertainty in the ED model

with renewable energy. The authors have shown that solving the SP model in different

time scales can significantly improve the quality and the cost of the dispatch. A two-stage

stochastic convex program has been introduced in [29]. The model includes frequency con-

straints that incorporate under-frequency load shedding. An adaptive multi-period robust

ED model has been discussed in [30]. The authors model the dispatch operations using a

two-stage structure with a rolling horizon framework. A quadratically constrained quadratic

program for the ED problem has been proposed in [31] with an efficient solution framework.

A mixed-integer quadratic constrained model has been employed in [32].

1.1.2 Electricity Pricing Models

After solving the ED problem, the ISO must compensate all generators to cover their

costs. In most other industries, a separate pricing model determines the pricing solutions,

especially in manufacturing [33]. However, in the electricity market, developing a separate

pricing model is complicated due to physical limitations. Therefore, the ISO utilizes the dual
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information of the ED model to develop prices for the market participants. The ISO has

little to no control over the resulting prices. Hence, to cover the costs of market participants,

the ISO often has to make payments that are not necessarily supported using dual prices.

These are known as the up-lift payments, and achieving zero up-lift payments is known as

cost recovery [34]. These properties are important in attracting investors to the market [35].

Furthermore, it is desirable to have enough payments from the loads to cover the costs of

generators. This is known as the revenue adequacy for the ISO. Therefore, designing an

accurate pricing mechanism is an essential task. The presence of uncertainty in the ED

model makes developing an accurate pricing mechanism more difficult.

1.1.2.1 Deterministic Models

There have been many attempts at developing pricing mechanisms in the literature.

Operating characteristics of generators result in nonconvex models for the clearing prices. [36]

has discussed the properties of prices with deterministic nonconvex markets. Failure to

achieve cost recovery has dangerous long-term consequences. A pricing structure for two

suppliers with nonconvex costs is discussed in [37]. Electricity market clearing prices are

affected by both UC, and ED problems [38]. Therefore, locational marginal prices (LMP)

are sensitive to UC commitment solutions. Biasness toward a set of participants results

in lower average prices. The inefficiencies of suboptimal UC solutions are discussed using

several test systems in [39,40]. In [41], the authors have used different algorithms to obtain

ED solutions and discussed the role of up-lift payments for each algorithm.

1.1.2.2 Stochastic Models

Furthermore, we have discussed the SP models for ED problems, and hence there are

studies conducted to develop pricing mechanisms using two-stage SP models. Stochastic

linear programming based pricing mechanism has been proposed in [42]. The proposed

pricing mechanism achieves revenue adequacy in expectation. However, there are separate

price schemes for generators and loads. This discontinuation could result in undesirable

prices for a set of market participants. A two-stage SP based pricing model has been proposed

in [43,44] that achieves cost recovery and revenue adequacy in expectation. The properties of

the proposed pricing mechanism have been further discussed in [45]. The authors have shown
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bounds for the unit price deviations in the day-ahead and real-time markets. In [46], cost

recovery by scenario is achieved by compensating for the maximum and minimum deviations

in each scenario. A scenario-wise revenue-adequate pricing mechanism has been proposed

in [47]. With the use of virtual bids, [48] has shown cost recovery for every scenario. However,

this is only achievable in a convex setting. Given the extensive role of SP in designing

operations and prices in power systems, we provide a brief overview of SP next.

1.2 Brief Overview of Stochastic Programming

Stochastic programming (SP) is a mathematical optimization framework for modeling

decisions-making problems involving uncertainty. In SP problems, some or all parameters

of the optimization model can be uncertain but with known probability distributions. In

addition to power systems, SP models are applied in quite a range of applications. These

include fleet assignment problem in airline industry [49], production planning problem [50],

and water management problems [51]. The textbooks by [52] and [53] serve as excellent

resources for SP. We refer the reader to [54] for elaborate presentation of SP applications.

We review some key SP elements relevant in this dissertation here.

We can write a generic stochastic programming model as follows:

min
x

{
E[F (x, ω̃], x ∈ X (ω) a.s.

}
, (1.1)

where x ∈ Rn is the n dimensional decision vector and ω̃ ∈ Rd is a random vector. We

capture the associated uncertainty through the random vector ω̃ defined on a probability

space. A realization of this random vector, denoted by ω is known as a scenario.

1.2.1 Two-stage SP Models

Two-stage SP models are applicable when decision variables of the first stage affect the

second-stage decisions. Usually, the two stages are apart in time, and hence the second

stage parameters are uncertain at the time first-stage decisions are made. We can extend
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the generic SP formulation in (1.1) to state the two-stage SP model as follows:

min
x∈X

f(x) =F0(x) + E{F (x, ω)}, (1.2a)

F (x, ω) = min
y

g(y, ω), (1.2b)

s.t. y ∈ Y(x, ω). (1.2c)

Here, function g(y, ω) depends on a realization of the random vector ω̃, and the decision

variable y in a set Y which depends on the first-stage decision and the random vector.

The first-stage decisions x must be made here-and-now before the realization of the random

vector. Therefore, they are also known as non-anticipative decisions. The second-stage

decisions are made in the future depending on the realization of the random vector. Hence,

they are anticipative. Furthermore, a two-stage stochastic linear programming problem is a

relatively complete recourse if the second stage problem is feasible for all x ∈ {x|Ax = b}

and ω ∈ Ω.

1.2.2 Non-anticipativity

When we solve a deterministic model, the decisions are fixed. The same applies to the SP

models when we know all the realizations of the random vector (scenario) at the time first-

stage decisions are made. That is, the SP model reduces to a deterministic model known

as the extensive scenario or the deterministic-equivalent problem. For each scenario, we

can also solve a deterministic problem, known as the scenario problem in the SP literature.

However, the first-stage solutions of these scenario problems are unimplementable since each

scenario problem will result in a different first-stage solution. That is because the scenario

problem anticipates the realization of the random variables.

To achieve an implementable first-stage solution, we must have a single solution for the

first-stage decisions despite the realization of the random vector. In the canonical two-

stage SP model, this non-anticipativity is achieved by modeling all the first-stage decisions

independent of the scenarios. There are two more modeling approaches, mean-vector and

state-vector, to achieve non-anticipativity. For these approaches, the first-stage decisions

are modeled as scenario-dependent variables. Then a restriction is imposed on the scenario-
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dependent first-stage variables to have the same value despite the scenario. The mean-vector

formulation imposes that all first-stage decisions must equal their mean value, and the state

vector imposes this restriction using auxiliary variables. In our studies, we discuss all three

types of two-stage SP models with the added linearity restriction.

1.2.3 Algorithms

SP models are one of the most challenging classes of optimization models to solve, es-

pecially with a large number of scenarios, which is the case in most practical situations.

Therefore, formulating the extensive scenario form and using off-the shelf deterministic op-

timization algorithms are not suitable for solving SP models. There are a few efficient

algorithms to solve SP models available in the literature.

The SP solution methods fall under two broad categories, stage decomposition and sce-

nario decomposition methods. The L-shaped method is a stage decomposition algorithm.

The L-shaped method introduced in [55] is the most widely used SP algorithm. The algo-

rithm starts with a feasible solution to the master problem. Then solves the subproblems

for one scenario at a time, fixing the first-stage decisions. Depending on the subproblem

solution, a feasibility cut or an optimality cut is added to the model.

On the other hand, the progressive Hedging Algorithm (PHA) is another SP algorithm

that takes advantage of scenario decomposition. The algorithm was introduced in [56]. The

algorithm starts with solving scenario problems by treating the first-stage decisions as a

scenario-dependent decision vector. Since the first stage is non-anticipative, it is not neces-

sary to have feasible first-stage decisions. Once all scenario-dependent first-stage decisions

are determined, we compute the expected first-stage decision to obtain a non-anticipative

first-stage decision vector. Note that the mean-vector formulation supports this process as

it has scenario-dependent first-stage decisions and non-anticipativity constraints that set

first-stage decisions to their mean value.

1.3 Contributions

This dissertation is aimed at studying three aspects that aid large-scale renewable inte-

gration into power systems. The main contributions are as follows.

1. Wind-speed simulation. In chapter 2, we introduce parametric and nonparametric
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statistical methods to simulate wind-speed time series. We discuss the nonstationarity

of wind-speed time series and how it plays a crucial role in developing simulations. We

use a nonparametric change point detection method to identify stationary segments

within the nonstationary series. We apply the method to simulate wind speeds and

solve an electricity market-clearing model to show the price changes with the wind

speeds.

2. Pricing mechanisms. In chapter 3, we develop two new pricing mechanisms using

alternative stochastic programming models based on two different representations of

non-anticipativity. The first mechanism utilizes the mean-vector formulation of non-

aniticpativity that has an efficient algorithm to obtain numerical solutions. The pricing

mechanism achieves cost recovery and revenue adequacy in expectation and has bounds

for price distortion under every scenario. The second pricing mechanism uses the state-

vector form of non-anticipativity. The pricing mechanism achieves revenue adequacy

in expectation and cost recovery under every scenario. We also show the bounds for

the price distortion under every scenario. Finally, we prove the relationships to obtain

the state-vector formulation results using the computationally efficient mean-vector

solutions. We demonstrate our results using a six-bus test example.

3. Coordination system. We develop a system to coordinate operations between the trans-

mission (market) and distribution systems to accommodate smart grid operations in

chapter 4. We discuss a market setting with multiple markets and distribution sys-

tems that perform as a standard nash game. We develop algorithms to achieve a

Nash equilibrium using proximal best response schemes that guarantee convergence.

Using numerical experiments, we evaluate the performance of three algorithms and

interpret the results from distribution systems, markets, policymakers, and customer

perspectives.

1.4 Dissertation Outline

In section 2.1, we introduce wind speed modeling for renewable electricity generation and

the nonstationarity of the wind speed time series. Then we propose a method to tackle the
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nonstationarity using a nonparametric change point detection method to separate the time

series into stationary segments in section 2.2. Then we use an electricity market clearing

model to show the effects, especially pricing, using the change point based model in section

2.3. We dedicate chapter 3 to discuss different modeling approaches to the electricity market

clearing problem. In section 3.2, we describe the market setting and move on to section

3.3 to discuss SP approaches to the electricity market clearing problem. In this section,

we develop two alternative models to the two-settlement electricity market clearing problem

using non-anticipativity constraints. We also develop two new pricing mechanisms from each

newly built model and analyze their properties. We illustrate our findings in our numerical

experiments for the new pricing mechanisms in section 3.4. In chapter 4, the discussion

is on developing a coordination system for the power systems. In section 4.2, we describe

the market setting considered in this study and build the optimization model. We present

different algorithms to solve the developed model in section 4.3, and finally, in section 4.4,

we illustrate the numerical results of the study.

12



Chapter 2

Change Point-based Statistical Model of Wind Time Series

2.1 Introduction

Wind energy is one of the most economical renewable energy resources [6]. In the United

States, electricity production from wind resources contributes to over 7.3% of the total

electricity generation. However, the integration of a large amount of wind energy resources

in power systems poses several operational and reliability challenges. These challenges are

attributed to the inherently stochastic nature of wind generation. In addition to uncertainty,

the wind energy resources also exhibit large fluctuation in their output in a short duration

of time. These characteristics also exacerbate the difficulty to obtain accurate forecast of

wind generation. To address this issue, system operators are forced to incorporate large

amounts of operating reserves in the power network [7]. The use of expensive operating

reserves results in an overall increase in operational costs negating the cost benefits of wind

generation.

The determining element of wind energy generation is wind speed. Since this is a natural

phenomenon, factors that affect wind speed are not easy to recognize. Modeling wind speed

accurately has been a well-researched area among both statistics and power systems commu-

nities [57]. Wind speed modeling methods in the literature are predominantly based on using

historical data. That is, they use wind speed data from similar periods of time (seasons,

weather conditions, etc.) to build a model. Such modeling approaches can be classified into

three categories. 1) Persistence methods; these models assume that the present wind speed

stays consistent in the future. That is, wind speed at time t is used as the prediction of

wind speed at t + ∆t. Even though this technique outperforms most of the other sophis-

ticated models for very short-term predictions, its performance diminishes very quickly as

the prediction length increases. 2) Artificial Intelligence (AI) methods; these models use a
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large amount of historical data to identify patterns between input features and wind speeds.

These techniques include Artificial Neural Networks (ANN) [58,59], Support Vector Machine

(SVM) [60], multi-layered perceptron [61], among others. The prediction power of these mod-

els also diminishes quickly with the prediction time horizon. 3) Statistical methods; these

are data-driven models that are easily applicable, interpretable and yield computationally

efficient methods that can produce accurate short-term predictions. The statistical methods

include time series analysis techniques such as Autoregressive (AR), Autoregressive Moving

Average (ARMA), and autoregressive integrated moving average (ARIMA) models [62]. An

ARMA model has been used in [63] to simulate wind speed scenarios using Monte Carlo

simulation. A time-shifting technique has been used in [64] to simulate wind speeds using an

AR model. Hourly wind speed data was modeled using an ARMA model in [65]. A vector

AR model (VAR) [66] has been developed using spatio-temporal data of several nearby wind

farms in [67]. 5) Hybrid methods; Any combination of the above approaches can be classified

as a hybrid method. For instance, a NN model has been employed with a filter to deal with

non-linearity of wind speed data to improve ARIMA model in [59].

Contrary to historical data dependent modeling approaches, the physics-based methods

utilize Numerical Weather Prediction (NWP) data to predict short-term wind speeds. These

models rely on physical phenomenon like temperature, pressure, surface roughness, precip-

itation, and geographical obstacles to determine the predictions. For this reason, in stable

weather conditions, these models can produce highly accurate predictions. However, the

high computational burden that comes with solving these complex mathematical models

limits their usefulness in real-time power systems operations. For instance, [68] reports that

generating a single hourly NWP forecast would require 28 hours on standard 8-core machines

or a 500-CPU cluster to generate within an hour. In light of this, one can only employ deter-

ministic optimization methods for power systems planning and operations. To harness the

benefits of integrating NWP and SP (see Figure 2.1), in this chapter we present an approach

to generate a set of scenarios that share similar statistical properties with the NWP forecast.

Using our approach, new scenarios can be generated within a fraction of the time required

to generate an NWP forecast. A similar approach has been taken in [69] to simulate hourly

wind speed time series interpolating from 6hr NWP forecasts. In this chapter, we focus
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Figure 2.1: Work flow to utilize NWP forecast for decision making in power systems using
deterministic and stochastic approaches.

on applying statistical methods to model the NWP forecasted wind speed time series. Our

choice is motivated by the fact that our statistical models are supported by sound theoretical

properties while retaining computational requirements within acceptable limits. However,

there are few obstacles to applying statistical methods to wind time series. Wind farms

located in close proximity share common spatio-temporal properties. The statistical models

employed for power systems problems have predominantly involved univariate analysis. Such

time series models (e.g., AR, ARMA, and ARIMA) fail to capture the spatial relationships.

Therefore, the first challenge pertains to capturing spatio-temporal information by treating

wind speed time series from nearby locations as a multivariate time series. Such models have

been employed in power systems, for instance, [70, 71] present vector autoregressive (VAR)

models.

When either univariate or multivariate time series analysis is employed, the standard

modeling approaches, including those mentioned above, largely require stationarity of the

underlying stochastic process. However, for wind speed data, there is no guarantee that this

assumption is satisfied. The most common approach to address the requirement of station-

arity is to standardize the original data using the mean and the variance of the entire time

series [72, 73]. This approach does not make the time series stationary in terms of variance

and temporal dependence (covariance). This leads to statistical inconsistencies between the

original time series and those simulated based on models built using standardized data. An-
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other way of addressing nonstationarity is to segment the entire series into stationary pieces.

However, this segmenting cannot be done arbitrarily. The traditional way of identifying

points where an abnormality occurs is using control charts. The approach is more suitable

in finding isolated major changes in an ongoing process. In an effort to transform nonstation-

ary data into stationary, [74] apply a transformation based on t-location-scale distribution

to achieve standard normal distribution for the wind speed residuals. [75] uses a Weather

Research and Forecasting (WRF) data to simulate wind speed time series combined with a

stochastic model to add fluctuations to the forecast time series.

Finally, most existing time series methods for modeling wind speeds require certain dis-

tributional assumptions. That is, to apply these methods, the data, or at least the residual

or error terms obtained after removing the trend and seasonal components, is required to

follow a Gaussian distribution. For instance, [76, 77] claim that wind speed data is more

likely to follow an approximately Gaussian distribution as the time resolution of the time se-

ries increases. To address the distributional requirement, previous works (e.g., [72]) propose

different pre-processing techniques, like filtering, to achieve Gaussianity.

In light of these observations, the main contributions of this chapter are as follows.

1. Change point detection. We propose a nonparametric change point detection method

for the NWP forecasted wind speed data. Our approach is based on a recent work [78],

and treats this wind speed data as a multivariate nonstationary time series. This

data-driven technique identifies stationary segments of the entire series using change

points. The change points are detected based on differences in the covariance structure

measured using spectral density matrices [79]. The method is nonparametric and does

not make distributional assumptions.

2. Simulation of wind speed, parametric vs nonparametric approaches. We discuss para-

metric and nonparametric time series methods for simulating sub-hourly wind speed

data. These simulation methods are applied to all the stationary segments identified

using the change point detection method. The proposed simulation methods retain

statistical properties of the original time series (the series generated by the NWP) and

this is witnessed in the computational experiments involving the NWP forecasted time
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series and the simulated wind speed time series.

3. Application to a power systems operations problem. We demonstrate the application of

time series simulated using our proposed approaches to the economic dispatch problem

used for power systems operations planning. Our computational experiments illustrate

that the distributional changes, at identified change points, in the NWP generated wind

speed time series, result in distributional changes at around the same time points in

time series corresponding to conventional generation and location marginal prices. Our

approach provides systematic tools to analyze power systems both from the operations

and market stability perspectives.

The rest of the chapter is organized as follows. In Section 2.2, we present the change

point method to detect changes within wind speed time series. We also discuss parametric

and nonparametric approaches to simulate new wind speed scenarios. In Section 2.3, we

introduce an economic dispatch problem to illustrate the application of our wind speed

modeling method to an important problem in power systems operations. In Section 2.3.2,

we present the computational experiments conducted on wind time series data and the

behavior of the economic dispatch problem outputs. The concluding remarks are in Section

2.4.

2.2 Methodology

In this section, we present the statistical methods for modeling wind speed time series.

We provide a description of the change point method and then discuss the parametric and

nonparametric simulation techniques. We start with the model assumption and the motiva-

tion to study wind speed data as a multivariate nonstationary time series.

Let {wt}Tt=1 denote the L-dimensional wind speed time series. This series can be de-

composed into three L-dimensional terms: trend (xt), seasonal (st), and residual (rt) terms.

That is,

wt = xt + st + rt, t = 1, 2, . . . , T. (2.1)

We postpone the discussion on estimating the trend and the seasonal terms to the end of
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this section. Observe that the model in (2.1) assumes presence of trend and seasonal terms

for each component (or variate) of the multivariate series. The serial and contemporaneous

dependence among the L components of wt is assumed to be driven exclusively by the L-

dimensional residual series rt. If this series {rt} is stationary, application of conventional

time series models, such as VARMA, is appropriate. The model components would then be

estimated by minimizing the least squares error [66].

As an illustration, we present the correlation matrix of the residual series rt in Table

2.1 for a randomly selected day (Feb. 19, 20111). The L = 5 component series here are

sub-hourly wind speed data gathered at 5 wind farm locations in Oklahoma. Note that the

presence of trend and/or seasonal characteristics in the NWP forecasted original series wt

makes it inappropriate for an analysis using the standard correlation coefficient and hence,

we only present the correlation results based on the residual series rt. Furthermore, the

model assumption in (2.1) implies that the dependence among components of wt is captured

entirely by dependence among components in rt. The results from Table 2.1 indicate a strong

linear relationship among individual components of the multivariate series rt, suggesting a

multivariate consideration of the wind speed time series.

Table 2.1: Correlation matrix of the residual series rt (Feb. 19, 2011).

Series 1 Series 2 Series 3 Series 4 Series 5

Series 1 1.00 0.55 0.60 0.72 0.52

Series 2 0.55 1.00 0.43 0.29 0.14

Series 3 0.60 0.43 1.00 0.67 0.62

Series 4 0.72 0.29 0.67 1.00 0.55

Series 5 0.52 0.14 0.62 0.55 1.00

Next, an application of a multivariate stationarity test [80] on the residual series rt

1Data source: https://www.nrel.gov/grid/wwsis.html
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suggests that the stationarity assumption does not hold for every wind speed time series.

As an illustration, we present the p-values from this test on hourly and sub-hourly wind

speed data gathered at the same L = 5 wind farm locations in Oklahoma. The analysis here

was conducted on day-long sub-hourly wind speed data for five randomly selected days and

week-long hourly wind speed data2 starting on the same randomly selected days. The test

checks for covariance stationarity of the multivariate time series with a null hypothesis that

the given multivariate series is stationary. The p-values in the table provide strong evidence

to reject the null hypothesis, leading us to conclude that both the sets of sub-hourly and

hourly time series exhibit nonstationarity.

Table 2.2: The p-values from multivariate stationarity test for the five wind farm locations
in Oklahoma.

Day Hourly Sub-hourly

Feb. 19, 2011 1.211e− 03 < 1e− 06

Apr. 21, 2011 8.633e− 04 < 1e− 06

Aug. 07, 2011 3.185e− 04 < 1e− 06

Nov. 01, 2011 8.069e− 06 < 1e− 06

Dec. 04, 2011 1.347e− 06 < 1e− 06

Nonstationarity in the wind speed time series can also be witnessed by checking the

autocovariance over different segments in time. Figure 2.2 depicts the changes in the co-

variance structure of sub-hourly data recorded on February 19 over time. In Figure 2.2a,

the covariance patterns of the first 100 observations are entirely different from the last 100

observations in Figure 2.2b. For instance, the first 100 observations of series 1 and 3 (Figure

2.2a) suggest a small relation over different lags while the last 100 observations (Figure 2.2b)
2The choice of selecting 7 consecutive days for hourly data is to ensure that sufficient data is available

for model parameter estimation. The hourly data has 24 × 7 = 168 data points and sub-hourly data has
12× 24 = 288.
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suggest otherwise. Even the univariate plots along the diagonal in both Figures 2.2a and

2.2b show their variance structure change over time. Similar changes were also observed

in the covariance structure for sub-hourly wind speed data for other days listed in Table

2.2. Figure 2.3 depicts the covariance structural changes of hourly averaged data. A signif-

icant change in the covariance structure between the first 68 observations and the last 68

observations is observable in series 2 and 5. This highlights the prominence of covariance

nonstationarity in wind speed data. These preliminary analyses not only emphasize the need

to pursue multivariate analysis, but also illustrate that the direct application of stationary

VARMA models is not suitable due to inherent nonstationarity.
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(a) First 100 observations.

(b) Last 100 observations.

Figure 2.2: Autocovariance plots of sub-hourly residual data for February 19th, 2011.
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(a) First 68 observations.

(b) Last 68 observations.

Figure 2.3: Autocovariance plots of hourly averaged residual data from February 19th, 2011.
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2.2.1 Change Point Detection

Change point analysis identify changes in the statistical properties of nonstationary time

series data. Applications of change point analysis are widespread; see [81–84] for examples.

Change point analysis can be performed in parametric [85] and nonparametric [86] settings.

Parametric methods assume the data arises from a certain distribution and change points are

obtained by tracking changes in the parameters of that distribution across time. Nonpara-

metric methods work without such assumptions and we resort to this approach to identify

change points in wind speed data.

A time point τ ∈ (1, T ) is regarded as a change point when the statistical properties of

the series rt on either side of that time point τ are different. For instance, if the covariance

Cov(rt, rt+h) for t ∈ (τ−δ, τ ] at some lag h ≥ 0 is different from Cov(rt, rt+h) for t ∈ (τ, τ+δ]

for some neighborhood length δ > 0, then τ is a change point. The same concept can be

extended to M > 1 change points at τ1, τ2, · · · , τM ∈ (1, T ) and we let τ0 = 0 and τM+1 = T .

In this case, the original time series can be split into M + 1 stationary segments indexed by

Ik := (τk, τk+1], for k = 0, 1, . . . ,M . Notice that the above procedure requires the knowledge

of the number and locations of change points τk, for k = 1, . . . ,M .

In many practical settings, it is unreasonable to expect that either the number or the

location of change points is known a priori. We resort to a nonparametric method for

detecting changes in the covariance structure of the residual time series rt. Our approach is

based on the recently developed nonparametric method in [78]. We provide a brief overview

of this approach here and refer the reader to [78,87,88] for detailed exposition and analysis.

Let f(s, ω) for ω ∈ [−π, π], be the L× L spectral density matrix of the residual series rt

at frequency ω and time s. Note that the spectral matrix, at different frequencies, carries

all the information about the covariance structure of the series rt. The key tool for locating

change points is a deviation metric that serves as a measure of departure from stationarity.

More precisely, for any candidate change point τ , we consider D(τ) as the integrated squared

Euclidean norm of the vectorized difference of the spectral density matrices in a neighborhood
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around point τ . We have

D(τ) =
1

2π

∫ π

−π
||vec

(
fL(τ, ω)− fR(τ, ω)

)
||2dω. (2.2)

where, fL(τ, ω) and fR(τ, ω) are the spectral matrices evaluated over the neighborhoods

(τ − δ, τ) and (τ, τ + δ), respectively. Here, δ > 0 is the size of the local neighborhood and

ω ∈ [−π, π] is the frequency. While estimating D(τ), we consider N observations on either

side of the candidate change point τ and this N serves as a proxy for δ. Then, an estimate

of fL(τ, ω) can be defined using the discrete Fourier transform (DFT) and the periodogram

of the series rt:

JL(ω) =
1√

2πN

τ∑
s=τ−N+1

rse
−itω, IL(ω) = JL(ω)J∗L(ω), (2.3)

where J∗L(ω) is the conjugate transpose of JL(ω). The estimated L × L spectral density

matrix for ω ∈ [−π, π] is given by

f̂L(ω) =
1

N

bN
2
c∑

j=−bN−1
2
c

Kh(ω − ωj)IL(ωj), (2.4)

where ωj = 2π
N
j and Kh(·) = 1

h
K( ·

h
). Here, K(·) is a nonnegative symmetric kernal function

and h is the bandwidth. An estimate for fR(τ, ω) can be obtained similarly. Finally, an

estimate for D(τ) in (2.2) can be defined as

D̂(τ) =
1

2π

∫ π

−π
||vec

(
f̂L(τ, ω)− f̂R(τ, ω)

)
||2dω. (2.5)

The method operates in a sequential manner wherein the point with maximal value in D̂(·)

is identified first and tested for significance. To test the significance of this candidate change

point at level α, the estimate in (2.5) serves as a test statistic. The method then moves

to the time point with the next biggest value in D̂(·). The significant change points are

identified sequentially until there are no more time points deemed as change points by the

24



test. This procedure yields the number M and location of the change points.

Once we identify the M change points, we are left with M + 1 stationary segments and

the time series within these segments can be treated as stationary series. Our goal then is

to mimic this segmentation by simulating stationary time series in each of these segments,

thereby producing a realization of the entire series that is statistically consistent with the

original time series. Producing accurate simulations of the original series helps greatly in

power systems operations and this application is discussed in Section 2.3.

2.2.2 Stationary Process Simulation

In this Section, we present parametric (Section 2.2.2.1) and nonparametric (Section

2.2.2.2) methods to simulate from a stationary time series. These are the methods that

will be used to simulate time series data within each of the M + 1 identified segments.

2.2.2.1 Parametric

Modeling a stationary time series can be achieved using the Vector Autoregression (VAR)

model. The pth order VAR model for the residual vector rt in segment Ik := (τk, τk+1], for

k = 0, 1, . . . ,M , can be written as

rt = W1,krt−1 + · · ·+Wp,krt−p + Ψt,k, (2.6)

whereW1,k,W2,k, · · · ,Wp,k are the L×L coefficient matrices, and Ψt,k is the L-dimensional

noise term. Selecting the model order p is an important step in VAR model estimation and

can be achieved through selection methods such as Akaike information criterion (AIC) or

Bayesian information criterion (BIC) [66].

After fitting VAR models in each of theM+1 stationary segments, the fitted models can

be used to simulate stationary series for each segment, thereby resulting in a realization of the

entire series [89]. The parametric bootstrap method described above requires specification

of the distribution of the noise term Ψt,k. Typically, the noise term is assumed to follow

Gaussian distribution.

In finite sample situations, fitting VAR models, especially those with high model orders

p, can be a challenging estimation problem. In the next section, we describe a nonparametric
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approach to simulate a stationary time series. This approach avoids fitting parametric models

such as VAR and its associated problems such as model order estimation and error term

distribution specification.

2.2.2.2 Nonparametric

The block bootstrap technique is one of the nonparametric methods that can be used to

simulate from a stationary time series [90]. In this method, blocks of the original time series

are created using a block length parameter. The simulated series is obtained by resampling

blocks of observations as opposed to resampling individual observations. The block length

is an important parameter choice and the technique in [91] can be utilized to identify the

optimal block length. Though the previous method is developed for univariate time series,

one can obtain optimal block lengths for each component series in the multivariate series and

compute an average block length in the end. The block bootstrap method does not require

the distribution of the error terms, avoids small sample estimation problems in parametric

models such as VAR. Instead, it requires selecting a single block parameter. In practice, the

choice between a parametric or nonparametric simulation technique depends on the length

of the M + 1 segments discovered by the change point method in Section 2.2.1 and also

the estimated model order p of the VAR model described in Section 2.2.2.1. Parametric

resampling methods face estimation issues when there are many parameters to be estimated

with few observations and this is further discussed in Section 2.3.5.

2.2.3 Estimation

Our model assumption in (2.1) includes a trend term xt and a seasonal term st. Popular

approaches to estimating the trend term xt are smoothing techniques such as moving average,

exponential smoothing, and local least squares. The sub-hourly and hourly wind speed data

do not exhibit linear nor monotone trend behavior. We thus utilize the Loess regression

algorithm [92] to estimate the trend term wherein the algorithm fits regression models over

local time windows.

The seasonal component st is the repeating pattern of a time series at regular intervals.

After removing the trend term, plots of the spectral density [79] and autocorrelation of the

univariate components of st provide an initial idea of presence of seasonality in the time
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series. To identify seasonal periods and estimate the seasonal term st, one can resort to

the additive models and state space modeling framework suggested in [93, 94]. In modeling

sub-hourly wind speed data over individual days, seasonality is not an issue due to the small

time period under consideration.

The entire procedure of modeling and simulating wind speed time series is summarized

in Algorithm 1. The procedure accepts a L-dimensional time series as input, preprocesses

the time series (Step 1), identifies the change points at user-defined significance level α (Step

2), and returns the desired number of simulated time series (Step 4). The simulated series

are generated using either parametric or nonparametric approaches (Step 3).

Algorithm 1 Simulating wind speeds
1: Input: L-dimensional time series from nearby wind farmwt, t = 1, 2, . . . , T ; significance

level α; number of simulations N .
2: Step 1: Identify trend xt and seasonal st components. Obtain residual series rt =

wt − xt − st. (Section 2.2.3)
3: Step 2: Run the change point detection method on rt for the input significance level α

to obtain change points τ0, τ1, . . . , τM+1 where τ0 = 0 and τM+1 = T . Separate rt into
segments indexed by Ik := (τk, τk+1] (Section 2.2.1)

4: Step 3: Obtain time series model for each segment.
5: for k = 0, . . . ,M do
6: Use parametric method, VAR(p) to obtain model for the segment Ik. (Section 2.2.2.1)
7: if p < 5 then
8: Simulate N time series using the VAR(p) model.
9: else
10: Use nonparametric method, block bootstrap to obtain N simulated time series.

(Section 2.2.2.2)
11: end if
12: end for
13: Step 4: Append all the simulated segments to obtain a time series of length T . Add trend

xt and seasonal st components. This is done separately for each of the N simulations.
14: Output: N simulated wind speed time series.
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2.3 Application

With large-scale integration of renewable energy resources for electricity generation, the

planning and operations problems in power systems face several challenges that stem from

the inherent stochasticity in these resources. The deterministic optimization tools employed

by the system operators raise several concerns regarding reliable operations as well as consis-

tency in electricity prices. Stochastic programming provides a suitable framework to address

both these issues when optimization model parameters are uncertain. However, the effect

of nonstationarity on system operations has been an issue. In light of this, we present a

critical power systems operations problem to illustrate how nonstationarity in input param-

eters (wind speed time series) impacts optimization output (conventional generation and

electricity prices).

2.3.1 Economic Dispatch Problem

Consider a power system with the set of lines L, buses B, generators G, and load D.

The following mathematical program is a deterministic quadratic programming model of the

economic dispatch problem for time period t. The decision variables of the model are as

follows: git is the generation of i ∈ G generator, dit is the demand met at i ∈ D load, fijt is

the power flow on line (i, j) ∈ L, and θi is the angle at bus i ∈ B. The model for time period

t is given by:

min
∑
i∈G

aig
2
it + bigit −

∑
i∈D

βidit (2.7a)

s.t.
∑

j:(j,i)∈L

fjit −
∑

j:(i,j)∈L

fijt +
∑
j∈Gi

gjt −
∑
j∈Di

djt = 0 ∀i ∈ B, (2.7b)

∆i + g?i(t−1) ≤ git ≤ ∆i + g?i(t−1) ∀i ∈ G, (2.7c)

fijt =
ViVj

Xij

(θit − θjt) ∀(i, j) ∈ L, (2.7d)

Gi ≤ git ≤ Gi ∀i ∈ G, (2.7e)

0 ≤ dit ≤ Di ∀i ∈ D, (2.7f)

F ij ≤ fijt ≤ F i ∀(i, j) ∈ L. (2.7g)
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In the above, ai and bi are the cost coefficients, Gi/Gi are the production capacity limits,

and ∆i/∆i are the ramp-down/ramp-up limits of the generator i ∈ G. The bidding price

and demand of the load i ∈ L is denoted by βi and Di, respectively. Vi is the voltages at bus

i ∈ B; Xij is the line impedance and F ij/F ij are the line capacities of the line (i, j) ∈ L. In

addition, we used a simple linear regression model to transform the wind speed into wind

power.

The objective of the model, (2.7a) minimizes the negative of total revenue of the entire

power system. The first term in the objective function represents the total power gener-

ating cost and the second term represents the total income from the consumers. The first

constraint, (2.7b) captures the power flow balancing constraints. That is, the total power

inflow of a bus b ∈ B is equal to the total outflow. The second set of constraints, (2.7c) are

the ramping limitations of generators in the system and the third set, (2.7d) represent the

direct-current (linear) approximation of power flow on line (i, j) ∈ L. Constraints (2.7e),

(2.7f), and (2.7g) are the bounds on the respective decision variables. The optimization

model is stated for a given generation amount (g?i(t−1))i∈G for the previous time period (t−1)

that affects the current generation amount through the ramping constraints (2.7c). Notice

that, (2.7) is a quadratic program with affine equality constraints and bounded variables.

Since the input to the optimization model follows a stochastic process, its output, the

optimal primal and dual solutions, can also be viewed as stochastic processes. To capture

these output stochastic processes, the model is solved iteratively in a rolling-horizon manner.

That is, at time period t, a model instance with wind generation corresponding to wind speed

wt is setup and solved. The resulting optimal generation amount (denoted g?it for i ∈ G),

along with wind generation amount corresponding to wt+1 is used to setup the next instance

of the model at time period t + 1. The process is repeated until the end of the horizon. At

a given time period t, the optimal dual solution of (2.7b), denoted by π?it, is the location

marginal price at bus i ∈ B. We denote the generation and location marginal prices at time

period t by gt = (git)i∈G and πt = (πit)i∈B. In our computational study, we investigate the

behavior of generation {gt} and price {πt} stochastic processes.
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2.3.2 Experiments

In this section, we present the numerical results of of the change point detection method

presented in Section 2.2.1. The experiments were conducted on five wind farm locations

in Oklahoma. The data was collected from the National Renewable Energy Laboratory

(NREL) website (https://www.nrel.gov/). All the experiments were conducted on Intel

Core i3 CPU 2.2 GHz processor and 8 GB RAM with SSD storage. Statistical modeling

and the simulations were implemented using R, version 3.5.1. The optimization model was

implemented in C++ and solved using CPLEX 12.9.

The five wind farm locations considered are in close proximity to maintain the spatio-

temporal properties, as demonstrated in Section 2.2. Five-minutes apart sub-hourly data

was gathered for each location. Figure 2.4a depicts wind speed time series data for the

selected five wind farms for September 15 2011. The speeds are varying from 0.613 ms−1 to

15.014 ms−1. These wind speeds result in energy generation that range between 0 MWh to

21.02 MWh.

2.3.3 Change Point Detection

To illustrate the potential of the change point detection method presented in Section 2.2,

we conducted experiments on different sets of multivariate wind speed time series based on

different choices of length of series and number of variables. Sub-hourly data for 12, 24,

and 48 hour time periods were obtained using T = 144, 288, and 576 data points of wind

speed time series starting at midnight of September 15, 2011. The variates or components

of the multivariate time series correspond to wind farm locations selected at random from

the available dataset. We use two, three, four, and five-dimensional time series in our

experiments.

For each component of the wind speed time series, we used the method proposed in [94]

to verify the presence of seasonal components in the NWP forecasted series. The tests

indicated that the time series did not exhibit any seasonal patterns. Therefore, the residuals

time series were obtained by removing the trend from the NWP forecasted original series,

using the Loess algorithm. The residual series are depicted in Figure 2.4b. The change point

method was then applied on this residual series and the results are summarized in Table 2.3.
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(a) Observed wind speed time series at five locations.

(b) Residual series

Figure 2.4: September 15, 2011.
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For instance, the change point method detected six change points at τ = 54, 94, 133, 166, 199,

and 231 in the 5-dimensional sub-hourly time series. These change points are identified using

the vertical lines in Figure 2.4b.

A critical parameter for the change point detection method is the significance level α. A

smaller value of α imposes a stringent requirement for determining a candidate point to be

affirmed as a change point. We recommend using α = 0.05 or α = 0.01 for wind speed time

series. Table 2.3 presents the results for different sets of time series at these two significance

levels. The impact of the choice of significance level was revealed in the results for 12-hours

long, two-dimensional sub-hourly time series. When α = 0.05, the change point method

detected three change points at 58, 75, and 102. However, the change point at τ = 102

was not significant at α = 0.01. Similar observation was also made for the 7 days long,

5-dimensional hourly time series.

The length of the series also has an impact on the change point detection method. Table

2.3a shows that when series length increases the number of change points identified increases.

For instance, the 12 hours long, three-dimensional time series has two change points at

α = 0.01, whereas, the 24 hours long series has four change points, and 48 hours long series

has five change points.

2.3.4 Simulation of Wind Speeds

The detected change points lead to the stationary segments, and then, parametric and

nonparametric approaches from Sections 2.2.2.1 and 2.2.2.2, respectively, can be used for

simulation. The parametric approach involves, at each segment, identifying the appropri-

ate VAR model order, estimating the model parameters and simulating time series using

the estimated model. The nonparametric approach, on the other hand, is based on block

bootstrap carried out on each segment. The entire procedure to simulate wind speeds is

summarized in Algorithm 1. For a given NWP forecast, the process involves identifying

the change points, estimating model parameters when using the parametric approach, and

simulating new time series. The process takes 7.20 and 7.68 seconds when parametric and

nonparametric approaches are employed, respectively.

For the sub-hourly time series in Figure 2.4b, the change point detection method indicates
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Table 2.3: Change point analysis: Series length, significance level, number of series. Starting
day: September 15th, 2011.

(a) Sub-hourly time series.

Significance Length of Number of time series

level(α) the series 2 3 4 5

0.01 12hrs 58, 75 58, 103 42, 58, 83 41, 58, 83

24hrs 89, 224 54, 103, 145, 224 89, 231 54, 94, 133, 166, 199, 231

48hrs 89, 224, 256, 371, 436 89, 224, 256, 341, 435 89, 231, 264, 359, 436 89, 231, 302, 368, 435

0.05 12hrs 58, 75, 102 58, 103 42, 58, 83 41, 58, 83

24hrs 89, 224 54, 103, 145, 224 89, 231 54, 94, 133, 166, 199, 231

48hrs 89, 224, 256, 371, 436 89, 224, 256, 341, 435 89, 231, 264, 359, 436 89, 231, 264, 359, 435

(b) Hourly averaged time series.

Significance Length of Number of time series

level(α) the series 2 3 4 5

0.01 7days 55, 71 55, 71 55, 71 54, 71

14days 99, 257 99, 257 99, 257 99, 164, 257

21days 99, 257 98, 257 98, 257 98, 257

0.05 7days 55, 71 55, 71 55, 71 54, 71, 90

14days 99, 257 99, 257 99, 257 99, 164, 257

21days 99, 257 98, 257 98, 257 98, 257

the presence of six change points. Thus, we decompose the time series into into seven station-

ary segments index by the intervals [1, 54], [55, 94], [95, 133], [134, 166], [167, 199], [200, 231],

and [232, 288]. Segment-wise VAR model order p was estimated using the Akaike informa-

tion criterion (AIC) resulting in orders p = 9, 6, 6, 5, 5, 5, and 10 respectively. The number

of VAR parameters depends on the dimension of the series (L) and model order (p), and is

given by pL2 + L. Unless the series length in each segment far exceeds the number of pa-

rameters to be estimated, the quality of estimated parameters is suspect. For all the series

considered in our experiments, this was found to be the case. For daily wind speed data at

5 minute resolution, we do not recommend using the parametric approach for wind speed

when the model order is five or higher. In such cases, we recommend the nonparametric

block bootstrap approach for simulation.
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Once the change points are estimated for the NWP forecasted original wind speed time

series, we conduct multiple replications of the block bootstrap simulation. We compute

the correlation matrix for the original and all the simulated time series. Table 2.4 presents

the correlation matrix for the original and the average correlation matrix of 30 simulations

along with their 95% confidence intervals. Across all the replications, the average distance,

computed using the Frobenius Norm, between the correlation matrices corresponding to the

original and a simulated time series was 0.28 with the standard deviation of 0.09. These

results indicate the simulated time series retain the correlation structure of the NWP fore-

casted original time series.

Table 2.4: Correlation comparison of the NWP forecasted original series vs. simulated series.
(Feb. 19, 2011).

(a) NWP forecasted original series.

Series 1 Series 2 Series 3 Series 4 Series 5

Series 1 1.00 0.73 0.61 0.58 0.36

Series 2 0.73 1.00 0.74 0.61 0.41

Series 3 0.61 0.74 1.00 0.60 0.53

Series 4 0.58 0.61 0.60 1.00 0.72

Series 5 0.36 0.41 0.53 0.72 1.00

(b) Average correlations of simulated series (Nonparametric)

Series 1 Series 2 Series 3 Series 4 Series 5

Series 1 1.00± 0.00 0.72± 0.02 0.61± 0.02 0.57± 0.02 0.33± 0.02

Series 2 0.72± 0.02 1.00± 0.00 0.73± 0.01 0.63± 0.02 0.42± 0.02

Series 3 0.61± 0.02 0.73± 0.01 1.00± 0.00 0.61± 0.02 0.55± 0.01

Series 4 0.57± 0.02 0.63± 0.02 0.61± 0.02 1.00± 0.00 0.67± 0.03

Series 5 0.33± 0.02 0.42± 0.02 0.55± 0.01 0.67± 0.02 1.00± 0.00
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2.3.5 Performance in Economic Dispatch Problem

To verify the impact of nonstationarity in wind speed time series on power systems oper-

ations, we implemented the rolling-horizon economic dispatch problem. For this experiment

we considered a modified IEEE-30 test system [95]. The system comprises of 30 buses,

41 lines with a maximum capacity of 50MWh, a total of 6 generators, and 21 loads. We

considered hourly changes in the demand at each load.

We considered generators at bus 8 and bus 13 to be wind generators located on farms that

share similar wind patterns. From the available sub-hourly wind speed data, two locations

were randomly picked to simulate the wind speed time series. The correlation between the

selected locations’ NWP forecasted original wind speed time series is 0.7265. The change

point analysis detected three change points for the bivariate time series at τ = 87, 218, 250,

resulting in four stationary segments. When parametric modeling was used, the order of the

VAR model for each stationary section was 10, 8, 6, and 5. Since these values are higher than

the recommended model order of 5, the nonparametric approach was used for simulation.

The bivariate time series generated using the nonparametric simulation method is shown

in Figure 2.5a. The correlation between the simulated time series is 0.6664. This indicates

that the simulated time series retain the original linear relationship between the two variates.

The change point method detected τ = 89, 219, 251 as the change points (see Figure 2.5a) for

the simulated time series indicating that the simulation preserves the structural properties

of the NWP forecasted original series. Note that the asymptotic properties of change point

detection method are well established, however, such behavior can only be observed when

a very large number of observations are available. In small sample settings, as is our case,

the method searches in a neighborhood of a point for potential locations for change points.

Therefore, we expect to see mild discrepancies in change points between the original (e.g.,

τ = 87) and the simulated (τ = 89) time series.

The wind generation corresponding to the simulated time series was input to the dispatch

model (2.7). Notice that the input time series affects only the upper bound constraint

(2.7e) corresponding to the wind generators. As wind generation is the cheapest out of

all the generators in the system, wind generation is fully utilized, when possible, and the

conventional generators are adjusted to meet the remaining demand. The total conventional
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generation is depicted in Figure 2.5b. The change point analysis on the total conventional

generation time series reveals three change points at τ = 89, 212, and 252. These change

points are in the neighborhood of the change points identified for the simulated wind speed

time series in Figure 2.5a.

In addition to the primal optimal solution (conventional generation, etc.), we also mon-

itored the dual optimal solutions of the optimization model in (2.7). Since line capacities

are considered in the dispatch model, we observed some load-shedding in some buses. Load-

shedding is penalized in the objective, and therefore, the prices at these buses are distorted by

the load-shedding penalty. We conducted the change point analysis on the location marginal

price time series at buses whose marginal prices was not distorted by the load-shedding

penalty. For example, the marginal price time series and the detected change points at

Bus-1 are depicted in Figure 2.5c. Change point analysis reveals similar change points (at

τ = 80, 212, and 252) for the price time series as in the input wind speed and the primal

total conventional generation times series.
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(a) Simulated wind speed.

(b) Total conventional generation.

(c) Location Marginal Price at Bus-1
Figure 2.5: Results from the Rolling Horizon Economic Dispatch model.
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The primal and dual solutions to quadratic programs with affine constraints, such as

(2.7), are known to be piecewise continuous in the right-hand side parameters. Since wind

generation impacts the upper bound constraint in (2.7e), the observations in Figure 2.5b

and 2.5c provide an empirical evidence for the piecewise relationship of quadratic program-

ming solutions and its input. Furthermore, the neighborhood around the detected change

points correspond to intervals that exhibit significant fluctuation in generation and prices.

Therefore, the change point detection method can be used for power systems operation and

market stability analyses. The piecewise relationship also allows the system operator to

predict intervals of volatility, at desired level of significance, by conducting the change point

analysis on a wind speed forecast time series.

2.4 Conclusions

In this chapter, we emphasized on two principal elements of wind speed modeling, viz.,

spatio-temporal correlation and nonstationarity. Analyzing wind speed at geographically

separated wind farms in isolation (univariate analysis) fails to capture the spatial correlations.

We also demonstrated the presence of the nonstationarity in both hourly and sub-hourly

wind speed time series. Therefore, wind speed time series cannot be directly modeled by

usual stationary time series modeling methods such as VAR. Ignoring spatial correlation and

nonstationarity restricts the capabilities of power systems planning and operations models

fail to realistically capture the stochastic processes that affect them.

To address this issue, we presented a change point detection method for multivariate

nonstationary wind speed time series. The change point detection method allowed the non-

stationary time series to be decomposed into stationary segments. The change point method

sequentially identifies the time points where significant changes in the covariance structure

occur. The presented change point detection method does not make any distributional as-

sumptions and is supported by sound asymptotic consistency properties.

Once the stationary segments are identified, parametric and nonparametric approaches

were presented to simulate new wind speed time series. Generally, the parametric method

provides better results if the time series segments satisfy the distributional assumptions of

the parametric model. However, parametric models can get computationally expensive and
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require large amount of data for estimating the model parameters when the model order

increases. Therefore, for wind speed data we recommend a nonparametric approach if the

parametric model order is greater than five for at least one stationary segment. We presented

a block bootstap technique as a reliable nonparametric approach to simulate wind speed time

series.

Finally, we demonstrated an application of the change point detection method and subse-

quent simulation techniques to the economic dispatch problem. We showed that the change

points of the wind speed time series correspond to time intervals where the conventional

generation and electricity prices also exhibit significant volatility. Such relationship between

input time series (wind speed) and optimization model output (generation amounts and

electricity prices) can play a critical role in detecting and predicting system instabilities.
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Chapter 3

New Models, Pricing Mechanisms, and Interpretations for Stochastic Market Clearing

Problem

3.1 Introduction

Due to various environmental and economic reasons, U.S. policymakers are aggressively

integrating renewable energy into the power grid [5]. Even though there are many benefits to

renewable energy, there are also many challenges to integrating large-scale renewable energy

resources into the power grid. The inherent stochastic nature of these resources is the main

cause of these issues. Since most of the renewable energy resources depending on weather

conditions, these issues are out of the control of the system operators. Therefore, we must

accommodate these fluctuations in market operation models.

The system operators face two major problems due to the stochasticity of renewable

energy resources. Since we cannot have an accurate forecast for the renewable generation

output, the system operator must rely on an estimate that changes with the weather con-

ditions. This uncertainty causes damage to the power grids’ reliability. The second conflict

is economic in nature. Since the renewable generation output can change during electricity

transactions, the system operator cannot provide accurate prices beforehand.

In this chapter, we attempt to address the latter using stochastic programming (SP)

methods. In [44], the authors have proposed and shown the advantages of using SP to model

the electricity market clearing problem over the current industry practice, deterministic

methods. They also introduced a pricing mechanism for market participants with impor-

tant properties such as revenue adequacy and cost recovery in expectation. [45] has further

analyzed this price mechanism. [48] has proposed another SP-based pricing mechanism that

proves revenue adequacy and cost recovery for every scenario at the expense of losing social

surplus (non-economic dispatch).
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In light of these observations, the main contributions of this chapter are as follows:

1. New pricing mechanisms. We develop two alternative models for the two-settlement

electricity market that accounts for uncertainty in renewable generation and demand.

These models are based on two-stage SP principles, particularly the notion of non-

anticipativity. Based on the alternative approaches to capture the non-anticipativity

requirement, we develop two separate models, mean-vector and state-vector formula-

tions. In addition, we introduce two pricing mechanisms using the two alternative

models and show the relationships between the models using linear programming dual-

ity. We show that both pricing mechanisms have improved pricing characteristics over

the pricing mechanism proposed in [44].

2. Analysis of pricing mechanisms. We show that the new pricing mechanisms achieve

revenue adequacy for the system operator in expectation. That is, the system operator

does not face a financial deficit in the long run. We also prove that every participating

generator achieves cost recovery without any out-of-market payments in expectation

with mean-vector formulations’ pricing mechanism. For the state-vector formulations’

pricing mechanism, we prove that all generators achieve cost recovery under every

scenario, a more significant result. Finally, we develop bounds on price distortion, the

deviation between the first-stage unit price and the second-stage unit price for both

pricing mechanisms. We illustrate these properties through numerical experiments.

In the following section 3.2, we describe the market setting we consider in this study. We

introduce model elements in sub-section 3.2.1.1 and market metrics in section 3.2.2. Then

we present optimization models for the clearing problem in section 3.3. We begin with

the two-stage SP model in section 3.3.1 and proceed to alternative SP models from section

3.3.1. We present the first alternative SP model in section 3.3.2 and its’ pricing mechanism.

Then we present the second alternative SP formulation and its’ pricing mechanism in section

3.3.3. Finally, in section 3.4, we use a small example to illustrate the findings of the previous

sections.
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3.2 Stochastic Market Clearing

In this section, we present the electricity market-clearing model formulations. We begin

with a description of the market setting we consider in our study. We also present the metrics

that we use to analyze and compare the pricing mechanisms.

3.2.1 Market Setting

We consider a two-settlement market setting where the market participants partake in

a forward day-ahead market and a real-time balancing market. An Independent System

Operator (ISO) manages and clears the markets centrally. We denote by P the market

participants who make offers separately in the day-ahead market and the real-time market.

We assume that a market participant operates a single unit and does not cooperate with

other market participants, thus ensuring perfect competition. Therefore, a participant either

operates a generation unit or is a demand aggregator. We denote by G and D the set of

generator and demand participants, respectively. Typically, the ISO clears the day-ahead

market by first scheduling generators using a security-constrained unit commitment problem.

Following the commitment problem, the ISO identifies optimal generation amounts and

reserves using a security-constrained economic dispatch problem (see for example, [96] for

details regarding market operations at PJM ISO). Our formulations assume that the unit

commitment decisions are made a priori and are available as input. This market setting is

also the subject of previous works on stochastic market clearing, particularly in [44] and [45].

3.2.1.1 Model Elements

The power network is captured by a set of nodes (buses) N and a set of lines L. The

day-ahead market is cleared using the day-ahead offers that include price bids ci for i ∈ P .

The offers also include estimates of available maximum/minimum capacity that we denote by

xmax
i /xmin

i for i ∈ P . We denote the day-ahead settlement/cleared amounts by the decision

variable xi for either type of participants i ∈ P . A decision variable that corresponds to a

generator satisfies xi ≥ 0, and that which corresponds to a demand satisfies xi ≤ 0. These

constitute the principal elements of the consolidated first-stage decision vector y1 ∈ Rn1 . In

addition to the day-ahead clearing decisions, the decision vector y1 also includes the power

flows fij for (i, j) ∈ L that support the cleared day-ahead quantities. Therefore, we define
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y1 := ((xi)i∈P , (fij)(i,j)∈L). The capacity limits on these decision variables define the set C1

as:

C1 :=

y1

∣∣∣∣∣∣∣∣∣
xmin
i ≤ xi ≤ xmax

i ∀i ∈ P ,

fmin
ij ≤ fij ≤ fmax

ij ∀(i, j) ∈ L,

(fij)(i,j)∈L ∈ F .

 (3.1)

The first two constraints limit the first-stage decisions within their capacity limits. For a

generator, these limits capture the min up-time generation (lower bound ) and generation

capacity (upper bound). On the other hand, for a load, the lower bound is set to the negative

of demand forecast and the upper bound is set to zero. The third requirement ensures that

the power flows satisfy the underlying physics. The description of the set F depends on the

nature of approximation (such as the direct-current approximation) or relaxations (such as

second-order conic programming and semidefinite programming-based relaxations) adopted

to describe the power flows on a line. We refer the reader to [97] for a detailed review on

modeling power flows. We assume that 0 ∈ F . In addition to the above, the cleared day-

ahead quantities and the power flows do satisfy the flow balance at all nodes. These are

given by

∑
j:(j,n)∈L

fjn −
∑

j:(n,j)∈L

fnj︸ ︷︷ ︸
:=τn(f)

+
∑
j∈P(n)

xj = 0 ∀n ∈ N . (3.2)

The function τn(f) =
∑

j:(j,n)∈L fjn−
∑

j:(n,j)∈L fnj captures the net flow (difference between

inflow and outflow) at bus n. For ease of exposition, we adopt an abstract form for power

flow equations as g1(y1) = 0. Finally, the day-ahead social deficit (negative social surplus;

formally defined later in this section) is given by

f1(y1) :=
∑
i∈P

cixi. (3.3)

This constitutes the first-stage objective function.

The day-ahead and the real-time markets are cleared sequentially. The real-time mar-
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ket conditions are uncertain at the time the day-ahead market is cleared. The uncertain

conditions include (but not limited to) renewable generation, demand, transmission line ca-

pacities, and generator status. These uncertain elements are modeled by the random vector

ω defined on a probability space (Ω,F ,P), where Ω is a set of all possible scenarios, F is

the sigma-algebra, and P is the probability distribution. The real-time market is cleared

only after observing a realization ω of the random vector ω. We will refer to individual real-

izations as scenarios. Therefore, the quantities cleared in the real-time market may deviate

from those cleared in the day-ahead clearing. The market participants submit a separate

generation and demand bids to address the deviation between the day-ahead and real-time

conditions.

The real-time offers include the additional cost for positive (δ+
i )i∈P and negative devia-

tions (δ−i )i∈P incurred by the market participants. They also include maximum and minimum

capacity bounds given by Xmax
i /Xmin

i for i ∈ P . Analogous to the day-ahead settlements,

we denote real-time settlements/cleared amounts under realization ω by Xi(ω) for i ∈ P

that satisfy Xi(ω) ≥ 0 for generators and Xi(ω) ≤ 0 for loads. We collectively denote the

real-time decisions by the vector y2(ω) := ((Xi(ω))i∈P , (Fij(ω))(i,j)∈L) ∈ Rn2 , where Fij(ω)

for (i, j) ∈ L denote the power flows that support real-time amounts. In the real-time mar-

ket, the day-ahead amount of a participant i ∈ P is adjusted by either (Xi(ω) − xi)+ or

(Xi(ω)− xi)−. We assume that both these operations incur costs that we denote by δ+
i and

δ−i , respectively. These deviation costs are a small fraction of the day cost ci (we use 1%-5%

in our experiments). Therefore, the day-ahead cost is adjusted by

f2(y1,y2(ω), ω) :=
∑
i∈P

[
(ci + δ+

i )(Xi(ω)− xi)+ − (ci − δ−i )(Xi(ω)− xi)−
]
. (3.4)

The above constitutes the second-stage objective function. We define the real-time counter-
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parts of C1 and flow-balance equations for ω ∈ Ω as

C2(ω) :=

y2(ω)

∣∣∣∣∣∣∣∣∣
max{Xmin

i ,−Xavail
i (ω)} ≤ Xi(ω) ≤ min{Xmax

i , Xavail
i (ω)} ∀i ∈ P ,

Fmin
ij ≤ Fij(ω) ≤ Fmax

ij ∀(i, j) ∈ L,

(Fij(ω))(i,j)∈L ∈ F


(3.5)

and

τn(F (ω))− τn(f(ω)) +
∑
j∈P(n)

Xj(ω)− xj(ω) = 0 ∀n ∈ N , (3.6)

respectively. As before, we will use g2(y2(ω)) = 0 to succintly represent the flow-balance

equations. The quantity Xavail
i (ω) used in (3.5) denotes the observed quantity of ith partici-

pant under realization ω. Notice the explicit dependence of the cleared real-time quantities,

power flows, and the cost function upon the realization, ω.

3.2.2 Market Metrics

The next section presents pricing mechanisms based on the alternative SP formulations

and their properties. For each pricing mechanism, we analyze the payment received by

market participants and the revenue earned by the ISO. In our analyses, we use the notion

of revenue adequacy for the ISO and cost recovery for the participating generators. Price

consistency was identified as an appropriate metric for stochastic market settings in [45] as

they help achieve appropriate incentives. The authors define price consistency as when the

deviations between the day-ahead unit price and the expected real-time unit price is zero.

We adopt this distortion as an additional metric to assess our pricing mechanisms. Before

presenting the model formulations and pricing mechanisms, we introduce these metrics of

interest.

Under a scenario ω, a market participant realizes a value given by

ϕi(ω) := −cixi(ω)− (ci + δ+
i )(X(ω)− xi)+ + (ci − δ−i )(Xi(ω)− xi)− ∀i ∈ P . (3.7)

Recall that Xi, xi ≥ 0 for generators, Xi, xi ≤ 0 for loads, and δ+
i , δ

−
i > 0 (typically a small
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fraction of ci). Therefore, the realized value is negative for the generators and must be

viewed as the generator’s cost. On the other hand, the realized value is positive for loads

which can be interpreted as the value gained by meeting their demand. The social surplus

is defined as the value realized across all the market participants under ω ∈ Ω. That is,

ϕ(ω) :=
∑
i∈P

ϕi(ω). (3.8)

The stochastic market clearing problem aims to minimize the negative of expected social

surplus (for instance, see the objective function of (3.13)). The above form of social surplus

can be derived from the definition of the day-ahead cost f1 in (3.3), and the real-time

adjustment cost f2 in (3.4) through simple algebraic operations. It is worth noting that

the expected social surplus is a systemwide measure viewed from the ISO’s perspective.

For individual participants, we denote by ρi(ω) the payment made to a generator (when

ρi(ω) ≤ 0) by the ISO or received from a load (when ρi(ω) ≥ 0) under scenario ω.

Definition 1. A participating generator i achieves scenario-specific cost recovery when,

ρi(ω)− ϕi(ω) ≤ 0, (3.9a)

under scenario ω. The participating generator achieves cost recovery in expectation when,

E[ρi(ω)]− E[ϕi(ω)] ≤ 0. (3.9b)

Notice that the cost recovery metric is defined for only the participating generators.

When a generator achieves cost recovery, it can cover its short-run costs through its pay-

ments from the ISO. This case, also known as making whole, encourages the generators to

participate in the market. In the absence of this feature, the payment mechanism has to

incorporate additional side payments known as uplift payments. Uplifts become essential

under three cases (i) when approximations/relaxations are employed for the optimal power

flow equations, (ii) the inclusion of binary-valued commitment decision, and (iii) when an

approximate representation of uncertainty is utilized. In this study, we focus our attention

on the latter. From the ISO’s perspective, the following metric is useful.
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Definition 2. The ISO achieves scenario-specific revenue adequacy when,

∑
i∈P

ρi(ω) ≥ 0, (3.10a)

under scenario ω. The ISO achieves revenue adequacy in expectation when,

E
[∑
i∈P

ρi(ω)

]
≥ 0. (3.10b)

When we achieve revenue adequacy under a specific payment mechanism, the ISO receives

sufficient payment from the loads to make payments to generators and does not run into a

financial deficit. Finally, we use the following definition to capture the deviation of price

signals in the day-ahead and real-time.

Definition 3. The scenario-specific price distortion, denoted by Mn(ω) for all n ∈ N and

ω ∈ Ξ, is the difference between the day-ahead and real-time prices. Furthermore, the prices

are said to be consistent at a node n if E[Mn(ω)] = 0.

Notice that we introduce metrics in scenario-specific and expectation forms. While the

scenario-specific statements provide relatively stronger metrics, providing such strong guar-

antees may not always be possible, as we illustrate in the next section.

3.3 Models and Pricing Mechanisms

In this section, we present alternative SP problem formulations of the stochastic clearing

problem. For each formulation, we present the general primal form and develop the dual

form. We also present the extended two-settlement marker-clearing problem for each model.

In identifying the alternative formulations, we place a particular emphasis on our ability to

computationally solve these problems to optimality.

Notice that, when we employ direct-current approximation (which is the case in our

numerical study), the constraints we defined in Section 3.2.1.1 are linear. Further, we allow

generation and load shedding in the second stage as the real-time quantities are only required

to be within specified bounds; see (3.5). This implies that we achieve relatively complete

recourse for the two-settlement market problem. Therefore, the sets C1 and C2 are bounded
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polyhedrons, and hence they are convex, closed, and nonempty. We also assume finite

support for the probability set. Therefore, f1 and f2 are linear, and hence they are convex,

everywhere-defined, and finite. Before presenting the new formulations, we present the two-

settlement problem in the canonical SP form.

3.3.1 Canonical Stochastic Programming Model

The general from of the two-stage SP program is typically stated as follows:

Primal: min c>xc +
∑
ω∈Ω

p(ω)d>yc(ω), (3.11a)

s.t. Axc = b, (3.11b)

Cxc +Dyc(ω) = r(ω) ∀ω ∈ Ω. (3.11c)

Using the dual multipliers (πc,Πc(ω)) of (3.11b) and (3.11b), respectively, now we can state

the dual program of (3.11) as follows:

Dual: max b>πc +
∑
ω∈Ω

r(ω)>Πc(ω), (3.12a)

s.t. A>πc +
∑
ω∈Ω

C>Πc(ω) = c, (3.12b)

D>Πc(ω) = p(ω)d ∀ω ∈ Ω. (3.12c)
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Now, we can expand the above primal model,(3.11) for the two-settlement problem as

follows:

min
∑
i∈P

cixi + E[(ci + δ+
i )(Xi(ω)− xi)+ − (ci − δ−i )(Xi(ω)− xi)−], (3.13a)

s.t. xmin
i ≤ xi ≤ xmax

i ∀i ∈ P , (3.13b)

fmin
ij ≤ fij ≤ fmax

ij ∀(i, j) ∈ L, (3.13c)

(fij)(i,j)∈L ∈ F , (3.13d)

τn(f) +
∑
j∈P(n)

xj = 0, ∀n ∈ N , (3.13e)

max{Xmin
i ,−Xavail

i (ω)} ≤ Xi(ω) ≤ min{Xmax
i , Xavail

i (ω)} ∀i ∈ P , ω ∈ Ω, (3.13f)

Fmin
ij ≤ Fij(ω) ≤ Fmax

ij ∀(i, j) ∈ L, ω ∈ Ω, (3.13g)

(Fij(ω))(i,j)∈L ∈ F , ∀ω ∈ Ω, (3.13h)

τn(F (ω))− τn(f) +
∑
j∈P(n)

(Xj(ω)− xj) = 0, ∀n ∈ N , ω ∈ Ω. (3.13i)

Notice the explicit dependence of second-stage decisions on the random variable ω. We

assume Ξ is finite, and therefore, the above perspective on two-stage SP problems can be

solved using by the L-shaped method [55]. This decomposition-based approach provides a

computationally viable path for large-scale implementation. The previous studies (e.g., [44]

and [45]) on stochastic market clearing problems utilize this two-stage perspective.

3.3.1.1 Pricing Mechanism 1

The first pricing mechanism is based on the properties of the canonical form (3.13) of the

SP problem. This payment mechanism was proposed in [44] and further analyzed in [45].

We can interpret the dual solution πcn corresponding to the first-stage flow-balance equation

(3.13e) as the marginal cost of serving an additional unit of forecasted demand at node

n. Equivalently, the second-stage dual solution Πc
n(ω) of (3.13i) can be interpreted as the

marginal cost associated with adjustments in demand under scenario ω. Therefore, the

following payment mechanism is appropriate for the canonical form.
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Definition 4. Under scenario ω ∈ Ξ, the market participants receive a payment given by

ρci(ω) = πcn(i)xi + Πc
n(i)(ω)(Xi(ω)− xi) ∀i ∈ P . (Rc)

The day-ahead decision xi of an SP problem is hedged against uncertainty in real-time.

Therefore, the first term captures the payments for providing the well-hedged solutions that

are rectified in the second term by Πc
n(i)(ω)xi. The payment corresponding to the second-

stage quantity (i.e., Πc
n(i)(ω)Xi) can then be viewed purely as a spot-market trade. The

following result is well known regarding the stochastic clearing problem in the canonical

form.

Proposition 1. Let the incremental bids satisfy δ+
i , δ

−
i > 0,∀i ∈ P. The optimal

solutions of the canonical stochastic clearing model result in revenue adequacy for the

ISO and cost recovery for all generators in expectation under pricing mechanusm (Rc).

Furthermore, the expected price distortion at node n ∈ N is bounded to the interval

[maxi∈P(n){−δ+
i },mini∈P(n){δ−i }].

Proof. See Theorems 1 and 2 in [98] for the results pertaining to revenue adequacy and cost

recovery in expectation. Under pricing mechanism (Rc), scenario-specific price distortion is

given by Mc
n(ω) = πcn − Πc

n(ω), ∀n ∈ N , ω ∈ Ω. Theorem 9 in [45] establishes the bounds

on expected price distortion, i.e.,−δ+
i ≤ E[Mc

n(i)(ω)] ≤ δ−i , ∀i ∈ P .

Notice the two critical features of the above pricing mechanism. Firstly, all elements

necessary to compute the payment in (Rc) can be extracted using the solutions reported

from decomposition algorithms such as the L-shaped method. Secondly, the properties re-

lating to revenue adequacy, cost recovery, and price distortions hold only in expectation.

Furthermore, the first stage in the canonical formulation makes decisions based on the day-

ahead information and then accounts for the real-time stochasticity only in the second stage.

Due to this decision structure, the first-stage here-and-now decisions undergo a scenario-

dependent correction in the second stage. Unfortunately, a generator’s flexibility to undergo

this correction is not reflected in the above pricing mechanism. In other words, the payments

received by generators depend only on the optimal dual solutions corresponding to the flow
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balance equations (possibly viewed as the stochastic location marginal prices). They do

not account for the generator’s flexibility to offer second-stage/real-time corrections. In the

following, we present SP formulations that explicitly can price this flexibility while retaining

computability.

3.3.2 Mean-vector Stochastic Programming Model

We now present an equivalent formulation of (3.11) and its dual, the mean-vector SP

model, as follows:

Primal: min
∑
ω∈Ω

p(ω)
(
c>xm(ω) + d>ym(ω)

)
, (3.14a)

s.t. Axm(ω) = b, ∀ω ∈ Ω, (3.14b)

Cxm(ω) +Dym(ω) = r(ω) ∀ω ∈ Ω, (3.14c)

xm(ω) =
∑
ω′∈Ω

p(ω′)xm(ω′) ∀ω ∈ Ω. (3.14d)

Using the dual multipliers (πm(ω),Πm(ω), µ(ω)) of (3.14b), (3.14c), and (3.14d), respec-

tively, we can write the dual of (3.14) as follows:

Dual: max
∑
ω∈Ω

(
b>πm(ω) + r>(ω)Πm(ω)

)
, (3.15a)

s.t. A>πm(ω) + C>Πm(ω) + (1− p(ω))µ(ω)

−
∑
ω′∈Ω
ω′ 6=ω

p(ω′)µ(ω′) = p(ω)c, ∀ω ∈ Ω (3.15b)

D>Πm(ω) = p(ω)d ∀ω ∈ Ω. (3.15c)

Notice the changes in the first-stage decisions. They are scenario-dependent. This scenario

dependency distinguishes the mean-vector formulation from the canonical formulation, and

as such the first-stage decisions are unimplementable. To resolve this issue, we introduce the

non-anticipativity constraints to the first-stage decisions. The non-anticipativity constraints

can take two different forms, and in the mean-vector formulation, we utilize the form stated

in (3.14d). The idea of this form is to set all the scenario-dependent first-stage decisions to
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their mean value. In this formulation, all constraints are required to hold almost surely.

Since (3.11) and (3.14) are equivalent formulations, that is, at optimality we have xc =

xm(ω) and yc(ω) = ym(ω) ∀ω ∈ Ω. Similarly, we can establish relationships between (3.12)

and (3.15) variables.

Theorem 1. Let (πc
∗
,Πc∗(ω)) be the optimal solution to (3.12) and (πm

∗
(ω),Πm∗(ω), µ∗(ω))

be the optimal solution to (3.15). These solutions satisfy

i Πc∗(ω) = Πm∗(ω), ∀ω ∈ Ω.

ii πc∗ =
∑
ω∈Ω

πm
∗
(ω);

Proof. Let (πc
∗
,Πc∗(ω)) be the optimal solution to (3.12) and (πm

∗
(ω),Πm∗(ω), µ∗(ω)) be

the optimal solution to (3.15). Constraint (3.12c) is equal to (3.15c). Therefore, a solution

that satisfies one constraint satisfies the other. Hence, Πc∗(ω) = Πm∗(ω), ∀ω ∈ Ω.

Consider the constraint (3.12b).

A>πc
∗

+
∑
ω∈Ω

C>Πc∗(ω) = c, ∀ω ∈ Ω.

By rearranging the terms, we get

∑
ω∈Ω

C>Πc∗(ω) = c− A>πc∗ ∀ω ∈ Ω. (3.16)

Now consider the constraint (3.15b).

A>πm(ω) + C>Πm(ω) + (1− p(ω))µ(ω)−
∑
ω′∈Ω
ω′ 6=ω

p(ω′)µ(ω′) = p(ω)c, ∀ω ∈ Ω.

By taking the sum over all ω ∈ Ω, we get

∑
ω∈Ω

A>πm(ω) +
∑
ω∈Ω

C>Πm(ω) +
∑
ω∈Ω

(1− p(ω))µ(ω)−
∑
ω∈Ω

( ∑
ω′∈Ω
ω′ 6=ω

p(ω′)µ(ω′)
)

=
∑
ω∈Ω

p(ω)c.
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Since Πc∗(ω) = Πm∗(ω), we can substitute (3.16) on the left-hand side of the above equation.

Then we have

∑
ω∈Ω

A>πm(ω) + c− A>πc∗ +
∑
ω∈Ω

(1− p(ω))µ(ω)−
∑
ω∈Ω

( ∑
ω′∈Ω
ω′ 6=ω

p(ω′)µ(ω′)
)

=
∑
ω∈Ω

p(ω)c.

The right-hand side simplifies to c since the expected value of a constant is the constant

itself. Then using simple algebraic operations we get

∑
ω∈Ω

A>πm(ω) + c− A>πc∗ +
∑
ω∈Ω

µ(ω)−
∑
ω∈Ω

p(ω)µ(ω)−
∑
ω∈Ω

( ∑
ω′∈Ω
ω′ 6=ω

p(ω′)µ(ω′)
)

= c,

⇒
∑
ω∈Ω

A>πm(ω)− A>πc∗ +
∑
ω∈Ω

µ(ω)−
∑
ω∈Ω

(
p(ω)µ(ω) +

∑
ω′∈Ω
ω′ 6=ω

p(ω′)µ(ω′)
)

= 0,

⇒
∑
ω∈Ω

A>πm(ω)− A>πc∗ +
∑
ω∈Ω

µ(ω)−
∑
ω∈Ω

∑
ω′∈Ω

p(ω′)µ(ω′) = 0,

⇒
∑
ω∈Ω

A>πm(ω)− A>πc∗ +
∑
ω∈Ω

µ(ω)−
∑
ω∈Ω

E[µ(ω)] = 0.

Consider (3.14d),

xm(ω) =
∑
ω∈Ω

p(ω)xm(ω).

Since µ(ω) is the dual multiplier of (3.14d), from complementary slackness we have,

µ(ω)
(
xm(ω)−

∑
ω′∈Ω

p(ω′)xm(ω′)
)

= 0 ∀ω ∈ Ω.
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By taking sum over all ω ∈ Ω, we get

∑
ω∈Ω

(
µ(ω)

(
xm(ω)−

∑
ω∈Ω

p(ω)xm(ω)
))

= 0,

⇒
∑
ω∈Ω

µ(ω)xm(ω)−
∑
ω∈Ω

(
µ(ω)

∑
ω∈Ω

p(ω)xm(ω)
)

= 0,

⇒
∑
ω∈Ω

µ(ω)xm(ω)−
∑
ω∈Ω

∑
ω∈Ω

µ(ω)p(ω)xm(ω) = 0,

⇒
∑
ω∈Ω

xm(ω)µ(ω)−
∑
ω∈Ω

(
xm(ω)

∑
ω∈Ω

p(ω)µ(ω)
)

= 0,

⇒
∑
ω∈Ω

(
xm(ω)

(
µ(ω)−

∑
ω∈Ω

p(ω)µ(ω)
)

= 0.

When
∑

ω∈Ω x
m(ω) = 0 ∀ω ∈ Ω, the non-anticipativity constraints become redundant. The

only interesting case is when we have xm(ω) 6= 0 ∀ω ∈ Ω. Therefore, we get

∑
ω∈Ω

µ(ω)−
∑
ω∈Ω

p(ω)µ(ω) = 0.

By applying this to

∑
ω∈Ω

A>πm(ω)− A>πc∗ +
∑
ω∈Ω

µ(ω)−
∑
ω∈Ω

E[µ(ω)] = 0,

we get

∑
ω∈Ω

A>πm(ω)− A>πc∗ = 0,

⇒A>
(∑
ω∈Ω

πm(ω)− πc∗
)

= 0.

Since, A> 6= 0 (see (3.2)). we have,

∑
ω∈Ω

πm(ω) = πc
∗
.

This completes the proof.
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Now we present the extended (3.14) formulation for the two-settlement market problem

as follows:

min
∑
i∈P

cixi(ω)

+ E[(ci + δ+
i )(Xi(ω)− xi(ω))+ − (ci − δ−i )(Xi(ω)− xi(ω))−], (3.17a)

s.t. xmin
i ≤ xi(ω) ≤ xmax

i ∀i ∈ P , ω ∈ Ω, (3.17b)

fmin
ij ≤ fij(ω) ≤ fmax

ij ∀(i, j) ∈ L, ω ∈ Ω, (3.17c)

(fij(ω))(i,j)∈L ∈ F , ∀ω ∈ Ω, (3.17d)

τn(f(ω)) +
∑
j∈P(n)

xj(ω) = 0, ∀n ∈ N , ω ∈ Ω, (3.17e)

max{Xmin
i ,−Xavail

i (ω)} ≤ Xi(ω) ≤ min{Xmax
i , Xavail

i (ω)} ∀i ∈ P , ω ∈ Ω, (3.17f)

Fmin
ij ≤ Fij(ω) ≤ Fmax

ij ∀(i, j) ∈ L, ω ∈ Ω, (3.17g)

(Fij(ω))(i,j)∈L ∈ F , ∀ω ∈ Ω, (3.17h)

τn(F (ω))− τn(f(ω))

+
∑
j∈P(n)

(Xj(ω)− xj(ω)) = 0, ∀n ∈ N , ω ∈ Ω, (3.17i)

xi(ω)− E[xi(ω)] = 0 ∀i ∈ P , ω ∈ Ω, (3.17j)

fij(ω)− E[fij(ω)] = 0 ∀(i, j) ∈ L, ω ∈ Ω. (3.17k)

The scenario-dependent variables allow the model to decompose into scenario-specific prob-

lems. Hence, we can take advantage of scenario decomposition algorithms, specifically, the

Progressive Hedging (PH) method [56] to recover the desired duals in a computationally

efficient manner.

3.3.2.1 Pricing Mechanism 2

We derive the second payment mechanism from the mean-vector formulation (3.17).

Similar to (Rc), the second mechanism also includes a day-head component and a real-

time component which are computed using the optimal dual solutions (πm(ω),Πm(ω)) of

the respective flow-balance equations (3.17e) and (3.17i). However, unlike the previous
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mechanism, we include a scenario-wise adjustment for the first-stage component using the

dual solution µx(ω) of (3.17j). We define this payment mechanism as follows.

Definition 5. Under scenario ω ∈ Ξ, the market participants receive a payment as follows:

ρmi (ω) = (πmn(i)(ω) + µxi (ω))xi(ω) + Πm
n(i)(ω)(Xi(ω)− xi(ω)) ∀i ∈ P . (Rm)

Here, µxi is the dual corresponding to the non-anticipative constraint of the form in (3.17j)

for the variable xi(ω).

The following result captures the properties of (Rm).

Theorem 2. Let δ+
i , δ

−
i > 0 ∀i ∈ P. If the optimal dual solutions obtained

from the mean-vector formulation of the stochastic market clearing problem satisfy∑
i∈P E[µx

∗
i (ω)]E[x∗i (ω)] ≤ 0, then pricing mechanism (Rm) yields revenue adequacy in ex-

pectation for the ISO. Furthermore, if generator i ∈ G satisfies E[µx
∗
i (ω)] ≥ 0 for all i ∈ G

then it achieves cost recovery in expectation. Finally, the scenario-specific price distortion

defined as Mn(ω)m = πmn(i)(ω) + µxi (ω)− Πm
n(i)(ω) satisfies

Mn(ω)m ∈ [−δ+
i , δ

−
i ] + p(ω)µxi (ω), ∀i ∈ P . (3.18)

Proof. Proof: Consider the Lagrangian relaxation of (3.17).

min Lm = E
[∑
i∈P

cixi(ω) + (ci + δ+
i )(Xi(ω)− xi(ω))+ − (ci − δ−i )(Xi(ω)− xi(ω))−

−
∑
n∈N

πmn (ω)

(
τn(f(ω)) +

∑
j∈P(n)

xj(ω)

)

−
∑
n∈N

Πm
n (ω)

(
τn(F (ω))− τn(f(ω)) +

∑
j∈P(n)

(Xj(ω)− xj(ω))

)

−
∑
i∈P

µxi (ω)

(
xi(ω)− E[xi(ω)]

)
−
∑

(i,j)∈L

µfij(ω)

(
fij(ω)− E[fij(ω)]

)]
. (3.19)

Since Lm is minimized over (3.1) and (3.5), the optimal solution

(x∗(ω), X∗(ω), f ∗(ω), F ∗(ω), πm
∗
(ω),Πm∗(ω), µx

∗
(ω), µf

∗
(ω)) also minimizes the Lagrangian
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relaxation with the optimal value Lm∗ . Notice that the solution obtained by setting

f(ω) = 0 and F (ω) = 0 for all ω ∈ Ξ is a sub-optimal feasible solution. For such a solution

we have E[f(ω)] = 0 and

Lm∗ ≤ E
[∑
i∈P

cix
∗
i (ω) + (ci + δ+

i )(X∗i (ω)− x∗i (ω))+ − (ci − δ−i )(X∗i (ω)− x∗i (ω))−

−
∑
n∈N

πm
∗

n

( ∑
i∈P (n)

x∗i (ω)
)
−
∑
n∈N

Πm∗

n (ω)
( ∑
i∈P (n)

(X∗i (ω)− x∗i (ω))
)

−
∑
i∈P

µx
∗

i (ω)
(
x∗i (ω)− E[x∗i (ω)]

)]
.

Substituting Lm∗ from (3.19) and rearranging the terms we obtain

− E
[∑
n∈N

πm
∗

n (ω)τn(f ∗(ω)) + Πm∗

n (ω)
(
τn(F ∗(ω))− τn(f ∗(ω))

)
+
∑
i∈L

µf
∗

i (ω)
(
f ∗i (ω)− E[f ∗i (ω)]

)]
≤ 0.

Since the optimal solution satisfies f ∗i (ω)−E[f ∗i (ω)] = 0 for all i ∈ L, ω ∈ Ω, the last term in

the above inequality equates to zero. The optimal solution also satisfies x∗i (ω)−E[x∗i (ω)] = 0.

Using this we obtain

−E
[∑
n∈N

πm
∗

n τn(f) + Πm∗

n (ω)
(
τn(F ∗(ω))− τn(f ∗(ω))

)
+
∑
i∈P

µx
∗

i (ω)
(
x∗i (ω)− E[x∗i (ω)]

)]
≤ 0.

Using the flow balance equations (3.17e) and (3.17i), we have

E
[∑
i∈P

(
πm
∗

n(i)(ω)x∗i (ω) + Πm∗

n(i)(ω)(X∗i (ω)− x∗i (ω)) + µx
∗

i (ω)
(
x∗i (ω)− E[x∗i (ω)]

))]
≤ 0.

E
[∑
i∈P

(
πm
∗

n(i)(ω)x∗i (ω) + Πm∗

n(i)(ω)(X∗i (ω)− x∗i (ω)) + µx
∗

i (ω)x∗i (ω)

])
−
∑
i∈P

E[µx
∗

i (ω)]E[x∗i (ω)] ≤ 0.

Therefore, if we have
∑

i∈P E[µx
∗
i (ω)]E[x∗i (ω)] ≤ 0 then, we obtain E[

∑
i∈P ρ

m
i (ω)] ≤ 0 which

implies that pricing mechanism (Rm) is revenue adequate in expectation.
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Since the problem is convex, the optimal dual values, (πm∗(ω),Πm∗(ω), µx
∗
(ω), µxf∗(ω))

satisfy

Lm∗ = min
x(ω),X(ω)
f(ω),F (ω)

E
[∑
i∈P

cixi(ω) + (ci + δ+
i )(Xi(ω)− xi(ω))+ − (ci − δ−i )(Xi(ω)− xi(ω))−

−
∑
n∈N

πm
∗

n (ω)
(
τn(f(ω)) +

∑
i∈P (n)

xi(ω)
)

−
∑
n∈N

Πm∗

n (ω)
(
τn(F (ω))− τn(f(ω)) +

∑
i∈P (n)

(Xi(ω)− xi(ω))
)

−
∑
i∈P

µx
∗

i (ω)
(
xi(ω)− E[xi(ω)]

)
−
∑
i∈L

µf
∗

i (ω)
(
fi(ω)− E[fi(ω)]

)]
.

Notice that the optimization problem on the right-hand side of the above inequality decom-

poses into participant-specific optimization problems. Therefore,

Lm∗ =
∑
i∈P

E
[

min
xi(ω),Xi(ω)

L1
i (xi(ω), Xi(ω))

]
+ min

f(ω),F (ω)
E
[
L2(f(ω), F (ω))

]
.

Here, we define

L1
i (xi(ω), Xi(ω)) = cixi(ω) + (ci + δ+

i )(Xi(ω)− xi(ω))+ − (ci − δ−i )(Xi(ω)− xi(ω))−

− πm∗n(i)(ω)xi(ω)− Πm∗

n(i)(ω)(Xi(ω)− xi(ω))

− µx∗i (ω)
(
xi(ω)− E[xi(ω)]

)
∀i ∈ P ,

L2
i (fi(ω), Fi(ω)) = −

∑
n∈N

πm
∗

n (ω)τn(f(ω))−
∑
n∈N

Πm∗

n (ω)
(
τn(F (ω))− τn(f(ω))

)
−
∑
i∈L

µf
∗

i (ω)
(
fi(ω)− E[fi(ω)]

)
.

Further, we can minimize Lm∗ by minimizing above functions separately for every participant.

Now consider the Lagrangian L1
i (xi(ω), Xi(ω)) and its optimal solution (x∗i (ω), X∗(ω)). Since
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(xmin
i , Xmin

i ) is a sub-optimal feasible solution, we have for all i ∈ P

E[L1
i (x
∗
i (ω), X∗i (ω))] ≤ E

[
cix

min
i + (ci + δ+

i )(Xmin
i − xmin

i )+ − (ci − δ−i )(Xmin
i − xmin

i )−

− πm∗n(i)(ω)xmin
i − Πm∗

n(i)(ω)(Xmin
i − xmin

i )− µx∗i (ω)
(
xmin
i − E[xmin

i ]
)]
.

Substituting L1
i (x
∗
i (ω), X∗i (ω)) and rearranging the terms, we obtain

E
[
cix
∗
i (ω) + (ci + δ+

i )(X∗i (ω)− x∗i (ω))+ − (ci − δ−i )(X∗i (ω)− x∗i (ω))−

−
(
cix

min
i + (ci + δ+

i )(Xmin
i − xmin

i )+ − (ci − δ−i )(Xmin
i − xmin

i )−

)]
≤ E

[(
πm
∗

n(i)(ω) + µx
∗

i (ω)
)
x∗i (ω) + Πm∗

n(i)(ω)
(
X∗i (ω)− x∗i (ω)

)]
− E[µx

∗

i (ω)]E[x∗i (ω)]

− E1

[
πm
∗

n(i)(ω) + µx
∗

i (ω)
)
xmin
i + Πm∗

n(i)(ω)
(
Xmin
i − xmin

i )

]
+ E[µx

∗

i (ω)]E[xmin
i (ω)].

If the startup costs are sufficiently covered through the uplifts paid by the commitment

problem, then we can focus on payment settled using the clearing problem studied here. In

this case, we have

E
[
cix
∗
i (ω)+(ci + δ+

i )(X∗i (ω)− x∗i (ω))+ − (ci − δ−i )(X∗i (ω)− x∗i (ω))−

]
≤ E

[(
πm
∗

n(i)(ω) + µx
∗

i (ω)
)
x∗i (ω) + Πm∗

n(i)(ω)
(
X∗i (ω)− x∗i (ω)

)]
− E[µx

∗

i (ω)]E[x∗i (ω)].

Using (3.7) and (Rm) in the above inequality, we obtain E[ρmi (ω) − ϕi(ω)] ≥ 0 whenever

E[µx
∗
i (ω)]E[x∗i (ω)] ≥ 0. Note that if E[µx

∗
i (ω)] ≥ 0 for all i ∈ G, the latter condition holds

for all generators implying that they recover their costs in expectation.

We next show the price distortion properties. Notice that

cixi(ω) + (ci + δ+
i )(Xi(ω)−xi(ω))+ − (ci − δ−i )(Xi(ω)− xi(ω))−

= ciXi(ω) + (δ+
i + δ−i )(Xi(ω)− xi(ω))+ − δ−i (Xi(ω)− xi(ω))

Using the above relationship in Lm, the partial Lagrangian with respect to day-ahead quan-
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tity xi(ω) at the stationary point can be written as follows:

0 ∈ ∂xi(ω)Lm = (δ+
i + δ−i )∂xi(ω)(Xi(ω)− xi(ω))+ + δ−i −

(
πmn(i)(ω)

− Πm
n(i)(ω) + (1− p(ω))µxi (ω)

)
⇒
− δ−i + (πmn(i)(ω)− Πm

n(i)(ω) + (1− p(ω))µxi (ω))

δ+
i + δ−i

∈ ∂xi(ω)(Xi(ω)− xi(ω))+.

Since,

∂xi(ω)(Xi(ω)− xi(ω))+ =


−1, if Xi(ω) > xi(ω)

0, if Xi(ω) < xi(ω)

[−1, 0] if Xi(ω) = xi(ω)

.

We have

− 1 ≤
− δ−i + (πmn(i)(ω)− Πm

n(i)(ω) + (1− p(ω))µxi (ω))

δ+
i + δ−i

≤ 0

⇒− δ+
i + p(ω)µxi (ω) ≤ (πmn(i)(ω) + µxi (ω))− Πm

n(i)(ω) ≤ δ−i + p(ω)µxi (ω)

∀i ∈ P , ω ∈ Ω.

This completes the proof.

The mean-vector formulation reveals hidden dual information not available in the canon-

ical model. This dual information allows us to design pricing mechanism Rm that adjusts

day-ahead and real-time components in every scenario. However, Rm can achieve only con-

ditional revenue adequacy and cost recovery in expectation which cannot be guaranteed for

every instance. On the other hand, Rm has price distortion bounds for every scenario as op-

posed to the expected price distortion bounds in (Rc). These bounds depend on the scenario

probability and their corresponding non-anticipativity dual. For extreme scenarios, that is,

low probability scenarios, the price distortion bounds stay closer to the interval [−δ+, δ−]

depending on the value of the non-anticipativity dual. For higher probability scenarios, the

price distortion bounds move away from the interval [−δ+, δ−] depending on the value of the
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non-anticipativity dual. Notice that, in either case, the width of the interval remains the

same, (δ+ + δ−).

3.3.3 State-vector Stochastic Programming Model

The next equivalent model, the state-vector model, utilizes the second form of the non-

anticipativity representation. In this method, the scenario-dependent first-stage decisions

are tied together using an additional decision vector. We can state the primal and the dual

forms of state-vector formulation as follows:

Primal: min
∑
ω∈Ω

p(ω)
(
c>xs(ω) + d>ys(ω)

)
, (3.20a)

s.t. Axs(ω) = b, ∀ω ∈ Ω, (3.20b)

Cxs(ω) +Dys(ω) = r(ω) ∀ω ∈ Ω, (3.20c)

xs(ω) = χ ∀ω ∈ Ω. (3.20d)

Using the dual multipliers (πs(ω),Πs(ω), σ(ω)) of (3.20b), (3.20c), and (3.20d), respectively,

we can write the dual of (3.20) as follows:

Dual: max
∑
ω∈Ω

(
b>πs(ω) + r>(ω)Πs(ω)

)
, (3.21a)

s.t. A>πs(ω) + C>Πs(ω) + σ(ω) = p(ω)c, ∀ω ∈ Ω (3.21b)

D>Πs(ω) = p(ω)d ∀ω ∈ Ω. (3.21c)∑
ω∈Ω

σ(ω) = 0. (3.21d)

Since (3.20) is equivalent to previous models, we can state the relationships between primal

decision variables as follows:

i xc = xm(ω) = xs(ω), ∀ω ∈ Ω;

ii yc(ω) = ym(ω) = ys(ω).

Furthermore, we can establish the dual variable relationships.

Theorem 3. Let (πc
∗
,Πc∗(ω)) be the optimal solution to (3.12), (πm

∗
(ω),Πm∗(ω), µ∗(ω)) be
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the optimal solution to (3.15), and (πs
∗
(ω),Πs∗(ω), σ∗(ω)) be the optimal solution to (3.21).

These solutions satisfy

i
∑
ω∈Ω

σ∗ = 0 ;

ii Πc∗(ω) = Πm∗(ω) = Πs∗(ω), ∀ω ∈ Ω;

iii πc∗ =
∑
ω∈Ω

πm
∗
(ω) =

∑
ω∈Ω

πs
∗
(ω);

iv If πm∗(ω) = πs
∗
(ω), then σ∗(ω) = µ∗(ω)− E[µ∗(ω)].

Proof. From the dual feasibility constraint (3.21d), we have

∑
ω∈Ω

σ∗ = 0.

Furthermore, constraint (3.15c) is equal to (3.21c). Therefore, a solution that satisfies

one constraint satisfies the other. Hence, Πs∗(ω) = Πm∗(ω), ∀ω ∈ Ω. Using Theorem 1 part

i we have

Πc∗(ω) = Πs∗(ω) = Πm∗(ω), ∀ω ∈ Ω.

Now consider the constraint (3.21b).

A>πs
∗
(ω) + C>Πs∗(ω) + σ∗(ω) = p(ω)c, ∀ω ∈ Ω.

By taking the sum over all ω ∈ Ω, we get

∑
ω∈Ω

A>πs
∗
(ω) +

∑
ω∈Ω

C>Πs∗(ω) +
∑
ω∈Ω

σ∗(ω) =
∑
ω∈Ω

p(ω)c

Since Πc∗(ω) = Πs∗(ω), we can substitute (3.16) in the above equation. Then we have

∑
ω∈Ω

A>πs
∗
(ω) + c− A>πc∗ +

∑
ω∈Ω

σ∗(ω) =
∑
ω∈Ω

p(ω)c
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The right-hand side simplifies to c since the expected value of a constant is the constant

itself. Therefore, we get

∑
ω∈Ω

A>πs
∗
(ω) + c− A>πc∗ +

∑
ω∈Ω

σ∗(ω) = c.

⇒
∑
ω∈Ω

A>πs
∗
(ω)− A>πc∗ +

∑
ω∈Ω

σ∗(ω) = 0.

From (3.21d) we have
∑

ω∈Ω σ(ω) = 0. Thus,

∑
ω∈Ω

A>πs
∗
(ω)− A>πc∗ = 0.

⇒A>
(∑
ω∈Ω

πs
∗
(ω)− πc∗

)
= 0.

Since A> 6= 0, we have

∑
ω∈Ω

πs
∗
(ω) = πc

∗

Combining this result with Theorem 1 part ii we get

πc
∗

=
∑
ω∈Ω

πm
∗
(ω) =

∑
ω∈Ω

πs
∗
(ω)

Consider the constraint (3.21b).

A>πs
∗
(ω) + C>Πs∗(ω) + σ∗(ω) = p(ω)c, ∀ω ∈ Ω.

By rearranging the terms, we get

C>Πs∗(ω) = p(ω)c− A>πs∗(ω)− σ∗(ω) ∀ω ∈ Ω. (3.22)
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Now consider the constraint (3.15b).

A>πm
∗
(ω) + C>Πm∗(ω) + (1− p(ω))µ∗(ω)−

∑
ω′∈Ω
ω′ 6=ω

p(ω′)µ∗(ω′) = p(ω)c, ∀ω ∈ Ω.

Using algebraic operations we can simplify this into

A>πm
∗
(ω) + C>Πm∗(ω) + µ∗(ω)− p(ω)µ∗(ω)−

∑
ω′∈Ω
ω′ 6=ω

p(ω′)µ∗(ω′) = p(ω)c, ∀ω ∈ Ω.

The last two terms on the left hand side together represents the expected value of µ∗(ω).

Therefore,

A>πm
∗
(ω) + C>Πm∗(ω) + µ∗(ω)− E[µ∗(ω)] = p(ω)c, ∀ω ∈ Ω.

Since Πs∗(ω) = Πm∗(ω), we can substitute (3.22). Then we have

A>πm
∗
(ω) + p(ω)c− A>πs∗(ω)− σ∗(ω) + µ∗(ω)− E[µ∗(ω)] = p(ω)c, ∀ω ∈ Ω,

⇒A>πm∗(ω)− A>πs∗(ω)− σ∗(ω) + µ∗(ω)− E[µ∗(ω)] = 0, ∀ω ∈ Ω,

Hence, if πm∗(ω) = πs
∗
(ω) then

σ∗(ω) = µ∗(ω)− E[µ∗(ω)].

This completes the proof.
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Next we present the extended state-vector two-settlement problem as follows:

min
∑
i∈P

cixi(ω)

+ E[(ci + δ+
i )(Xi(ω)− xi(ω))+ − (ci − δ−i )(Xi(ω)− xi(ω))−], (3.23a)

s.t. xmin
i ≤ xi(ω) ≤ xmax

i ∀i ∈ P , ω ∈ Ω, (3.23b)

fmin
ij ≤ fij(ω) ≤ fmax

ij ∀(i, j) ∈ L, ω ∈ Ω, (3.23c)

(fij(ω))(i,j)∈L ∈ F , ∀ω ∈ Ω, (3.23d)

τn(f(ω)) +
∑
j∈P(n)

xj(ω) = 0, ∀n ∈ N , ω ∈ Ω, (3.23e)

max{Xmin
i ,−Xavail

i (ω)} ≤ Xi(ω) ≤ min{Xmax
i , Xavail

i (ω)} ∀i ∈ P , ω ∈ Ω, (3.23f)

Fmin
ij ≤ Fij(ω) ≤ Fmax

ij ∀(i, j) ∈ L, ω ∈ Ω, (3.23g)

(Fij(ω))(i,j)∈L ∈ F , ∀ω ∈ Ω, (3.23h)

τn(F (ω))− τn(f(ω))

+
∑
j∈P(n)

(Xj(ω)− xj(ω)) = 0, ∀n ∈ N , ω ∈ Ω, (3.23i)

xi(ω)− χxi = 0 ∀i ∈ P , ω ∈ Ω, (3.23j)

fij(ω)− χfij = 0 ∀(i, j) ∈ L, ω ∈ Ω. (3.23k)

Similar to the previous model, the state-vector model can decompose into scenario problems.

Thus, the PH method provides computationally efficient solution method for this model. Due

to part iv of Theorem 3, we can use the optimal dual solution extracted from the PH method

to compute the non-anticipativity dual of the state-vector formulation.

3.3.4 Pricing Mechanism 3

We derive the third payment mechanism from the state-vector formulation (3.23). Similar

to previous payment mechanisms, this mechanism also includes a day-head component and

a real-time component which are computed using the optimal dual solutions (πs(ω),Πs(ω))

of the respective flow-balance equations (3.23e) and (3.23i). Furthermore, like in (Rm), we

include a scenario-wise adjustment for the first-stage component using the dual solution
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σx(ω) of (3.23j). We define this payment mechanism as follows:

Definition 6. Under scenario ω ∈ Ξ, the market participants receive a payment given by

ρsi (ω) = (πsn(i)(ω) + σxi (ω))xi(ω) + Πs
n(i)(ω)(Xi(ω)− xi(ω)) ∀i ∈ P . (Rs)

Here, σxi (ω) is the dual corresponding to the non-anticipativity constraint of the form in

(3.20d) for the variable xi(ω).

Notice that the payment mechanism differs from (Rm) only in its use of σxi (ω) instead

of µxi (ω). Furthermore, the day-ahead component in this pricing mechanism is scenario-

dependent that satisfies E[(πsn(i)(ω) + σxi (ω)] = πcn(i) (due to Theorem 3, parts i and iv). In

other words, the day-ahead component of (Rm) aligns in expectation with the day-ahead

component of (Rc). The clairvoyant problem can identify the best dispatch plan for a given

scenario. With the aim of hedging against uncertainty, the SP optimal dispatch deviates

from the best scenario-specific dispatch. The quantity σxi (ω)xi(ω) included in (Rs) allows

us to reflect the value offered by a participant i to attain a well-hedged stochastic solution

in their payment. For this pricing mechanism, the scenario-specific price distortion is given

by Ms
n(ω) = πsn(ω) + σxi (ω)− Πs

n(ω), ∀n ∈ N , ω ∈ Ω. This pricing mechanism exhibits the

following characteristics.

Theorem 4. Under the assumption that δ+
i , δ

−
i > 0 ∀i ∈ P, the payment mechanism (Rs),

computed using the optimal solutions of the (3.23), yield revenue adequacy in expectation

for the ISO and cost recovery under every scenario for all generators. Furthermore, the

scenario-specific price distortion satisfies

−δ+
i ≤Ms

n(i)(ω) ≤ δ−i ∀i ∈ P , ω ∈ Ω.
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Proof. Consider the following Lagrangian relaxation of the (3.23).

Ls =E
[∑
i∈P

cixi(ω) + (ci + δ+
i )(Xi(ω)− xi(ω))+ − (ci − δ−i )(Xi(ω)− xi(ω))−

−
∑
n∈N

πsn(ω)
(
τn(f(ω)) +

∑
i∈P (n)

xi(ω)
)

−
∑
n∈N

Πs
n(ω)

(
τn(F (ω))− τn(f(ω)) +

∑
i∈P (n)

(Xi(ω)− xi(ω))
)

−
∑
i∈P

σxi (ω)
(
xi(ω)− χxi

)
−
∑
i∈L

σfi (ω)
(
fi(ω)− χfi

)]
. (3.24)

Since Ls is minimized over (3.1) and (3.5), the optimal solution

(x∗i (ω), X∗i (ω), χx
∗
i , f

∗
i (ω), F ∗i (ω), χf

∗

i , π
s∗
n (ω),Πs∗

n (ω), σx
∗
i , σ

f∗

i ) also minimizes the La-

grangian relaxation. Let Ls∗ be the value of the Lagrangian at the optimal solution. Further

since, (x∗i (ω), X∗i (ω), χx
∗
i , 0, 0, χ

f∗

i , π
s∗
n (ω),Πs∗

n (ω), σx
∗
i , σ

f∗

i ) (obtained by setting f(ω) = 0

and F (ω) = 0 for all ω ∈ Ξ) is a sub-optimal feasible solution, we have

Ls∗ ≤ E
[∑
i∈P

cix
∗
i (ω) + (ci + δ+

i )(X∗i (ω)− x∗i (ω))+ − (ci − δ−i )(X∗i (ω)− x∗i (ω))−

−
∑
n∈N

πs
∗

n (ω)
( ∑
i∈P (n)

x∗i (ω)
)
−
∑
n∈N

Πs∗n(ω)
( ∑
i∈P (n)

(X∗i (ω)− x∗i (ω))
)

−
∑
i∈P

σx
∗

i (ω)
(
x∗i (ω)− χx∗i

)
+
∑
i∈L

σf
∗

i (ω)χf
∗

i

]
.

Substituting Ls∗ from (3.24) on the left-hand side of the above and rearranging the terms,

we obtain

− E
[∑
n∈N

πs
∗

n (ω)τn(f ∗(ω)) + Πs∗

n (ω)
(
τn(F ∗(ω))− τn(f ∗(ω))

)
+
∑
i∈L

σf
∗

i (ω)f ∗i (ω)

]
≤ 0.
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Since, f ∗i (ω) = χf
∗

i ∀i ∈ L, ω ∈ Ω

− E[
∑
n∈N

πs
∗

n (ω)τn(f ∗(ω)) + Πs∗

n (ω)
(
τn(F ∗(ω))− τn(f ∗(ω))

)
] + E[

∑
i∈L

σf
∗

i (ω)]χf
∗

i ≤ 0,

⇒− E[
∑
n∈N

πs
∗

n (ω)τn(f ∗(ω)) + Πs∗

n (ω)
(
τn(F ∗(ω))− τn(f ∗(ω))

)
] ≤ 0.

In the second inequality, we have used E[
∑
i∈L

σf
∗

i (ω)] = 0, due to Theorem 3 i Similarly, since

E
[∑

i∈P σ
x∗
i (ω)

]
= 0 (also from Theorem 3 i), we have

− E
[∑
n∈N

πs
∗

n (ω)τn(f ∗(ω)) + Πs∗

n (ω)
(
τn(F ∗(ω))− τn(f ∗(ω))

)]
+ E[

∑
i∈P

σx
∗

i (ω)χx
∗

i ] ≤ 0.

Using the flow balance equations (3.23e) and (3.23i), and the state-vector form of the non-

anticipativity constraint (3.23j) in the above inequality, we obtain

E
[∑
i∈P

(
πs
∗

n(i)(ω) + σx
∗

i (ω))xi(ω) + Πs∗

n(i)(ω)(X∗i (ω)− x∗i (ω))
)]
≤ 0.

The above implies that E[
∑

i∈P ρ
s
i (ω)] ≤ 0, thereby, establishing the revenue adequacy of

(Rs).

Since the problem is convex, the optimal dual values, (πs∗n (ω),Πs∗
n (ω), σx

∗
i , σ

f∗

i ) satisfy

Ls∗ = min
x(ω),X(ω)

sx,f(ω),F (ω),sf

E
[∑
i∈P

cixi(ω) + (ci + δ+
i )(Xi(ω)− xi(ω))+ − (ci − δ−i )(Xi(ω)− xi(ω))−

−
∑
n∈N

πs
∗

n (ω)
(
τn(f(ω)) +

∑
i∈P (n)

xi(ω)
)

−
∑
n∈N

Πs∗

n (ω)
(
τn(F (ω))− τn(f(ω)) +

∑
i∈P (n)

(Xi(ω)− xi(ω))
)

−
∑
i∈P

σx
∗

i (ω)
(
xi(ω)− χxi

)
−
∑
i∈L

σf
∗

i (ω)
(
fi(ω)− χfi

)]
.

Notice that the optimization problem on the right-hand side of the above inequality decom-
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poses into participant-specific optimization problems. Therefore,

Ls∗ =
∑
i∈P

E
[

min
xi(ω),Xi(ω),χx

i

L1
i (xi(ω), Xi(ω), χxi )

]
+ min

f(ω),F (ω),χf
E[L2(f(ω), F (ω), χf )],

where, we define

L1
i (xi(ω), Xi(ω), χxi ) = cixi(ω) + (ci + δ+

i )(Xi(ω)− xi(ω))+ − (ci − δ−i )(Xi(ω)− xi(ω))−

− πs∗n(i)(ω)xi(ω)− Πs∗

n(i)(ω)(Xi(ω)− xi(ω))− σx∗i (ω)
(
xi(ω)− χxi

)
∀i ∈ P ,

L2
i (fi(ω), Fi(ω), χfi ) = −

∑
n∈N

πs
∗

n (ω)τn(f(ω))−
∑
n∈N

Πs∗

n (ω)
(
τn(F (ω))− τn(f(ω))

)
−
∑
i∈L

σf
∗

i (ω)
(
fi(ω)− χfi

)
,

for all ω ∈ Ξ. Further, we can minimize Ls∗ by minimizing above functions separately

for every participant and ω ∈ Ξ. Now consider the Lagrangian L1(xi(ω), Xi(ω), χxi ) and

its optimal solution (x∗i (ω), X∗(ω), χx
∗
i ). Since (xmin

i , Xmin
i , χx

∗
i ) is a sub-optimal feasible

solution, we have

L(x∗i (ω), X∗i (ω), χx
∗

i ) ≤ cix
min
i + (ci + δ+

i )(Xmin
i − xmin

i )+ − (ci − δ−i )(Xmin
i − xmin

i )−

− πs∗n(i)(ω)xmin
i − Πs∗

n(i)(ω)(Xmin
i − xmin

i )− σx∗i (ω)
(
xmin
i − χx∗i

)
.

Substituting L(x∗i (ω), X∗i (ω), χx
∗
i ) and rearranging the terms, we obtain

cix
∗
i (ω) + (ci + δ+

i )(X∗i (ω)− x∗i (ω))+ − (ci − δ−i )(X∗i (ω)− x∗i (ω))−

−
(
cix

min
i + (ci + δ+

i )(Xmin
i − xmin

i )+ − (ci − δ−i )(Xmin
i − xmin

i )−

)
≤
(
πs
∗

n(i)(ω) + σx
∗

i (ω)
)
xi(ω) + Πs∗

n(i)

(
ω)(Xi(ω)− xi(ω)

)
−
(
πs
∗

n(i)(ω) + σx
∗

i (ω)
)
xmin
i + Πs∗

n(i)(ω)
(
Xmin
i − xmin

i

)
.

Once again, if the uplifts payments from unit commitment problem cover the minimum

generation then, the above can be reduces to ϕi(ω) ≤ ρsi (ω). This implies cost recovery for
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all generators under every scenario ω ∈ Ξ.

Finally, to establish the property of scenario-specific price distortion, notice that

cixi(ω) + (ci + δ+
i )(Xi(ω)−xi(ω))+ − (ci − δ−i )(Xi(ω)− xi(ω))−

= ciXi(ω) + (δ+
i + δ−i )(Xi(ω)− xi(ω))+ − δ−i (Xi(ω)− xi(ω))

Using the above relation in the Lagrangian Ls in (3.24), the partial derivative of the La-

grangian with respect to day-ahead quantity xi(ω) at the stationary point can be written as

follows:

(δ+
i + δ−i )∂xi(ω)(Xi(ω)− xi(ω))+ + δ−i − (πsn(i)(ω)− Πs

n(i)(ω) + σxi (ω)).

Since 0 ∈ ∂xi(ω)Ls, we have

⇒
− δ−i + (πsn(i)(ω)− Πs

n(i)(ω) + σxi (ω))

δ+
i + δ−i

∈ ∂xi(ω)(Xi(ω)− xi(ω))+.

Note that

∂xi(ω)(Xi(ω)− xi(ω))+ =


−1, if Xi(ω) > xi(ω)

0, if Xi(ω) < xi(ω)

[−1, 0] if Xi(ω) = xi(ω).

This implies that

− 1 ≤
− δ−i + (πsn(i)(ω)− Πs

n(i)(ω) + σxi (ω))

δ+
i + δ−i

≤ 0,

⇒ −δ+
i ≤ πsn(i)(ω) + σxi (ω)− Πs

n(i)(ω) ≤ δ−i ∀i ∈ P , ω ∈ Ω.

This completes the proof.

Similar to the mean-vector formulation, the state-vector formulation also uncovers dual

information not available in the canonical model. Using this dual information, we design
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pricing mechanism Rs that adjusts day-ahead and real-time components in every scenario.

Rs achieves revenue adequacy in expectation without any conditions like in Rc. The advan-

tage of Rs is that it achieves cost recovery for every generator under every scenario without

any conditions, unlike in Rc and Rm. In addition, price distortion are bounded within the

[−δ+, δ−] for every scenario without disruption unlike in the previous pricing mechanisms.

3.4 Experiments

In this section, we demonstrate the properties of all the pricing mechanisms presented in

section 3.3.

3.4.1 Test System

We adopted a six-node system from [98] and [45], depicted in Figure 3.1 along with

system characteristics, to illustrate the results. The system operates six buses connecting

six generators and a load. Of the six generators, two are inflexiable generators connected at

bus 1 and 3, respectively; two are wind generators connected at bus 2 and 4, respectively; and

two hydrothermal generators connected at bus 5. Both thermal generators have maximum

capacity of 100MW and a generation cost of $40 and $45 per MW, respectively. We assume

that the cost of generation for wind generators is zero. For the hydrothermal generators,

the unit cost of generation are $42 and $80, respectively. The parenthetical terms are the

negative and positive deviation price, respectively.

The line connecting buses 1 and 6 has a maximum capacity of 150MW and the remaining

lines are uncapacitated. Further, we assume all lines are lossless and have equal reactance.

That is, 1
6
of the electricity generated in thermal 1 flow through line (1, 2) and the remaining

5
6
flow through the line (1, 6). The single load which is connected bus 6, and is assumed to

be firm with a demand of 264MW. We assume the wind generation to be a random quantity

that can realize any scenario from the possible set (30, 50, 60, 70, 90) with equal probability.

Thus, there are 25 total scenarios. Note that we use 90MW, the maximum possible output,

as the first-stage capacity limit of the wind generators. The two flexible hydro generators

can increase or decrease their generation in the real-time market with deviation costs to

mitigate the impact of the wind generation uncertainty.

We implemented the models in C++ and solved them using CPLEX 12.9 solver. We
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Figure 3.1: Network diagram of six-node system.

used an Intel Core i3 machine with a 2.20 GHz processor and 8GB RAM to conduct the

experiments.

3.4.1.1 Relationships Between Dual Optimal Solutions

First, we summarize the dual solutions of the three models in Table 3.1. The day-ahead

(DA) location marginal prices (LMP) of canonical model, the expected DA LMP of mean-

vector model, and the expected DA LMP of state-vector model have similar values in Table

3.1 providing numerical evidence for Theorem 3 iii. The canonical formulation does not have

scenario-dependent first-stage decisions. Therefore, the first-stage flow-balance constraints

are scenario independent and hence their duals. On the other hand, the two alternative

models, mean-vector and state-vector models have scenario-dependent first-stage decisions.

Therefore, we have scenario-dependent first-stage flow-balance duals. However, the scenario-

dependent flow balance equation duals agree in expectation to the canonical duals. The last
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Table 3.1: Summary of dual solutions from different SP models.

Canonical Mean-vector State-vector
DA LMP Expected DA LMP Expected DA LMP Expected NA duals

Thermal 1 40 40 40 -2.22E-15
Wind 1 42.5 42.66 42.5 -3.33E-16
Thermal 2 45 45.16 45 -1.33E-15
Wind 2 47.5 47.66 47.5 -1.11E-16
Hydro 1 50 50.16 50 0
Hydro 2 50 50.16 50 0
Load 1 52.5 52.66 52.5 -2.22E-15

column of Table 3.1 shows that the non-anticipativity duals of state-vector formulation (3.23)

are 0 in expectation for all market participants. This result provides numerical corroboration

to our Theorem 3 i.

3.4.1.2 Performance of Pricing Mechanism Rm

Next, we focus on the results from the mean-vector formulation and pricing mechanism

Rm. Recall that, in Theorem 2, to achieve revenue adequacy in expectation, the mean-vector

solutions have to satisfy
∑

i∈P E[µx
∗
i (ω)]E[x∗i (ω)] ≤ 0. However, this condition was not met

in our numerical results. Therefore, we cannot conclude revenue adequacy in expectation

under Rm. In our experiments the net payment for the ISO was 72343.9 (a positive quantity)

indicating that the payments made to the generator exceed those received from the load.

Furthermore, generators achieve cost recovery in expectation if E[µx
∗
i (ω)] ≥ 0. We sum-

marise the cost recovery results for Rm in figure 3.2. The left vertical axis and the bar graph

in Figure 3.2 represents the expected non-anticipativity duals for generators, and the right

vertical axis is the cost or payment (in dollars). Notice that for generators Wind 1, Thermal

2, and Hydro 1, the expected non-anticipativity duals are positive, meaning that they satisfy

the necessary condition for cost recovery in expectation. Therefore, for those generators, we

can observe that the payments are higher than their costs. In other words, they achieve cost

recovery in expectation. Also, notice that Hydro 2 achieves cost recovery in expectation even

without satisfying the condition. This indicates that the identified condition is necessary but

not sufficient. For Thermal 1 and Wind 2, the condition is not met and they fail to recover
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Figure 3.2: Results illustrating cost recovery in expectation under Rm.

costs (costs are higher than payments).

3.4.1.3 Performance of Pricing Mechanism Rs

In the state-vector form, we focus on three crucial results. We begin with our discussion

on cost recovery under every scenario for all generators. Notice that in Figure 3.3, for

generators Thermal 1 and Thermal 2, the cost and payment are the same in all scenarios,

and they are constant even with the scenario adjustment in the payment structure Rs. This

is an encouraging result since Thermal 1 and Thermal 2 are inflexible generators. If we do

not expect any changes in the real-time generation, the payments also should reflect the

same unchanged prices. Two wind generators are making profits under most scenarios due

to their low generation costs. We can see similar results in [98] and [45] for wind generators

under pricing mechanism Rc. Hydro 1 is making a profit under a few scenarios and getting

enough payment to cover their costs in others. For Hydro 2, costs and payments are the

same for all scenarios.
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Figure 3.3: State-vector cost recovery by scenario.

Revenue adequacy is a vital property for a pricing mechanism since it guarantees that ISO

will not face financial deficits. Under pricing mechanism Rs, we showed that this is possible

in expectation. For generators, Thermal 1, Wind 1, Thermal 2, Wind 2, Hydro 1, and Hydro

2, the expected payments are $2560, $2040.41, $2250, $2475.59, $1926, and $358, respectively.

Therefore, the total expected payment is $11610. The expected amount received from the

load is $13860. Since the received amount is greater than the total payment, this shows the

revenue adequacy in expectation under pricing mechanism Rs.

The final result in this section is for the price distortion under pricing mechanism Rs.

Figure 3.4 depicts all the price distortions for all the generators under every scenario. Recall

that we define price distortion as the difference between the day-ahead unit payment and

the real-time unit payment. Our results in Theorem 4 indicate that these quantities are

bounded by their deviation penalties (−δ+
i , δ

−
i ). This property is reflected in numerical

results presented in Figure 3.4 for all generators.
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Figure 3.4: State-vector price distortion by scenario.

3.5 Conclusion

In this chapter, our focus was on emphasizing the advantages of alternative SP models,

namely, mean-vector and state-vector models, for the electricity market clearing problem.

While the canonical SP model is capable of capturing the stochasticity in the real-time

market, it fails to make adjustments to the day-ahead market based on real-time outcomes.

This inability is especially evident in the day-ahead flow balance duals since they are equal

for all scenarios. Flow balance duals, which are often viewed as locational marginal price, are

a crucial component of developing pricing mechanisms for the electricity market. Therefore,

being unable to apprehend these dual values restrict the development of proper pricing

mechanisms.

To address this issue, we developed electricity market clearing models based on the non-

anticipativity concept in SP. The non-anticipativity constraints in an SP model allow the

model to have scenario-dependent first-stage decisions, in our case, day-ahead decisions.
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As a result, the model has scenario-dependent day-ahead flow balance and hence scenario-

dependent duals. These scenario-dependent day-ahead duals can adjust the real-time fluctu-

ations while keeping the day-ahead primal decisions intact. Furthermore, they helped prove

pricing mechanism properties such as cost recovery and price distortion for every scenario.

The two alternative SP models, mean-vector and state-vector, allowed us to develop

two pricing mechanisms, Rm and Rs, respectively. We showed that pricing mechanism Rm

yields revenue adequacy in expectation for the system operator if the condition in Theorem

2 is satisfied. Furthermore, a generator achieves cost recovery in expectation if its non-

anticipativity duals are non-negative in expectation. We also developed scenario-specific

bounds for the price distortion under pricing mechanism Rm.

We also showed the revenue adequacy for the system operator in expectation for pricing

mechanism Rs without any conditions. Furthermore, we proved cost recovery for every

generator under every scenario without any conditions. This is a significant result in terms

of real-world application since it guarantees that generators do not lose money under any

circumstances. Then we defined bounds for the price distortion for every scenario using the

deviation penalties. In other words, we can control the price distortion by setting appropriate

deviation penalties. The scenario-wise price distortion results were made possible by the

non-anticipativity constraints in the two models.

In Theorem 3, we proved the dual relationships between all SP models: canonical, means-

vector, and state-vector. Using Theorem 3 iv, we can obtain the state-vector results using the

mean-vector formulation solutions. These results can hugely improve the pricing problems

faced by the system operators while retaining the computational capabilities. Furthermore,

they can improve the confidence of the generators and provide fair prices for the consumers.
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Chapter 4

Multiagent Optimization for Coordinated Transmission-distribution System

4.1 Introduction

The smart grid is a concept that came as a solution to the outdated conventional power

grid. The rapid growth of electricity demand causes reliability issues for the conventional

power grid, and the old technology troubles integrating new technologies such as renewable

energy and distributed energy resources (DER). The smart grid was formally recognized

in the Energy Independence and Security Act of 2007. The act “Declares it is the policy

of the United States to support modernization of the nation’s electricity transmission and

distribution system to maintain a reliable and secure electricity infrastructure that can meet

future demand growth and to achieve specified characteristics of a Smart Grid.” (https://

www.congress.gov/bill/110th-congress/house-bill/6). The purpose of the smart grid

is to improve reliability, security, and efficiency and to integrate renewable energy into the

power system. To achieve this, a smart grid provides timely information and control to the

consumer. These changes forced the utilities to innovate and incorporate new technologies

into their operations.

The most significant advantage of the smart grid is that it allows two-way communication

between the power system and consumers as opposed to one-way communication in the

conventional power grid. As seen in earlier chapters, the conventional power grid has a

central authority (the ISO). They make all decisions and all communication must go through

them. Consumers have no control over any decisions. The smart grid changes this by enabling

consumers to participate in the electricity market through DER, such as rooftop solar. Thus,

they can decide according to their needs and determine when to sell or buy depending on

the prices. However, we need an efficient communication system to perform these smart grid

operations.
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4.1.1 Multiagent markets

There are multiple DSs within a TS. The DS operations usually follow TS decisions.

Therefore the DS decisions must be coordinated with TS decisions. A sequential sampling-

based optimization algorithm has been proposed in [99]. The authors considered a main

grid with multiple microgrids with renewable generation and modeled the problem using a

two-stage SP.

In addition, each DS deals with the TS in different locations. That is, DSs get different

purchasing prices depending on their connected TS bus. Further, DSs also generate electricity

that can be sold to the TS. This creates competition between DSs to sell and buy electricity

even though the decisions are made independently.

When all the participants make individual decisions achieving an equilibrium can be a

daunting task. These are known as noncooperative games in the literature [100]. These set-

tings are common in power systems, communication systems, and transportation networks.

In a noncooperative game, every participant optimizes their strategy in a feasible set specific

to that participant given others’ strategies. The Nash equilibrium is a set of strategies for all

players such that no player can improve their strategy unilaterally by deviating from it [100].

We can find the noncooperative game application in power systems in [101], [102].

4.1.2 Best Response Schemes

A player selecting their best strategy given the other decisions is known as the Best

Response (BR) scheme [103], and [104]. To achieve the best strategy for all the players, all

players must apply their BR scheme repeatedly [105]. The BR schemes can be viewed as a

protocol that shares minimum information to achieve equilibrium for all players. A discussion

on solution algorithms for stochastic BR schemes is in [106]. An inexact generalization of the

BR scheme has been proposed in [107]. Further, to solve two-stage non-cooperative games,

a few variants of BR schemes have been used in [108].

BR schemes do not always guarantee a Nash equilibrium. This is true even for potential

games in which all player strategies can be modeled using a single objective function, with

convex potential functions [109]. Furthermore, [109] shows that the guaranteed convergence

is achievable by adding a regularized quadratic proximal term to the objective functions of
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all players. Further, for generalized potential games, which do not require private feasible

regions for subproblems, unlike in standard games, it introduces regularized Gauss-Seidel

BR schemes and shows that a limit point is a Nash equilibrium for player-specific convex

subproblems.

When developing BR schemes or, equivalently, block coordinate-descent (BCD) schemes,

the order of selection in which the player-specific problems are solved plays a crucial role.

In [110], this is introduced as the block selection and done in a cyclical order. Convergence

of these algorithms has been studied in [111] for both convex and nonconvex problems. [112]

has employed a randomized block selection method for BCD schemes. [113] has studied the

strongly convex BCD schemes and has shown that it converges linearly.

The main contributions of this chapter are as follows.

1. Coordination system. We develop a framework that captures the smart grid operations

of multiple DSs that interact with one another through markets. We simultaneously

update both electricity exchanges and price changes at the markets using an inverse

demand curve. We model this framework as a noncooperative game. The DSs optimize

their operation individually, only sharing their best strategy with others reducing the

communication complexity. We use SOCP relaxation to model the DS operations.

2. Algorithms and results We develop three best-response schemes to identify the Nash

equlibrium solution of the noncooperative game. To guarantee the convergence to Nash

equilibrium, we add regularized quadratic proximal term to control the step size at

each iteration. We analyze the performance of the algorithms through computational

experiments conducted using two test data sets. We provide numerical results that

provide empirical evidence of convergence of DS strategies and prices at the markets.

The rest of the chapter is organized as follows. In Section 4.2, we introduce the market

setting and the optimization model for each individual DS. We discuss the mathematical

structure of the overall problem in section 4.2.2. Then we develop algorithms in section 4.3.

Finally, in section 4.4 we numerically analyze the performance of the algorithms using two

test sets.
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4.2 Market Setting and Models

In this section, we present the details of the market setting. First, we describe DS

operations at a single DS and then describe the entire system setting with multiple DSs and

markets.

We consider a setup comprising of multiple geographically separated DSs. We denote

these DSs by the set N . The DSs can exchange electricity with TS through a set of inter-

connection lines, I connected to transmission busesM. We refer to the TS buses that are

connected to the DS as "markets". The following figure depicts an instance of the market

setting that we are considering. Notice that DSs are not connected to one another directly.

That is, they cannot share information or electricity between themselves.

Figure 4.1: Market setting
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4.2.1 DS optimization problem

Operations inside a DS are independent. Therefore, now we focus on an individual DS

problem. For DS n ∈ N , we denote the set of buses by Bn and the set of lines by Ln. We

denote the set of distributed energy resources (DER) by Gn that are small modular energy

generators. These include photovoltaics, wind turbines, combustion turbines, etc. We denote

the active and reactive generation from a DER i ∈ Gn by pgn,i and qgn,i. These quantities

are limited by their capacities captured by the intervals [pg,min
n,i , pg,max

n,i ] and [qg,min
n,i , qg,max

n,i ],

respectively. That is,

pg,min
n,i ≤ pgn,i ≤ pg,max

n,i ∀i ∈ Gn, (4.1a)

qg,min
n,i ≤ qgn,i ≤ qg,max

n,i ∀i ∈ Gn. (4.1b)

Furthermore, we assume that there is electricity demand at every bus i ∈ Bn denoted by pdn,i
and qdn,i, the active and reactive components, respectively.

Power flows within a distribution system are nonlinear and nonconvex functions of bus

voltages Vi. We express the complex voltage Vn,i at bus i in its rectangular form, i.e., Vn,i =

en,i+ifn,i where i =
√
−1. To model these power flows, we use the nodal admittance matrix

of the system that has a component Yn,ij = Gn,ij + iBn,ij for every line (i, j) ∈ Ln. Here,

Gn,ii = gn,ii−
∑

j 6=iGn,ij, Bn,ii = bn,ii−
∑

j 6=iBn,ij with gn,ii denoting the shunt conductance

and bn,ii denoting the susceptance at bus i ∈ Bn. We use cn,ii = e2
n,i + f 2

n,i to denote the

squared voltage magnitude |Vn,i|2. Further, we denote the real and the imaginary parts of the

voltage product Vn,iVn,j by cn,ij = en,ien,j + fn,ifn,j and sn,ij = en,ifn,j − en,jfn,i, respectively.

To address computational challenges associated with nonconvexity of power flows, we adopt

the convex second-order cone programming relaxation of the power flows from [114]. This
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relaxation is captured by the following

pfn,i = Gn,iicn,ii +
∑

j:(i,j)∈Ln

(Gn,ijcn,ij −Bn,ijsn,ij) ∀i ∈ Bn (4.2a)

qfn,i = −Bn,iicn,ii +
∑

j:(i,j)∈Ln

(−Bn,ijcn,ij −Gn,ijsn,ij) ∀i ∈ Bn (4.2b)

cn,ij = cn,ji, sn,ij = −sn,ji, (i, j) ∈ Ln, (4.2c)

c2
n,ij + s2

n,ij ≤ cn,iicn,jj, (i, j) ∈ Ln, (4.2d)

(V min
n,i )2 ≤ cn,ii ≤ (V max

n,i )2, i ∈ Bn. (4.2e)

In the above, we use pfn,i and q
f
n,i to denote the active and reactive parts of the net power

imported via the distribution lines connected at bus i.

The power flow balance at each bus is captured by the following equations:

∑
j∈Gn,i

pgn,j −
∑
j∈Bn,i

pdn,j − p
f
n,i = 0, ∀i ∈ Bn, (4.3a)

∑
j∈Gn,i

qgn,j −
∑
j∈Bn,i

qdn,j + qfn,i = 0, ∀i ∈ Bn. (4.3b)

The objective of the DS optimization model is to minimize the total system cost. We use a

quadratic function to capture the cost of a single generator using two parameters, α and β.

Thus, the total cost of the system is as follows:

fn(pgn) =
∑
i∈Gn

αi(p
g
n,i)

2 + βip
g
n,i

The aim of distribution system operator is to satisfy demand at all buses at minimum

generation cost while ensuring that the power flows obey the physical laws. The following
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second-order cone program captures this requirement:

min
∑
i∈Gn

α(pgn,i)
2 + βpgn,i (4.4a)

s.t.
∑
j∈Gn,i

pgn,j −
∑
j∈Bn,i

pdn,j = Gn,iicn,ii +
∑

j:(i,j)∈Ln

(Gn,ijcn,ij −Bn,ijsn,ij) ∀i ∈ Bn (4.4b)

∑
j∈Gn,i

qgn,j −
∑
j∈Bn,i

qdn,j = −Bn,iicn,ii +
∑

j:(i,j)∈Ln

(−Bn,ijcn,ij −Gn,ijsn,ij) ∀i ∈ Bn (4.4c)

(V min
n,i )2 ≤ cn,ii ≤ (V max

n,i )2, i ∈ Bn, (4.4d)

cn,ij = cn,ji, sn,ij = sn,ji, (i, j) ∈ Ln, (4.4e)

c2
n,ij + s2

n,ij ≤ cn,iicn,jj, (i, j) ∈ Ln, (4.4f)

pg,min
n,i ≤ pgn,i ≤ pg,max

n,i ∀i ∈ Gn, (4.4g)

qg,min
n,i ≤ qgn,i ≤ qg,max

n,i ∀i ∈ Gn. (4.4h)

We denote the solution vector of the above program by xn and its’ feasible region by Xn.

Thus, the model in (4.4) can be states succinctly as follows:

min{fn(xn)|xn ∈ Xn}. (4.5)

It is worthwhile to note that optimization problem solved at individual DS is a convex

program.

4.2.2 Mathematical Structure

Now we introduce the interconnection set I to the DS market setting. We denote the

interconnection set that belongs to the nth DS by In. An element (i,m) ∈ In has i ∈ Bn and

m ∈M and hence, I = ∪n∈NIn. We use the decision variable yim to denote the transaction

amount on interconnection line (i,m) ∈ I. A positive value of yim implies the DS is selling

electricity at market m, while a negative value implies buying. Thus, the total transaction

amount sm at a market m, can compute as follows:

sm =
∑

i:(i,m)∈I

yim. (4.6)
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At an individual market, a inverse demand curve determines the transaction price. In other

words, when there is more supply than demand within a market, the price goes down,

and when the demand is higher, the price goes up. We treat the TS day-ahead locational

marginal price (LMP), µm, as the initial price for a market and γm as the rate at which the

price changes with the demand/supply. Figure 4.7 depicts the price action of a market, and

we compute the price, ρm(sm), as follows:

ρm(sm) = µm − γmsm. (4.7)

Notice that price can have negative values when the transaction amount surpasses a certain

Figure 4.2: Demand inverse curve

level. Beyond that level, DS must pay to sell their electricity (see [115] for an example).

Similarly, when demand exceeds supply, prices increase beyond their initial LMP.

The new set of decision variables, y, affects the objective function and the flow balance

constraints (4.4b). We assume that the interconnection power flows have high voltages.

Therefore, we only consider the active power flow on them. The updated active flow balance
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constraint is as follows:

∑
j∈Gn,i

pgn,j −
∑
j∈Bn,i

pdn,j +
∑

m:(i,m)∈In

yim = Gn,iicn,ii +
∑

j:(i,j)∈Ln

(Gn,ijcn,ij −Bn,ijsn,ij) ∀i ∈ Bn.

Similarly, selling and buying electricity from the TS affects the objective function. The

updated objective function is as follows:

min fn(xn)−
∑

(i,m)∈In

(µm − γmsm)yim.

By substituting (4.6), we get

fn(xn)−
∑

(i,m)∈In

(
µm − γm

∑
j:(j,m)∈I

yjm
)
yim.

We can simplify this to

fn(xn)−
∑

(i,m)∈In

(
µm − γm(

∑
j:(j,m)∈I\In

yjm +
∑

j:(j,m)∈In

yjm)
)
yim.

Notice that the above objective function depends on others’ decisions. However, each dis-

tribution system optimize their operations individually. We will use x := (xn)∀n∈N to de-

note the solution vector across all the DS. Furthermore, we denote others’ solutions by

x−n = (xn′)n′∈N\{n}. using these notations, we can state the DS optimization model that

accounts for transactions with the markets more generally as follows:

min{fn(xn;x−n)|xn ∈ Xn}.

Note that, the feasible region for a DS only depends on its properties and decisions. It does

not interact with other DSs’ decisions. Therefore, the feasible region for DS is private. The

interaction occurs only through the objective function. To update the objective function,

we need others’ decisions, x−n. However, once a DS solves the optimization problem and

decides on its strategy, other DSs may want to adjust theirs. Therefore, it desirable for DSs

to reach a consensus. Under these circumstances, the problem becomes a standard Nash
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game [100], and therefore the consensus strategy for all the DSs is a Nash equilibrium, which

we formally define next.

Definition 7. A tuple x∗ is a Nash equilibrium if

fn(x∗n;x∗−n) ≤ fn(xn;x∗−n) ∀xn ∈ Xn,

for all n = 1, . . . ,N ,.

Under this definition, a DS cannot improve its objective unilaterally by deviating from

the Nash equilibrium x∗n. In the next section we present solutions strategies to identify such

points.

4.3 Proximal BR Algorithms

In this section, we present algorithms that conduct the iterative process leading to Nash

equilibrium points. In our solution algorithms, every DS updates its strategy independently,

given the other’s decisions. Such algorithms are known as the best response schemes [116].

However, there is no guarantee that the best response schemes always converge to a Nash

equilibrium. An example illustrating this deficiency of best response schemes can be found

in [109]. To overcome this there have been suggestion to incorporate a proximal term the ob-

jective function [109,117]. The resulting proximal BR algorithm has been shown to generate

a sequence of solutions that converge to Nash equilibrium when the DS-specific optimization

problems are convex. Motivated by these previous works we employ a proximal objective

function given by:

min fn(xn;xk−n) +
µ

2
||xn − xk−1

n ||2, (4.8)

where k is the iteration index. We denote the optimal solution by xkn. The proximal param-

eter µ > 0 which is an input the algorithm controls the deviation from the previous optimal

solution xk−1
n .

Two components dominate the performance of a BR scheme, the order of the problems

solved and the updating time of the solution vector x. The order of selecting a DS can
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be either cyclic or random. Similarly, there are two ways to update the decision vector x,

immediate and coordinated. Based on these two components, we next present three variants

of the proximal BR algorithms.

4.3.1 Cyclic Order Coordinated Updates

We develop the first algorithm by solving the DS problems in cyclical order, and we

perform coordinated updates. That is, DS problems are solved in the same order in every

iteration. However, the coordinated update, the solution vector xk and the market prices

get updated only after solving all the DS problems. This algorithm is stated in Algorithm 2.

The algorithm takes all DSs, markets, and interconnection information as inputs. Between

Algorithm 2 Cyclic order coordinated updates
1: Input: DS N = {1, 2, . . . , N}, Markets M = {1, 2, . . . ,M}, Inter connections I =
∪n∈NIn, µ > 0, k ← 0.

2: while Stopping criteria not met do
3: for n = 1 to N do
4: Setup objective for nth DS using ρm(sk−1

m ) ∀m ∈M as shown in (4.8).
5: Solve and extract solutions

xkn ∈ arg min fn(xn;xk−1
−n ) +

µ

2
||xn − xk−1

n ||2.

6: end for
7: Using xk = (xk1, x

k
2, · · · , xkN), update the prices at all markets as:

ρm(skm) = µm − γmskm ∀m ∈M.

8: k ← k + 1.
9: end while

lines 3 and 6, we setup the objective function, solve the optimization problems separately

and store the solution in their respective vector xkn for all individual DS problems. Notice

that prices at markets connected to a specific DS are used in updating its objective function.
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After solving all the DS problems, in line 7, we update the market information using the

consolidated decision vector xk, which affects the objective functions of DS models. We run

the algorithm for a prespecified termination condition. It is worthwhile to note that the

price updates are carried out once per iteration.

4.3.2 Cyclic Order Immediate Updates

The second algorithm also solves the DS problems in a cyclical order. However, we per-

form market price updates immediately after solving every DS problem. The algorithmic

steps are shown in Algorithm 3. Similar to algorithm 2, the second algorithm takes the same

Algorithm 3 Cyclic order immediate updates
1: Input: DS N = {1, 2, . . . , N}, Markets M = {1, 2, . . . ,M}, Inter connections I =
∪n∈NIn, µ > 0, k ← 0.

2: while Stopping criteria not met do
3: for n = 1 to N do
4: Using xk,n−n = (xk1, x

k
2, · · · , xkn−1, x

k−1
n+1, · · · , xk−1

N ), update the prices at all markets
as:

ρm(sk,nm ) = µm − γmsk,nm ∀m ∈M.

5: Setup objective for nth DS using ρm(sk,nm ) as shown in (4.8).
6: Solve and extract solutions

xkn ∈ arg min fn(xn;xk−n) +
µ

2
||xn − xk−1

n ||2.

7: end for
8: k ← k + 1.
9: end while

inputs and runs until a prespecified termination condition is met. Notice that the algorithm

updates the consolidated decision vector xk,nn vector before solving every individual DS prob-

lem in line 4. We capture this distiction by using an addition superscript in the notation

of the consolidated decisions vector (xk,nn as opposed to xkn in Algorithm 2). This change
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results in multiple (N times in each iteration) updates to the market prices. Consequently,

the objective function of each DS model reflects the latest price information. Then in line

6, each DS model solves for their optimal solutions.

4.3.3 Random Order Immediate Updates

The last algorithm we develop works similarly to the previous algorithm, except that

the order of solving the DS problems is selected randomly in each iteration. When we use

coordinated update, the order of solving the problems has the same effect in both cyclic

and random order. They lead to the same algorithm. Therefore, when random ordering is

employed we only focus on immediate updates. This procedure is shown in Algorithm 4.

Algorithm 4 Random order immediate updates
1: Input: DS N = {1, 2, . . . , N}, Markets M = {1, 2, . . . ,M}, Inter connections I =
∪n∈NIn, µ > 0, k ← 0.

2: while Stopping criteria not met do
3: Generate a random permutation, P = (p1, p2, · · · , pN).
4: for n = 1 to N do
5: Using xk,n−n = (xkj:pj<n, x

k−1
j:pj>n

), update the prices at all markets as:

ρm(sk,nm ) = µm − γmsk,nm ∀m ∈M.

6: Setup objective for nth DS using ρm(sk,nm ) as shown in (4.8).
7: Solve and extract solutions

xkn ∈ arg min fn(xn;xk−n) +
µ

2
||xn − xk−1

n ||2.

8: end for
9: k ← k + 1
10: end while

The difference between algorithms 3 and 4 is in line 3. That is, in algorithm 4 we pick

a random permutation to determine the order of solving the DS optimization problems. A
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the beginning of the nth round, we have solved optimization problems for DSs indexed by

p1, p2, . . . , pn. Therefore, we have their optimal solutions xkj:pj<n identified in iteration k.

However, we only have the optimal solutions from the previos iteration form DSs indexed

by pn+1, . . . , pN , that is, xk−1
j:pj>n

. The resulting consolidated vector xk,n−n is used in computing

the market prices in line 5. The rest of the steps are exactly similar to the case of cyclical

order immediate updates.

4.4 Experiments

In this section, we present the computational results of the three variants of proximal BR

algorithm presented in section 4.3. We first present the setting use for our case study and

then share the numerical results.

4.4.1 Problem Settings

For our numerical experiments, we design two market settings. The first setting has

three markets and 3 DSs. The second setting has three markets and 6 DSs. We modify the

test systems IEEE-9, IEEE-14, and IEEE-30 to create our DSs (see [118]). Interconnection

details of the three DSs setting are given in the table 4.1. Interconnection details of the

Table 4.1: Three DSs setting interconnection setting.

DS 1 DS 2 DS 3
Market 1 4 - 5
Market 2 4, 6 - 6
Market 3 - 7 9

six DSs setting are given in the table 4.2. In tables 4.1 and 4.2, a non-empty cell value

represents an interconnection between the corresponding market and the specific bus(es) in

the DS. Multiple values represent multiple connections between the two entities. The value

inside the cell is the bus ID that the interconnection originated. For example, in table 4.2,

the bottom right cell value of 4 indicates an interconnection between Market 3 and Bus-4 of
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Table 4.2: Six DSs setting interconnection setting.

DS 1 DS 2 DS 3 DS 4 DS 5 DS 6
Market 1 4 - 5 4 2 -
Market 2 4, 6 - 6 - 3 -
Market 3 - 7 9 5 1 4

DS 6. In addition, we assume there are no connections between the DSs. To represent the

higher prices at TS, we set the initial unit prices at each market as $5000, $4000, and $6000,

respectively. These are the µ value in (4.7). Values for γ in (4.7) are 100, 150, and 200 for

markets 1, 2, and 3, respectively.

We implemented the algorithms in Julia 1.7.2. We used the PowerModels package in

Julia to build SOCP relaxation models and solved them using Ipopt 3.14.10 solver. We

used an Intel Core i3 machine with a 2.20 GHz processor and 8GB RAM to conduct the

experiments.

4.4.2 Performance of the Algorithms

We tested the performance of the three algorithms using the two market settings. A

summary of the results is in Table 4.3.

We tested the performance of the three algorithms with different values of the proximal

parameter µ. Note that at the optimal solution, the effect of the proximal term diminishes.

However, due to the precision of decimals, there can be slight changes. The effects are

significant when the value of µ is large. Recall that our objective is to minimize the total

market cost.

In each row of the table 4.3, Algorithm 3, that is, cyclic and immediate update algorithm,

outperformance the other two algorithms in terms of the number of iterations and time. Also,

notice that for six DSs system, cyclic and coordinated update algorithm (Algorithm 2) do not

converge to a solution after 100 iterations. These results indicate that immediate updates

are more suitable than coordinated updates. In addition, we can notice the increase in the

number of iterations with the value of µ, especially in six DSs system with Algorithm 4.

Next, we present the convergence results of the interconnection lines.
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Table 4.3: Summary of performance of cyclical order coordinated updates (CC), cyclical
order immediate updates (CI), and random order immediate updates (RI).

(a) Three DS setting.

mu Algorithm 1: CC Algorithm 1: CI Algorithm 1: RI
Iters. Objective Time Iters. Objective Time Iters. Objective Time

0 22 982.2 17.15 13 982.2 9.7 18 982.2 13.26
0.125 24 982.63 16.84 13 982.5 9.44 18 982.48 12.64
0.25 26 983.05 18.82 13 982.79 9.94 18 982.76 13.42
0.5 23 983.88 16.29 13 983.36 10.1 19 983.29 14.09
1 26 985.45 19.11 13 984.42 10.46 18 984.29 13.32
2 23 988.27 16.36 14 986.22 10.14 18 985.98 14
4 22 992.71 16.55 14 988.68 9.93 19 988.18 14.19
8 22 997.2 16.43 14 989.43 10.41 19 988.42 13.74
16 23 991.7 18.07 15 977.18 10.76 20 975.1 16.06
32 26 939.63 19.58 20 914.13 14.17 21 909.76 15.6

(b) Six DS setting.

mu Algorithm 1: CC Algorithm 1: CI Algorithm 1: RI
Iters. Objective Time Iters. Objective Time Iters. Objective Time

0 100+ - - 19 8659.39 26.96 22 8659.39 30.17
0.125 100+ - - 19 8660.35 28.46 24 8659.64 33.01
0.25 100+ - - 19 8661.29 27.22 22 8659.89 31.02
0.5 100+ - - 19 8663.16 26.7 22 8660.37 30.74
1 100+ - - 19 8666.84 26.64 23 8661.3 31.93
2 100+ - - 19 8673.86 26.43 23 8663 31.65
4 100+ - - 20 8686.73 27.89 23 8665.85 31.7
8 100+ - - 19 8708.19 26.15 23 8669.47 31.64
16 100+ - - 19 8736.91 26.05 24 8669.69 32.81
32 100+ - - 21 8753.97 29.09 25 8649.17 33.6

4.4.3 Convergence of Inter Connections

In three DSs setting, there are seven interconnections from DSs to the 3 markets. We

depict the convergence of these interconnections in figure 4.3. Note that we chose µ = 2 and

algorithm two results for the following discussions. Notice that one of the interconnections

from DS 1 to market 2 (purple line) converges at a negative value. This indicates that DS 1

buys electricity from market 2. The other interconnection from DS 1 to market 2 converges
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Figure 4.3: Convergence of Interconnections

at positive values indicating DS 1 sells electricity to market 2. These results show that

within a single DS, the system operator has the freedom to buy and sell electricity from

and to markets. These decisions purely depend on the prices of DS buses. We can observe

similar buying and selling of electricity in DS 3. This allows market arbitrage, meaning a

DS can increase its income by buying from cheap markets and selling to expensive markets.

However, a DS cannot do this indefinitely because cheap markets become expensive when

buying electricity, and expensive markets become cheap due to the inverse demand curve.

Also, market arbitrage is possible only if a DS has multiple interconnections. Therefore, it

incentivizes the DS to operate multiple connections to markets.

4.4.4 Market Prices

Next, we present market price convergence for three DS setting in figure 4.4. The yellow

lines of figure 4.4 corresponds to the six DS setting, and the purple lines correspond to the

three DS setting. We can observe that for the six DS setting, the prices are settling at lower
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Figure 4.4: Market prices.

values than for the three DS setting. This indicates that when more DSs are available for

the coordination systems, meaning more generation is available, the prices decrease. Lower

prices at markets are beneficial to consumers. This encourages the policymakers to force DS

to participate in the system.

In six DS setting, final prices are $4407.96, $4135.46, and $4556.96 for markets 1, 2, and

3, respectively. These converged prices have changed from their initial prices of $5000, $4000,

and $6000, respectively. This implies that when there is enough electricity available from

DSs, the market prices are getting closer to one another, even without any connections

between markets. These similar prices are helpful in providing fair prices to consumers.

4.5 Conclusions

In this chapter, we introduced a coordination system for decentralized smart grid op-

eration. We showed that our system allows individual distribution systems to make their

strategies independently while sharing only a limited information. Independent strategizing
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allows distribution systems to keep their competitive advantage. Furthermore, the setting

does not require every system to be fully cooperative. Distribution systems only have to

share their best response to the other systems’ strategies. Therefore, the communication

complexity is much less and efficient. Also, it allows the individual system details, such as

generator capacities, ramping rates, generation costs, DS network topology, and other vital

information to be private.

In addition, we developed three algorithms to achieve the Nash equilibrium for the system.

We guarantee the convergence to a Nash equilibrium by adding a regularized quadratic

proximal term to every DSs’ objective function. The proximal term controls the step size in

every iteration. Our numerical results show that when the weight of the proximal term µ is

increased, it takes a longer time to converge to a Nash equilibrium.

We showed the numerical results for these algorithms using two test sets. Comparing the

algorithm performance reveals that immediate updates outperform the coordinated update

algorithm. Out of the three algorithms, the immediate update and cyclic order algorithm

gave the best results in terms of time and number of iterations. We observed that it is

advantageous to have multiple connections from one DS to multiple markets. Also, the

benefits of the system increase when more DSs participate. We discussed the importance of

the coordinated system from the consumer’s, the policymakers’, and the distribution system

operators’ points of view.
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Chapter 5

Conclusion

In this dissertation, we discussed the electricity market operations and pricing from an

Operations Research (OR) point of view. We emphasized the advantages of using OR tech-

niques, such as stochastic programming (SP). We presented a brief introduction to stochastic

programming in chapter 1

Our primary focus was on the electricity market clearing problem. We discussed the

challenges of integrating large-scale renewable resources. The stochasticity of renewable

resources such as wind and solar diminishes the usefulness of deterministic models, which

are used in practice. The nature of the problem setup allowed us to apply two-stage stochastic

programming to model the electricity market clearing model. To represent the stochasticity

in the model, SP uses a set of scenarios. While we assumed we had a finite set of scenarios

(finite support) to develop a our models, the theory and the analyses developed in this

dissertation holds for the continuous support case as well, in which case we must resort to

stochastic convex programming methods.

The quality of SP models depends on the quality of the scenarios. Therefore, we must

develop near-realistic scenarios to achieve a realistic solution. Therefore, in chapter 2, we

developed wind generation scenarios using wind-speed time series data. To develop multi-

variate time series, we utilized the spatio-temporal correlation of wind speeds in wind farms

located in close proximity. We demonstrate that the wind speed time series are nonstation-

ary, and hence, regular time series methods cannot directly apply to build models. Therefore

we presented a nonparametric change point based method to simulate wind speed time se-

ries. The change point detection method identifies a point as a change point when there is

a disruption to the covariance structure of the series.

The identified change points separate the time series into stationary segments. We pre-

sented parametric and nonparametric methods to build models for each segment. Then we
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used the models to simulate the series for each part separately and add them together to

obtain the whole simulation. Finally, we used the simulated series in an electricity market

clearing model. We showed the high volatility in electricity prices where we observed the

change points in the original wind-speed time series.

In chapter 3, we developed alternative SP models for the electricity market clearing

problem. We showed the incapabilities of the canonical model in capturing the stochasticity

in the first-stage decisions. We addressed this issue using the notion of non-anticipativity in

SP. It is important to note that electricity market clearing models decide market operations

decisions. The pricing decisions are derived from the dual solutions of the model. Therefore,

we do not have any control over the pricing decisions in the model.

The two alternative SP models allowed us to develop proper pricing mechanisms for

the market participants. While state-vector formulation provides better pricing mechanisms

properties, mean-vector formulation is efficient in obtaining solutions (progressive hedging).

In theorem 3, we showed that it is possible to reconstruct state-vector solutions using mean-

vector solutions. Therefore, pricing mechanism Rs has both computational and application

advantages. The main benefit of Rs is that it guarantees cost recovery for every generator

under every scenario. Pricing mechanisms Rm and Rs both achieve revenue adequacy in

expectation and provide bounds for the price distortion for every scenario. These properties

are crucial in convincing generators and ISOs to adopt such pricing mechanisms.

Finally, in chapter 4, we developed a coordination system for distribution systems and

markets to exchange electricity. We presented a system that achieves the Nash equilibrium

while sharing minimum information. Reluctant to sharing information is typical behavior

in practice, making this setting more suitable for such an environment. Another advantage

of this system is that every participant makes their decisions separately while adapting to

others’ decisions. Thus, the system is suitable for distributed computing.

We developed three algorithms to solve the system, and according to numerical results,

DS must update their solutions immediately after they solve the problem. This helps the

algorithm to converge equilibrium quickly. We guarantee convergence by adding a quadratic

proximal term to every DS objective function. In addition, we showed that it is beneficial to

operate more than one interconnection to the DS. For the system operator and consumers,
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it is more beneficial to have more DS as they help to reduce prices significantly.
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