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Among distributed energy resources, solar photovoltaic (PV) generation has the largest

penetration in the distribution networks. Serving electric vehicles (EV) with renewable

resource generation would further reduce the carbon footprint of the energy supply chain for

electric vehicles. However, the integration of solar PV and EVs in the unbalanced distribution

network introduces several challenges including voltage fluctuations, voltage imbalances,

reverse power flow, and protection devices’ malfunctions. The uncertainties associated with

solar PV integration and electric vehicles operation require significant effort to develop

accurate optimization methodologies in the unbalanced distribution systems operation. In

this thesis, in order to cope with the uncertainties, we first developed a two-stage optimization

problem, to identify the feasible dispatch margins of photovoltaic generation considering the

distribution network operation constraints. The dispatch margins of photovoltaic generation

are quantified considering the worst-case realization of demand in the distribution network.

The linear and the second-order cone mathematical problem formulation is procured to solve

the optimal power flow problem. Second, a data-driven distributionally robust optimization

framework is proposed for the operation of the unbalanced distribution network considering

the uncertainties associated with the interconnected EV fleets and solar PV generation, and

the proposed framework leverages the column-and-constraint generation approach. Moreover,

to minimize the operation cost and improve the ramping flexibility, a continuous-time optimization

problem, is developed and reformulated to a linear programming problem using Bernstein

polynomials. Here, a generalized exact linear reformulation of the data-driven distributionally

v



robust optimization is used to capture the worst-case probability distribution of the net

demand uncertainties. Furthermore, in this thesis, an interconnection of multi microgrids

(MGs) technology is considered a promising solution to handle the variability of the distributed

renewable energy resources and improve the energy resilience in the distribution network.

The coordination among the microgrids in the distribution network could improve the

operation cost, reliability, and security of the distribution network. Therefore, an adaptive

robust distributed optimization framework is developed for the operation of a distribution

network with interconnected microgrids considering the uncertainties in the demand and

solar PV generation.
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Chapter 1

Introduction

1.1 Feasible dispatch limits of the PV generation with Uncertainties in PV, EV
and demand

1.1.1 Motivations of research

Solar power generation is the fastest growing renewable resource which is expected to

provide a quarter of global electricity needs and reduce the global CO2 emission of the energy

sector by 21% by 2050 [1]. Driven by regulatory policies, renewable portfolio standards, and

federal tax credits, the capacity of solar power generation is increasing in the transmission

and distribution sectors [2]. Solar power generation, the fastest growing technology among

other renewable energy resources in the distribution networks, is expected to increase to

8.3 trillion kWh by 2050 worldwide as the manufacturing costs decrease. Such generation

capacity will represent 70% of the total renewable generation and serves up to 16% of the

electric demand worldwide [3].

Lowering the energy costs, reducing the carbon footprint of energy supply to electric vehicles

(EVs), and mitigating the reliance on fossil fuel resources to generate the electricity required

to charge EVs, are among the motivations to leverage PV generation for EV charging.

The global deployment of EV technology has been growing rapidly in the last decade and

the number of passenger EVs increased by 63% in 2018 compared to the previous year

worldwide [4]. The increase in the installed capacity of PV generation as the power supply,

and the growing market of EVs as electric loads with storage capability, introduce operational

challenges to the power grid operators. Considering the uncertainties in the PV generation

and EV interconnections in the distribution networks, managing the demand and supply

to ensure reliability and network security is a challenging task. The increase in EV sales

and improvements to the EV battery capacity will reshape the electricity demand in the
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distribution networks. The changes in the distribution network demand profile stemming

from integrating fast charging and commercial vehicle charging stations, and residential

EV charging hubs introduce operational challenges in network security and reliability. The

increase in the demand as a result of charging EVs increases the network loss, deteriorates the

power quality with considerable voltage drops, and increases the stress on power distribution

assets. In this context, effective coordination among the EV operators and other distributed

energy resources would address the challenges imposed by EVs in the distribution networks.

Among distributed energy resources, solar PV generation has the largest penetration in

the distribution networks. Rooftop solar PV panels and utility-scale solar plants improve the

reliability and economics of energy supply as such energy resources could be placed close to

the consumers in the distribution networks. Serving the EVs with solar PV generation would

further reduce the carbon footprint of the energy supply chain for EVs. The integration

of solar PV in the distribution network introduces several challenges including voltage

fluctuations, voltage imbalances, reverse power flow, and protection devices’ malfunctions.

Coordinating the PV generation with EV charging/discharging could mitigate the adverse

effects of PV generation in the distribution networks.

Given the limitations of the current assets in serving the growing EV demand and

the current investment portfolio on solar PV generation resources in distribution networks,

quantifying the dispatchable limits of PV generation is crucial to maintain the security of the

distribution network. Quantifying the dispatchable PV generation enables the distribution

system operator to gain an understanding of the feasible dispatch limits of this generation

resource to avoid voltage violations and demand curtailments. The uncertainties associated

with the EV integration, including the arrival and departure times and the stochasticity

in energy and power capacity limits, are represented as the uncertainties in demand and

available energy storage capacity in the distribution network. Motivated by such notions,

this research is focused on determining the feasible dispatch limits of PV generation with the

uncertain interconnection of EVs, PVs and electricity demand in the distribution network.
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1.1.2 Background and related works

Recent studies were focused on various approaches to enhance the capacity of solar

photovoltaic (PV) generation in transmission and distribution networks [5–7]. In [5] the

hosting capacity of rooftop PV generation is quantified using Monte Carlo simulation. The

impacts of the number of PV installations and their power factors, the loading of the feeders

and the conductor characteristics on the PV hosting capacity were investigated. A voltage

profile design algorithm is proposed in [6] to handle the variation of the demand profile

and improve the hosting capacity of the PV generation in the distribution feeders. In [7]

a mixed-integer nonlinear programming (MINLP) problem is formulated to maximize the

PV hosting capacity by controlling the voltage regulators, PV inverters, capacitor banks as

well as controllable branch switches. The power flow problem is solved using the OpenDSS

simulator and the formulated MINLP problem is solved using genetic algorithm. In [8]

a Nomogram-based approach is proposed to quantify the hosting capacity of low voltage

distribution systems and determine the connection criteria for PV generation units. The

energy storage operation set points are determined to tackle the overvoltage challenges in the

distribution network with high penetration of PV generation in [9]. The PV hosting capacity

is increased in [10] by providing voltage droop control in active transformers. A Monte Carlo-

based framework is proposed in [11] to quantify the hosting capacity of PV generation in

distribution feeder and the sensitivity of PV hosting capacity to the circuit characteristics is

evaluated. The expansion planning of static VAR compensators was proposed as a two-

stage stochastic programming problem in [12] to increase the installed capacity of PV

generation in distribution networks. Here, the Benders decomposition technique was used

to solve the formulated problem. An integrated generation and transmission expansion

planning framework is proposed in [13] to maximize the large-scale solar PV penetration

and minimize the investment on the dispatchable generation units and transmission lines.

The formulated problem is solved using a decomposition technique. In [14] voltage regulators

and reactive power resources are managed to maximize the hosting capacity of PV generation

in the distribution network. The proposed management scheme captures the uncertainties

associated with EVs in the network. A multi-objective volt/VAR control approach was

presented in [15] in which a scenario-based stochastic operation scheme was used to minimize
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energy loss, voltage deviation, as well as total emission and energy costs. The uncertainty of

renewable energy resources including solar PV generation was captured in [16] by formulating

a two-stage robust optimization problem for the expansion planning of distributed generation

(DG) in microgrids. The objective was to minimize the operation cost of microgrids considering

the revenue for providing services to the demand entities.

The variability and uncertainty in PV generation introduce significant operation challenges

including unacceptable voltage fluctuations, thermal limit violation of the distribution cables,

reverse power flow, fault current measurement errors, and protection malfunctions [17]. If not

addressed properly, such challenges would jeopardize the stability, reliability, and security

of the distribution networks. Curtailing PV generation is considered as a practical solution

to partially resolve these issues [18]; however, this solution will reduce the penetration level

of PV generation and the corresponding economic and environmental benefits. Effective

operation strategies such as coordinating the operation of renewable energy resources with

dispatchable distributed generation technologies would improve the economic and sustainability

of the distribution network operation and mitigate the adverse effects of variable and volatile

PV generation in these networks [19]. A two-stage optimization model was proposed in [20],

to determine the real and reactive power dispatch of controllable PV generation resources

with PV power output uncertainties. A stochastic optimal voltage control strategy that

captures the demand and PV generation uncertainties was proposed in [21]. A chance-

constrained optimization problem was formulated to address the risk of overvoltage and

voltage regulator runaway conditions in the distribution networks.

The impacts of PV generation capacity on the maximum voltage of the feeder and line loading

along the feeder were investigated in [22] considering various demand profiles. Voltage

regulation was used in [23] to improve the hosting capacity of PV generation in the distribution

network. The harmonics injected by distributed generation and demand could reduce the

hosting capacity of solar PV in the distribution network. Passive filters were designed in [24]

to address this challenge, minimize the loss and maximize the power factor. An approach for

allocating the series and shunt voltage source converters was introduced in [25] to improve

the hosting capacity of PV generation in distribution networks. In [26] the hosting capacity

of PV generation was improved by regulating the heating and cooling loads of the customers
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in the distribution network. A distributed framework using Dantzig-Wolfe decomposition

was proposed to address the consumers’ privacy. An approach to determine the PV hosting

capacity of the distribution network was proposed in [27] considering the smart inverter

control strategies for the PV generation and battery energy storage. PV hosting capacity

is evaluated using an interval overvoltage probability-based approach to decrease the risk

associated with voltage violations in [28] while considering the uncertainty in PV generation

and demand.

The integration of EV in distribution system operation was addressed in [29–33]. In [29],

the chargeable region for EVs was quantified by formulating a two-stage robust optimization

problem with the network’s technical constraints. The impacts of charging EVs on the

distribution network were evaluated in [31] considering the uncertainties in the EVs’ ownership,

rating, and duration of charging as well as the distributed generation (DG) penetration. As

high penetration of EVs in the distribution network impacts the operational and technical

measures including power loss, nodal voltage profile, and operation cost; ensuring the reliability

and security of the distribution network imposes capacity limits on the EV demand served

in the distribution network. An approach to allocating the EV parking lots and renewable

energy resources was presented in [32] that minimizes the loss in the distribution network.

Meta-heuristic approaches are used to minimize the loss in the distribution network. An

online adaptive EV charging strategy was proposed in [33] to minimize the voltage imbalances

and violations, transformer capacity violations, and EV charging cost, while considering the

EV owners’ convenience.

The integration of EV in the distribution network impacts the hosting capacity of PV

generation. Earlier research addressed the interactions between EV and PV technologies in

the three-phase balanced [34–38] and unbalanced [39–41] distribution networks. In [34] the

authors proposed a conceptual framework to investigate the large-scale integration of solar

PV generation and EVs, considering the coordination among these assets with multiple EV

penetration levels. To reduce the solar PV curtailment and customer costs, [35] proposed

an EV charging management scheme using an auction mechanism that captured the benefit

and voluntary participation of each customer. A two-stage operation framework for the

EV parking stations with rooftop solar PV generation was proposed in [36] to schedule the
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EV charging in the day-ahead and real-time operations, considering the uncertainties in

the available solar power generation and customer parking behavior. A decision-tree-based

algorithm was proposed in [37] to decrease the peak demand in the residential distribution

networks by coordinating the flexible EVs with vehicle-to-grid (V2G) capability with solar

PV generation and battery energy storage. Fast response power electronic compensation

at load side and feeder level, was used in [38] to control the voltage in the distribution

network with variable PV generation and EV loads. A coordinated scheme for EV charging

and PV generation was proposed in [39] to alleviate the flow imbalances among the phases

in the distribution network. The coordinated operation of PVs and EVs in an unbalanced

distribution network using energy storage was proposed in [40]. An online control approach

was developed based on a rolling optimization framework to ensure the security of the

distribution network by regulating the power output of PV generation units, EVs, and

tap changer settings. In [41], differential evolution optimization was used to determine

the PV and EV outputs that minimize the power loss and improve the voltage profile in

an unbalanced distribution network. The hosting capacity assessment of combined PV-EV

technology is carried out in [42] ignoring the uncertainty in EV interconnection.

While extensive research works exist on the operation of the distribution networks considering

the uncertainties in the EV interconnections, EV owners’ preferences, and solar PV generation;

limited research efforts were made to determining the dispatch limits for PV generation in

distribution networks considering the unbalanced EV interconnections and the corresponding

uncertainties. Quantifying the dispatch limits for PV generation provides feasible operation

regions that accommodate the PV generation in the distribution network. Such solutions

would help the system operator to determine the upper and lower limits of the uncertainty

sets associated with the PV generation that are required for solving the risk-based distribution

network operation problems. In the bulk power network, quantifying do-not-exceed limits

for renewable resources was proposed in [43–45]. In [43], a robust optimization problem was

formulated to determine the dispatchability limits for a renewable resource. In [44] a data-

driven algorithm was presented that aims to maximize the utilization of variable renewable

generation by determining the do-not-exceed limits of this resource considering the operating

points of the dispatchable resources.
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1.2 Data-Driven Distributionally Robust Operation of the Distribution Network
with High Penetration of PV and EV

The worldwide electric vehicle registration is increased by 41% in 2020 as the vehicle sales

are decreased by 16% in 2020 due to the global pandemic [46]. As the EV sales grow, the

share of gasoline vehicles’ sales is estimated to decline from 94% in 2019 to 81% in 2050 [47].

Incentives for EVs including sales tax reductions and exemptions as well as subsidies for

the charging assets are aimed to promote the transition toward sustainable mobility, reduce

greenhouse gas generation, and improve local air quality in urban areas [48]. The increase

in the number and capacity of EV interconnection will increase the EV charging demand in

the distribution feeder. The EV charging load increases the residential demand peak and

network loss and further increases the risk of overloading, voltage drops, and power quality

degradation [49, 50]. Capacity expansions, installing energy storage, and regulating the EV

charging profile are among the efforts to mitigate the adverse effects of large-scale integration

of EVs in the distribution networks [51].

Solar photovoltaic (PV) generation is the prominent distributed renewable energy resource

(DER) that could be installed close to the customers. The reduction in the capital cost

through the project lifetime, the changes in state regulation and policies to promote PV

technology (e.g., 100% renewable generation in California by 2045), and the tax incentives

[47] are expected to further promote this technology and increase its installed capacity in the

distribution networks. The growth in capacity of the uncertain and variable PV generation

may lead to excessive voltage fluctuations, voltage violations, and unbalanced loading and

increase the vulnerability of the distribution networks to overloading and protection malfunctions.

The vehicle-to-grid (V2G) technology with considerable power injection capacity coupled

with PV generation in the distribution feeders could further increase the probability of reverse

power flow and voltage variations. Coordinating the charging and discharging schedule of

EV clusters with DERs including PV generation and energy storage systems (ESS) could

decrease the risk of such undesirable conditions. Providing services such as peak shaving,

valley filling, reduction in load curtailment by EVs further improve the energy economics and

reliability in the distribution networks [52], [53]. In [54], the coordination between EVs and

DERs is formulated and solved by a differential evolution optimization algorithm to mitigate
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the unbalance among phases, improve the voltage profile, and decrease the distribution

system loss. In [55] a hybrid optimization is proposed to reduce the EV operation cost.

The scheduling of EV charging stations is coordinated with PV and battery storage systems

using the real-time empirical data.

The uncertainties associated with the operation and interconnection of EVs including

the uncertainties in the daily energy consumption, arrival and departure times, maximum

and minimum available energy, and the number of interconnected EVs, introduce challenges

to the operation of distribution networks with EVs. Stochastic programming (SP) and

robust optimization (RO) problem formulations are used in the literature to address the

uncertainties associated with the integration of EVs. In [56] a two-stage SP problem is

formulated to determine the location and capacity of public EV charging stations considering

the uncertainties in EVs’ arrival and departure times and their charging patterns, as well as

the preferred walking distance to the charge station. The objective function is to maximize

the availability and access of EVs to the charging stations. In [57] the capacity of EV chargers,

solar PV panels, and battery energy storage in the EV charging station is determined

considering the uncertainty associated with the EV mobility and charging demand, PV

generation, and electricity price. The problem is formulated as a SP problem using scenarios.

In [58], the dispatch of EV charging stations equipped with PV generation and energy storage

systems is determined using a stochastic dynamic programming approach that captures

the uncertainty in electricity price, PV output, as well as electricity tariffs. In [59] a RO

problem is formulated to determine the charging and discharging schedule of EV aggregators,

considering the uncertainty in the available energy of EVs that is affected by mobility patterns

and driver behaviors. The objective is to minimize the operation cost of the system including

the operation cost of EV aggregators. In [60], the energy cost and voltage deviation are

minimized while capturing the uncertainty in charging power and energy capacity, and the

volatility in real and reactive demand. A RO problem is formulated to determine the real

and reactive power dispatch of EVs and Benders’ decomposition technique is used to solve

the problem.

While in the SP approach, the probability distribution functions of the uncertain parameters

are known to generate scenarios, formulating a RO problem eliminates the need for this
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assumption. In the RO problem, the uncertainty is defined as a set and the worst-case

realization of uncertainty is considered. In most cases, the estimated probability distribution

function for uncertain variables may not be accurate. Moreover, to accurately represent the

uncertainties, a large number of scenarios is required which further increases the computation

burden of solving the SP problems. Compared to the solution procured by SP, the worst-

case realization of the uncertainty in the RO formulation provides a more conservative

solution and by regulating the budget of uncertainty, the conservativeness of the solution is

adjusted [61]. In [61, 62] a hybrid stochastic and robust optimization approach is proposed

to reduce the computation burden of the SP problem by considering the uncertainty sets.

Distributionally robust optimization (DRO) is introduced in [63–65] to capture the worst-case

realization of the probability distribution of the uncertain variables. In [63], a decomposition

framework is proposed to solve a two-stage data-driven transmission expansion planning

problem. The L1 norm is used to construct the ambiguity set using the empirical data, that

represents the uncertainty in wind generation. In [64] a data-driven risk-averse stochastic

unit commitment problem formulation is proposed where L1 and L∞ norms are used to

construct the ambiguity set of probability distributions for wind generation. The formulated

problem is solved using Bender’s decomposition technique. In [65] a DRO framework for the

unit commitment problem is proposed where the Wasserstein metric is used as a measure to

construct the ambiguity set and the solution to the formulated problem is compared to that

of SP and RO problems. In [66] a two-stage DRO problem with the Kullback-Divergence

metric is presented for the planning of EV charging stations and renewable resources in the

power network. Here, the location of the charging stations is determined in the first stage

and the capacities of renewable generation and energy storage are optimized in the second

stage.

1.3 Data-Driven Distributionally Robust Operation of Distribution Network
with Ramping Flexibility

The environmental benefits of renewable generation technologies, the technological improvements,

and the reduction in manufacturing costs have increased the interest in deploying these

generation resources in bulk power and distribution networks. In 2020, 3% of the US

9



electricity generation was solar power generation, and this share is expected to increase

to 14% and 20% by 2035 and 2050, respectively [67]. Among different solar generation

technologies, the potential rooftop PV generation capacity could reach 1 TW with 8 billion

square meters of rooftops in the United States [68]. The increased use of renewable energy

resources in bulk power networks imposes operational challenges to maintain the generation

and demand balance. Deploying flexible reserve, demand response practices, and demand

curtailment are among the solutions to reduce the risk of generation scarcity and maintain

network security. The advancement in monitoring and intelligent control strategies and the

emerging business models for energy would evolve the bulk power system and distribution

network operation paradigm. In the new paradigm, distribution system operators (DSOs)

contribute to providing flexibility services to bulk power systems by managing the variability

of the renewable and distributed energy resources and regulating the demand using dispatchable

generation resources, including energy storage units [69]. The variable solar PV generation in

the distribution network imposes operational challenges to the distribution network operation.

Voltage fluctuations and violations, power quality degradation, reverse power flow, and

protection malfunction is among the challenges introduced by large-scale integration of solar

PV generation in distribution networks. To mitigate the demand and renewable generation

curtailments while providing flexibility services to the bulk power network, DSOs handle

the variability and uncertainty associated with the renewable generation and demand by

leveraging flexible and dispatchable generation resources and the demand-side management.

Earlier research quantified the ramping flexibility of dispatchable generation resources to

handle the variation in the demand and renewable resources in the bulk power networks [70]-

[71]. In [70] and [72], the stochastic and deterministic sub-hourly operation of the bulk power

network with high penetration of wind generation were proposed, respectively. In [70],

the unit commitment problem is solved as a two-stage optimization problem using Benders

decomposition. In [72], the feasible energy delivery of the generation units is quantified in the

unit commitment problem and the resulting mixed-integer nonlinear optimization problem

is transformed into a tractable mixed-integer linear programming problem. A continuous-

time model for the generation ramping trajectory was proposed in [73] to reduce the error

in estimating the ramping flexibility of generation resources. The proposed model leverages

10



Bernstein polynomial to represent the generation dispatch trajectory, and the proposed model

is further used in [74] to capture the interactions between the electricity and natural gas

networks. In [75], De Casteljau’s algorithm is used to tighten the convex hull of Bezier

curves that represent the generation and demand trajectories and improve the estimation

of the flexibility provided by dispatchable generation resources. A continuous-time risk-

based model is proposed in [71] to minimize the risk of sub-hourly wind curtailment in

the operation scheduling horizon using scenarios. A two-stage stochastic continuous-time

problem is formulated to minimize the operation cost and the probability of wind curtailment.

While earlier publications addressed the uncertainty in renewable generation using stochastic

programming (SP) [76], the assumptions made on the probability of scenarios require a

considerable number of historical data. The solution to the SP problem provides improved

economic measures once an accurate probability distribution of uncertain variables is available.

Power system operation problem is formulated as robust optimization (RO) problem once

limited knowledge on characteristics of the uncertain variables is available. The solution to

RO captures the worst-case realization of the uncertain variables with the cost of inefficiency

in economic measures.

1.4 Adaptive Robust Distributed Operation of Distribution Network with Microgrids

The microgrid (MG) technology is a promising solution to handle the variability of the

distributed renewable energy resources and improve the energy resilience in the distribution

network [77]. The coordination among the microgrids could improve the operation cost

and reliability and security of the distribution network [78]. Microgrids exchange energy

with the main distribution network in grid-connected mode to reduce the operation cost,

improve the voltage profile and reduce the network loss [79]. In order to serve the demand in

contingencies, microgrids are operated in island mode to serve the load using local generation

assets. In grid-connected mode, the coordination among the microgrids would improve the

utilization of renewable energy resources by handling the uncertainty and variability and

reducing the generation curtailment [80].

To handle the uncertainties in renewable generation and demand, distribution network

and microgrid operation problems were formulated as stochastic programming and robust
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optimization problems in [81–84]. In the stochastic programming problems, the uncertain

variables are modeled using scenarios generated by the assumed probability distribution

function. However, assuming a certain probability distribution function for the uncertain

variables may not be practical due to limited information about the uncertain variables.

Furthermore, to capture the probability distribution functions accurately, a large number

of scenarios is required which will further increase the computation burden of stochastic

programming problem solutions [85]. To address these challenges, the distribution network

and microgrid operation problems are formulated as robust optimization problems, in which

the uncertain variables are within a closed set. Solving the robust optimization problems

provide the worst-case realization of the uncertain variables [86]. Ref. [81] formulated a two-

stage robust optimization problem to determine the power flow of the soft-open points that

minimizes the voltage deviation and network loss in the distribution network. The formulated

problem was solved using the column-and-constraint generation algorithm (C&CG) and the

power flow constraints are written as second-order cone constraints. In [82], a two-stage

adaptive robust optimization problem is formulate and solved using C&CG approach to

represent the collaborative operation of multiple interconnected MGs in residential area

considering the worst-case realization of solar PV generation. The problem is formulated

as a mixed-integer linear programming (MILP) problem, where, the first-stage problem

determines the status of power exchange between MGs and the distribution system as

well as charging and discharging states of the EVs, while the second-stage problem aims

to minimize the network operation cost by regulating the power dispatch of distributed

generation units, charging/discharging power of electric vehicles, and the power output of PV

generation. In [83] a day-ahead adaptive robust economic dispatch model for the integrated

energy systems was proposed. Here, the first-stage problem minimizes the startup and shut

down costs of the gas turbines, and the second-stage problem minimizes the operation cost,

considering the worst-case realization of the uncertainties in the net demand and outdoor

temperature. In [87] an adaptive robust optimization problem is formulated to minimize

the voltage deviation stemming from the fluctuation of considerable solar PV generation

by regulating the fast response solar PV generation and slow response capacitor banks and

on-load tap changers in multiple time-scales. The first-stage of the problem minimizes the
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switching of distributed generation units, capacitor bank and tap adjustments, while the

second-stage minimizes the voltage deviation and power loss considering the uncertainties

in the solar PV power output and the real and reactive electricity demand. Here, the

power flow constraints were written as second-order conic constraints. In [84] the energy

management in multiple MGs was solved considering the cooperation among the main grid

and MGs in a centralized manner. The proposed two-stage stochastic programming problem

did not rely on the knowledge of the probability distribution of uncertain variables and used a

sequential sampling algorithm that identified the required number of samples to characterize

the uncertainty.

Distributed optimization approaches based on the augmented Lagrangian decomposition,

have been widely used in power system operation and planning, where, each agent communicates

with their neighbors by sharing the appropriate operation and control signals [88]. In [89],

the radial distribution network is divided into several areas to minimize the power loss. The

power flow constraints were modeled as second-order cone constraints and the formulated

problem was solved using the alternating directional method of multipliers (ADMM). The

convergence was accelerated by tuning the penalty parameters. In [90], the authors proposed

a distributed transactive energy management structure based on ADMM for multi-MGs

in distribution networks. The independent operation of MGs is coordinated using the

distributed transactive signals. Each MG exchanges the electricity price with the distribution

grid to minimize the operation cost. To handle the uncertainties of the renewable energy

resources, the problem was solved as a robust optimization problem. In [91] the MGs are

represented as independent energy hub entities. The objective function minimizes both the

electricity and heating cost. In order to coordinate the operation of interconnected MGs and

distribution network, a distributed robust framework based on the ADMM algorithm was

developed.

In order to solve the energy management problem with nonlinear and nonconvex AC power

flow constraints in distribution network, linear approximation and convex relaxation techniques

were addressed in the literature [92–95]. The Linear programming (LP) [92], second order

cone programming (SOCP) [93], and semi-definite programming (SDP) [96], are common

mathematical models to solve the energy management problem in distribution network.
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While LP formulation features a faster computation time, the approximation may lead to

inaccurate results as the power loss is ignored and voltage imbalance is marginal. In order

to capture the network loss and the unbalanced operation of the distribution network, SDP

relaxation of the power flow constraints was proposed in the energy management problem

in [95]. However, the SDP relaxation suffers from scalability and considerable solution time.

In order to address these challenges, the energy management in distribution networks is

formulated as SOCP problem in [94].
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Chapter 2

Dispatchability Limits for PV Generation in Unbalanced Distribution Networks with EVs

The increase in the installed capacity of small-scale photovoltaic generation and the

growing demand for electric vehicles introduce operational challenges for the unbalanced

distribution networks. This chapter presents a two-stage optimization problem to determine

the dispatchability limits of photovoltaic generation considering the electric vehicles’ interconnection

to ensure the security of the distribution network. The uncertainty associated with a)

the state of charge at arrival and departure times; b) the energy and power capacity of

electric vehicles; c) the maximum forecasted solar radiation and demand were considered.

The proposed optimization problem is solved using the column-and-constraint-generation

approach. A modified IEEE 13-bus test system is used to evaluate the effectiveness of

the proposed framework. While such research works addressed the dispatchability limits of

renewable energy resources, limited studies were performed on the dispatchability limits of

renewable energy resources in the unbalanced distribution networks. The contributions of

this chapter are as follows:

– Determining the upper and lower bounds for PV generation in the unbalanced distribution

network.

– Capturing the uncertainty associated with a) the EV interconnection including the

state of charge at arrival and departure times as well as the maximum energy and power

capacity of EVs connected to the distribution network; b) maximum PV generation

and; c) electricity demand in the distribution networks.

– The proposed formulated problem is solved using the column-and-constraint-generation

(C& CG) approach to determine the worst-case realization of PV generation considering

the determined upper and lower bounds.
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The rest of this chapter is organized as follows; the problem formulation and solution

methodology are presented in Section II. The numerical analysis and conclusion are presented

in Sections III and IV respectively.

2.1 Problem Formulation

The problem formulation is shown in (2.1)-(2.33). The objective function is shown in

(2.1). Here, uφ
v,t and lφv,t are the upper and lower bounds of PV generation respectively; and

V φ
v,t is the auxiliary binary variable. The objective is to maximize the difference between the

lower and upper bounds of PV generation while minimizing the violation in nodal real and

reactive power represented by positive slack variables s(.),φ
b,t . The constraints are shown in

(2.2)-(2.33). The real and reactive power balance at each bus is shown in (2.2) and (2.3)

respectively. Here, the variables are PLφ
l,t (the real power of the distribution line l on phase

φ at time t), Pφ
i,t (the real power of DG i), Pφ

n,t ( the real power of distribution feeder n), Pφ
v,t

(the real power of PV v), and Pφ
e,t (the real power of EV cluster e). Pφ

d,t is a parameter which

the real power demand. The matrices AL, AI, AV , AE, AN , and AD are the line-bus,

distributed generation-bus, PV generation-bus, EV cluster-bus, distribution feeder-bus, and

demand-bus incidence matrices respectively. A similar constraint for reactive power Q(.)
(.) is

shown in (2.3). The apparent power flow SLl,t satisfies (2.4) and (2.5) in which, U k,t is the

vector of squared voltage on phases a, b and c of bus k (V (.)
k,t ) as shown in (2.38); pφ

l is the

availability of phase φ of the line l; Z l is the element-wise product of matrix A and the

branch impedance matrix zl shown in (2.34)-(2.36) [10]. Here, rl is the resistance and xl

is the inductive reactance matrix of branch l. The vector of apparent power SLl,t is shown

in (2.37). The real and reactive power flows of branch l satisfy (2.6)-(2.9) where SLφ,max
l

is the maximum complex power transmitted through the branch [97]. Similar constraints

could be written for the distribution feeder. The real and reactive powers of DG are limited

by the minimum and maximum limits as shown in (2.10) and (2.11) respectively. The

real and reactive powers of feeder satisfy (2.12) and (2.13) to maintain the power factor

more than a certain value (P F n). The real and reactive powers of PV generation are

within the limits as shown in (2.14) and (2.15). Here, Pφ,max
v is the maximum nominal

capacity of the PV generation. The real power dispatch of PV generation is limited by the
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available solar radiation as shown in (2.16). Here, Aφ
v is the area of PV generation unit

for phase φ and IRv,t is solar radiation. The lower and upper bounds for PV generation

satisfy (2.17)-(2.20). In order to determine the worst-case realization of PV generation, the

dispatched PV generation is equal to the lower or upper bound as enforced by (2.21). Here

σφ
v,t is an auxiliary binary variable. The hourly real power dispatch of EV cluster e (Pφ

e,t) is

formulated as (2.22) where Pφ,ch
e,t and Pφ,dc

e,t represent the charging and discharging powers

of EV cluster e respectively. The charging and discharging powers for EV fleet e are limited

by the charging and discharging power capacity (Pmax,ch
e , Pmax,dc

e ) as shown in (2.23) and

(2.24) respectively. Here ICe,t is a binary parameter representing the connection of EV

cluster e to the distribution network. If the EV cluster e is connected to the distribution

network ICe,t = 1 and otherwise, ICe,t = 0. The relationship between the available energy

in EV cluster e and the hourly power dispatch is shown in (2.25)-(2.26) using big-M method.

The energy in the EV cluster is limited by the minimum and maximum values as shown in

(2.27)-(2.28). The available energy in EV cluster is enforced at arrival and departure times

by (2.29)-(2.32). Here, Iar
e,t and Idep

e,t are binary parameters that represent the arrival and

departure at time t respectively. The slack variables are positive as shown in (2.33).

min
uϕ

v,t,lϕv,t,V ϕ
v,t

∑
m

∑
v

∑
ϕ

∑
t

(V ϕ
v,t − (uϕ

v,t − lϕv,t)/P ϕ,max
v )

+max
σϕ

v,t

min
s

(.)
(.)

∑
m

∑
b

∑
ϕ

∑
t

(s1,ϕ
b,t + s2,ϕ

b,t + s3,ϕ
b,t + s4,ϕ

b,t ) (2.1)

s.t.∑
l

ALl,bPL
ϕ
l,t +

∑
i

AI i,bP
ϕ
i,t +

∑
v

AV v,bP
ϕ
v,t +

∑
e

AEe,bP
ϕ,dc
e,t +

∑
n

ANn,bP
ϕ
n,t + s1,ϕ

b,t − s2,ϕ
b,t =

∑
d

ADd,bP
ϕ
d,t (2.2)

∑
l

ALl,bQL
ϕ
l,t +

∑
i

AI i,bQ
ϕ
i,t +

∑
v

AV v,bQ
ϕ
v,t+

∑
n

ANn,bQ
ϕ
n,t + s3,ϕ

b,t − s4,ϕ
b,t =

∑
d

ADd,bQ
ϕ
d,t (2.3)

U k,t − U b,t + Z̃ l · (SLl,t)∗ + Z̃
∗
l · SLl,t ≤ M · (1 − pφ

l ) (2.4)
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U k,t − U b,t + Z̃ l · (SLl,t)∗ + Z̃
∗
l · SLl,t ≥ −M · (1 − pφ

l ) (2.5)

−pϕ
l · SLϕ,max

l ≤ PLϕ
l,t ≤ pϕ

l · SLϕ,max
l (2.6)

−pϕ
l · SLϕ,max

l ≤ QLϕ
l,t ≤ pϕ

l · SLϕ,max
l (2.7)

−
√

2 · pϕ
l · SLϕ,max

l ≤ PLϕ
l,t +QLϕ

l,t ≤
√

2 · pϕ
l · SLϕ,max

l (2.8)

−
√

2 · pϕ
l · SLϕ,max

l ≤ PLϕ
l,t −QLϕ

l,t ≤
√

2 · pϕ
l · SLϕ,max

l (2.9)

0 ≤ P ϕ
i,t ≤ P ϕ,max

i (2.10)

−Qϕ,max
i ≤ Qϕ

i,t ≤ Qϕ,max
i (2.11)

Qϕ
n,t ≤ tan

(
cos−1 PF n

)
· P ϕ

n,t (2.12)

Qϕ
n,t ≥ −tan

(
cos−1 PF n

)
· P ϕ

n,t (2.13)

0 ≤ P ϕ
v,t ≤ P ϕ,max

v (2.14)

−Qϕ,max
v ≤ Qϕ

v,t ≤ Qϕ,max
v (2.15)

P ϕ
v,t ≤ Aϕ

v .IRv,t (2.16)

0 ≤ lϕv,t ≤ uϕ
v,t (2.17)

uϕ
v,t ≤ P ϕ,max

v (2.18)

(
P ϕ,max

v − Aϕ
v .IRv,t

)
.V ϕ

v,t − lϕv,t ≥ −Aϕ
v .IRv,t (2.19)

Aϕ
v .IRv,t · V ϕ

v,t + uϕ
v,t ≤ Aϕ

v · IRv,t (2.20)

P ϕ
v,t = lϕv,t +

(
uϕ

v,t − lϕv,t

)
.σϕ

v,t (2.21)

Pφ
e,t = Pφ,ch

e,t − Pφ,dc
e,t (2.22)

0 ≤ Pφ,ch
e,t ≤ ICe,t · Pmax,ch

e (2.23)

0 ≤ Pφ,dc
e,t ≤ ICe,t · Pmax,ch

e (2.24)

18



Eφ
e,t − Eφ

e,t−1 − Pφ
e,t ≤ M · (1 − ICe,t) (2.25)

Eφ
e,t − Eφ

e,t−1 − Pφ
e,t ≥ −M · (1 − ICe,t) (2.26)

Eφ
e,t ≤ M · (1 − ICe,t) + Emax

e (2.27)

Eφ
e,t ≥ −M · (1 − ICe,t) + Emax

e (2.28)

Eφ
e,t ≤ M · (1 − Iar

e,t) + Emax
e (2.29)

Eφ
e,t ≥ −M · (1 − Iar

e,t) + Emax
e (2.30)

Eφ
e,t ≤ M · (1 − Idep

e,t ) + Emax
e (2.31)

Eφ
e,t ≥ −M · (1 − Idep

e,t ) + Emax
e (2.32)

s1
b,t, s

2
b,t, s

3
b,t, s

4
b,t ≥ 0 (2.33)

zl = rl + jxl (2.34)

Z̃l = A
⊙

zl (2.35)

A =


1 e−j2π/3 ej2π/3

ej2π/3 1 e−j2π/3

e−j2π/3 ej2π/3 1

 (2.36)

SLl,t =
[
PLa

l,t + jQLa
l,t PLb

l,t + jQLb
l,t PLc

l,t + jQLc
l,t

]
(2.37)

U b,t =
[
(V a

b,t)2 (V b
b,t)2 (V c

b,t)2
]

(2.38)

2.2 Solution Methodology

The proposed two-stage optimization problem is solved using the C& CG approach [86].

The problem is decomposed into a master problem (2.39)-(2.44) with decision variable x and

subproblem (2.45)-(2.48) with decision variables y,s and σ.

min
x

c⊤x + η (2.39)
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s.t. Ax ≤ d (2.40)

η ≥ b⊤sl (2.41)

Dyl ≤ g; ∀l ≤ k (2.42)

Cyl + sl = f ; ∀l ≤ k (2.43)

(E + Mσ∗
l )x + Gyl = h; ∀l ≤ k (2.44)

Here x represents the vector of first-stage decision variables i.e. [lφv,t, u
φ
v,t, V

φ
v,t].

max
σϕ,m

v,t

min
s

b⊤s (2.45)

s.t. Dy ≤ g (2.46)

Cy + s = f (2.47)

Gy = h − (E + Mσ)x∗ (2.48)

Here y represents the second-stage recourse decision variables i.e. Pφ
v,t,Pφ

e,t, Pφ
n,t ,Pφ

i,t, Q
φ
v,t,Qφ

n,t,

Qφ
i,t , PLφ

l,t and QLφ
l,t as well as the voltage magnitude on the buses (U b,t). The dual form

of the sub-problem is shown as follows:

Q = max
σ,µs

g⊤µ1 + f⊤µ2 +
[
h − (E + Mσ)x∗]⊤ µ3 (2.49)

D⊤µ1 + C⊤µ2 + G⊤µ3 ≤ 0 (2.50)

µ2 ≤ b, µ3 free (2.51)

The µ1, µ2 and mu3 are dual variables for constraints (2.46), (2.47) and (2.48) respectively.

The C&CG algorithm is described as follows:

– Step 1: Set iteration index k = 0, LB = −∞, UB = ∞ and convergence index

ε = 10−3.

– Step 2: Solve the master problem and obtain the optimal solution, x∗
k+1 and η∗

k+1 and
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update the LB = c⊤x∗
k+1 + η∗

k+1

– Step 3: Solve the sub-problem and update the UB = min
{
UB, c⊤x∗

k+1 +Q∗
k+1

}
– Step 4: Check the convergence if UB − LB < ε terminate otherwise k = k + 1, add

constraints (2.41)-(2.44) and go to step 2.

2.3 Numerical Results

In this chapter, a modified IEEE 13-bus system for which the peak demand is shown

in Table 2.1. Four PV units and four dispatchable distributed generation units (DGs) are

installed in the system. Tables 2.2 and 2.3 show the characteristics of the DG and PV

units respectively. The PV units and DG1-DG3 are three-phase generation units and DG4

is a single-phase distributed generation unit connected to phase C. 30 single-phase EVs are

connected to the system. Table 2.4 shows the characteristics of EVs. Fig. 2.1 shows the

demand and total PV generation profiles in the operation horizon. The following cases are

considered:

– Case 1 – Deterministic maximum PV generation and demand without EV.

– Case 2 – Deterministic maximum PV generation and demand with EV.

– Case 3 – Uncertainty in maximum PV generation, demand, state of charge (SoC) of

EVs at arrival and departure times, capacity and maximum real power dispatch of EVs.

2.3.1 Case 1 – Deterministic maximum PV generation and demand without EV

In this case, the maximum PV generation and demand are considered as forecasted

values. The dispatchability limits of PV generation for each phase are shown in Fig. 2.2.

The dispatchability limits for the PV generation units on phase A are shown in Fig. 2.2a. In

this case, the lower bound of dispatchability limit is increasing from 0 at hour 9 to 32.917 kW

and 10.592 kW at hours 10 and 11 respectively. Here, the total real power demand at hour

10 is 1116.25 kW and the total dispatch of DG and main feeder, at hour 10, cannot increase

beyond 1083.33 kW as the DGs reach their maximum capacity and feeder also reach the

maximum apparent power capacity on this phase. Consequently, the lower dispatchability

limit for the PV generation at hour 10 on phase A reaches 32.917 kW .
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Table 2.1: Demand Characteristics

Node Phase a
(kW)

Phase a
(kVAr)

Phase b
(kW)

Phase b
(kVAr)

Phase c
(kW)

Phase c
(kVAr)

1 0 0 0 0 0 0
2 0 0 218.5 125.4 0 0
3 0 0 161.5 118.75 0 0
4 16.15 9.5 62.7 36.1 111.15 17.1
5 0 0 0 0 0 0
6 152 104.5 114 85.5 114 85.5
7 0 0 0 0 161.5 76
8 0 0 0 0 0 0
9 365.75 209 365.75 209 365.75 209
10 0 0 0 0 161.5 143.45
11 460.75 180.5 64.6 57 275.5 201.4
12 121.6 81.7 0 0 0 0
13 0 0 0 0 0 0
Total 1116.25 585.2 987.05 631.75 1189.4 732.45

Table 2.2: Dispatchable DG Units Characteristics

DG Bus Pmin(kW ) Pmax(kW ) Qmin(kV Ar) Qmax(kV Ar)
1 4 0 200 -145 145
2 6 0 200 -145 145
3 13 0 250 -180 180
4 7 0 40 -20 20

Table 2.3: PV Generation Units Characteristics

PV Bus Pmin(kW ) Pmax(kW ) Qmin(kV Ar) Qmax(kV Ar)
1 13 0 200 -100 100
2 10 0 200 -100 100
3 9 0 200 -100 100
4 4 0 100 -50 50

Table 2.4: Characteristics of EV units

EV cluster # of vehicles Bus Pmax(kW ) Emin(kWh) Emax(kWh)
1 15 4 45 0 450
2 15 10 45 0 450
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Figure 2.1: Load and PV profile

2.3.2 2) Case 2 – Deterministic maximum PV generation and demand with EV

In this case, the dispatchability limits for PV generation units are evaluated considering

the EVs and forecasted maximum PV generation and demand. Five EVs are connected to

each phase on buses 4 and 10. All EVs in each cluster, are considered as the same type.

The maximum charging and discharging power for each EV is 3kW and maximum energy

capacity is 30kWh. The arrival and departure times for EVs are 10:00 and 19:00 respectively.

It is assumed that the EVs remain connected to the network within the arrival and departure

times and EVs have bi-directional power capability (V2G enabled). The EVs are assumed

to have 20% SoC at arrival time. The state of charge (in percent) is defined as the ratio

between the available energy in EV clusters and the maximum capacity of the EV clusters.

Fig. 2.2 shows the upper and lower bounds for dispatchability limits of PV generation when

the SoC of EV clusters at the departure time is 100%. In this case, the lower bound for

dispatchability limit on phase C, at hour 10 is reduced by 30 kW compared to that in Case

1 and reached 116.383 kW. At hour 10, 30 kW is injected by the EV clusters to reduce the

lower bound for PV dispatchability limit. At hour 11, the lower bound for dispatchability

limit in Case 1 was 107.946 kW and it increases to 137.946kW in this case as the batteries

of EV clusters on phase C are being charged by 30kW. Fig. 2.3 also shows the impact of

vehicle-to-grid (V2G). When EV clusters are unable to inject power back to the grid (no

V2G), the lower bound for PV generation is higher or equal to the lower bound in Case 1.
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Fig. 2.3 shows the lower bound for the dispatchability limit of PV generation on phase A

and phase C for Case 2 with two hours shifting in arrival and departure times. The SoC

of EVs at the departure time is 100 percent. As shown in Fig 2.3a, on phase A, the lower

bound at hours 10 and 11, are increased from 2.917 kW and 10.592kW to 62.917 kW and

40.592 kW when the arrival and departure times are shifted by two hours. In phase C as it

is shown in Fig. 2.3b, the lower bound at hour 8 is decreased from 50.291kW to 20.291kW

when the arrival and departure times are shifted by two hours.

2.3.3 Uncertainty in maximum PV generation, demand, state of charge (SoC) of EVs at
arrival and departure times, capacity and maximum real power dispatch of EVs

In this case, the forecast error for maximum PV generation, load, SoC of EVs at arrival

and departure times, capacity and maximum real power dispatch of EV clusters are represented

by a normal distribution function with a mean equal to those in Case 2. The standard

deviation for maximum PV generation and demand is 0.0167 of the mean value and the

standard deviation for the SoC of EV clusters at the departure and arrival times, capacity

and maximum real power dispatch of EV clusters are 0.06 of the mean values. In this case,

200 scenarios are considered. The expected upper bound and lower bounds for dispatchability

limits of PV generation units and those for Case 2 are shown for phases A and C in Fig.

2.4a and Fig. 2.4b respectively.

2.4 Conclusion

In this chapter, the dispatchability limit for PV generation in the unbalanced distribution

networks is quantified. It is shown that EV clusters with no V2G will increase the lower

bound of dispatchability of PV generation. While V2G can reduce the lower bound for

dispatchability limits of PV generation, integrating EVs into the distribution network will

increase the lower bound for the dispatchability limit of PV generation as the EVs are

being charged for departure. Furthermore, the impact of arrival and departure times for EV

clusters are shown in the case study.
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(a)

(b)

(c)Figure 2.2: The total dispatchability limits for (a) phase A, (b) phase B and (c) phase C
with deterministic demand and maximum PV generation with and without EV clusters
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(a)

(b)Figure 2.3: The effects of arrival and departure time on the total dispatchability limits for
(a) phase A, (b) phase C

26



(a)

(b)Figure 2.4: The expected dispatchability limits of PV generation considering the uncertainty
in maximum PV generation, SoC of EV clusters at the arrival and departure times and
demand, (a) phase A (b) phase C
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Chapter 3

Feasible Dispatch Limits of PV Generation with Uncertain Interconnection of EVs in the

Unbalanced Distribution Network

This chapter presents a framework to determine the feasible dispatch limits of solar

photovoltaic (PV) generation in the unbalanced distribution networks considering the interconnection

of electric vehicles (EVs) and associated uncertainties. The proposed framework determines

the lower and upper dispatch limits of PV generation considering the worst-case realization

of a) the minimum and maximum storage capacity in EVs, b) the minimum and maximum

power dispatch of EVs, c) the lower and upper bounds for the arrival and departure times,

and d) the available energy at arrival and departure times. The unbalanced operation of the

distribution network as well as the uncertainty in the maximum PV generation and demand

forecasts were considered. The problem formulation and solution approach are validated

using the modified IEEE 34-bus and IEEE 123-bus distribution systems. The impacts of the

budget of uncertainty and the vehicle-to-grid operation mode of EV clusters were addressed

in the case studies. It is shown that integrating EVs with charging capability will increase the

lower dispatch limit or increase the upper dispatch limit of the PV generation. Moreover, the

increase in the budget of uncertainty will reduce the difference between the upper and lower

dispatch limits by increasing the lower dispatch or decreasing the upper dispatch limit of the

PV generation. Finally, it is shown that the vehicle-to-grid capability will reduce the total

lower dispatch limit or increase the total upper dispatch limit of the PV generation in the

operation horizon. In the previous chapter [98], the dispatch limits of PV generation in the

distribution network considering the uncertainty in EV interconnection were addressed using

scenarios. In this chapter, the research is extended by capturing the worst-case realization

of the maximum and minimum power and energy capacity, the available energy at arrival

and departure times, and the arrival and departure times of EV clusters. Furthermore, the

formulated problem is extended to a large-scale network.The contributions of this chapter
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are as follows:

– A mathematical formulation is proposed to quantify the dispatch limits of the PV

generation on each phase considering the unbalanced operation of the distribution

network.

– The proposed formulation addresses the worst-case realization of a) the arrival and

departure times for EVs, b) the available energy at arrival and departure times, c) the

maximum and minimum available energy and power for EVs, to quantify the dispatch

limits of PV generation in the distribution network.

– The uncertainties associated with the maximum PV generation and demand are captured

in the developed formulation using scenarios.

The rest of the chapter is organized as follows: section 3.1 presents the problem formulation,

in which the detailed descriptions of the objective function and constraints are presented. The

robust optimization solution methodology is presented in section 3.2. The numerical results

are discussed in section 3.3. In this section, to evaluate the effectiveness of the proposed

approach for small-scale and large-scale distribution networks, the modified IEEE 34-bus

and IEEE 123-bus three-phase distribution systems are considered. Finally, the conclusion

is presented in section 3.4.

Nomenclature

Sets and Indices:

– b Index of bus.

– d Index of demand.

– e Index of electric vehicle cluster.

– i Index of distributed generation.

– l Index of distribution branch.

– n Index of distribution feeder.

– v Index of PV generation unit.

– m Index of scenario.
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Variables:

– lϕ,m
v,t Lower limit for PV generation v on phase ϕ at time t.

– uϕ,m
v,t Upper limit for PV generation v on phase ϕ at time t.

– IAϕ,m
e,t Binary variable indicating the arrival of EV cluster e on phase ϕ in scenario

m.

– ICϕ,m
e,t Interconnection of EV cluster e on phase ϕ to the distribution network.

– ICA,ϕ,m
e,t Auxiliary binary variable to determine the connectivity of EV clusters.

– ICD,ϕ,m
e,t Auxiliary binary variable to determine the connectivity of EV clusters.

– IDϕ,m
e,t Binary variable indicating the departure of EV cluster e on phase ϕ in scenario

m.

– Eϕ,m
e,t Energy capacity of EV cluster e on phase ϕ at time t.

– P ϕ,m
(.),t Real power of a unit on phase ϕ at time t.

– P ϕ,m,ch
e,t Charging power of EV cluster e on phase ϕ at time t in scenario m.

– P ϕ,m,dc
e,t Discharging power of EV cluster e on phase ϕ at time t in scenario m.

– Qϕ,m
(.),t Reactive power of a unit on phase ϕ at time t.

– PLϕ,m
l,t Real power flow of branch l on phase ϕ at time t.

– QLϕ,m
l,t Reactive power flow of branch l on phase ϕ at time t.

– s
(.),ϕ,m
b,t Positive slack variable.

– SLϕ,m
l,t Apparent power flow of branch l on phase ϕ at time t.

– Um
t Squared voltage vector in scenario m at time t.

– δϕ,m
e,t Auxiliary binary variable representing the uncertainty in minimum energy storage

capacity of EV cluster e connected to phase ϕ.
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– γϕ,m
e,t Auxiliary binary variable representing the uncertainty in maximum energy

storage capacity of EV cluster e connected to phase ϕ.

– βϕ,m,arv
e,t Auxiliary binary variable representing the uncertainty in available energy

storage of EV cluster e connected to phase ϕ at arrival time.

– βϕ,m,dep
e,t Auxiliary binary variable representing the uncertainty in available energy

storage of EV cluster e connected to phase ϕ at departure time.

– µϕ,m,ch
e,t Auxiliary binary variable representing the uncertainty in charging power of

EV cluster e connected to phase ϕ.

– τϕ,m,arv
e Auxiliary binary variable representing the uncertainty in the arrival time of

EV cluster e connected to phase ϕ.

– τϕ,m,dep
e Auxiliary binary variable representing the uncertainty in the departure time

of EV cluster e connected to phase ϕ.

– µϕ,m,dc
e,t Auxiliary binary variable representing the uncertainty in discharging power of

EV cluster e connected to phase ϕ.

– cϕ,m
t Auxiliary variable representing the time sequence.

– T ϕ,m,arv
e Arrival time for EV cluster e connected to phase ϕ.

– T ϕ,m,dep
e Departure time for EV cluster e connected to phase ϕ.

Parameters

– Aϕ
v Area covered by the solar PV cells v connected to phase ϕ.

– ADd,b Element of demand-bus incidence matrix.

– AEe,b Element of energy storage-bus incidence matrix.

– AIi,b Element of unit-bus incidence matrix.

– ALl,b Element of line-bus incidence matrix.
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– AVv,b Element of PV-bus incidence matrix.

– ANn,b Element of feeder-bus incidence matrix.

– Êϕ,min
e The lower uncertainty bound for the minimum available energy for EV cluster

e on phase ϕ.

– Êϕ,max
e The lower uncertainty bound for the maximum available energy for EV cluster

e on phase ϕ.

– Ẽϕ,min
e The difference between the lower and upper uncertainty bounds for the

minimum available energy for EV cluster e on phase ϕ.

– Ẽϕ,max
e The difference between the lower and upper uncertainty bounds for the

maximum available energy for EV cluster e on phase ϕ.

– l̂ϕ,arv
e The lower uncertainty bound for the available energy at arrival time.

– l̂ϕ,dep
e The lower uncertainty bound for the available energy at departure time.

– l̃ϕ,arv
e The difference between the lower and upper uncertainty bounds for available

energy at arrival time.

– l̃ϕ,dep
e The difference between the lower and upper uncertainty bounds for available

energy at departure time.

– P̂ ϕ,ch,max
e The lower uncertainty bound for the maximum charging power for EV

cluster e on phase ϕ.

– P̂ ϕ,dc,max
e The lower uncertainty bound for the maximum discharging power for EV

cluster e on phase ϕ.

– P̃ ϕ,ch,max
e The difference between the lower and upper uncertainty bounds for the

maximum charging power of EV cluster e on phase ϕ.

– P̃ ϕ,dc,max
e The difference between the lower and upper uncertainty bounds for the

maximum discharging power of EV cluster e on phase ϕ.
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– IRm
v,t Solar radiation for PV solar generation v at time t in scenario m.

– pl Vector of available phases on the branch l in distribution network.

– SLϕ,max
l Apparent power capacity of branch l on phase ϕ.

– P ϕ,max
(.) Maximum real power of a unit on phase ϕ.

– Qϕ,max
(.) Maximum reactive power of a unit on phase ϕ.

– Sϕ,max
(.) Maximum apparent power of a unit on phase ϕ.

– PFn Acceptable power factor at distribution feeder n.

– T̂ ϕ,arv
e Forecasted arrival time for EV cluster e connected to phase ϕ.

– T̂ ϕ,dep
e Forecasted departure time for EV cluster e connected to phase ϕ.

– T̃ ϕ,arv,min
e The lower uncertainty bound for the arrival time of EV cluster e connected

to phase ϕ.

– T̃ ϕ,arv,max
e The upper uncertainty bound for the arrival time of EV cluster e connected

to phase ϕ.

– T̃ ϕ,dep,min
e The lower uncertainty bound for the departure time of EV cluster e

connected to phase ϕ.

– T̃ ϕ,dep,max
e The upper uncertainty bound for the departure time of EV cluster e

connected to phase ϕ.

– Λϕ,arv Budget of uncertainty for arrival time on phase ϕ.

– Λϕ,dep Budget of uncertainty for departure time on phase ϕ.

– Γϕ,Emin Budget of uncertainty for minimum energy capacity in EV clusters connected

to phase ϕ.

– Γϕ,Emax Budget of uncertainty for maximum energy capacity in EV clusters connected

to phase ϕ.
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– Γϕ
ch Budget of uncertainty for charging power capacity of EV clusters connected to

phase ϕ.

– Γϕ
dc Budget of uncertainty for discharging power capacity of EV clusters connected

to phase ϕ.

– Γϕ,arv Budget of uncertainty for available energy in EV clusters connected to phase

ϕ at arrival time.

– Γϕ,dep Budget of uncertainty for available energy in EV clusters connected to phase

ϕ at departure time.

– ηe
ch Charging efficiency of EV cluster e.

– ηe
dc Discharging efficiency of EV cluster e.

– NT Total simulation period.

3.1 Problem Formulation

The proposed problem formulation addresses the uncertainty in the arrival and departure

times, the charging and discharging power capacity, the maximum and minimum storage

capacity, and the available energy at arrival and departure times for the EVs. The uncertainties

in the forecasted maximum solar PV generation and electricity demand are captured in

scenarios.

The problem formulation is shown in (3.1)-(3.60). The objective of this problem is shown

in (3.1). The first term in the objective function aims to maximize the difference between

the lower and upper dispatch limits of the PV generation units while ensuring that the PV

outputs are within these limits. As shown in the second term of the objective function, the

feasibility of the dispatched PV generation is ensured by minimizing the mismatch in nodal

power balance with the worst-case realization of the uncertain variables. Minimizing the

binary variable V ϕ,m
v,t maintains the PV generation within the lower and upper dispatch limits.

The next term is the normalized difference between the upper and lower dispatch limits of

PV generation. In the second part of the objective function, vector νϕ,m
e,t is a vector composed
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of the binary variables associated with the uncertainties in EVs (i.e. δϕ,m
e,t ∈ νϕ,m

e,t , γϕ,m
e,t ∈

νϕ,m
e,t , βϕ,m,arv

e,t ∈ νϕ,m
e,t , βϕ,m,dep

e,t ∈ νϕ,m
e,t , µϕ,m,dc

e,t ∈ νϕ,m
e,t , µϕ,m,ch

e,t ∈ νϕ,m
e,t , τϕ,m,arv

e ∈ νϕ,m
e,t and

τϕ,m,dep
e ∈ νϕ,m

e,t ).

The real and reactive power balances at each node of the distribution network are enforced

by (3.2) and (3.3) respectively. The distribution branch power flow is formulated by (3.4),

(5.5) as presented in [99]. Here, PLϕ,m
l,t ∈ P Lm

t , QLϕ,m
l,t ∈ QLm

t , Uϕ,m
b,t ∈ Um

b,t and R̃l, X̃ l are

obtained using [99]. The big-M method is used in (3.4) and (3.5) to address the availability

of phases on the distribution branch. The circular constraint representing the complex power

flow limit in a distribution branch is linearized in (3.6)-(3.11) using the technique presented

in [97]. The real and reactive power outputs of a DG unit are bounded by (3.12) and (3.13)

respectively. Constraints (3.14)-(3.19) enforce the limits on the real and reactive power

supply of the distribution feeder. The acceptable power factor would limit the exchanged

reactive power at the main distribution feeder as shown in (3.18) and (3.19). Constraints

(3.20)-(3.21) show the limits on the real and reactive power outputs of the PV unit. As

shown in (3.20) and (3.22), the PV generation is limited by the nominal capacity of the

unit and the collected solar energy. The reactive power output of the PV unit is within the

upper and lower capacity limits as shown in (3.21). The relationship between the lower and

upper dispatch limits of PV generation is shown in (3.23). The upper PV dispatch limit

is constrained by the nominal capacity of the PV generation unit as shown in (3.24). As

enforced by (3.25) and (3.26), if V ϕ,m
v,t is 0, the PV generation is within the dispatch limits

and otherwise, it is out of the dispatch limits. Here, the worst-case realization of the PV

generation is characterized by the lower or upper dispatch limits as shown in (3.27).

In the proposed formulation, EVs with similar characteristics are considered as a cluster.

The uncertainties associated with the arrival and departure times i.e. T ϕ,m,arv
e and T ϕ,m,dep

e ,

during which an EV cluster is connected to the distribution network are addressed by (3.28)-

(3.44). Here, the arrival time is between a lower and an upper limit as shown in (3.28)-(3.29).

The lower and upper limits are formulated using the forecasted arrival time and a difference

between the forecasted arrival time and the uncertain boundaries. Similarly, the departure

time is between the lower and upper limits as shown in (3.30), (3.31). The relationship

between the arrival time and the binary variable representing the arrival of the EV cluster
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(ICA,ϕ,m
e,t ) is shown in (3.32), (3.33). As shown here, if t ≥ T ϕ,m,arv

e then (ICA,ϕ,m
e,t = 1) and

otherwise (ICA,ϕ,m
e,t = 0). Similarly, the relationship between the departure time and the

binary variable representing the departure of the EV cluster (ICD,ϕ,m
e,t ) is shown in (3.34),

(3.35). As shown here, if t ≥ T ϕ,m,dep
e then (ICD,ϕ,m

e,t = 0) and otherwise, (ICD,ϕ,m
e,t = 1).

Here, cϕ,m
t is an auxiliary variable that accounts for the time index, and T ϕ,m,arv

e · ICA,ϕ,m
e,t

is a nonlinear term that is further linearized using McCormick envelopes [100]. A similar

technique is used to handle the nonlinear terms in (5.30)-(5.32). The interconnection state

of an EV cluster is determined using (3.38)-(3.40). Here, ICϕ,m
e,t = 1 if the vehicle cluster e

arrives at the charging station (ICA,ϕ,m
e,t = 1), and does not leave the charging station i.e.

(ICD,ϕ,m
e,t = 1). The arriving and departing states of an EV cluster are determined by (3.41)

and (3.42). Here, if an EV cluster leaves the charging station then IDϕ,m
e,t = 1, and when an

EV cluster arrives at the charging station IAϕ,m
e,t = 1. The budgets of uncertainty for arrival

and departure times are enforced by (3.43) and (3.44) respectively.

min
uϕ,m

v,t ,lϕ,m
v,t ,V ϕ,m

v,t

∑
m

∑
v

∑
ϕ

∑
t

(V ϕ,m
v,t − (uϕ,m

v,t − lϕ,m
v,t )/P ϕ,max

v )

+ max
σϕ,m

v,t ,ν
ϕ,m
e,t

min
s

(.)
(.)

∑
m

∑
b

∑
ϕ

∑
t

(s1,ϕ,m
b,t + s2,ϕ,m

b,t + s3,ϕ,m
b,t + s4,ϕ,m

b,t ) (3.1)

s.t.∑
l

ALl,bPL
ϕ,m
l,t +

∑
i

AI i,bP
ϕ,m
i,t +

∑
v

AV v,bP
ϕ,m
v,t +

∑
e

AEe,b(P ϕ,m,dc
e,t − P ϕ,m,ch

e,t )

+
∑

n

ANn,bP
ϕ,m
n,t + s1,ϕ,m

b,t − s2,ϕ,m
b,t =

∑
d

ADd,bP
ϕ,m
d,t (3.2)

∑
l

ALl,bQL
ϕ,m
l,t +

∑
i

AI i,bQ
ϕ,m
i,t +

∑
v

AV v,bQ
ϕ,m
v,t +

∑
e

AEe,bQ
ϕ,m
e,t +

∑
n

ANn,bQ
ϕ,m
n,t + s3,ϕ,m

b,t − s4,ϕ,m
b,t =

∑
d

ADd,bQ
ϕ,m
d,t (3.3)

ALl,b · Um
b,t + 2(R̃l · P Lm

l,t + X̃ l · QLm
l,t) ≤ M · (1 − pl) (3.4)

ALl,b · Um
b,t + 2(R̃l · P Lm

l,t + X̃ l · QLm
l,t) ≥ −M · (1 − pl) (3.5)

−pϕ
l · SLϕ,max

l ≤ PLϕ,m
l,t ≤ pϕ

l · SLϕ,max
l (3.6)
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−pϕ
l · SLϕ,max

l ≤ QLϕ,m
l,t ≤ pϕ

l · SLϕ,max
l (3.7)

−
√

2 · pϕ
l · SLϕ,max

l ≤ PLϕ,m
l,t +QLϕ,m

l,t (3.8)

PLϕ,m
l,t +QLϕ,m

l,t ≤
√

2 · pϕ
l · SLϕ,max

l (3.9)

−
√

2 · pϕ
l · SLϕ,max

l ≤ PLϕ,m
l,t −QLϕ,m

l,t (3.10)

PLϕ,m
l,t −QLϕ,m

l,t ≤
√

2 · pϕ
l · SLϕ,max

l (3.11)

0 ≤ P ϕ,m
i,t ≤ P ϕ,max

i (3.12)

−Qϕ,max
i ≤ Qϕ,m

i,t ≤ Qϕ,max
i (3.13)

−Sϕ,max
n ≤ P ϕ,m

n,t ≤ Sϕ,max
n (3.14)

−Sϕ,max
n ≤ Qϕ,m

n,t ≤ Sϕ,max
n (3.15)

−
√

2 · Sϕ,max
n ≤ P ϕ,m

n,t +Qϕ,m
n,t ≤

√
2 · Sϕ,max

n (3.16)

−
√

2 · Sϕ,max
n ≤ P ϕ,m

n,t −Qϕ,m
n,t ≤

√
2 · Sϕ,max

n (3.17)

Qϕ,m
n,t ≤ tan

(
cos−1 PF n

)
· P ϕ,m

n,t (3.18)

Qϕ,m
n,t ≥ −tan

(
cos−1 PF n

)
· P ϕ,m

n,t (3.19)

0 ≤ P ϕ,m
v,t ≤ P ϕ,max

v (3.20)

−Qϕ,max
v ≤ Qϕ,m

v,t ≤ Qϕ,max
v (3.21)

P ϕ,m
v,t ≤ Aϕ

v .IR
m
v,t (3.22)

0 ≤ lϕ,m
v,t ≤ uϕ,m

v,t (3.23)

uϕ,m
v,t ≤ P ϕ,max

v (3.24)

(
P ϕ,max

v − Aϕ
v .IR

m
v,t

)
.V ϕ,m

v,t − lϕ,m
v,t ≥ −Aϕ

v .IR
m
v,t (3.25)

Aϕ
v .IR

m
v,t · V ϕ,m

v,t + uϕ,m
v,t ≤ Aϕ

v · IRm
v,t (3.26)
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P ϕ,m
v,t = lϕ,m

v,t +
(
uϕ,m

v,t − lϕ,m
v,t

)
.σϕ,m

v,t (3.27)

T ϕ,m,arv
e ≥ T̂ ϕ,arv

e − τϕ,m,arv
e · T̃ ϕ,arv,min

e (3.28)

T ϕ,m,arv
e ≤ T̂ ϕ,arv

e + τϕ,m,arv
e · T̃ ϕ,arv,max

e (3.29)

T ϕ,m,dep
e ≥ T̂ ϕ,dep

e − τϕ,m,dep
e · T̃ ϕ,dep,min

e (3.30)

T ϕ,m,dep
e ≤ T̂ ϕ,dep

e + τϕ,m,dep
e · T̃ ϕ,dep,max

e (3.31)

cϕ,m
t − T ϕ,m,arv

e · ICA,ϕ,m
e,t ≥ 0 (3.32)

cϕ,m
t −

(
NT − T ϕ,m,arv

e

)
· ICA,ϕ,m

e,t ≤ T ϕ,m,arv
e (3.33)

cϕ,m
t +

(
NT − T ϕ,m,dep

e

)
· ICD,ϕ,m

e,t ≤ NT (3.34)

cϕ,m
t + T ϕ,m,dep

e · ICD,ϕ,m
e,t ≥ T ϕ,m,dep

e (3.35)

cϕ,m
t ≤ NT (3.36)

cϕ,m
t − cϕ,m

t−1 = 1 (3.37)

ICϕ,m
e,t ≤ ICA,ϕ,m

e,t (3.38)

ICϕ,m
e,t ≤ ICD,ϕ,m

e,t (3.39)

ICϕ,m
e,t ≥ ICA,ϕ,m

e,t + ICD,ϕ,m
e,t − 1 (3.40)

ICϕ,m
e,t−1 − ICϕ,m

e,t = IDϕ,m
e,t−1 − IAϕ,m

e,t (3.41)

IDϕ,m
e,t−1 + IAϕ,m

e,t ≤ 1 (3.42)

∑
e

τϕ,m,arv
e ≤ Λarv

ϕ (3.43)

∑
e

τϕ,m,dep
e ≤ Λdep

ϕ (3.44)

Êϕ,min
e + δϕ,m

e,t · Ẽϕ,min
e −M(1 − ICϕ,m

e,t ) ≤ Eϕ,m
e,t (3.45)

Eϕ,m
e,t ≤ Êϕ,max

e + γϕ,m
e,t · Ẽϕ,max

e +M(1 − ICϕ,m
e,t ) (3.46)
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Eϕ,m
e,t ≤

(
l̂ϕ,arv
e + βϕ,m,arv

e,t · l̃ϕ,arv
e

)
·
(
Êϕ,min

e + δϕ,m
e,t · Ẽϕ,min

e

)
+M ·

(
1 − IAϕ,m

e,t

)
(3.47)

Eϕ,m
e,t ≥

(
l̂ϕ,arv
e + βϕ,m,arv

e,t · l̃ϕ,arv
e

)
·
(
Êϕ,min

e + δϕ,m
e,t · Ẽϕ,min

e

)
−M ·

(
1 − IAϕ,m

e,t

)
(3.48)

Eϕ,m
e,t ≤

(
l̂ϕ,dep
e + βϕ,m,dep

e,t · l̃ϕ,dep
e

)
·
(
Êϕ,max

e + γϕ,m
e,t · Ẽϕ,max

e

)
+M ·

(
1 − IDϕ,m

e,t

)
(3.49)

Eϕ,m
e,t ≥

(
l̂ϕ,dep
e + βϕ,m,dep

e,t · l̃ϕ,dep
e

)
·
(
Êϕ,max

e + γϕ,m
e,t · Ẽϕ,max

e

)
−M ·

(
1 − IDϕ,m

e,t

)
(3.50)

0 ≤ P ϕ,m,ch
e,t ≤ ICϕ,m

e,t .
(
P̂ ϕ,ch,max

e + µϕ,m,ch
e,t . P̃ ϕ,ch,max

e

)
(3.51)

0 ≤ P ϕ,m,dc
e,t ≤ ICϕ,m

e,t .
(
P̂ ϕ,dc,max

e + µϕ,m,dc
e,t . P̃ ϕ,dc,max

e

)
(3.52)

Eϕ,m
e,t − Eϕ,m

e,t−1 − ηe
chP

ϕ,m,ch
e,t + P ϕ,m,dc

e,t /ηe
dc ≤ M ·

(
1 − ICϕ,m

e,t

)
(3.53)

Eϕ,m
e,t − Eϕ,m

e,t−1 − ηe
chP

ϕ,m,ch
e,t + P ϕ,m,dc

e,t /ηe
dc ≥ −M ·

(
1 − ICϕ,m

e,t

)
(3.54)

∑
e

∑
t

δϕ,m
e,t ≤ ΓEmin

ϕ (3.55)

∑
e

∑
t

γϕ,m
e,t ≤ ΓEmax

ϕ (3.56)

∑
e

∑
t

βϕ,m,arv
e,t ≤ Γϕ

arv (3.57)

∑
e

∑
t

βϕ,m,dep
e,t ≤ Γϕ

dep (3.58)

∑
e

∑
t

µϕ,m,ch
e,t ≤ Γϕ

ch (3.59)

∑
e

∑
t

µϕ,m,dc
e,t ≤ Γϕ

dc (3.60)

Once, an EV cluster e is connected to the grid, constraints (3.45) and (3.46) enforce

the limits for the available energy in its batteries. The available energy at arrival and

departure times is enforced by (3.47)-(3.50) using the big-M method. The available energy

at arrival and departure times is uncertain and defined as a portion of the maximum and

minimum capacity of the EV cluster batteries. In (3.47), the first term on the right-hand side

represents the uncertainty in the state of charge in terms of the minimum battery capacity

of EVs and the second term represents the uncertainty in the minimum capacity of EV
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batteries connected to the distribution network. Similarly, in (3.49), the first term on the

right-hand side represents the uncertainty in the state of charge in terms of the maximum

battery capacity of EVs while the second term represents the uncertainty in the maximum

capacity of EV batteries connected to the distribution network. The power dispatch for an

EV cluster is limited by (3.51), (3.52). The charging and discharging power of an EV cluster

before the arrival time and after the departure time is zero. The hourly stored energy in an

EV cluster is determined by its charging and discharging power dispatch as shown by (3.53)

and (3.54). The budget of uncertainty for the minimum and maximum battery capacity of

EV clusters, the available energy at arrival and departure times, and the maximum charging

and discharging power of EV clusters are enforced by (3.55)-(3.60) respectively.

3.2 Solution Methodology

The proposed solution methodology is based on the column and constraint generation

(C&CG) technique. The steps taken to solve this problem are as follows:

1) Step 1 - Initialization: Initialize the upper and lower bounds and the iteration counter k

as follows: LB = −∞, UB = ∞, k = 0

2) Step 2 - Solve the master problem: Solve the problem (3.61)-(3.67) and update the lower

bound.

min
x

c⊤x + η (3.61)

s.t. Ax ≤ d (3.62)

η ≥ b⊤sω (3.63)

Dyω ≤ g; ∀ω ≤ k (3.64)

Hyω + sω = f ; ∀ω ≤ k (3.65)

(E + Mσ∗
ω)x + Gyω = h; ∀ω ≤ k (3.66)

Nν∗
ω + F yω ≤ q; ∀ω ≤ k (3.67)

Here, x represents the vector of first-stage decision variables i.e.
[
lϕ,m
v,t , u

ϕ,m
v,t , V

ϕ,m
v,t

]
, and

y represents the second-stage recourse decision variables i.e. P ϕ,m
v,t , P ϕ,m,ch

e,t , P ϕ,m,dc
e,t , P ϕ,m

n,t ,
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P ϕ,m
i,t , Qϕ,m

v,t , Qϕ,m
n,t , Qϕ,m

i,t , and the state variables PLϕ,m
l,t , QLϕ,m

l,t and Um
b,t. The constraint

(3.62) represents (3.23)-(3.26); constraint (3.64) represents the set of constraints (3.4)-(3.22).

The constraint (3.65) represents (3.2) and (3.3). Constraint (3.66) represents (3.27) and

constraint (3.67) represents (3.45)-(3.60). The lower bound is determined using (3.68).

LB =
∑
m

∑
v

∑
ϕ

∑
t

[
V̂ ϕ,m

v,t − (ûϕ,m
v,t − l̂ϕ,m

v,t )/P ϕ,max
v

]
+ η̂k+1 (3.68)

3) Step 3 - Solve subproblem: Solve the subproblem (3.69)-(3.75) and update the upper bound

using (3.82). Here, (3.74) represents (3.28)-(3.40) and (3.42)-(3.44). The constraint (3.75)

represents (3.41). To solve the subproblem, the problem (3.69)-(3.75) is transformed into

(3.76)-(3.81) using the duality theory. The nonlinear terms σ⊤π3 and ν⊤π4 are linearized

using McCormick envelopes [100].

max
σϕ,m

v,t ,νϕ,m
e,t

min
s

b⊤s (3.69)

s.t. Dy ≤ g : π1 (3.70)

Hy + s = f : π2 (3.71)

Gy = h − (E + Mσ)x∗ : π3 (3.72)

F y ≤ q − Nν : π4 (3.73)

W z ≤ R (3.74)

Qz = J (3.75)

Θ = max
σϕ,m

v,t ,νϕ,m
e,t ,s

g⊤π1 + f⊤π2 +
[
h − (E + Mσ)x∗]⊤ π3 + (q − Nν)⊤ π4 (3.76)

D⊤π1 + H⊤π2 + G⊤π3 + F ⊤π4 ≤ 0 (3.77)

π2 ≤ b, π3 free (3.78)
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π1, π4 ≤ 0 (3.79)

W z ≤ R (3.80)

Qz = J (3.81)

UB = min{UB,
∑
m

∑
v

∑
ϕ

∑
t

(V̂ ϕ,m
v,t −

ûϕ,m
v,t − l̂ϕ,m

v,t

pϕ,max
v

) + Θ∗(k+1)} (3.82)

4) Step 4 - Checking the convergence criterion: If UB − LB ≤ ε, then terminate the

algorithm, otherwise go to Step 5.

5) Step 5 - Generate columns and constraints: Add constraints (3.63)-(3.67) to the master

problem and go to Step 2. Algorithm 1 is the proposed algorithm to determine the PV

dispatch limits in which K represents the maximum number of iterations.

Algorithm 1 The proposed algorithm to quantify the PV dispatch limits
Initialization: k = 0, ε ≤ 10−3, LB = −∞ and UB = ∞
Repeat for m ∈ M

1: while k ≤ K do
2: Solve the master problem (3.61)-(3.67).
3: Update the LB as given in (3.68).
4: Solve the subproblem (3.76)-(3.81).
5: Update the UB as given in (3.82).
6: Check the convergence criteria:
7: if (UB − LB ≤ ε) then
8: Stop
9: else

10: Generate column and constraints (3.63)-(3.67) and set k = k + 1.
11: end if
12: end while

42



3.3 Numerical Results

Two test cases are considered in this section. The first test case uses the modified IEEE

34-bus system and the second test case presents the modified IEEE 123-bus system. The

simulations are performed on a server with dual 14 Core Intel Xeon 2.6 GHz and 380 GB of

memory. CPLEX 12.8 is used as the solver.

3.3.1 Modified IEEE 34-bus system

The modified IEEE 34-bus distribution system is considered as a test case. The hourly

peak demand and hourly PV outputs are shown in Fig. 3.1. One three-phase and three

single-phase dispatchable DG units are installed as shown in Table 3.1. Here, DG1 is a

three-phase DG unit and DG2-DG4 are single-phase DG units connected to phases A, B,

and C respectively. Three single-phase PV units, i.e. PV1, PV2, and PV3 are connected to

phases A, B, and C respectively. The characteristics of the PV generation units are shown in

Table 3.2. Table 3.3 shows the characteristics of the EV clusters. Here, the interconnection of

EV cluster 1 is three-phase; however, the EV clusters 2-4 are connected to phases A, B, and

C respectively. The maximum charging power for each EV is 7.4 kW . The peak demand

on phase A is 593.88 kW , 349.86 kV ar, the peak demand on phase B is 572.32 kW and

337.12 kV ar, and the peak demand on phase C is 567.42 kW and 336.14 kV ar. Considering

the driving range of 27.9 miles per day for each EV [101], and 30 kWh battery capacity,

the forecasted stored energy at arrival time is 60% of the maximum capacity and the EV.

The charging and discharging efficiency for the EV clusters are 90%. The following cases are

considered:

Case 1 – PV dispatch limits with forecasted PV generation and demand.

Case 2 – PV dispatch limits with forecasted PV generation and demand, and the uncertainty

in the EV interconnection.

Case 3 – PV dispatch limits with stochastic forecasted PV generation and demand, and

the uncertainty in the EV interconnection.

3.3.1.1 Case 1 – PV dispatch limits with forecasted PV generation and demand

In this case, the PV dispatch limits are procured without considering any EV interconnection

to the distribution network. The forecasted values of the maximum PV generation and
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Table 3.1: Dispatchable DG Units’ Characteristics

DG Bus Pmin Pmax Qmin Qmax

(kW) (kW) (kVAR) (kVAR)
1 4 0 60 -30 30
2 6 0 50 -25 25
3 24 0 20 -15 15
4 16 0 20 -15 15

Table 3.2: PV Generation Units’ Characteristics

PV Bus Pmin Pmax Qmin Qmax

(kW) (kW) (kVAR) (kVAR)
1 17 0 150 -75 75
2 22 0 150 -75 75
3 30 0 150 -75 75

Table 3.3: Characteristics of EV Units

EV Number Bus Pmax Emin Emax

cluster of vehicles (kW) (kWh) (kWh)
1 24 4 177.6 72 720
2 3 6 22.2 9 90
3 4 24 29.6 12 120
4 3 16 22.2 9 90

demand are used in this case. The PV dispatch limits on each phase are demonstrated

in Fig. 3.2. At hours in which the lower limit of PV generation is greater than zero, the

distribution feeder and DGs are incapable of supplying the demand, and therefore; the rest

of the demand is supplied by the PV generation units. For example, on phase B at hour

11, the lower limit of the PV generation is 27.927 kW . At this hour, the total real power

demand is 566.480 kW , and the dispatch of the main distribution feeder, DG1, and DG3,

are 498.553 kW , 20 kW , and 20 kW respectively. Here, DGs and the distribution feeder

reached their maximum capacity on this phase, and consequently, the rest of the load (i.e.

27.927 kW ) is supplied by the PV generation units.
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Figure 3.1: Demand and maximum PV generation profiles

Table 3.4: Total Lower PV Dispatch Limits with the Budget of Uncertainty

Budget of Uncertainty [%] Total lower dispatch limits
on each phase (kWh) Covergence

Scenario ΓEmin
ϕ ΓEmax

ϕ Γϕ,m
arv Γϕ,m

dep Γϕ
ch Γϕ

dc Phase A Phase B Phase C Iterations
1 (Case 2) 100 100 100 100 100 100 245.630 345.487 268.537 7

2 0 0 100 100 100 100 210.630 293.460 230.770 6
3 0 0 0 0 100 100 179.130 257.460 197.770 4
4 0 0 0 0 0 0 179.130 257.460 197.770 4
- Case 1 80.493 111.88 82.873 2

3.3.1.2 Case 2 – PV dispatch limits with forecasted PV generation and demand, and the
uncertainty in the EV interconnection

In Case 2, the EV interconnection and the worst-case realization of the uncertain parameters

in the EV clusters including the maximum and minimum EV battery capacities, the maximum

charging and discharging power for EVs, the available energy at arrival and departure times,

as well as the arrival and departure times are considered.

The uncertainty sets for maximum available energy are [684, 720] kWh, [81, 90] kWh, [108, 120]

kWh, and [81, 90] kWh for the first to fourth EV clusters, respectively. The uncertainty sets

for the minimum available energy are [72, 144] kWh, [9, 18] kWh, [12, 24] kWh, and [9, 18]

kWh for the first to fourth EV clusters, respectively. The uncertainty sets for available

energy at arrival time are [396, 468] kWh, [49.5, 58.5] kWh, [66, 78] kWh, and [49.5, 58.5]
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(c)Figure 3.2: The total PV dispatch limits for (a) phase A, (b) phase B and (c) phase C in
Case 1 and Case 2 with and without V2G.

kWh for first to fourth EV clusters, respectively. The uncertainty sets for the available

energy at departure time are [583.2, 720] kWh, [72.9, 90] kWh, [97.2, 120] kWh, and [72.9, 90]

kWh for first to fourth EV clusters, respectively. The uncertainty sets for the maximum
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(c)Figure 3.3: The total PV dispatch limits for (a) phase A, (b) phase B and (c) phase C in
Case 2 with the budget of uncertainty.

charging/discharging power dispatch are [177.6, 213.2] kW , [22.2, 26.64] kW , [29.6, 35.52]

kW , and [22.2, 26.64] kW for the first to fourth EV clusters, respectively. Finally, the
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Figure 3.4: The PV dispatch limits for stochastic PV generation and demand in 5 scenarios
and the expected value for 100 scenarios on phase C.

Table 3.5: Worst-Case Realization of Arrival and Departure Times for the IEEE 34-bus
System

Arrival and departure times for EV clusters on buses 6, 24 and 16 [hour]
Scenario T a,arv

1 T a,dep
1 T b,arv

1 T b,dep
1 T c,arv

1 T c,dep
1 T a,arv

2 T a,dep
2 T b,arv

3 T b,arv
3 T c,arv

4 T c,dep
4

1 (Case 2) 10 17 10 17 10 17 10 17 10 15 8 15
2 8 15 8 17 8 17 10 15 10 15 10 17
3 10 17 10 17 10 17 10 15 8 17 8 15
4 10 17 10 17 10 17 10 17 10 15 8 15

uncertainty sets for arrival and departure times are TΦ,arv
e ∈ [8, 10] and TΦ,dep

e ∈ [15, 17],

respectively.

Fig. 3.2 demonstrates the dispatch limits for the PV generation units in this case. As

shown in this figure, the lower PV dispatch limits on all phases at all hours are either equal

or greater than those in Case 1. The solution algorithm converges after 7 iterations in

this case. Considering the interconnection of EVs to the distribution network, the following

observations were made:

a) The impact of V2G on the dispatch limits of PV generation

To investigate the impacts of V2G on the PV dispatch limits, it is assumed that the EV

clusters are unable to discharge and inject power back to the grid (non-V2G mode). Fig. 3.2

shows the dispatch limits for PV generation with and without V2G mode. Here, the lower
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Table 3.6: Total Lower Dispatch Limits of the PV Generation

Budget of Uncertainty (%) Total lower dispatch limits
on each phase (kWh)

Scenario Λa
arv Λa

dep Λb
arv Λb

dep Λc
arv Λc

dep Phase A Phase B Phase C
5 (Case 2) 100 100 100 100 100 100 245.630 345.487 268.537

6 50 50 50 50 50 50 223.430 301.033 240.797
7 0 0 100 100 100 100 186.183 345.487 268.537
8 0 0 0 0 100 100 186.183 287.967 268.537
9 0 0 0 0 0 0 186.183 287.967 214.500

dispatch limits for PV generation at all hours are either higher than or equal to the lower

dispatch limits in Case 1, because the EVs are incapable of injecting power to the grid. As

shown in Fig. 3.2c, on phase C at hours 12, 13, and 14, the lower PV dispatch limits are

increased from 0 kW in Case 1 to 33.773 kW , 86.597 kW and 54.767 kW respectively.

b) The impact of the budget of uncertainty

The budget of uncertainty is defined as the maximum number of changes allowed for the

uncertain parameters within the defined uncertainty sets. Such changes are represented by

the changes in the binary variables δϕ,m
e,t , γϕ,m

e,t , βϕ,m,arv
e,t , βϕ,m,dep

e,t , µϕ,m,ch
e,t , µϕ,m,dc

e,t , τϕ,m,arv
e ,

τϕ,m,dep
e , during the operation horizon. For instance, for maximum EV clusters’ energy

capacity, ΓEmax
ϕ = 0 means that the budget of uncertainty is 0%, while for the EV clusters

on each phase in 24 hours, ΓEmax
ϕ = 48 indicates that the budget of uncertainty is 100%.

To evaluate the impact of the budget of uncertainty on the PV dispatch limits, multiple

scenarios shown in Table 3.4, are considered. This table shows the total lower dispatch limits

for the PV generation in the distribution network by limiting the budget of uncertainty for

1) the minimum and maximum EV energy capacity, 2) minimum and maximum charging

and discharging power, and 3) available energy at arrival and departure times. In these

scenarios, the budgets of uncertainty for the arrival and departure times are 100%. Table

3.5 shows the worst-case realization of the arrival and departure times for the EV clusters

on phases A, B, and C in the scenarios presented in Table 3.4. Fig. 3.3 demonstrates the

PV dispatch limits on phases A, B, and C in these scenarios.

The impacts of the budgets of uncertainty (Λϕ
arv and Λϕ

dep) on the total lower PV dispatch
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limits are shown using the scenarios in Table 3.6. Here, the budgets of uncertainty for the

maximum and minimum energy and power capacities of EVs as well as the energy at arrival

and departure times are 100%. As shown in this table, when the budgets of uncertainty for

arrival and departure times decrease from 100% to 50%, the total lower dispatch limits on

phases A, B, and C decrease by 9.04%, 12.87%, and 10.33% respectively. It is worth noting

that 100% budget of uncertainty for the arrival and departure times means, Λϕ
arv = 2 and

Λϕ
dep = 2 and 0% budget of uncertainty means Λϕ

arv = 0 and Λϕ
dep = 0.

As it is shown in Fig. 3.3 and Table 3.4, once the budget of uncertainty is 100% for all the

uncertain variables (Case 2), the total lower PV dispatch limit reaches its maximum value.

In Table 3.4, the highest total lower PV dispatch limits are 245.630 kWh, 345.487 kWh, and

268.537 kWh on phases A, B, and C respectively. Moreover, once the budgets of uncertainty

for the EVs’ energy and power capacity, and the available energies at arrival and departure

times, are zero the total lower PV dispatch limits for the PV generation on phases A, B,

and C reach the lowest values of 179.130 kWh, 257.460 kWh, and 197.770 kWh respectively.

Table 3.4 shows the number of iterations in which the proposed solution algorithm converged.

Table 3.7: Lower PV Dispatch Limits Considering the Uncertainty in the Forecasted PV
Generation and Demand

Scenario Phase A Phase B Phase C
S1 122.714 196.331 108.155
S2 127.682 201.118 114.754
S3 257.925 337.235 277.360
S4 319.060 394.124 343.449
S5 415.159 482.840 450.023

Expected Value 238.142 311.915 249.399
Case 2 245.630 345.487 268.537
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3.3.1.3 Case 3 – PV dispatch limits with stochastic forecasted PV generation and demand,
and the uncertainty in the EV interconnection

In this case, the forecast errors in demand and maximum PV generation are captured

by generating 100 scenarios. The Gaussian probability distribution is used to represent the

forecast error of the maximum PV generation. The mean value of the probability distribution

is the forecasted PV generation in Cases 1 and 2, and the standard deviation is 0.0166 of the

mean value. The hourly total upper and lower dispatch limits of PV generation on phase C

in 5 scenarios (S1-S5) and the expected upper and lower limits for 100 scenarios are shown

in Fig. 3.4. Furthermore, Table 3.7 shows the day-ahead total lower dispatch limits for 5

scenarios and the expected value for 100 scenarios for all phases. The expected upper and

lower dispatch limits of PV generation for 100 scenarios are compared to those presented in

Case 2. As shown in Table 3.7, the expected total lower PV dispatch limits are smaller than

those in Case 2.

3.3.2 Modified IEEE 123-Bus System

Here, the real and reactive peak demands on phase A are 1420 kW and 775 kV ar; on

phase B are 915 kW , 515 kV ar; and on phase C are 1155 kW and 635 kV ar, respectively. As

shown in Table 3.8, 12 solar PV generation units are installed and the characteristics of the

DG units are shown in Table 3.9. Here, DG4 and DG5 are single-phase DGs connected to

phase A, and other DG units are three-phase resources. The characteristics of 6 EV clusters

are shown in Table 3.10 where EV clusters 1 and 4 are on phase A, EV clusters 2 and 5

are on phase B, and EV clusters 3 and 6 are on phase C. The upper and lower limits of PV

generation are evaluated in the following cases:

Case 1 – PV dispatch limits with forecasted PV generation and demand

Case 2 – PV dispatch limits with forecasted PV generation and demand, and the uncertainty

in the EV interconnection

3.3.2.1 Case 1 – PV dispatch limits with forecasted PV generation and demand

In this case, the feasible dispatch limits for PV generation are determined while ignoring

the EV interconnections to the network. The lower and upper limits for PV generation on

phases A, B, and C are shown in Fig. 3.5a, Fig. 3.5b, and Fig. 3.5c respectively. As shown
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Table 3.8: Characteristics of PV Generation Units in the IEEE 123-Bus System

PV Bus Pmin Pmax Qmin Qmax

1 1 0 400 -200 200
2 13 0 400 -200 200
3 18 0 400 -200 200
4 25 0 400 -200 200
5 40 0 200 -100 100
6 48 0 200 -100 100
7 60 0 200 -100 100
8 70 0 400 -200 200
9 81 0 200 -100 100
10 87 0 400 -200 200
11 101 0 400 -200 200
12 115 0 400 -200 200

Table 3.9: Characteristics of DG Units in the IEEE 123-Bus System

DG Bus Pmin Pmax Qmin Qmax

1 29 0 100 -60 60
2 8 0 100 -60 60
3 44 0 100 -60 60
4 111 0 150 -75 75
5 122 0 50 -25 25

Table 3.10: Characteristics of EV Clusters in the IEEE 123-Bus System

EV cluster Number of
vehicles Bus Pmax Emin Emax

1 20 13 148 60 600
2 12 51 88.8 36 360
3 10 65 74 30 300
4 6 18 44.4 18 180
5 20 40 148 60 600
6 10 88 74 30 300

52



in these figures, once the PV generation is more than demand the excess PV generation is

curtailed. At hour 13, the total real demand on phase A is 1405.80 kW ; the PV generation

units serve the load in this hour and the main distribution feeder and DGs serve 0 kW . The

available PV generation at this hour is 1776.768 kW and the PV generation curtailment is

370.968 kW . The lower PV dispatch limits on phases A, B, and C are zero at all hours,

which shows that the main distribution feeder and DGs can supply the demand on these

phases.

3.3.2.2 Case 2 – PV dispatch limits with forecasted PV generation and demand, and the
uncertainty in the EV interconnection

In this case, the maximum battery capacity of each EV is 30 kWh and the minimum

capacity is 10% of maximum capacity. EVs can leave at the departure time with a fully

charged battery and the forecasted available energy at arrival time is 25% of the maximum

EV’s battery capacity. The uncertainty sets for the maximum available energy in EV clusters

1-6 are [540, 600] kWh, [324, 360] kWh, [270, 300] kWh, [162, 180] kWh, [540, 600] kWh, and

[270, 300] kWh respectively. The uncertainty sets for the minimum available energy for EV

clusters 1-6 are [60, 72] kWh, [36, 43.2] kWh, [30, 36] kWh, [18, 21.6] kWh, [60, 72] kWh,

and [30, 36] kWh respectively. The uncertainty sets for the available energy at arrival time

for EV clusters 1-6 are [120, 172.8] kWh, [72, 103.68] kWh, [60, 86.4] kWh, [36, 51.84] kWh,

[120, 172.8] kWh, and [60, 86.4] kWh respectively. The uncertainty sets for the available

energy at departure time for EV clusters 1-6 are [480, 600] kWh, [288, 360] kWh, [240, 300]

kWh, [144, 180] kWh, [480, 600] kWh, and [240, 300] kWh respectively. The uncertainty sets

for the maximum charging/discharging power dispatch for EV clusters 1-6 are [148, 207.2]

kW , [88.8, 124.32] kW , [74, 103.6] kW , [44.4, 62.16] kW , [148, 207.2] kW , and [74, 103.6] kW

respectively. The uncertainty sets for arrival and departure times are similar to the previous

case study. The impacts of V2G operation mode and the budget of uncertainty on the PV

dispatch limits are investigated.

a) The impact of V2G operating mode on PV dispatch limits

Fig. 3.5 demonstrates the upper PV dispatch limits with and without V2G capability

of the EV clusters. As shown in this figure, once the EVs are connected to the distribution

network the upper dispatch limits on all phases are increased compared to Case 1. Table
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Table 3.11: Total Upper PV Dispatch Limits in Case 1 and Case 2 with and without V2G

Case Phase A
(kWh)

Phase B
(kWh)

Phase C
(kWh)

Case 1 12746.876 9358.380 11124.780
Case 2 (with V2G) 13377.627 10022.187 11422.419

Case 2 without V2G 13252.216 9813.846 11357.312

Table 3.12: Total Upper PV Dispatch Limits Considering the Budget of Uncertainty

Total upper limits on each phase (kWh)
Scenarios Phase A Phase B Phase C
1 (Case 2) 13377.627 10022.187 11422.419

2 13411.323 10063.659 11435.379
3 13445.019 10105.131 11431.467
4 13445.019 10105.131 11448.339

Case 1 12746.876 9358.380 11124.780

3.11 shows the total upper PV dispatch limit on each phase. As shown in this table, the

total upper dispatch limits are increased with V2G capability compared to the case in which

EVs do not have V2G capability. Similar to Case 1, the total lower PV dispatch limits on

all phases are zero which shows that the main distribution feeder and DGs are capable of

supplying the demand. The solution is procured in 6 iterations once the V2G capability of

EV clusters is considered.

b) The impact of the budget of uncertainty

Here, similar scenarios shown in Table 3.4 are considered. For all scenarios, the minimum

and maximum arrival and departure times are similar to the previous test case. Table 3.12

shows the total upper dispatch limits of PV generation on phases A, B, and C. As shown

in this table, the increase in the budget of uncertainty from 0% to 100% will decrease the

total upper dispatch limits by 67.392 kW , 82.944 kW and 25.920 kW on phases A, B, and

C respectively. Fig. 3.6a, Fig. 3.6b, and Fig. 3.6c demonstrate the effect of the budget
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Table 3.13: Total Upper PV Dispatch Limits with Budget of Uncertainty for
Arrival/Departure Times

Total upper limits on each phase (kWh) Convergence
Scenarios Phase A Phase B Phase C Iteration

5 13377.627 9968.197 11422.419 6
6 13411.371 10042.433 11422.419 4
7 13421.494 10022.187 11448.747 3
8 13421.494 10076.177 11458.467 3
9 13421.494 10076.177 11469.291 2

Table 3.14: Worst-Case Realization of Arrival and Departure Times in the IEEE 123-bus
system

Arrival and departure times for EV clusters [hour]
Scenario T a,arv

1 T a,dep
1 T b,arv

2 T b,dep
2 T c,arv

3 T c,dep
3 T a,arv

4 T a,dep
4 T b,arv

5 T b,arv
5 T c,arv

6 T c,dep
6

1 (Case 2) 10 15 8 17 8 15 8 17 10 15 8 15
2 8 17 8 15 8 15 10 17 8 15 8 15
3 10 17 10 15 10 17 10 15 10 17 10 15
4 10 17 10 15 10 17 10 15 10 17 10 15

of uncertainty on the hourly upper and lower PV dispatch limits on phases A, B, and C,

respectively. Here, as the budget of uncertainty decreases the total upper dispatch limits

will increase which means less total PV curtailment in the operation horizon. Furthermore,

the lower dispatch limits are not affected by the budget of uncertainty. The worst-case

realization of the arrival and departure times for the EV clusters are shown in Table 3.14.

Similar to Table 3.6, the impacts of the budget of uncertainty for the arrival and departure

Table 3.15: Simulation time of scenarios in Tables XIV and IV for the IEEE 123-bus system

Scenario Simulation time
(hr: min) Iteration

1 (Case 2) 3:55 6
2 3:13 5
3 2:38 4
4 3:06 5

Case 1 0:33 2
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times, i.e. Λϕ
arv and Λϕ

dep, on the total upper PV dispatch limits are shown in Table 3.13.

Here, when the budget of uncertainty decreases from 100% to 0%, the total upper dispatch

limits on phases A, B, and C increase by 43.867 kW , 107.98 kW , and 46.872 kW respectively.

Table 3.13, also shows the number of iterations in which the proposed algorithm converged.

It is worth noting that as the number of uncertain variables (i.e. the available energy at

arrival and departure times, the maximum and minimum energy and power capacity of the

EV clusters, and the arrival and departure times of the EV clusters) increases, the number

of constraints formed by using the McCormick envelopes increases. This will increase the

number of iterations and the solution time. Table 3.15 shows the simulation times and the

number of iterations for scenarios shown in Table 3.12 for the IEEE 123-bus system.

3.4 Conclusion

This chapter presents a framework to quantify the dispatch limits for the PV generation

in the unbalanced distribution networks with EV interconnection. The presented framework

captures the uncertainties associated with the interconnection of EVs, the available energy

at arrival and departure times, as well as the uncertainty in power and energy capacity of

the EV clusters. It is shown that integrating the EVs with no V2G will increase the lower

or upper dispatch limit of the PV generation as the distribution feeder and DG capacities

are limited, and the energy requirement for charging the EVs will increase the lower and

upper PV dispatch limits. Moreover, the impact of the budget of uncertainty and the

operating mode of EVs (V2G and non-V2G) on the dispatch limits of the PV generation, are

investigated. It is shown that increasing the budget of uncertainty for EVs will increase the

total lower dispatch limits or decrease the total upper dispatch limits of PV generation in

the day-ahead operation. Moreover, V2G reduces the total lower dispatch limits or increases

the total upper dispatch limits of PV generation. To capture the uncertainty associated

with maximum forecasted PV generation and demand, a scenario-based approach is used

to determine the upper and lower dispatch limits of the PV generation. The worst-case

realization of the EV interconnection parameters is considered in each scenario and the

expected lower and upper PV dispatch limits are calculated.

Future research in this domain could focus on data-driven approaches based on a limited
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number of observed samples to quantify the uncertainty associated with the EV interconnection

and determine the upper and lower dispatch limits of PV generation. Such approaches

could capture distribution network loss to quantify the locational PV dispatch limits in the

distribution network.
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Chapter 4

Solar Photovoltaic Dispatch Margins with Stochastic Unbalanced Demand in Distribution

Networks

The increase in the generation capacity of the variable photovoltaic units introduces new

challenges to the operation of the unbalanced three-phase distribution networks. In this

chapter, a two-stage optimization problem is formulated to identify the feasible dispatch

margins of photovoltaic generation considering the distribution network operation constraints.

The proposed problem is solved using the column-and-constraint generation approach. The

distribution network constraints are formulated as second-order cone constraints. The uncertainty

in the forecasted demand and maximum photovoltaic generation as well as the unbalanced

operation of the distribution network is considered in the proposed approach. The dispatch

margins of photovoltaic generation are quantified considering the worst-case realization of

demand in the distribution network. The impacts of energy storage and the ramping

limits of the dispatchable generation resources on the dispatch margins of photovoltaic

generation are addressed in this network. The dispatch margins of photovoltaic generation

are quantified in the modified IEEE 13-bus system. It is shown that enforcing the ramping

rates for the dispatchable units will increase the lower dispatch margins of photovoltaic

generation, and leveraging energy storage increases the difference between the lower and

upper photovoltaic dispatch margins. While earlier research addressed the dispatch limits

for renewable resources, the challenges corresponding to the integration of such variable

resources in distribution networks including the unbalanced operation of the networks, the

uncertainty in demand, and the risk associated with exceeding these limits require further

investigation. In the chapter 2, the dispatchability limits of PV generation in the unbalanced

distribution network are quantified using a linear approximation of the power flow in the

distribution network considering the uncertainties associated with the interconnection of

electric vehicles. Furthermore, the impacts of ramp rates and energy storage on the PV
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dispatch margins in a distribution network with limited utility grid resources were not

investigated. The contributions of this chapter are as follows:

• A framework to determine the dispatch margins for PV resources in the unbalanced

distribution network is proposed by formulating a mixed-integer second-order cone

programming (MISOCP) problem which is solved as a two-stage problem using the

column-and-constraint generation technique.

• The uncertainty in the forecasted maximum PV solar generation is captured by introducing

scenarios and the uncertainty in demand is characterized by uncertainty sets.

• The impact of energy storage facilities, as well as the ramping limits of dispatchable

generation resources on the PV dispatch margins in the distribution network are

investigated.

The rest of the chapter is organized as follows, Section 5.1 presents the formulated problem

to determine the PV dispatch margins in the unbalanced distribution networks; Section 5.2

proposes the solution methodology; Section 5.3 presents the numerical analysis to show the

effectiveness of the proposed formulation and solution approach, and Section 5.4 presents

the conclusion.

Nomenclature

Sets and Indices:

– b Index of bus

– d Index of demand

– e Index of energy storage

– i Index of distributed generation

– l Index of distribution branch

– n Index of distribution feeder

– v Index of PV generation
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– m Index of scenario

– S Set of scenarios

– B Set of buses

Variables:

– lφ,m
v,t Lower margin of PV dispatch in scenario m

– uφ,m
v,t Upper margin of PV dispatch in scenario m

– l̃φv,t Risk-based lower margin of PV dispatch

– ũφ
v,t Risk-base upper margin of PV dispatch

– Cφ,m
e,t Available energy in the energy storage unit

– Pφ,m
(.),t Real power output of a unit

– Qφ,m
(.),t The reactive power output of a unit

– PLφ,m
l,t Real power flow in a distribution branch

– QLφ,m
l,t Reactive power flow in a distribution branch

– SLφ,m
l,t Apparent power flow in a distribution branch

– Um
b,t Vector of square of voltage magnitudes

– Im
l,t Vector of square of current magnitudes

– s
(.),φ,m
b,t Slack variables

– σφ,m
v,t Auxiliary binary variables representing the worst-case realization of PV generation

– ρ
(.),φ,m
d,t Auxiliary binary variable representing the worst-case realization of demand

– µ Dual variable
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Parameters:

– AD Bus-demand incidence matrix

– AE Bus-energy storage incidence matrix

– AG Bus-distributed generation incidence matrix

– AL Bus-branch incidence matrix

– AV Bus-photovoltaic incidence matrix

– AN Bus-feeder incidence matrix

– LN Feeder-branch incidence matrix

– BN Feeder-bus incidence matrix

– BF Bus-branch incidence matrix for buses at the sending end of the branches

– AI Bus-branch incidence matrix for buses at the receiving end of the branches

– Vb,Vb Vector of square of voltage magnitude’s lower and upper limits

– Il Vector of square of current magnitude’s upper limits

– C0,φ
e The initial energy of an energy storage unit

– Pφ,f,m
v,t Forecasted maximum PV generation

– Pφ,max
v Capacity of a PV generation unit

– rl Resistance matrix of a distribution branch

– xl Inductive reactance matrix of a distribution branch

– pl Vector of binary parameters representing the availability of phases in a distribution

branch

– SLφ,max
l Apparent power capacity of a distribution branch
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– Pφ,max
(.) Real power capacity of a unit

– Qφ,max
(.) Reactive power capacity of a unit

– Pφ
d,t, P

φ
d,t Lower and upper bounds of uncertain real power demand

– Pφ,f
d,t Forecasted real power demand

– Qφ
d,t

,Qφ
d,t Lower and upper bounds of uncertain reactive power demand

– Qφ,f
d,t Forecasted reactive power demand

– Sφ,max
(.) Maximum apparent power of a unit

– PFn Power factor at distribution feeder

– Γφ
t The budget of uncertainty for real and reactive power

4.1 Problem Formulation

Determining the PV dispatch margins could be considered as finding the largest uncertainty

set for which a robust optimization problem could be solved to determine the feasible

operation decisions in the distribution network. This problem is formulated as an optimization

problem in which the objective is to maximize the PV generation range such that the

distribution feeder and other dispatchable generation resources could accommodate the PV

generation without violating the network constraints. Here, such limits are determined

considering the unbalanced generation and demand in the distribution network and the

unbalanced distribution network topology. The problem formulation is shown in (4.1)-(4.32).

The objective function is shown in (4.1) where the objective is to expand the feasibility region

for PV dispatch by maximizing the distance between the lower and upper margins while

ensuring the existence of PV dispatch within these margins. Here, once V φ,m
v,t = 0, the PV

dispatch is within the upper and lower margins, and otherwise, the PV output will be outside

of the dispatch margins. Therefore, minimizing V φ,m
v,t would accommodate the PV output

between the upper and lower margins. The second term in the minimization problem is the

normalized difference between the upper and lower dispatch margins of PV. The worst-case
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realizations of PV generation and demand are determined using the formulated max-min

problem in which the slack variables that represent the mismatches in real and reactive

power are minimized in (4.1).

The distribution network constraints are given in (4.2)-(4.9). The nodal real and reactive

power balances are enforced in (4.2) and (4.3), respectively. Here, PLφ,m
l,t ∈ P Lm

l,t, P
φ,m
i,t ∈

P Gm
i,t, P

φ,m
v,t ∈ P V m

v,t, P
φ,m
e,t ∈ P Em

e,t, P
φ,m
n,t ∈ P Nm

n,t, and Pφ,m
d,t ∈ P Dm

d,t. Similar variables

are defined for the reactive power generation and demand in the network i.e. QLφ,m
l,t ∈ QLm

l,t,

Qφ,m
i,t ∈ QGm

i,t, Q
φ,m
v,t ∈ QV m

v,t, Q
φ,m
e,t ∈ QEm

e,t, Q
φ,m
n,t ∈ QNm

n,t, and Qφ,m
d,t ∈ QDm

d,t. The

power flow in distribution branch is formulated by (4.4), (4.5). Here, R̃l and X̃ l are the

resistance and inductive reactance matrices of the unbalanced branch l that are determined

using the formulation presented in [99]. The big-M method is used to relax the power

flow constraint once the certain phases on a distribution branch do not exist and pφ
l ∈ pl.

The relationship between the real and reactive power at the sending end of each branch is

presented as (4.6) using a quadratic constraint which is further reformulated as a second-

order cone constraint [102,103]. Similar constraint is presented in (4.7) to enforce the real and

reactive power capacity of the distribution feeder. The branch currents and nodal voltages

are limited by (4.8) and (4.9) respectively.

The operation constraints of feeder, DG, PV generation, and energy storage system (ESS),

are given in (4.10)-(4.20). The real power from the feeder is restricted by (4.10) and the

reactive power supplied by the distribution feeder is constrained by (4.11)-(4.12) considering

the acceptable power factor at the feeder. The dispatched real power of a DG unit is limited

by the minimum and maximum real power capacity of the unit as enforced by (4.13). A

similar constraint is considered for the reactive power dispatch of the unit. The power ramp

for dispatchable DG units is enforced by (4.14). Moreover, the PV output is limited by the

forecasted generation as shown in (4.15). The reactive power output of a PV unit is within

the upper and lower acceptable limits as shown in (4.16). Similar constraints are considered

for the real and reactive power dispatch of the ESS. The available energy in the ESS is

calculated using (4.17) where the stored energy is within the minimum and maximum limits

as enforced by (4.18) [104]. The available energy in the ESS at the beginning and end of the

simulation period is enforced to be the same as shown in (4.19) and (4.20).
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The rest of the constraints are given in (4.21)-(4.32). The lower dispatch margin is lower than

the upper margin as shown in (4.21) and the upper margin is limited by the maximum PV

capacity as shown in (4.22). As enforced by (4.23)-(4.24), if V φ,m
v,t = 1, the lower and upper

dispatch margins are zero. The worst-case realization of the uncertain PV generation within

the polyhedral uncertainty set is determined by (4.25) [105]. The slack variables are positive

as enforced by (4.26). Considering the worst-case realization of the demand would impose

new constraints (4.27)-(4.32) to the problem. Here, the uncertainty in demand is captured

by a polyhedral set and therefore, the real and reactive demand is represented by (4.27) and

(4.28) respectively. The auxiliary binary variables used to enforce the uncertain real and

reactive demands are mutually exclusive as shown in (4.29) and (4.30). The conservativeness

of the solution is determined by the budget of uncertainty. Here, the budget of uncertainty

is considered for the real and reactive demands using (4.31) and (4.32) respectively. As Γφ
t

increases in (4.31), and (4.32) the budget of uncertainty will increase and the solution will

be more conservative.

min
uφ,m

v,t ,lφ,m
v,t ,V φ,m

v,t

∑
v,φ,m,t

[
V φ,m

v,t − (uφ,m
v,t − lφ,m

v,t )/Pφ,max
v

]
+

max
σφ,m

v,t ,ρ
(.),φ,m
d,t

min
s

(.)
(.)

∑
b,φ,m,t

(
s1,φ,m

b,t + s2,φ,m
b,t + s3,φ,m

b,t + s4,φ,m
b,t

)
(4.1)

s.t.

AL · PLm
l,t − AI · Im

l,t · R̃l + AG · PGm
i,t + AV · PVm

v,t + AE · PEm
e,t + AN · PNm

n,t

+ s1,φ,m
b,t − s2,φ,m

b,t = AD · PDm
d,t (4.2)

AL · QLm
l,t − AI · Im

l,t · X̃l + AG · QGm
i,t + AV · QVm

v,t + AE · QEm
e,t + AN · QNm

n,t+

s3,φ,m
b,t − s4,φ,m

b,t = AD · QDm
d,t (4.3)

AL⊤ · Um
b,t + 2(R̃l · PLm

l,t + X̃l · QLm
l,t) + (R̃2

l + X̃2
l ) · Im

l,t ≤ M · (1 − pl) (4.4)

AL⊤ · Um
b,t + 2(R̃l · PLm

l,t + X̃l · QLm
l,t) + (R̃2

l + X̃2
l ) · Im

l,t ≥ −M · (1 − pl) (4.5)
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(PLm
l,t)2 + (QLm

l,t)2 ≤ (BF · Um
b,t) · Im

l,t (4.6)

(PNm
n,t)2 + (QNm

n,t)2 ≤ (BN · Um
b,t) · (LN · Im

l,t) (4.7)

Im
l,t ≤ Il (4.8)

Vb ≤ Um
b,t ≤ Vb (4.9)

Pφ,min
n ≤ Pφ,m

n,t ≤ Pφ,max
n (4.10)

Qφ,m
n,t ≤ tan

(
cos−1 PF n

)
· Pφ,m

n,t (4.11)

Qφ,m
n,t ≥ −tan

(
cos−1 PF n

)
· Pφ,m

n,t (4.12)

Pφ,min
i ≤ Pφ,m

i,t ≤ Pφ,max
i (4.13)

−Ri ≤ Pφ,m
i,t − Pφ,m

i,t−1 ≤ Ri (4.14)

0 ≤ Pφ,m
v,t ≤ Pφ,f,m

v,t (4.15)

−Qφ,max
v ≤ Qφ,m

v,t ≤ Qφ,max
v (4.16)

Cφ,m
e,t = Cφ,m

e,t−1 − Pφ,m
e,t (4.17)

Cφ,min
e ≤ Cφ,m

e,t ≤ Cφ,max
e (4.18)

Cφ,m
e,0 = Cφ,m

e,24 (4.19)

Cφ,m
e,0 = C0,φ,m

e (4.20)

0 ≤ lφ,m
v,t ≤ uφ,m

v,t (4.21)

uφ,m
v,t ≤ Pφ,max

v (4.22)

(
Pφ,max

v − Pφ,f,m
v,t

)
.V φ,m

v,t − lφ,m
v,t ≥ −Pφ,f,m

v,t (4.23)

Pφ,f,m
v,t · V φ,m

v,t + uφ,m
v,t ≤ Pφ,f,m

v,t (4.24)

Pφ,m
v,t = lφ,m

v,t +
(
uφ,m

v,t − lφ,m
v,t

)
.σφ,m

v,t (4.25)
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s1,φ,m
b,t , s2,φ,m

b,t , s3,φ,m
b,t , s4,φ,m

b,t ≥ 0 (4.26)

Pφ,m
d,t = Pφ

d,t · ρ1p,φ,m
d,t + Pφ,f

d,t · ρ2p,φ,m
d,t + P

φ
d,t · ρ3p,φ,m

d,t (4.27)

Qφ,m
d,t = Qφ

d,t
· ρ1q,φ,m

d,t +Qφ,f
d,t · ρ2q,φ,m

d,t +Q
φ
d,t · ρ3q,φ,m

d,t (4.28)

ρ1p,φ,m
d,t + ρ2p,φ,m

d,t + ρ3p,φ,m
d,t = 1 (4.29)

ρ1q,φ,m
d,t + ρ2q,φ,m

d,t + ρ3q,φ,m
d,t = 1 (4.30)

∑
d

(ρ1p,φ,m
d,t + ρ3p,φ,m

d,t ) ≤ Γφ
t (4.31)

∑
d

(ρ1q,φ,m
d,t + ρ3q,φ,m

d,t ) ≤ Γφ
t (4.32)

4.2 Solution Methodology

The compact form of the problem formulation is presented in (4.33)-(4.38) as follows:

min
x

c⊤x + max
ξ

min
y

b⊤y (4.33)

s.t. Ax ≤ d (4.34)

F x + Qy + (D · x)⊤ξ + Mξ = h (4.35)

Ey ≤ g (4.36)

∥Gy∥2 ≤ m⊤y (4.37)

Lξ ≤ w (4.38)

The problem is reformulated as a two-stage robust optimization problem, where x is the

vector of first-stage decision variables i.e.
[
lφ,m
v,t , u

φ,m
v,t , V

φ,m
v,t

]
and y is the vector of second-

stage recourse decision variables i.e. Pφ,m
v,t , Pφ,m

e,t , Pφ,m
n,t , Pφ,m

i,t , Qφ,m
v,t , Qφ,m

n,t , Qφ,m
i,t , PLφ,m

l,t ,

QLφ,m
l,t and s

(.),φ,m
b,t as well as the voltage magnitude on the buses (Um

b,t). Here, ξ is a vector

representing the uncertain variables where ρ(.),φ,m
d,t ∈ ξ and σφ,m

v,t ∈ ξ. The constraint (4.34)

represents (4.21)-(4.24); constraint (4.35) represents the set of constraints (4.2)-(4.3), (4.25),
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(4.27) and (4.28). Constraint (4.37) represents constraints (4.6)-(4.7). Constraints (4.38),

represents constraints (4.29)-(4.32). The rest of the constraints are represented by constraint

(4.36).

The proposed solution approach is based on the column-and-constraint generation algorithm

presented in [86]. The flowchart of the proposed solution methodology is shown in Fig.

4.1. As shown in this figure, in the master problem (first stage), the upper and lower

margins of PV generation are determined by maximizing the difference between the upper

and lower margins, using the normalized term (uφ,m
v,t − lφ,m

v,t )/Pφ,max
v in the objective function.

By solving the subproblem at the second stage, the operation decisions considering the

worst-case realization of the uncertain variables are determined. The solution procedure is

presented in the following steps.

1) Step 1 – Initialize the iteration count at k = 0 and the convergence threshold at ε1 ≤ 10−3.

Set the LB = −∞ and UB = ∞.

2) Step 2 – Solve the master problem with the objective function shown in (4.39) and the

constraints (4.40)-(4.44). Determine the solution for lφ,m
v,t , u

φ,m
v,t , V

φ,m
v,t by fixing the solution

obtained from the subproblem (e.g. ξ∗). The upper and lower margins of the PV generation

determined in the master problem (x∗) are passed to the subproblem.

min
x

c⊤x + η (4.39)

s.t. Ax ≤ d (4.40)

η ≥ b⊤yl; ∀l ≤ k (4.41)

F x + Qyl + (D · x)⊤ξ∗ + Mξ∗ = h; ∀l ≤ k (4.42)

Eyl ≤ g; ∀l ≤ k (4.43)

∥∥∥Gyl
∥∥∥

2
≤ m⊤yl; ∀l ≤ k (4.44)

Update the LB using (4.45):

LB = c⊤x∗ + η̂k+1 (4.45)
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3) Step 3 –Solve the subproblem with the objective function in (4.46) and constraints (4.47)-

(4.50).

max
ξ

min
y

b⊤y (4.46)

s.t. Qy = h − (D · x∗)⊤ξ − Mξ − F x∗ : µ1 (4.47)

Ey ≤ g : µ2 (4.48)

∥Gy∥2 ≤ m⊤y : µ3,µ4 (4.49)

Lξ ≤ w (4.50)

Here, the subproblem (4.46)-(4.50) is reformulated as (4.51)-(4.55) using the duality theory.

ψ(y) = max
ξ

[
h − (D · x∗)⊤ξ − Mξ − F x∗

]⊤
µ1 + g⊤µ2 (4.51)

s.t. Q⊤µ1 + E⊤µ2 ≤ b (4.52)

∥µ3∥2 ≤ µ4 (4.53)

Lξ ≤ w (4.54)

µ2 ≤ 0, µ1 free (4.55)

The nonlinear term µ1ξ in (4.51) is linearized using McCormick envelopes. Considering

υ = µ1ξ, the nonlinear term υ is linearized by (4.56)-(4.59) [106].

υ ≥ µ1ξ + µ1ξ − µ1ξ (4.56)

υ ≥ µ1ξ + µ1ξ − µ1ξ (4.57)

υ ≤ µ1ξ + µ1ξ − µ1ξ (4.58)
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υ ≤ µ1ξ + µ1ξ − µ1ξ (4.59)

Update the upper bound of the solution using (4.60) and go to Step 4.

UB = min{UB, c⊤x∗(k+1) + ψ(y∗(k+1))} (4.60)

4) Step 4 – Check if UB − LB ≤ ε1. If this condition is satisfied, terminate the procedure;

otherwise, go to Step 5.

5) Step 5 – Generate the columns and constraints by creating additional decision variables

and adding constraint (4.41)-(4.44). Set k = k + 1 and go to Step 2.

4.3 Numerical Results

In this section, the modified IEEE-13 bus system is considered as a test case. The

simulations are performed on a PC with Intel 3.4 GHz Core i5 processor and 8 GB memory,

using MOSEK solver. The diagram of the modified IEEE 13-bus system is shown in Fig.

4.2 and the characteristics of dispatchable DG and PV units are shown in Tables 4.1 and

4.2 respectively. All DG units except DG4 are three-phase units. DG4 is a single-phase unit

installed on phase C. The total peak real power demand on phases A, B, and C are 1175 kW,

1039 kW, and 1252 kW respectively. The total peak reactive power demand on phases A,

B, and C are 616 kVAr, 665 kVAr, and 771 kVAr respectively. Fig. 4.3 shows the demand

profile and the total PV generation in the operation horizon. The forecasted PV generation

is determined based on the solar radiation for location ID 883549 on 8/9/2017 from [107].

The approximated feeder capacity is 2800 kW with the least acceptable power factor of 0.82.

The dispatch margins of PV generation in the three-phase unbalanced system are evaluated

in Cases 1-3 and the impacts of ramping limits of DG units and ESS on the dispatch margins

of PV generation are evaluated in Case 4.

Case 1 – PV dispatch margins with forecasted maximum PV generation and demand.

Case 2 – PV dispatch margins with forecasted maximum PV generation and worst-case

realization of demand.

Case 3 – PV dispatch margins with uncertain maximum PV generation and uncertain demand.
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Figure 4.1: The proposed solution algorithm

Case 4 - Operation in island mode with the loss of the main feeder

4.3.1 Case1 – PV dispatch margins with forecasted maximum PV generation and demand

In this case, the demand and maximum PV generation follow the respective forecasted

profiles. The dispatch margins of PV generation on phase C are shown in Fig. 4.4. Here, the

lower dispatch margin of PV generation on phase C is increased from 11.018 kW at hour 8,

to 23.585 kW and 73.917 kW at hours 9 and 10 respectively. Similarly, the lower dispatch
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Figure 4.2: The modified IEEE 13-bus distribution network.

Table 4.1: Dispatchable DG Units’ Characteristics

DG Bus Pmin Pmax Qmin Qmax

(kW) (kW) (kVAR) (kVAR)
1 4 0 200 -100 100
2 6 0 200 -100 100
3 13 0 250 -120 120
4 7 0 40 -20 20

margin of PV generation is increased from 36.182 kW at hour 15, to 48.752 kW at hours 16

and 17. At hour 10, the demand on phase C is 1252 kW , and the total output of the feeder

and DG units is 1229.094 kW . The power loss at this hour is 51.094 kW and therefore,

the total power loss and demand at this hour is 1303.094 kW . Decreasing the dispatch of

PV generation will result in the increase in the dispatch of DG units and the main feeder;

however, the total dispatch of DG units and the main feeder cannot exceed 1229.094 kW
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Table 4.2: PV Generation Units’ Characteristics

PV Bus Pmin Pmax Qmin Qmax

1 13 0 200 -100 100
2 10 0 200 -100 100
3 9 0 200 -100 100
4 4 0 100 -50 50

Figure 4.3: Daily profile of demand and maximum PV generation.

as they reach their maximum power capacities. Therefore, the lower PV dispatch margin at

hour 10 on phase C is 73.917 kW . Similarly, at hour 11, the demand on phase C is 1226.9 kW

and the total output power of the feeder and DG units is 1230.848 kW . At this hour the

power loss is 52.640 kW and therefore, the total power loss and demand reaches 1279.6 kW .

The lower dispatch margin of PV generation on phase C at this hour is 48.752 kW . In this

case, the lower dispatch margins on phase B are zero at all hours.

4.3.2 Case 2 – PV dispatch margins with forecasted maximum PV generation and worst-
case realization of demand

In this case, the uncertainty set for demand is within 0.95 and 1.05 of the forecasted

values. The upper and lower margins for PV generations were determined considering the

worst-case realization of demand within the uncertainty set. The budget of uncertainty

is defined as the portion of demand entities that have the flexibility to variate within the
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uncertainty set. If the budget of uncertainty is 0%, the demand equals the forecasted value.

When the budget of uncertainty is increased to 100%, the demand on all phases at all

buses could vary between the possible minimum and maximum values represented by the

uncertainty set. The PV dispatch margins on phase C considering the forecasted demand

as well as the worst-case realization of the demand are shown in Fig. 4.4. In Fig. 4.4, it is

shown that when the budget of uncertainty is 100%, the lower PV dispatch margin increases.

In Fig. 4.4, with 100% budget of uncertainty, at hour 10, the demand in the distribution

network is 1306.10 kW , the power loss is 12.173 kW and the outputs of the feeder and DG

are at their maximum and their total output reaches 1189.99 kW. Therefore, at this hour,

the rest of the demand is supplied by the PV units, and the lower margin of PV dispatch

increases to 128.282 kW .

The upper margins for PV generation in Case 1 and Case 2 are the same. In Case 2, the

lower margins at hours 17 and 18 are 101.907 kW and 89.008 kW respectively. At hour 18,

the difference between the lower and upper margins reaches 4.043 kW as the PV generation

decreases and the demand reaches 1266.917 kW .

In this case, the maximum PV generation is the same for all phases; however, the demand

on phase C is larger than that on the other two phases; therefore, the lower PV dispatch

margin on phase C is higher than that on the other phases. Here, the PV generation on phase

C is dispatched to serve the demand if the power capacities of the feeder and distributed

generation are not adequate to serve the demand on this phase. The dispatch margins for

PV generation units on phase C are shown in Fig. 4.5. As shown in this figure, at hour 10,

both the minimum and maximum dispatch margin for PV2 and PV3 are 58.538 kW , which

indicates that at this hour, the generation unit of PV3 has to be fully dispatched to serve

the demand.

The uncertainty in demand will increase the lower PV dispatch margin. Fig. 4.6 shows the

difference between the upper and lower margins of the total PV generation as the budget

of uncertainty varies from 0% to 100%. As shown in Fig. 4.6, as the budget of uncertainty

increases, the difference between the upper and lower dispatch margins will decrease. With

a 100% budget of uncertainty, at hour 13, the total real demand of 3376.645 kW and the

total loss of 120.484 kW are supplied by the main distribution feeder, DG units and PV
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generation units. The main distribution feeder and DG units supply 3300.989 kW and the

PV generation units serve 196.14 kW .

Figure 4.4: The total dispatch margins on phase C with forecasted demand (Case 1) and
the worst-case realization of demand with 100% budget uncertainty (Case 2).

4.3.3 Case 3 – PV dispatch margins with uncertain maximum PV generation and demand

Here, the Gaussian probability distribution function is used to represent the forecast

errors in the maximum PV generation and demand, and Monte-Carlo simulation is used to

generate 100 scenarios. The mean of the probability distribution function is the forecasted

values in Cases 1 and 2, and the standard deviation is 0.025 of the mean values. The total

upper and lower PV dispatch margins on phase C in 5 scenarios and the expected upper and

lower dispatch margins are shown in Fig. 4.7. In Fig. 4.8, the expected upper and lower PV

dispatch margins are compared with those procured in Case 1. As shown in this figure, the

lower PV dispatch margin, in this case, is higher than that in Case 1.

Here, the lower and upper dispatch margins (i.e., ũφ
v,t and l̃φv,t), are determined in a way that

the risk of violating these margins are constrained as shown in (4.61) and (4.62). Fig. 4.7
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Figure 4.5: The dispatch margins of PV generation units on phase C (Case 2)

shows the upper and lower margins for which the probability of exceeding these margins does

not exceed 10%. Here, the upper and lower dispatch margins are determined so that such

limits do not violate in more than 10% of scenarios. Fig. 4.8 shows the procured risk-based

upper and lower dispatch margins (i.e. ũφ
v,t and l̃φv,t) compared to those procured in Case 1,

and the expected lower and upper dispatch margins for 100 scenarios in this case. Table 4.3,

shows the total lower and upper dispatch limits of PV generation once the probability of

exceeding such limits is increased from 5% to 50%. As shown in this table, as the probability

of violating the upper and lower bounds increases, the risk-based upper margin decreases

while the risk-based lower margin increases.

Once the uncertainty in demand is represented by polyhedral sets with 100% budget of

uncertainty, the expected upper and lower dispatch margins for phases A, B, and C are

shown in Fig. 4.10. Here, the total expected upper dispatch margins on all phases are

1956.4 kWh which is equal to the expected upper dispatch margin of PV generation with

scenario-based demand. Furthermore, similar to the case with scenario-based demand, the

total expected lower dispatch margin on phase B is zero, as the demand on phase B can

be supplied by the feeder and DGs. The total expected lower dispatch margins on phases

A and C are 558.59 kWh and 891.77 kWh, respectively. These margins are higher than

the total expected lower dispatch margins with scenario-based demand on these phases, i.e.
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(a)

(b)Figure 4.6: The difference between the upper and lower PV dispatch margins for different
budgets of uncertainty in demand (a) total hourly difference (b) total day-ahead difference.
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Figure 4.7: The total PV dispatch margins on phase C in five scenarios S1-S5, the expected
PV dispatch margins, and the risk-based upper and lower dispatch margins for ε = 0.1 in
Case 3

Table 4.3: The total risk-based lower and upper dispatch margins of PV generation units on
phase C in 24 hours

ε
Total Lower Dispatch
Margin (kWh)

Total Upper Dispatch
Margin (kWh)

0.05 17.47 2034.65
0.1 52.42 2028.16
0.2 113.22 2001.94
0.3 200.52 1987.62
0.4 237.54 1972.41
0.5 307.19 1956.04

125.85 kWh for phase A, and 362.17 kWh for phase C.

P
[
ûφ,m

v,t ≤ ũφ
v,t

]
≥ 1 − ε (4.61)

P
[
l̂φ,m
v,t ≥ l̃φv,t

]
≥ 1 − ε (4.62)
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Figure 4.8: The expected upper and lower PV dispatch margins in Case 1 and Case 3 and
the risk-based upper and lower dispatch margins with ε = 0.1

Table 4.4: Characteristics of dispatchable DG units in the islanded mode operation of the
IEEE-13 bus system.

DG Bus Ramp Rate
kW/hr Pmax Qmin Qmax

1 4 225 1010 -505 505
2 6 225 1010 -505 505
3 13 240 1260 -700 700
4 7 15 60 -30 30

Table 4.5: Characteristics of ESS in the island mode operation of the IEEE-13 bus system

ESS Bus Pmax Qmax Emin Emax
1 4 200 120 0 200
2 10 200 120 0 200
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(a)

(b)Figure 4.9: The lower PV dispatch margin on (a) phase A and (b) phase C for isolated
distribution network considering the ramp rate for DG units and energy storage.

4.3.4 Case 4 – Operation in island mode with the loss of the main feeder

In this case, the main feeder is disconnected and the distribution network is supplied by

the DG and PV generation units. The characteristics of the DG units are shown in Table 4.4.

As shown in Fig. 4.9a, at hour 10, the peak demand on phase A is 1175 kW and the power

loss is 47.551 kW . The total generation of DG units is 1137.562 kW .Therefore, the rest of

the demand is served by the PV generation and the lower PV dispatch margin is 1175 +

47.551 − 1137.562 = 84.989 kW . Similarly, in Fig. 4.9b, on phase C, the total demand is

1252 kW and the power loss is 44.025 kW and the total generation of DG units is 1195.02 kW ,
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Figure 4.10: The expected dispatch margins of PV generation units on phases A, B and C
with uncertain PV generation and worst-case realization of demand

therefore the rest of the demand i.e. 1252 + 44.025 − 1195.02 = 101.658 kW is supplied by

the PV generation and the lower PV dispatch margin is 101.658 kW . Furthermore, Fig. 4.9

demonstrates the effect of ramp rates on the PV dispatch margins. As shown in Fig. 4.9a,

when ramp rates are not considered, the lower PV dispatch margins on phase A at hours

12, 16, are 0 kW . By considering the ramp rates for DG units as shown in Table 4.4, the

lower PV dispatch margins at hours 12, and 16 are increased to 26.199 kW , and 61.481 kW

respectively. Furthermore, the impact of ESSs on the PV dispatch margins are shown in

Fig. 4.9. The characteristics of ESSs considered, in this case, are shown in Table 4.5. As

shown in Fig. 4.9a, the lower PV dispatch margin on phase A is dramatically reduced after

installing the ESSs. Here, the lower PV dispatch margins are decreased from 84.989 kW ,

and 101.658 kW at hour 10, to 0.340 kW and 26.221 kW on phases A, and C respectively.

Considering the ramp rates for DG units will decrease the difference between the lower

and upper PV dispatch margins. In the day-ahead operation horizon, the total difference

between the upper and lower PV dispatch margins in the island operation mode of the

distribution network ignoring the ramp rates of DG units are 1580.35 kWh, 1951.877 kWh,

and 1580.35 kWh on phases A, B, and C, respectively. Once ramp rates are considered,
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such values are reduced to 1478.23 kWh, 1951.877 kWh, and 1336.185 kWh for phases A,

B, and C, respectively. Furthermore, utilizing the ESSs will increase the difference between

the upper and lower PV dispatch margins. Here, integrating ESS with ramp rates of DG

units will increase the total difference between the upper and lower dispatch margins in the

day-ahead operation horizon to 1725.421 kWh, 1951.887 kWh and 1754.519 kWh on phases

A, B, and C, respectively.

4.4 Conclusion

In this chapter, the upper and lower PV dispatch margins in unbalanced three-phase

distribution systems are determined to ensure the security of the distribution network. A

two-stage optimization problem is formulated and a solution approach is proposed to solve

this problem. The modified IEEE 13-bus system is used to evaluate the effectiveness of the

proposed formulation and solution methodology. It is shown that the worst-case realization

of demand will increase the lower PV dispatch margins and decreases the difference between

the lower and upper PV dispatch margins. Furthermore, increasing the budget of uncertainty

for demand will decrease the difference between the lower and upper PV dispatch margins.

The uncertainty in maximum PV generation and demand is considered using scenarios.

Compared to the scenario-based models that address the uncertainty in demand, it is shown

that the lower PV dispatch margins are higher once the worst-case realization of demand

is considered. Furthermore, the risk associated with violating the upper and lower dispatch

margins is considered. The impacts of the ramp rates of DG units and the installation of

ESSs on the PV dispatch margins are investigated. It is shown that imposing the ramp rates

for the DG units will increase the lower PV dispatch margins and leveraging ESSs increases

the difference between the lower and upper PV dispatch margins and decreases the lower

PV dispatch margins.
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Chapter 5

Data-Driven Distributionally Robust Unbalanced Operation of Distribution Networks with

High Penetration of Photovoltaic Generation and Electric Vehicles

The uncertainties associated with the large-scale integration of electric vehicles (EV) and

renewable energy resources introduce new challenges to operating the unbalanced three-phase

distribution networks. In this chapter, a data-driven distributionally robust optimization

framework is proposed for the operation of the distribution network considering the uncertainties

associated with the interconnected EV fleets and solar photovoltaic (PV) generation. The

proposed framework leverages the column-and-constraint generation (C&CG) approach to

minimize the operation cost considering the worst-case probability distributions of PV generation,

the available energy in EV fleets, the arrival and departure times of EV fleets as well as

their minimum and maximum energy capacities. The proposed approach is applied to the

modified three-phase unbalanced IEEE 34-bus and IEEE 123-bus networks. To evaluate the

performance of the proposed distributionally robust optimization framework, the results

are compared to those procured by solving scenario-based stochastic programming and

robust optimization problems. Furthermore, the impact of vehicle-to-grid capability on the

operation of the distribution network is investigated and the in-sample and out-of-sample

performances of the proposed framework are evaluated. In this chapter, a Wasserstein

metric-based DRO problem is formulated and solved for the unbalanced distribution network

operation considering the uncertainties associated with EVs and PV generation. The formulated

problem is a two-stage optimization problem where the topology of the radial distribution

network is determined in the first stage problem, and the distribution network operation

cost is minimized considering the worst-case probability distribution of the uncertainties in

the second stage problem. The contributions of this chapter are summarized as follows:

– A data-driven DRO problem is proposed for the unbalanced operation of the distribution
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networks considering the network switching, and the performance of the procured

solution is compared with the solutions to the SP and RO counterparts.

– The uncertainties associated with forecasted PV generation as well as the EVs i.e.

the available energy at arrival and departure times, and the maximum and minimum

available energy and power for EVs were considered.

– The V2G capability of EVs is addressed and the in-sample and out-of-sample performance

of DRO and SP problems are compared.

The rest of the chapter is organized as follows. In section 5.1, a two-stage data-driven DRO

problem is formulated using the constructed ambiguity set. The ambiguity set is formed

using the empirical data and the Wasserstein metric is used as a distance measure. In

section 5.2, the solution framework for the proposed problem is presented. C&CG technique

is used to solve this problem. The numerical results and conclusion are presented in sections

5.3 and 5.4 respectively.

Nomenclature

Sets and Indices:

– b Index of bus.

– d Index of demand.

– e Index of electric vehicle cluster.

– i Index of distributed generation.

– k Index of phase.

– l Index of distribution branch.

– s Index of spanning tree.

– m,n Index of sample.

– f Index of distribution feeder.
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– v Index of PV generation unit.

– Os Set of the open switches in spanning tree s.

– Cs Set of the closed switches in spanning tree s.

– S Set of all spanning trees.

Variables:

– Um
b,t Squared voltage vector on bus b.

– Em
e,k,t Energy capacity of EV cluster.

– pm
(.),k,t Real power of a unit.

– pch,m
e,k,t Real charging power for electric vehicle cluster e.

– pdc,m
e,k,t Real discharging power for electric vehicle cluster e.

– psm
i,k,g,t Power in segment g of the cost curve for a distributed generation.

– qm
(.),k,t Reactive power of a unit.

– Sm
(.),k,t Apparent power on phase k.

– yl,t Binary variable representing the status of the distribution branch, 1 if connected,

and 0 otherwise.

Parameters:

– ADd,b Element of demand-bus incidence matrix.

– AEe,b Element of energy storage-bus incidence matrix.

– AIi,b Element of unit-bus incidence matrix.

– ALl,b Element of line-bus incidence matrix.

– AVv,b Element of PV-bus incidence matrix.
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– ANf,b Element of feeder-bus incidence matrix.

– Êmin
e,k,t Forecasted minimum available energy for EV cluster.

– Êmax
e,k,t Forecasted maximum available energy for EV cluster.

– Êarv
e,k,t Forecasted available energy at arrival time.

– Êdep
e,k,t Forecasted available energy at departure time.

– PFf Power factor at distribution feeder f .

– pi,k,g Maximum power at segment g of the generation cost curve.

– p̄(.),k,t Maximum real power.

– q̄(.),k,t Maximum reactive power.

– p̂ch,max,m
e,k,t Maximum charging power for EV cluster e.

– p̂dc,max,m
e,k,t Maximum discharging power for EV cluster e.

– S̄l,k Maximum complex power of branch l on phase k.

– Ie,k,t Binary parameter for interconnection of EV cluster.

– Iarv
e,k,t Binary parameter for interconnection of EV cluster.

– Idep
e,k,t Binary parameter for interconnection of EV cluster.

– wi,g Marginal cost of the unit i in segment g.

– cc]Cost of load curtailment.

– ρf,t Price of electricity of feeder.

– ηch
e , η

dc
e Battery charging and discharging efficiency.

– ϕl,k Availability of phase k on branch l.

– V , V Squared lower and upper limits of nodal voltage.
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5.1 Problem Formulation

In this section, first, the formed ambiguity set for the probability distribution of uncertain

variables is presented and later, the data-driven DRO problem is formulated using the

procured ambiguity set.

5.1.1 Forming the ambiguity set

The probability distributions of the forecasted PV generation, the maximum and minimum

capacity of EV clusters, the maximum power of EV clusters, and the available energy at

arrival and departure times are considered to be uncertain. The historical data of PV

generation and EV clusters’ characteristics are used to construct an empirical probability

distribution. Using the empirical data on the maximum and minimum available energy

(Êmax
e,k,t , Êmin

e,k,t), maximum power consumption (p̂max
e,k,t), and the available energy at arrival

and departure times (Êarv
e,k,t, Ê

dep
e,k,t) and the forecasted PV generation (p̂v,k,t), the empirical

probability distribution for each variable is formed. For a set of empirical data of size

N , the probability distribution of empirical data is Λ̂ = (θ̂1, ..., θ̂n) where θ̂n = 1/N . Based

on the empirical probability distributions the unknown probability distributions of uncertain

variables associated with PVs and EV clusters are procured with the confidence level β. Here,

the Wasserstein metric shown in (5.1), is used to quantify the distance Dν(Λ, Λ̂) between the

unknown probability distribution and the empirical probability distribution.

Dν(Λ, Λ̂) := inf
π

∑
|ν|

∑
|ν̂|
πν,ν̂ ·∥ν − ν̂∥1 (5.1)

Here, ν and ν̂ are the vectors of the uncertain variables with unknown and empirical

probability distributions, respectively. Furthermore, |ν| and |ν̂| are the sizes of vectors ν

and ν̂ respectively. Furthermore, πν,ν̂ represents the joint probability distribution of random

variables ν and ν̂. The ambiguity set is defined as D =
{
Dν(Λ, Λ̂) ≤ α

}
where α is the

maximum distance between the two probability distributions defined as α = D
√

2
N

ln 1
(1−β)

[65]. The ambiguity set is formed by (5.2)-(5.5) where m = 1, ..., N and n = 1, ..., N are

the indices of the samples from unknown and empirical probability distributions, and πm,n

is the joint probability of θm (unknown marginal probability of sample m) and θ̂n (marginal
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probability of empirical data sample n). Here, the constraints (5.3) and (5.4) are enforcing

the relationship between the joint probability distribution πn,m and the marginal probability

distributions of unknown and empirical data samples. Constraint (5.5) shows the property

of the unknown probability distribution.

∑
n

∑
m

πm,n |νm − νn| ≤ α (5.2)

∑
n

πm,n = θm, ∀m (5.3)

∑
m

πm,n = θ̂n, ∀n (5.4)

∑
m

θm = 1 (5.5)

5.1.2 Formulation of Data-driven DRO Problem

In this section, a two-stage data-driven optimization problem is formulated for the

unbalanced operation of the distribution network. In the first stage, the topology of the

distribution network is determined by procuring the state of the switches in the network.

In the second-stage problem, the worst-case realization of the probability distribution of the

uncertain variables is determined within a bounded Wasserstein distance from the empirical

probability distribution. The rest of the decision variables include the real and reactive

power dispatch of DERs and the distribution feeder.

The states of the switches in the first-stage problem maintain the radial topology of

the distribution network. Here, the radial distribution system is represented as a graph

G = (V,E), where V denotes the set of vertices (buses) with K vertices and E denotes the

set of edges (lines) with M edges where K − 1 = M . The spanning trees of the distribution

network include all possible radial topologies. The following algorithm is developed to

find the switching state of the distribution lines that ensures the radial operation of the

distribution network:

Step 1: In a distribution network graph G with K vertices and M edges, find all

combinations of edges with K − 1 number of edges.

Step 2: Check if all K vertices are present in the selected combinations in Step 1. If so,
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return these combinations as spanning trees, otherwise, discard it.

Step 3: The spanning trees form a set S in which in each spanning tree s ∈ S, the state

of a switchable line that is open i.e., l ∈ Os is 0, i.e., yl,t = 0. Similarly, the state of the

switchable line that is closed i.e., l ∈ Cs is 1, i.e., yl,t = 1. As one of the spanning trees

should be selected, constraint (5.8) is enforced. The selected spanning tree is formed by a

certain combination of closed and open switches as shown in (5.8).

min
yl,t

0 + max
Λ∈D

min
p,q,U

Eθ

(∑
f

∑
k

∑
t

ρf,t · pm
f,k,t+

∑
b

∑
k

∑
t

∑
g

∑
i

AI i,b · wi,g · psm
i,k,g,t+

∑
b

∑
k

∑
t

cc · ADd,b ·
(
pd,k,t − pm

d,k,t

))
(5.6)

Subject to: (5.2)-(5.5),
K−1∑
l=1

yl,t = K − 1 (5.7)

∑
s∈S

∏
l∈Cs

yl,t ·
∏

l∈Os

(
1 − yl,t

) = 1 (5.8)

∑
l

ALl,b · pm
l,k,t +

∑
i

AI i,b · pm
i,k,t +

∑
v

AV v,b · p̂m
v,k,t+

∑
f

AN f,b · pm
f,k,t +

∑
e

AEe,b · (pdc,m
e,k,t − pch,m

e,k,t ) =
∑

d

ADd,b · pm
d,k,t (5.9)

∑
l

ALl,b · qm
l,k,t +

∑
i

AI i,b · qm
i,k,t +

∑
f

AN f,b · qm
f,k,t =

∑
d

ADd,b · qm
d,k,t (5.10)

psm
i,k,g,t ≤ pi,k,g (5.11)

pm
i,k,t =

∑
g

psm
i,k,g,t (5.12)

ALl,b · Um
b,t + 2(R̃l · pm

l,t + X̃l · qm
l,t) ≤ M · (1 − ϕl) (5.13)

ALl,b · Um
b,t + 2(R̃l · pm

l,t + X̃l · qm
l,t) ≥ −M · (1 − ϕl) (5.14)

V ≤ Um
b,k,t ≤ V (5.15)
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pm
l,k,t ≥ −ϕl,k · yl,t · S̄l,k · cos(π8 ) (5.16)

pm
l,k,t ≤ ϕl,k · yl,t · S̄l,k · cos(π8 ) (5.17)

qm
l,k,t ≥ −ϕl,k · yl,t · S̄l,k · cos(π8 ) (5.18)

qm
l,k,t ≤ ϕl,k · yl,t · S̄l,k · cos(π8 ) (5.19)

pm
l,k,t + qm

l,k,t ≥ −ϕl,k · yl,t · S̄l,k · (sin(π8 ) + cos(π8 )) (5.20)

pm
l,k,t + qm

l,k,t ≤ ϕl,k · yl,t · S̄l,k · (sin(π8 ) + cos(π8 )) (5.21)

pm
l,k,t − qm

l,k,t ≥ −ϕl,k · yl,t · S̄l,k · (sin(π8 ) + cos(π8 )) (5.22)

pm
l,k,t − qm

l,k,t ≤ ϕl,k · yl,t · S̄l,k · (sin(π8 ) + cos(π8 )) (5.23)

0 ≤ pm
i,k,t ≤ p̄i,k (5.24)

−q̄i,k ≤ qm
i,k,t ≤ q̄i,k (5.25)

pm
d,k,t ≤ p̄d,k,t (5.26)

qm
f,k,t ≤ tan (cos−1 PFf ) · pm

f,k,t (5.27)

qm
f,k,t ≥ −tan (cos−1 PFf ) · pm

f,k,t (5.28)

Êmin,m
e,k,t −M · (1 − Ie,k,t) ≤ Em

e,k,t (5.29)

Em
e,k,t ≤ Êmax,m

e,k,t +M · (1 − Ie,k,t) (5.30)

Em
e,k,t ≤ Êarv,m

e,k +M ·
(
1 − Iarv

e,k,t

)
(5.31)

Em
e,k,t ≥ Êarv,m

e,k −M ·
(
1 − Iarv

e,k,t

)
(5.32)

Em
e,k,t ≤ Êdep,m

e,k +M ·
(
1 − Idep

e,k,t

)
(5.33)

Em
e,k,t ≥ Êdep,m

e,k −M ·
(
1 − Idep

e,k,t

)
(5.34)

Em
e,k,t − Em

e,k,t−1 − ηch
e p

ch,m
e,k,t + pdc,m

e,k,t /η
dc
e ≤ M ·

(
1 − Ie,k,t

)
(5.35)
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Em
e,k,t − Em

e,k,t−1 − ηch
e p

ch,m
e,k,t + pdc,m

e,k,t /η
dc
e ≥ −M ·

(
1 − Ie,k,t

)
(5.36)

0 ≤ pch,m
e,k,t ≤ Ie,k,t · p̂ch,max,m

e,k,t (5.37)

0 ≤ pdc,m
e,k,t ≤ Ie,k,t · p̂dc,max,m

e,k,t (5.38)

Yt ≤ (yl,t)l∈Os (5.39)

Yt ≤ (yl,t)l∈Cs (5.40)

Yt ≥ (yl,t)l∈Cs + (yl,t)l∈Os − 1 (5.41)

The objective function presented in (5.6), is the operation cost of DERs, the cost of supplying

electricity from the distribution feeder and the penalty associated with the curtailed demand.

To maintain the radial topology, (5.7) enforces the number of branches (edges) to be equal to

K − 1 and (5.8) would lead to selecting one set of switchable lines that form a spanning tree

in the set S. The nonlinear terms appear in (5.8) are linearized using (5.39)-(5.41). Here,

Yt is binary variable, (5.39) and (5.40) ensure that Yt is zero if (yl,t)l∈Os or (yl,t)l∈Cs is zero.

The last constraint (5.40) ensures that Yt is 1 if both (yl,t)l∈Os and (yl,t)l∈Os are 1.

Here, (5.9) and (5.10) show the nodal real and reactive power balance in the distribution

network. The operation cost of the distributed generation (DG) unit is formulated as

a quadratic function of the output power which is further linearized using a piece-wise

linearization technique in (5.6), (5.11) and (5.12). Constraints (5.13) and (5.14), present

the real and reactive power flow in distribution branch l, where, ϕl,k ∈ ϕl, Um
b,k,t ∈ Um

b,t. The

nodal voltage is limited by lower and upper bounds as shown in (5.15). The voltage unbalance

between the phases is small and the loss in the distribution branches is neglected. The real

and reactive power flows satisfy a circular constraint where the squared real power flow and

the squared reactive power flow on each branch are limited by the squared apparent power

capacity of the branch. The circular constraint is further linearized by a convex polygon

(5.16)-(5.23) using the methods proposed in [97, 108]. As the number of sides increases,

the approximated polygon is a tighter representation of the circular constraint. Here, an

octagon is used where the radius of the approximated enclosing circle of the octagon is

S̄l,k = Smax
l,k ·

√
(2π/8)/(sin(2π/8)). Similar constraints could be written for the distribution
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feeder given the apparent power capacity of the feeder. Constraints (5.24) and (5.25) are

limiting the real and reactive power for a DG unit by its capacity. The served demand is less

than the total demand as enforced by (5.26). For distribution feeder f , the reactive power on

each phase is limited by the acceptable power factor of the feeder as shown in (5.27)-(5.28).

The limits on the available energy in an EV cluster e are shown in (5.29) and (5.30). As

shown in these constraints, the limits on the available energy are enforced once the vehicle

clusters are connected to the network, i.e. Ie,k,t = 1. The available energy at arrival time is

limited by (5.31) and (5.32), where these constraints are enforced once the vehicle clusters

are connected to the network at the arrival time, i.e. Iarv
e,k,t = 1. Similarly, the available energy

at departure time is limited by (5.33) and (5.34), where (5.33) and (5.34) are enforced once

the vehicle clusters are connected to the network at the departure time, i.e. Idep
e,k,t = 1. Here,

Ie,k,t = 1 for all hours between the arrival and departure times. The relationship between

the available energy and the power dispatch of each EV cluster is enforced by (5.35) and

(5.36). Constraint (5.37) and (5.38) enforce the limitation of charging and discharging power

for each EV cluster.

The data-driven DRO problem is formulated as (5.6)-(5.38), (5.2)-(5.5) where the object

function is reformulated as (5.42).

max
Λ∈D

min
p,q,U

∑
m

θm ·
(∑

f

∑
k

∑
t

ρf,t · pm
f,k,t+

∑
b

∑
k

∑
t

∑
g

∑
i

AI i,b · wi,g · psm
i,g,k,t+

∑
b

∑
k

∑
t

cc · ADd,b ·
(
pd,k,t − pm

d,k,t

))
(5.42)

5.2 Solution Methodology

To solve the problem presented in (5.6)-(5.38), (5.2)-(5.5), the following solution algorithm

based on C&CG technique is presented. Here, the abstract form of the problem is formulated

as (5.43)-(5.47).

min
y

0 + max
Λ∈D

min
x

b⊤x (5.43)
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subject to:

Ay ≤ d (5.44)

F x − Ey ≤ k (5.45)

Gx − Ky = g (5.46)

Jx = h (5.47)

The proposed algorithm is presented in the following steps:

Step 1) Initialization: Initialize the upper bound UB = ∞, lower bound LB = −∞, ϵ ≤ 10−3

and the iteration counter w = 0.

Step 2) Solve the master problem: Solve the master problem for each iteration as follows:

min
y

0 + η (5.48)

subject to:

Ay ≤ d (5.49)

η ≥ θ∗b⊤x(l), ∀l ≤ w (5.50)

F x(l) − Ey ≤ k, ∀l ≤ w (5.51)

Gx(l) − Ky = g, ∀l ≤ w (5.52)

Jx(l) = h, ∀l ≤ w (5.53)

Update the LB as the following equation (5.54):

LB = η̂w+1 (5.54)

Step 3) Solve the subproblem: The objective function of the subproblem and it’s constraints

are given as follows;
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max
Λ∈D

min
x

b⊤x (5.55)

subject to:

F x ≤ k + Ey∗ (5.56)

Gx = g + Ky∗ (5.57)

Jx = h (5.58)

constraints (5.2)-(5.5)

Then, the subproblem presented in (5.55)-(5.58) is reformulated using it’s dual form in

(5.59)-(5.60):

Q(y) = max
Λ∈D,γ,λ,µ

(k + Ey∗)⊤γ + (g + Ky∗)⊤λ + h⊤µ (5.59)

subject to:

F ⊤γ + G⊤λ + J⊤µ ≤ b (5.60)

constraints (5.2)-(5.5)

Where, γ, λ and µ are the dual variables for constraints (5.56), (5.57) and (5.58) respectively.

Then update the UB using (5.61) and go to Step 4.

UB = min{UB,Q(y∗(w+1))} (5.61)

Step 4) Check the convergence criterion: If UB−LB ≤ ϵ end the process, otherwise proceed

to step 5.

step 5) Generate columns and constraints: Add (5.50)-(5.53) to the master problem, set

w = w + 1 and go back to step 2.
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5.3 Numerical Results

In this section, the modified IEEE 34-bus and IEEE 123-bus distribution systems are

considered. The simulations are carried out on a server with dual 14 Core Intel Xeon 2.6

GHz and 380 GB of memory and CPLEX 12.8 is used as a solver. Historical sample data

are considered for PV generation and EV cluster interconnections. The EV cluster data

include minimum and maximum energy capacity of EVs, the available energy at arrival and

departure times, and the maximum power of EV clusters. The arrival and departure times

are considered as parameters. Using a Gaussian probability distribution, sample data for

PV generation are generated with the mean value equal to the forecasted PV generation

and the standard deviation of 0.1 of the mean value. For EVs clusters, the sample data

of available energy at the arrival and departure times, the maximum power output of EV

clusters as well as the maximum and minimum available energy of EV clusters are generated

using a Gaussian probability distribution with a mean equal to the forecasted values and

the standard deviation equal to 0.1 of the mean value. The maximum charging/discharging

power for single-phase and three-phase EVs are 7.4 kW and 22.2 kW, respectively. The

charging and discharging efficiencies for an EV cluster are 90%. The load curtailment cost is

20 $/kWh. The available energy at the arrival time is 20% of the maximum energy capacity

and the available energy at the departure time is 95% of the maximum energy capacity of the

EV clusters. For the sake of simplicity, the arrival and departure times for all EV clusters

are 9:00 and 18:00 respectively.

5.3.1 IEEE 34-bus system

The IEEE 34-bus distribution network supplies three-phase and single-phase loads where

the peak real demands on phase A, phase B, and phase C are 606 kW, 584 kW, and 579

kW respectively. Similarly, the peak reactive demands on these phases are 357, 344, and

343 kVar respectively. Three 3-phase PV generation units are connected to the distribution

network, where each has the maximum forecasted output power of 126.92 kW. The maximum

total PV generation is 21.52% of the total peak demand. Fig 5.1 shows the diagram of the

modified IEEE 34-bus distribution network and the interconnection of PVs, DGs, and EV

clusters. Here, the switchable lines are shown as dashed lines. The characteristics of the
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dispatchable DG units are shown in Table 5.1. Table 5.2 shows the operation cost of DG1-

DG3 for each segment of the linearized cost curve. The hourly electricity price is considered

for the feeder. As shown in Fig. 5.1, four EV clusters are considered. EV cluster 1 has

a three-phase interconnection, while EV clusters 2, 3, and 4 are connected to the grid on

phases A, B, and C, respectively. Table 5.3 shows the characteristics of the EV clusters.

The following cases are considered:

Case 1 – Deterministic operation of the distribution network

Case 2 – Scenario-based stochastic operation of the distribution network

Case 3 – Robust operation of the distribution network

Case 4 – Data-driven distributionally robust operation of the distribution network

Figure 5.1: Modified IEEE 34-bus distribution network
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Table 5.1: Dispatchable DG units’ characteristics

DG Bus Pmin

(kW)
Pmax

(kW)
Qmin

(kVAR)
Qmax

(kVAR)
1 4 0 150 -75 75
2 6 0 100 -50 50
3 24 0 50 -25 25

Table 5.2: The marginal cost of each segment for DGs ($/kWh)

DG wi,1 wi,2 wi,3 wi,4
1 0.18 0.22 0.26 0.30
2 0.17 0.24 0.31 0.38
3 0.15 0.25 0.35 0.45

5.3.1.1 Case 1 - Deterministic operation of the distribution network

In this case, the deterministic solutions of the distribution network operation problem

with and without EV interconnections are investigated. The operation cost of the distribution

network without EV interconnection is $4530.19 and the operation cost increases to $5336.82

when EV clusters are interconnected to the distribution network. Fig. 5.2 shows the dispatch

of feeder, PVs, DGs and charging and discharging power of EVs on phase A. The total energy

provided by the feeder and DGs is 11860 kWh. Tables 5.4 and 5.5 show the state of the

switchable lines in the network without and with EV interconnection respectively.

Table 5.3: Characteristics of EV clusters in the IEEE 34-bus system

EV Number of
vehicles Bus Pmax

(kW)
Emin

(kWh)
Emax

(kWh)
1 40 4 888 360 3600
2 25 6 185 75 750
3 40 24 296 120 1200
4 30 16 222 90 900
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Figure 5.2: The dispatch of feeder, DGs, PVs, and the charging and discharging power of
EVs on phase A in Case 1.

Table 5.4: The status of switchable branches in Case 1 without EV interconnection

Switchable
branch Hours (24 hours)

B1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5.3.1.2 Case 2 – Scenario-based stochastic operation of the distribution network

In this case, the uncertainty associated with the PV generation and EV clusters are

considered using 40 scenarios. The expected operation cost of the distribution network

is increased to $5364.58 compared to the deterministic solution as a result of the imposed

uncertainties in the operation horizon. The switching states of the switchable lines are shown

in Table 5.6. As shown in this table, the branch connecting buses 4 and 23 is closed and

the branch connecting buses 9 to 13 is opened. The expected dispatch of feeder, PVs, DGs

and charging and discharging power of EVs on phase A is shown in Fig. 5.3. Here, the total
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Table 5.5: The status of switchable branches in Case 1 with EV interconnection

Switchable
branches Hours (24 hours)

B1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B2 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5.6: The status of switchable branches in Case 2

Switchable
branch Hours (24 hours)

B1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

expected energy provided by the feeder and DGs is 11885 kWh which is increased compare

to that in Case 1.

5.3.1.3 Case 3 – Robust operation of the distribution network

In this section, a two-stage robust optimization problem is formulated and solved using

the C&CG algorithm. The non-linear terms in the sub-problem are linearized using McCormick

envelopes. The uncertainty sets for the PV generation and EV cluster characteristics are

formed using the upper and lower bounds of the empirical data. Fig. 5.4, shows the worst-

case dispatch of feeder, PVs, DGs, and charging and discharging power of EVs on phase A.

In this case, the total energy output of DGs and feeder is increased to 12392 kWh, which

is larger than those in Cases 1 and 2. The operation cost of the distribution network is

$11834.53 which is more than those in Cases 1 and 2. As expected, the solution to the

robust optimization problem is more conservative compared to the solution to the SP and

deterministic problems. The switching states of the switchable branches in the distribution
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Figure 5.3: The expected dispatch of feeder, DGs, PVs, and charging and discharging power
of EVs on phase A in Case 2.

system are the same as those in Case 2, except for hours 5 and 7, where branch 1 is closed

and branches 2 and 3 are opened. The total demand curtailment is 348.3650 kWh which is

more than those in Cases 1 and 2.

5.3.1.4 Case 4 – Data-driven distributionally robust operation of the distribution network

In this section, the worst-case probability distributions of uncertain variables are procured

given the 40 sample data for each variable. Fig. 5.5, shows the expected dispatch of feeder,

PVs, DGs, and charging and discharging power of EVs for phase A, considering the worst-

case probability of each scenario. The total expected energy output of feeder and DGs in

this case is 12117 kWh which is less than that in Case 3 and more than that in Cases 1

and 2. The switching states of distribution branches are given in Table 5.7. Here, without

switchable branches, the maximum voltage deviation during the operation horizon on phases

A, B, and C, is 0.052; however, with switching capability, such deviation will decrease to

0.016. In this case, the impacts of the size of the historical data and selected confidence level,

V2G capability in EV clusters, and the out-of-sample performance of DRO are investigated

in the IEEE-34 distribution network.

101



Figure 5.4: The worst-case dispatch of feeder, DGs, PVs, and charging and discharging of
EVs in Case 3 on phase A.

Figure 5.5: The expected dispatch of feeder, DGs, PVs, and charging and discharging of
EVs on phase A in Case 4, considering the worst-case probability distribution of uncertain
variables.

a) The impacts of sample size and confidence level

Table 5.8, shows the impact of the number of samples on the total in-sample operation cost of
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Table 5.7: The status of switchable branches in Case 4

Switchable
branches Hours (24 hours)

B1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0
B5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

the distribution network in this case. The results are compared to those presented in Case 2.

As shown in this table the expected operation cost of the distribution network as the solution

to the data-driven DRO problem, converges to the solution to the SP problem as the size of

sample data increases. As shown in Table 5.8, the solution to the formulated DRO problem

i.e., the expected operation cost of the distribution network, for different sizes of sample

data, is greater than the solution to the SP problem. This shows that solving the DRO

problem provides a more conservative solution compared to the SP solutions. Furthermore,

it is shown in this case that the solution to the SP problem i.e., the expected operation cost of

the distribution network, increases as the number of samples increases; however, the solution

to the DRO problem decreases as the number of samples increases. The solution to the DRO

problem is less conservative compared to the solution to the RO problem. Here, the expected

operation cost of the distribution network is $8019.10 that is increased to $11834.53 when

the distribution network operation problem is solved as a RO problem. Table 5.9 shows the

solution time with different sizes of sample data in Cases 2 and 4. As shown in this table, the

solution time for solving the DRO problem (Case 4) is higher than that for the SP problem

(Case 2). Furthermore, as the number of samples increases the solution time increases.

The total demand curtailments on all phases are shown in Table 5.10. The total demand

curtailments on phases A, B, and C are increased by 41.638 kWh, 87.714 kWh, and 27.534

kWh in this case compared to those in Case 1. Furthermore, the demand curtailments on

phases A, B, and C are increased by 40.608 kWh, 84.6 kWh, and 26.80 kWh in this case

compared to those in Case 2. The demand curtailments on all phases, in this case, are less

than those in Case 3.

103



Table 5.8: The expected operation cost ($) in Cases 2 and 4 with different sizes of sample
data

Case Size of sample data
20 40 60 80 100

Case 2 5544.47 5364.58 5331.19 5307.90 5320.40
Case 4 8019.10 7922.62 7915.80 7924.46 7907.78

Table 5.9: Solution times for Cases 2 and 4 with different sizes of sample data

Case Size of sample data
20 40 60 80 100

Case 2 00:00:32 00:00:52 00:01:27 00:01:59 00:02:32
Case 4 00:03:52 01:42:58 24:42:57 31:19:39 33:47:54

As the size of the sample data increases, the Wasserstein radius α decreases; however, the

Wasserstein radius is also affected by the confidence level β. As the confidence level increases

the Wasserstein radius increases. Table 5.11, shows the impact of the confidence level on the

solution of the DRO problem (i.e., the expected operation cost of the distribution network)

for 40 data samples. As the confidence level increases, the increase in the Wasserstein radius

will lead to considering the probability distributions of uncertain variables that are further

away from the probability distribution of the empirical data which results in the higher

expected operation costs.

b) The impacts of V2G capability in EV clusters

In this section the impacts of the V2G capability of the EVs on the operation cost are

Table 5.10: The total curtailment on each phase in all cases

Cases Total Curtailment (kWh)
Phase A Phase B Phase C

Case 1 0 0 0
Case 2 1.03 3.114 0.731
Case 3 97.254 194.332 56.779
Case 4 41.638 87.714 27.534
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Table 5.11: The expected operation cost in Case 4 with different confidence levels

Confidence level Wasserstein radius Cost ($)
0.99 5.758 7922.62
0.95 4.644 7920.70
0.9 4.072 7914.41
0.8 3.404 7908.74
0.7 2.944 7896.95
0.6 2.568 7847.02
0.5 2.234 7815.14

Table 5.12: Distribution network operation cost with and without the V2G capability

Cases Cost ($)
With V2G Without V2G

Case 1 5336.82 5378.49
Case 2 5364.58 5405.30
Case 3 10670.90 11834.53
Case 4 7922.618 7964.053

investigated. Table 5.12 presents the operation cost for all cases with and without V2G

capability for EV clusters. As shown in this table, the operation cost will decrease as EVs

are equipped with the V2G capability. Fig 5.6 shows the total available energy in EV clusters

with V2G capability.

c) Out-of-sample performance

In order to evaluate the out of sample performance of SP and DRO problems, the dispatch

of the distribution feeder is considered as a first-stage decision which is not dependent on

samples and scenarios. The out-of-sample performance of SP and DRO solutions are shown

in Table 5.13. Here, the out-of-sample performance of DRO solution is better than that for

SP as the operation cost of the distribution network using DRO formulation is less than

that using SP for out-of-sample EV and PV generation data. Fig. 5.7 demonstrates the

distribution of out-of-sample cost for 40 sample data in Cases 2 and 4. As shown in this

figure, the probability distribution of out-of-sample operation cost using DRO is concentrated

than the solution to the SP problem. This implies that the solution to DRO problem is more
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(a)

(b)

(c)Figure 5.6: The total available energy in EV clusters in Cases 1 and 3 and the total expected
available energy in Cases 2 and 4 connected to (a) phase A, (b) phase B and (c) phase C in
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Table 5.13: The out-of-sample expected operation costs ($) in Cases 2 and 4 with different
sizes of sample data

Cases Size of sample data
40 60 80 100

Case 2 5094.03 5096.25 5090.45 5098.52
Case 4 5015.10 4914.99 5008.95 5040.27

robust compared to the solution to the SP problem.

Figure 5.7: Out-of-sample distribution of operation cost in Case 2 and Case 4.

5.3.2 IEEE 123-bus system

The modified IEEE 123-bus test system with switchable lines, is shown in Fig. 5.8.

The peak real and reactive demands on phase A are 1420 kW and 775 kVar, the peak

real and reactive demands on phase B are 915 kW and 515 kVar, and the peak real and

reactive demands on phase C are 1155 kW and 635 kVar, respectively. Table 5.14 shows the
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characteristics of three-phase DG units. The marginal costs at each segment of the DG units’

cost curves are shown in Table 5.15 and the hourly price of electricity at the distribution

feeder is similar to that for the IEEE 34-bus distribution system. The characteristics of the

EV clusters are given in Table 5.16. The maximum total solar PV generation is 36.1% of

the total peak demand. The total PV generation and demand profiles are shown in Fig. 5.9.

The maximum total EV demand is 46.6% of the total peak demand. Similar to the IEEE

34-bus network four case studies are considered.

Figure 5.8: The modified IEEE 123-bus system.

5.3.2.1 Case 1 – Deterministic operation of the distribution network

In this case, once the EV interconnection is ignored the operation cost of the distribution
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Figure 5.9: PV generation and demand profiles for IEEE 123-bus system

Table 5.14: Characteristics of DG units in the IEEE 123-bus system

DG Bus Pmin

(kW)
Pmax

(kW)
Qmin

(kVAR)
Qmax

(kVAR)
1 29 0 200 -100 100
2 8 0 200 -100 100
3 44 0 100 -60 60
4 105 0 120 -60 60

network is $8183.75. The interconnection of EVs to the distribution network will increase the

operation cost to $9545.05. Table 5.17 shows the switching states of the switchable branches

considering the EV interconnection.

5.3.2.2 Case 2 – Scenario-based stochastic operation of the distribution network

In this case, the expected operation cost for 40 scenarios is $9576.46, and the switching

states of the switchable branches are shown in Table 5.18. Similar to the previous case study,

the expected operation cost is higher compared to operation cost in Case 1 (solution to the

deterministic problem).
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Table 5.15: The marginal cost of each segment of DGs in the IEEE 123-bus system ($/kWh)

DG wi,1 wi,2 wi,3 wi,4
1 0.18 0.22 0.26 0.30
2 0.17 0.24 0.3 0.38
3 0.15 0.25 0.35 0.45
4 0.15 0.25 0.35 0.45

Table 5.16: Characteristics of EV fleets in IEEE 123-bus system

EV Number of
vehicles Bus Pmax

(kW)
Emin

(kWh)
Emax

(kWh)
1 75 18 555 225 2250
2 60 23 444 180 1800
3 90 62 666 270 270
4 150 53 1110 450 4500
5 60 123 444 180 1800

Table 5.17: The status of switchable branches with EV interconnection in Case 1 for the
IEEE 123-bus system

Switchable
branches Hours (24 hours)

B1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B2 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B3 0 1 0 0 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
B4 1 0 1 1 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
B5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
B6 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1
B7 0 1 0 1 1 1 1 1 0 1 1 1 0 1 0 0 1 0 1 0 0 1 1 1
B8 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 1 1 0 0 0

Table 5.18: The status of switchable branches in Case 2 for the IEEE 123-bus system

Switchable
branches Hours (24 hours)

B1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B7 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 5.19: The status of switchable branches in Case 3 for the IEEE 123-bus system

Switchable
branches Hours (24 hours)

B1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B2 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B3 0 1 0 0 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
B4 1 0 1 1 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
B5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B7 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
B8 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

5.3.2.3 Case 3 – Robust operation of the distribution network

In the RO problem formulation, the uncertainty sets for solar PV generation and EVs

are determined using the upper and lower values of the empirical data. The total operation

cost is $24067.32, which is higher than the operation costs in Cases 1 and 2. The states of

the switchable branches are given in Table 5.19.

5.3.2.4 Case 4 – Data-Driven Distributionally robust operation of the distribution network

In this case, the expected operation cost of the distribution network considering the worst-

case probability distribution of the uncertain variables with 40 data samples, is $17305.01.

The expected operation cost of the distribution network in this case (the solution to the

DRO problem) is higher than those in Cases 1 and 2, and less than that in Case 3. The total

demand curtailments in Cases 1-4 are shown in Table 5.20. As shown in this table, the total

demand curtailments on all phases in Cases 1 and 2 are zero. The total demand curtailment

in Case 3 is the highest and the total demand curtailment in Case 4 is higher than those in

Cases 1 and 2. Table 5.21, demonstrates the sates of the switchable branches in this case

and Table 5.22 shows the expected operation cost of the distribution network as the number

of data samples increases from 20 to 100. As shown in Table 5.22, with the increase in the

number of samples, the value of the objective function of the DRO problem is decreasing and

gets closer to that of the SP problem. Moreover, the solution to the SP problem increases

with the increase in the number of sample data. However, similar to the previous case study,
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Table 5.20: Total demand curtailments on all phases in the IEEE 123-bus system

Cases Total Curtailment (kWh)
Phase A Phase B Phase C

Case 1 0 0 0
Case 2 0 0 0
Case 3 567.919 0 172.346
Case 4 388.970 14.867 11.528

Table 5.21: The status of the switchable branches in Case 4 for the IEEE 123-bus system

Switchable
branches Hours (24 hours)

B1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
B2 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0
B3 1 1 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 1 1 0 1 1
B4 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 1 0 0
B5 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 0
B6 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 0 1 1
B7 1 1 1 0 1 0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1
B8 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0

the value of the objective function in the DRO problem i.e., the expected operation cost of

the distribution network decreases as the number of data samples increases.

Considering 40 data samples, the expected operation cost of the distribution network

with V2G capability for the interconnected EVs is $17305.01. The expected operation cost

increases to $17612.28 once the EV clusters do not have the V2G capability. The total

operation cost of the distribution network with and without V2G capability of EVs in all

cases are shown in Table 5.23.

5.4 Conclusion

In this chapter, the data-driven distributionally robust operation of the distribution

network with high penetration of PV generation and EV interconnection is evaluated. The

proposed formulation captures the uncertainty in PV generation and the characteristics of

the interconnected EV clusters. A solution algorithm based on the C&CG approach is
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Table 5.22: The expected operation cost of the IEEE 123-bus system with different numbers
of empirical data samples

Cases Size of Historical Data
20 40 60 80 100

Case 2 14591 14706 14675 14767 14901
Case 4 17310 17305 17298 17290 17288

Table 5.23: The operation cost of the IEEE 123-bus system with and without V2G capability
in EVs

Cases Distribution network operation cost ($)
With V2G capability Without V2G capability

Case 1 9545.05 9879.51
Case 2 14705.52 15000.06
Case 3 24067.32 27475.95
Case 4 17305.01 17612.28

used to solve the proposed formulation. It is shown that the expected operation cost of the

distribution network using the proposed DRO formulation converges to the solution of the SP

problem as the number of data samples increases. Moreover, increasing the confidence level

will increase the Wasserstein radius and therefore, increase the operation of the distribution

network. The solution to the DRO problem is compared to those of SP and RO problems.

It is shown that the operation cost of the distribution network is highest once the operation

problem is formulated as a RO problem. The solution to the distributionally robust operation

of the distribution network is less conservative compared to the solution to the RO problem

and therefore, the operation cost of the distribution network using the DRO formulation is

less than that using the RO formulation. The demand curtailment of the distribution network

is compared to the SP and RO solutions. It is shown that the demand curtailment is the

highest, once the distribution network operation problem is formulated as a RO problem.

Furthermore, the out-of-sample performance of the DRO problem is compared to that of

the SP problem. It is shown that the distributionally robust operation of the distribution

network would lead to a more conservative solution once it is exposed to unseen uncertainties.
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Therefore the out-of-sample performance of the DRO solution is better than that for the SP.

The impact of V2G on the operation cost of the distribution network is further investigated.

It is shown that the V2G capability of EV clusters will reduce the operation cost of the

distribution network.
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Chapter 6

Data-Driven Distributionally Robust Operation of Distribution Networks with Ramping

Flexibility

The increase in the generation capacity of the variable renewable resources and electricity

demand introduces new operational challenges to the unbalanced three-phase distribution

networks. This chapter addresses the uncertainty associated with the ramping of net demand

using a data-driven approach. A continuous-time optimization problem is reformulated

to a linear programming problem using Bernstein polynomials. A distributionally robust

optimization problem is formulated to capture the worst-case probability distribution of

the net demand, which includes the demand and the PV generation. The solution to

the distributionally robust operation of the unbalanced distribution network is compared

to that of the stochastic programming problem in which the uncertainty associated with

the net demand ramp is captured using scenarios. The developed formulated problem is

validated using a modified IEEE 13-bus unbalanced distribution system. The impact of

ramp limits of the main feeder on the expected operation cost of the distribution network is

investigated. This chapter proposes a data-driven approach to handle the uncertainty in the

ramping requirement of the net demand using limited empirical data. The proposed data-

driven distributionally robust operation scheme for the distribution networks combines the

economic benefits of SP and RO problems by considering the worst-case probability of the

net demand ramping using limited available empirical ramping samples. The contributions

of this chapter are listed as follows:

• The unbalanced distribution network operation problem is formulated as a distributionally

robust optimization problem considering the worst-case probability of the net demand

ramping requirements.

• The in-sample and out-of-sample performances of the proposed method are compared
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with the SP counterpart of the formulated problem.

• The feeder and DGs ramping costs are considered and the impact of the feeder ramping

limit on the expected operation cost of the distribution network is evaluated.

The rest of this chapter is organized as follows; section 6.1 presents the continuous-time

formulation of the unbalanced distribution network operation problem. The presented

problem is further reformulated as a discrete optimization problem using Bernstein polynomial

and the distributionally robust counterpart of the problem is presented in this section.

Section 6.2 presents the numerical results and the conclusion is presented in Section 6.3.

6.1 Problem Formulation

6.1.1 Notation

In this chapter, n ∈ F , g ∈ G, i, j ∈ B, v ∈ V , d ∈ D, τ ∈ H, φ ∈ Φ, and m ∈ M

represent the indices for feeder, distributed generation, bus (node), PV, demand, time step,

phase of the distribution network and segment in the piece-wise linear cost function of the

DG, respectively. The introduced indices belong to the corresponding sets; furthermore, the

set of branches is defined as L =
{
(i, j) | i, j ∈ B, i ̸= j

}
. The variables p(.),φ

i (t) and q
(.),φ
i (t)

represent the real and reactive power of a unit connected to bus i, respectively. Furthermore,

variables pφ
ij(t) and qφ

ij(t) represent the real and reactive power flow from node i to node

j respectively. The variable psg,m,φ
i (t) is the power output at segment m; and the positive

variables r(.),n,φ
i (t) and r(.),g,m,φ

i (t) are the deployed ramping services of the distribution feeder

and DGs respectively. The variable vφ
i (t) is the squared voltage on phase φ at node i. The

parameters presented in the problem formulation are described as follows. Here, ρn(t) is

the hourly price of electricity, ωg,m is the marginal cost and psg,m,φ
i is the maximum power

in segment m of DG unit g; βn(t) and ηg,m are the ramping costs of the feeder and DG.

Furthermore, V and V are the upper and lower limits of the voltage, R̃ij is the resistance,

and X̃ij is the reactance of the branch ij. Moreover, κφ
ij is the availability of phase φ, and

S
φ

ij is the apparent power capacity of the branch. The parameters Qv,φ

i , P g,φ

i and Q
g,φ

i are

the maximum reactive power of PV unit, maximum real and maximum reactive power of

DG units respectively. Finally, PF is the acceptable power factor of the distribution feeder.
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6.1.2 Day-ahead continuous-time operation of the distribution network

The day-ahead continuous-time operation of the unbalanced distribution system is formulated

as (6.1)-(6.20). The objective function is given in (6.1), where the first two components

represent the expected operation cost of the feeder and distributed generation units (DGs),

respectively. The last two components represent the ramping costs of the feeder and distributed

generation considering the worst-case probability of the net demand ramping. The operation

cost of the DG unit is considered as a quadratic function that is linearized using piece-wise

linearization technique as shown in (6.2) and (6.3). The nodal real and reactive power

balance constraints are shown in (6.4) and (6.5) respectively.

min
p,q,v,r

max
P

EP
∑

i

∑
φ

∑
n

∫ T

0
ρn(t) · pn,φ

i (t)dt+
∑

g

∑
m

∫ T

0
ωg,m · psg,m,φ

i (t)dt+

∑
n

∫ T

0
βn (t) · (r1,n,φ

i (t) + r2,n,φ
i (t))dt+

∑
g

∑
m

∫ T

0
ηg,m · (r1,g,m,φ

i (t) + r2,g,m,φ
i (t))dt

 (6.1)

psg,m,φ
i (t) ≤ psg,m,φ

i (6.2)

pg,φ
i (t) =

∑
m

psg,m,φ
i (t) (6.3)

∑
(i,j)∈L

pφ
ij (t) +

∑
n∈F

pn,φ
i (t) +

∑
g∈G

pg,φ
i (t) =

∑
d∈D

p̂d,φ
i (t) −

∑
v∈V

p̂v,φ
i (t) (6.4)

∑
(i,j)∈L

qφ
ij (t) +

∑
n∈F

qn,φ
i (t) +

∑
g∈G

qg,φ
i (t) =

∑
d∈D

q̂d,φ
i (t) −

∑
v∈V

qv,φ
i (t) (6.5)

vφ
j (t) = vφ

i (t) − 2 ·
(
R̃ij · pφ

ij (t) + X̃ij · qφ
ij (t)

)
(6.6)

V 2 ≤ vφ
i (t) ≤ V

2 (6.7)

−
√

2 · κφ
ij · Sφ

ij ≤ pφ
ij (t) + qφ

ij (t) ≤
√

2 · κφ
ij · Sφ

ij (6.8)
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−
√

2 · κφ
ij · Sφ

ij ≤ pφ
ij (t) − qφ

ij (t) ≤
√

2 · κφ
ij · Sφ

ij (6.9)

−κφ
ij · Sφ

ij ≤ pφ
ij (t) ≤ κφ

ij · Sφ
ij (6.10)

−κφ
ij · Sφ

ij ≤ qφ
ij (t) ≤ κφ

ij · Sφ

ij (6.11)

∑
n

dpn,φ
i (t)
dt

+
∑

g

dpg,φ
i (t)
dt

=
∑

d

dp̂d,φ
i (t)
dt

−
∑

v

dp̂v,φ
i (t)
dt

(6.12)

dpn,φ
i (t)
dt

= r1,n,φ
i (t) − r2,n,φ

i (t) (6.13)

dpg,m,φ
i (t)
dt

= r1,g,m,φ
i (t) − r2,g,m,φ

i (t) (6.14)

r1,n,φ
i (t) , r2,n,φ

i (t) , r1,g,m,φ
i (t) , r2,g,m,φ

i (t) ≥ 0 (6.15)

−Qv,φ

i ≤ qv,φ
i (t) ≤ Q

v,φ

i (6.16)

0 ≤ pg,φ
i (t) ≤ P

g,φ

i (6.17)

−Qg,φ

i ≤ qg,φ
i (t) ≤ Q

g,φ

i (6.18)

qn,φ
i (t) ≤ tan(cos−1PF ) · pn,φ

i (t) (6.19)

−tan(cos−1PF ) · pn,φ
i (t) ≤ qn,φ

i (t) (6.20)
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The nodal voltages on both sides of a branch satisfy (6.6) and (6.7). The real and reactive

power flow of each branch satisfies a circular constraint which is linearized using (6.8)-

(6.11) [97]. Similar constraints are used for the real and reactive power of the distribution

feeder. The relationship between the provided ramping services by the feeder and DGs, with

the required ramping of the net demand is shown in (6.12), where the net demand at bus i is

the demand power minus the PV generation, i.e., p̂net,φ
i (t) = p̂d,φ

i (t) − p̂v,φ
i (t). The ramping

trajectory of the feeder is represented by the difference of two positive variables, r1,n,φ
i (t)

and r2,n,φ
i (t), as shown in (6.13), and (6.15). A similar constraint is considered for the DG

units shown in (6.14). The reactive power of PVs and the real and reactive power of DGs

are bounded by the capacity of the units as shown in (6.16)-(6.18). The reactive power of

the feeder is limited by the acceptable power factor as shown in (6.19) and (6.20).

6.1.3 Reformulation of continuous-time operation of distribution network

The formulated continuous-time operation of the distribution network (6.1)-(6.20) is

reformulated using the Bernstein Polynomial (BP) and its properties. The 1-dimensional,

nth order BP(Pm(t)) is formulated as (6.21) for t ∈ [ti, tf ], where, ti and tf are the initial and

final time of the continuous trajectory (i.e. Bezeir Curve). Here, pk,m is the kth Bernstein

coefficient, and Bk,m is the BP basis given in (6.22). The BP properties (6.23)-(6.25) are

used to convert the continuous time trajectories into a time-independent Bezeir curve control

points [109].

Pm(t) =
m∑

k=0
pk,mBk,m(t) (6.21)

Bk,m(t) =
(
m

k

)
(t− ti)k(t− tf )m−k

(tf − ti)m
(6.22)

min
k∈{0,...,m}

pk,m ≤ Pm(t) ≤ max
k∈{0,...,m}

pk,m (6.23)

Ṗm−1(t) =
m−1∑
k=0

ṗk,m−1Bk,m−1(t) (6.24)
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∫ tf

ti

Pm(t)dt = tf − ti
m+ 1

m∑
k=0

pk,m (6.25)

For the time interval τ ∈ [ti, tf ], the continuous-time variable p(.),φ
i (t) is written using the

equivalent discrete-time variable p
(.),φ,k
i,τ , where each time interval τ is one hour, and the

order of BP is 3, i.e. m = 3. Therefore k = 0, 1, 2, 3 and the problem is reformulated to

(6.26), (6.2)-(6.11), (6.27)-(6.29) and (6.15)-(6.20) by replacing each continuous-time variable

X
(.)
i (t) with its corresponding control points X(.),k

i .

min
p,q,v,r

max
P

EP
∑

i

∑
φ

∑
τ

∑
k

∑
n

ρn
i,τp

n,φ,k
i,τ +

∑
g

∑
m

ωg,m · psg,m,φ,k
i,τ +

∑
n

βn
i,τ · (r1,n,φ,k

i,τ + r2,n,φ,k
i,τ )

+
∑

g

∑
m

ηg,m · (r1,g,m,φ,k
i,τ + r2,g,m,φ,k

i,τ )
 (6.26)


pn,φ,1

i,τ − pn,φ,0
i,τ

pn,φ,2
i,τ − pn,φ,1

i,τ

pn,φ,3
i,τ − pn,φ,2

i,τ

+


pg,m,φ,1

i,τ − pg,m,φ,0
i,τ

pg,m,φ,2
i,τ − pg,m,φ,1

i,τ

pg,m,φ,3
i,τ − pg,m,φ,2

i,τ

 =


p̂d,φ,1

i,τ − p̂d,φ,0
i,τ

p̂d,φ,2
i,τ − p̂d,φ,1

i,τ

p̂d,φ,3
i,τ − p̂d,φ,2

i,τ

−


p̂v,φ,1

i,τ − p̂v,φ,0
i,τ

p̂v,φ,2
i,τ − p̂v,φ,1

i,τ

p̂v,φ,3
i,τ − p̂v,φ,2

i,τ

 (6.27)

3 ·


pn,φ,1

i,τ − pn,φ,0
i,τ

pn,φ,2
i,τ − pn,φ,1

i,τ

pn,φ,3
i,τ −pn,φ,2

i,τ

 =


r1,n,φ,0

i,τ − r2,n,φ,0
i,τ

r1,n,φ,1
i,τ − r2,n,φ,1

i,τ

r1,n,φ,2
i,τ − r2,n,φ,2

i,τ

 (6.28)

3 ·


pg,m,φ,1

i,τ − pg,m,φ,0
i,τ

pg,m,φ,2
i,τ − pg,m,φ,1

i,τ

pg,m,φ,3
i,τ − pg,m,φ,2

i,τ

 =


r1,g,m,φ,0

i,τ − r2,g,m,φ,0
i,τ

r1,g,m,φ,1
i,τ − r2,g,m,φ,1

i,τ

r1,g,m,φ,2
i,τ − r2,g,m,φ,2

i,τ

 (6.29)

To capture the uncertainty in net demand ramping requirements, a data-driven distributionally

robust optimization problem is formulated. Here, the empirical data includes the samples

of net demand ramp rates in (6.30) where the forecast error of total net demand is given in

(6.31). The unknown probability distribution P of the net ramping is in the ambiguity set
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P with a certain confidence level. The ambiguity set is formed as a Wasserstein ball with

radius ϵ around the empirical probability distribution [65]- [110].

R̃φ
τ =


ξ̃φ,m1

τ − ξ̃φ,m0
τ

ξ̃φ,m2
τ − ξ̃φ,m1

τ

ξ̃φ,m3
τ − ξ̃φ,m2

τ

 (6.30)

ξ̃φ,k
τ =

∑
i∈B

(
p̃net,φ,k

i,τ − p̂net,φ,k
i,τ

)
(6.31)

To reformulate (6.26), the affine adjustments for ramping requirement of feeder and DGs on

each phase φ, are defined as (6.32)-(6.35) where R̃φ
τ represents the forecast error of the total

net demand ramping requirement.


p̃g,m,φ,1

i,τ − p̃g,m,φ,0
i,τ

p̃g,m,φ,2
i,τ − p̃g,m,φ,1

i,τ

p̃g,m,φ,3
i,τ − p̃g,m,φ,2

i,τ

 =


pg,m,φ,1

i,τ − pg,m,φ,0
i,τ

pg,m,φ,2
i,τ − pg,m,φ,1

i,τ

pg,m,φ,3
i,τ − pg,m,φ,2

i,τ

− αg,φ
i,τ · R̃φ

τ (6.32)


p̃n,φ,1

i,τ − p̃n,φ,0
i,τ

p̃n,φ,2
i,τ − p̃n,φ,1

i,τ

p̃n,φ,3
i,τ − p̃n,φ,2

i,τ

 =


pn,φ,1

i,τ − pn,φ,0
i,τ

pn,φ,2
i,τ − pn,φ,1

i,τ

pn,φ,3
i,τ − pn,φ,2

i,τ

− αn,φ
i,τ · R̃φ

τ (6.33)

0 ≤ αn,φ
i,τ , α

g,φ
i,τ ≤ 1 (6.34)

∑
n

αn,φ
i,τ +

∑
g

αg,φ
i,τ = 1 (6.35)

With the presented affine adjustments, the total expected cost of feeder and DGs and the

total expected cost of the ramping of feeder and DGs, can be represented as a function of net

demand ramping uncertainty. Therefore (6.26) is formulated as maxP∈P EP
[
Lφ(xφ,Rφ)

]
, and

the generalized exact linear reformulation of (6.26) is shown in (6.36)-(6.39), where, aφ
ν and

bφ
ν are the linear functions of xφ [65]. The formulated DRO problem is a linear programming

problem that includes (6.36)-(6.39), (6.27)-(6.29), and the discrete-time form of (6.2)-(6.11)
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and (6.15)-(6.20).

inf
λφ,sφ

l
,γφ

lν

∑
φ∈Φ

λφϵ+ 1
N

N∑
l=1

sφ
l

 (6.36)

bφ
ν + ⟨aφ

ν , R̃
φ
l ⟩ + ⟨γφ

lν , d− CR̃φ
l ⟩ ≤ sφ

l , ∀l ≤ N, ν ≤ K (6.37)

∥∥∥C⊤γφ
lν − aφ

l

∥∥∥
∗

≤ λφ, ∀l ≤ N, ν ≤ K (6.38)

γφ
lν ≥ 0 (6.39)

6.2 Numerical Results

In this section, the modified IEEE 13-bus unbalanced distribution network is considered

as a test case. Fig. 6.1 shows the network diagram. Here DGs and PVs are three-phase

generation units. The capacity of DG1 and DG2 is 300 kW and the capacity of DG3 is

350 kW . Four PV units with the capacity of 250 kW are installed. The total peak demand

on phases A, B, and C are 1175 kW , 1039 kW , and 1252 kW , respectively. The maximum

reactive power demand on phases A, B, and C, are 616 kV Ar, 665 kV Ar, and 771 kV Ar,

respectively. The control points of the PV and demand profiles formed by the sample data

are calculated. Fig. 6.2 shows the forecasted PV generation and demand profile and the

corresponding control points. The ramping cost of the feeder is three times the electricity

price, and the ramping costs of the DGs are three times the cost of the DGs for each segment.

The feeder capacity is 3300 kV A with the minimum acceptable power factor of 0.82. The

simulations are performed on a PC with an Intel 2.6 GHz Core i7 processor and 16 GB of

memory and CPLEX 12.8 is used as a solver.

6.2.1 Distributionally robust operation with ramping costs

The performance of the proposed DRO problem formulation for various sample data sizes

is evaluated, and the results are compared with the results of the SP counterpart. Table

6.1 demonstrates the in-sample and out-of-sample performance of DRO and SP problems.

As it is shown by increasing the number of sample data, the Wasserstein radius ϵ and the
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Figure 6.1: Modified IEEE 13-bus system

total expected operation cost of DRO for in-sample data are decreasing. Furthermore, the

objective of the DRO problem (network expected operation cost) is higher than the solution

to the SP problem with the same number of sample data. The total expected operation cost

for 100 samples is increased from $8075.26 to $10445.12 once the ramping cost is considered

in the SP problem. Furthermore, the total expected operation cost is increased from $8409.59

when ramping costs of DG and feeder are ignored, to $10873.47 once the ramping costs are

considered in the DRO problem.

To evaluate the out-of-sample performance of the DRO and SP problem formulations,

a new set of testing sample data is generated to represent the unseen scenarios, and the

power dispatch of the feeder is fixed. The results in Table 6.1 demonstrate that the out-of-

sample performance in DRO provides lower expected operation cost, which proves the better
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Figure 6.2: Forecasted PV generation and demand

Table 6.1: The In-sample and Out-of-sample performance of DRO and SP

DRO [$] SP [$]
N ϵ In-sample Out-of-sample In-sample Out-of-sample
20 2.96 10949.92 11044.79 10459.22 11591.77
40 1.77 10947.70 11022.23 10481.29 11586.87
60 1.40 10923.49 11049.96 10463.12 11623.36
80 1.21 10907.28 11059.48 10457.74 11628.81
100 1.08 10873.47 11044.64 10445.12 11618.34

performance of the DRO solution when facing unseen scenarios. The probability distribution

of the out-of-sample operation cost of the DRO problem is compared with those for the SP

problem for 100 samples in Fig. 6.3. As shown here, the probability distribution of the

operation cost of the solution to the DRO problem has a lower standard deviation (281.88)

compared to the SP (331.38), which indicates more robustness of the DRO solution when

facing the unseen scenarios.

124



Figure 6.3: Out-of-sample performance of the operation cost

6.2.2 Limited ramp rate of the distribution feeder

Here, the impact of limiting the feeder ramp rate on the expected operation cost of the

distribution network is investigated once the distribution network operation is formulated as

a DRO problem for 100 sample data. As shown in Fig. 6.4, by increasing the feeder ramp rate

limit, the expected operation cost of the distribution network is decreasing. The expected

operation cost for ramping rates above 300 kW/(20min) is $10873.47. The maximum

expected operation cost is $13450.85 as the ramp rate limit reaches 34 kW/(20min).
6.3 Conclusion

In this chapter, a distributionally robust continuous-time operation of the unbalanced

distribution network considering the worst-case probability of the net demand ramp samples

was proposed. The BPs and their properties are used to reformulate the continuous-time

problem formulation into a tractable discrete-time problem. The discrete-time problem is

then reformulated using the Wasserstein metric-based distributionally robust optimization

problem to capture the worst-case probability of the net demand ramping. The numerical

results are shown for a modified IEEE 13-bus unbalanced distribution system. It is shown

that once the ramping rate of the feeder is limited, the expected operation cost of the

distribution network increases. Furthermore, the simulation outcomes show that the solution
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Figure 6.4: Impact of ramping limit on the total expected operation cost

to the DRO problem has superior out-of-sample performance compared to the solution of

the SP problem.
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Chapter 7

Adaptive Robust Distributed Operation of Distribution Network with Interconnected

Microgrids

This paper proposes a framework for the day-ahead operation of the unbalanced distribution

network with multiple microgrids considering the worst-case realization of demand and solar

Photovoltaic generation in distribution network and microgrids. The problem is formulated

as a two-stage optimization problem in which switching in the distribution network is

procured at the first stage, and the distribution network and microgrids operation problems

are solved at the second stage. The formulated problem is decomposed and solved using the

column and constraint generation (C&CG) approach. The interactions between microgrids

and distribution network is captured using the alternating direction method of multipliers

(ADMM) method. The proposed approach is applied to a modified IEEE 34-bus system with

two interconnected microgrids. The impact of islanding in microgrids and the switching in

distribution network on the overall operation cost and power loss of the distribution network

were investigated. The key contributions of this chapter are as follows:

– An adaptive robust distributed operation of distribution network with interconnected

microgrids is proposed and solved using C&CG algorithm. The master problem and

subproblems are formulated as MISOCP problems.

– The first-stage decisions are the switching states of the distribution network branches

while the second-stage decisions include the worst-case realization of the uncertain

solar PV generation and demand. The consensus among the dual form of the second

stage problems is ensured using the ADMM approach where the dual variables are the

shared variables among the microgrid and distribution network second-stage problems.

– The impacts of islanding and grid-connected operation modes of MGs and switching

capability of the distribution networks are evaluated on the overall operation cost of
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the system.

The rest of the chapter is organized as follows: section 7.1 presents the problem formulation,

and the detailed descriptions of the objective function and constraints. The proposed solution

methodology is presented in section 7.2. The numerical results are discussed in section 7.3.

Finally, the conclusion is presented in section 7.4.

Nomenclature

Sets and Indices:

– n,F Index and set of feeder.

– g,G Index and set of distributed generation units.

– i, j,B Index and set of buses.

– v,V Index and set of solar photovoltaic generation.

– d,D Index and set of demand.

– t, T Index and set of time.

– m,M Index and set of the segments in piece-wise linear cost function of DGs.

– φ,Φ Index of PV generation unit.

– MG Index of microgrid.

– DS Index of distribution network.

– ΛDS
i Set of buses in the neighborhood of bus i in the distribution network.

– ΛMG
i Set of buses in the neighborhood of bus i in the microgrids.

– ΛCC
i Set of buses in microgrids the neighborhood of bus i in the distribution network.

– LDS Set of branches in the distribution network.

– Cs Set of closed branches.

– Os Set of open branches.
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Variables:

– p
(.),φ
i,t Real power of the units connected to bus i.

– q
(.),φ
i,t Reactive power of the units connected to bust i.

– pφ
ij,t Real power flow from node i to j.

– qφ
ij,t Reactive power flow from node i to j.

– lφij,t Square of current magnitudes from node i to j.

– vφ
i,t Square of voltage magnitudes at node i.

– psm,g,φ
i,t Power in segment m of the distributed generation g of the cost curve.

– γ
(.),φ
e,t Binary variable representing the uncertainty in demand and PVs.

– yij,t Binary variable shows the status of connection of branches in the distribution

network.

– Yij,t Auxiliary binary variables.

Parameters:

– P
(.),φ
i,t Maximum real power of the units connected to bust i.

– Q
(.),φ
i,t Maximum reactive power of the units connected to bust i.

– Q(.),φ
i,t

Minimum reactive power of the units connected to bust i.

– I
φ

ij,t Maximum Square of current magnitudes from node i to j.

– V
φ
i,t, V

φ
i,t Maximum and minimum square of voltage magnitudes limits at node i.

– psm,g,φ
i,t Maximum real power in segment m of the distributed generation g of the cost

curve.

– ρφ
ij Binary parameters indicates the status of the connection of lines on each phase.

– Cm,g
i Marginal cost of the unit i in segment m.
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– S
(.),φ
i,t Maximum apparent power of the PV units connected to bust i.

– PF Power factor.

– k Iteration counter in the C&CG algorithm.

– τ Iteration counter in the ADMM algorithm.

7.1 Problem Formulation

The proposed problem is formulated as a two-stage optimization problem. The first

stage determines the topology of the distribution network by identifying the status of the

switchable branches [111]. The second-stage aims to minimize the total operation cost

of distribution network and MGs considering the worst-case realization of the solar PV

generation and demand. The second-stage problem is solved in a distributed manner using

ADMM by formulating the dual form of the problem for distribution network and MGs and

ensure the consensus among the shared dual variables in each sub-problem. The day-ahead

operation of the unbalanced distribution system with interconnected MGs is formulated in

(7.1)-(7.25). The first term in (7.1) represents the objective of the first-stage problem. The

second term represents the objective function of the second-stage problem in which the worst-

case realization of the solar PV generation and demand were considered. In the objective

function of the second-stage problem, the first three components represent the operation

cost of the feeder, the operation cost of the distributed generation units (DGs), and the

load shedding penalty in the distribution system. The last two components represent the

operation cost of the distributed generation units and load shedding penalties in MGs. The

piece-wise linearized form of the operation cost of DG units is shown in (7.4) and (7.5).

Here, CDS
d and CMG

d are the load shedding penalties in the distribution network and MGs,

respectively. The real and reactive power balances at each bus are enforced by (7.6) and

(7.7) respectively, where, Lf
l is the set of buses at the sending end of a line and Lt

l is the

set of buses at the receiving end of the bus. The bus voltages on both sides of a branch

satisfy (7.8)-(7.9) and the voltage at each bus is limited by (7.11). Here, R̃l and X̃ l are

the resistance and inductive reactance matrices of the unbalanced branch l that are defined

in [99]. The big-M method is used to relax the power flow constraint once phase pφ
ij and/or
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distribution branch yij,t does not exist. The real and reactive power at the sending end of a

branch is limited by (7.10) which is further reformulated as a second-order conic constraint.

The current flow in distribution branch is limited by (7.12). The relationship between the real

and reactive power of PV generation is given by (7.13) which is formulated as a second-order

conic constraint [112]. The real power output of PV unit is limited by (7.14), where, γv,φ,DS
i,t

is a binary variable. The maximum solar PV generation is within a polyhedral set defined as

(7.26) where, P v,φ,(.)
i,t and ∆P v,φ,(.)

i,t are the maximum forecasted solar PV generation and the

deviation from the maximum solar PV generation. The status of the switches in the first-

stage problem is determined in a way that the radial topology of the distribution network

is ensured. The constraints (7.2) and (7.3) ensure the radial topology of the distribution

network with network switching decisions [111]. The real and reactive power outputs of

the DG unit are enforced by (7.15)-(7.16). The real power of the demand is enforced by

(7.19), where, the uncertainty in the demand is represented similar to the uncertainty in PV

generation as shown in (7.27). The reactive power of the distribution feeder is constrained by

(7.17)-(7.18) considering the acceptable power factor at the feeder. It is worth noting that

similar formulation (7.4)-(7.5) and (7.8)-(7.16) is written for MGs. The real and reactive

power balance at each bus in the MGs are enforced by (7.23) and (7.24). The voltage at two

sides of the coupling tie-lines between the distribution network and MGs satisfy (7.25).

min
yij,t

0 + max
γ

(.),φ,(.)
i,t

min
p,q,U

( ∑
i∈BDS

∑
n∈F

∑
φ∈Φ

∑
t∈T

ρi,t · pn,φ
i,t +

∑
i∈BDS

∑
φ∈Φ

∑
t∈T

∑
g∈G

∑
m∈M

Cm,g
i · psm,g,φ

i,t +

∑
i∈BDS

∑
φ∈Φ

∑
t∈T

CDS
d ·

(
pd,φ

i,t − pd,φ
i,t

)
+

∑
i∈BMG

∑
φ∈Φ

∑
t∈T

∑
g∈G

∑
m∈M

Cm,g
i · psm,g,φ

i,t +

∑
i∈BMG

∑
φ∈Φ

∑
t∈T

CMG
d ·

(
pd,φ

i,t − pd,φ
i,t

))
(7.1)

s.t. ∑
ij∈LDS

yij,t = K − 1 (7.2)
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∑
s∈S

 ∏
ij∈Cs

yij,t ·
∏

ij∈Os

(
1 − yij,t

) = 1 (7.3)

psm,g,φ
i,t ≤ psm,g,φ

i,t ∀i ∈ BDS (7.4)

pm,g,φ
i,t =

∑
m

psm,g,φ
i,t ∀i ∈ BDS (7.5)

∑
j∈ΛDS

i

(pφ
ij,t − R̃DS

ij · lφij,t) −
∑

j∈ΛCC
i

pφ
ij,t +

∑
n∈F

pn,φ
i,t

+
∑
g∈G

pg,φ
i,t =

∑
d∈D

pd,φ
i,t −

∑
v∈V

pv,φ
i,t ; ∀i ∈ BDS (7.6)

∑
j∈ΛDS

i

(qφ
ij,t − X̃DS

ij · lφij,t) −
∑

j∈ΛCC
i

qφ
ij,t +

∑
n∈F

qn,φ
i,t

+
∑
g∈G

qg,φ
i,t =

∑
d∈D

qd,φ
i,t −

∑
v∈V

qv,φ
i,t ; ∀i ∈ BDS (7.7)

vφ
j,t − vφ

i,t + 2 ·
(
R̃DS

ij · pφ
ij,t + X̃DS

ij · qφ
ij,t

)
− ((R̃DS

ij )2 + (X̃DS
ij )2) · lφij,t

≤ M · (2 − ρφ
l − yij,t); ∀i ∈ BDS, j ∈ ΛDS

i (7.8)

vφ
j,t − vφ

i,t + 2 ·
(
R̃DS

ij · pφ
ij,t + X̃DS

ij · qφ
ij,t

)
− ((R̃DS

l )2 + (X̃DS
l )2) · lφij,t

≥ −M · (2 − ρφ
l − yij,t); ∀i ∈ BDS, j ∈ ΛDS

i (7.9)

∥∥∥∥∥∥∥∥∥∥∥
2pφ

ij,t

2qφ
ij,t

lφij,t − vφ
i,t

∥∥∥∥∥∥∥∥∥∥∥
2

≤ lφij,t + vφ
ij,t ∀i ∈ BDS, j ∈ ΛDS

i (7.10)

V 2 ≤ vφ
i,t ≤ V

2 ∀i ∈ BDS (7.11)

0 ≤ lφij,t ≤ (Iφ

ij)2 ∀i ∈ BDS, j ∈ ΛDS
i (7.12)

(pv,φ
i,t )2 + (qv,φ

i,t )2 ≤ (Sv,φ
i,t )2 ∀i ∈ BDS (7.13)
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0 ≤ pv,φ
i,t ≤ P̂ v,φ

i + γv,φ
i,t P̃

v,φ
i ∀i ∈ BDS (7.14)

0 ≤ pg,φ
i,t ≤ P

g,φ

i ∀i ∈ BDS (7.15)

−Qg,φ

i ≤ qg,φ
i,t ≤ Q

g,φ

i ∀i ∈ BDS (7.16)

qn,φ
i,t ≤ tan(cos−1PF ) · pn,φ

i,t ∀i ∈ BDS (7.17)

−tan(cos−1PF ) · pn,φ
i,t ≤ qn,φ

i,t ∀i ∈ BDS (7.18)

0 ≤ pd,φ
i,t ≤ P̂ d,φ

i + γd,φ
i,t P̃

d,φ
i ∀i ∈ BDS (7.19)

Yij,t ≤ (yij,t)ij∈Os ∀ij ∈ LDS (7.20)

Yij,t ≤ (yij,t)ij∈Cs ∀ij ∈ LDS (7.21)

Yij,t ≥ (yij,t)ij∈Cs + (yij,t)ij∈Os − 1 ∀ij ∈ LDS (7.22)

∑
j∈ΛMG

i

(pφ
ij,t − R̃MG

ij · lφij,t) +
∑
g∈G

pg,φ
i,t +

∑
j∈ΛCC

I

(pφ
ij,t − R̃CC

ij · lφij,t) =
∑
d∈D

pd,φ
i,t −

∑
v∈V

pv,φ
i,t ∀i ∈ BMG (7.23)

∑
j∈ΛMG

i

(qφ
ij,t − X̃MG

ij · lφij,t) +
∑
g∈G

qg,φ
i,t +

∑
j∈ΛCC

i

(qφ
ij,t − X̃CC

ij · lφij,t) =
∑
d∈D

qd,φ
i,t −

∑
v∈V

qv,φ
i,t ∀i ∈ BMG (7.24)

vφ
j,t − vφ

i,t + 2 ·
(
R̃ij · pφ

ij,t + X̃ij · qφ
ij

)
− (R̃2

ij + X̃2
ij) · lφij,t = 0 ∀i ∈ BDS, j ∈ BMG ∩ ΛCC

i (7.25)
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Ω1 =



p
v,φ,(.)
i,t =

[
P

v,φ,(.)
i,t − ∆P v,φ,(.)

i,t , P
v,φ,(.)
i,t + ∆P v,φ,(.)

i,t

]
P̂

v,φ,(.)
i,t = P

v,φ,(.)
i,t − ∆P v,φ,(.)

i,t

P̃
v,φ,(.)
i,t = 2 · ∆P v,φ,(.)

i,t

(7.26)

Ω2 =



p
d,φ,(.)
i,t =

[
P

d,φ,(.)
i,t − ∆P d,φ,(.)

i,t , P
d,φ,(.)
i,t + ∆P d,φ,(.)

i,t

]
P̂

d,φ,(.)
i,t = P

d,φ,(.)
i,t − ∆P d,φ,(.)

i,t

P̃
d,φ,(.)
i,t = 2 · ∆P d,φ,(.)

i,t

(7.27)

7.2 Solution Methodology

The proposed (C&CG) algorithm leverages ADMM algorithm to determine the consensus

among the formulated dual problems. For the sake of simplicity, the abstract form of the

problem formulation is presented here. The proposed C&CG algorithm is described as

follows:

1) Step 1 - Initialization: Initialize the upper and lower bounds and the iteration counter k

in the C&CG as as LB = −∞, UB = ∞, k = 0

2) Step 2 - Solve the master problem: Solve the problem (7.28)-(7.39) and update the lower

bound.

min
x

c⊤x + η (7.28)

s.t. Ax = d (7.29)

η ≥ b⊤
1 zω

1 + b⊤
2 zω

2 ; ∀ω ≤ k (7.30)

D1z
ω
1 ≤ g1; ∀ω ≤ k (7.31)

H1z
ω
1 + Hcc

1 zcc,ω = f 1; ∀ω ≤ k (7.32)

∥G1z
ω
1 ∥ ≤ h⊤

1 zω
1 ; ∀ω ≤ k (7.33)

N 1ξ
∗
ω,1 + F 1z

ω
1 ≤ q1; ∀ω ≤ k (7.34)
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D2z
ω
2 ≤ g2; ∀ω ≤ k (7.35)

H2z
ω
2 + Hcc

2 zcc,ω = f 2; ∀ω ≤ k (7.36)

∥G2z
ω
2 ∥ ≤ h⊤

2 zω
2 ; ∀ω ≤ k (7.37)

N 2ξ
∗
ω,2 + F 2z

ω
2 ≤ q2; ∀ω ≤ k (7.38)

S1z
ω
1 + S2z

ω
2 = 0; ∀ω ≤ k (7.39)

Here, x represents the vector of first-stage decision variables, and z1 and z2 represents

the second-stage recourse decision variables, i.e. p(.),φ,(.)
i,t , q(.),φ,(.)

i,t , pφ,(.)
ij,t , qφ,(.)

ij,t , vφ,(.)
i,t , lφ,(.)

ij,t in

the distribution network and MGs respectively. The constraint (7.29) represents (7.2) and

(7.20)-(7.22); constraint (7.30) represent the total operation cost of distribution network and

MGs given in (7.1). Constraint (7.31) represents the constraints (7.4), (7.5), (7.8), (7.9),

(7.11), (7.12), (7.14)-(7.19). Constraint (7.32) represents (7.6) and (7.7). Constraint (7.33),

represents (7.10) and (7.14) and constraint (7.34) represents (7.15) and (7.20). Similarly,

Constraints (7.35)-(7.38) are describing the similar constraints for MGs. Constraint (7.39)

represents the constraint (7.25). The lower bound is updated in each iteration using (7.40).

LB = c⊤x + η̂k+1 (7.40)

3) Step 3 - Solve subproblem: To solve the subproblem (7.41)-(7.50), the problem is re-

written as (7.51)-(7.57) using the duality theory. McCormick envelopes are used to linearize

ξ1
⊤π5 and ξ2

⊤π10 [100]. Here π(.) are the dual variables, where, π1, ..., π5 are dual variables

for distribution network constraints and π6, ..., π10 are dual variables for MG constraints. π11

is the dual variable for complicating constraint.

max
ξ
min
z1,z2

(b⊤
1 z1 + b⊤

2 z2) (7.41)

s.t. D1z1 ≤ g1 : π1 (7.42)

H1z1 + Hcc
1 zcc = f 1 : π2 (7.43)
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∥G1z1∥2 ≤ h⊤
1 z1 : π3,π4 (7.44)

F 1z1 ≤ N 1ξ1 : π5 (7.45)

D2z2 ≤ g2 : π6 (7.46)

H2z2 + Hcc
2 zcc = f 2 : π7 (7.47)

∥G2z2∥2 ≤ h⊤
2 z2 : π8,π9 (7.48)

F 2z2 ≤ N 2ξ2 : π10 (7.49)

S1z1 + S2z2 = 0 : π11 (7.50)

Θ = max
ξ

(
g⊤

1 π1 + f⊤
1 π2 + N⊤

1 ξ⊤
1 π5 + g⊤

2 π6 + f⊤
2 π7 + N⊤

2 ξ⊤
2 π10

)
(7.51)

D⊤
1 π1 + H⊤

1 π2 + F ⊤
1 π4 + S⊤

1 π′
11 ≤ b1 (7.52)

D⊤
2 π5 + H⊤

2 π7 + F ⊤
2 π10 + S⊤

2 π11 ≤ b2 (7.53)

Hcc
1 π2 + Hcc

2 π7 = 0 (7.54)

π′
11 − π11 = 0 (7.55)

∥π3∥2 ≤ π4 (7.56)

∥π8∥2 ≤ π9 (7.57)

4) Step 3A - The problem (7.51)-(7.57) can be decomposed into two sub-problems one

for distribution network and one for MGs; where, the first three terms in the objective

function and constraints (7.52) and (7.56) represent the dual counter-part for the primal

problem of the distribution network. The rest of the terms in the objective function and

constraints (7.53) and (7.59) represent the dual counter-part of the primal problem in
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the MGs. The complicating constraints (7.54) and (7.55) are relaxed and the augmented

Lagrangian function is defined as the objective function (7.58).

L =
((

g⊤
1 π1 + f⊤

1 π2 + N⊤
1 ξ⊤

1 π5 + g⊤
2 π6 + f⊤

2 π7 + N⊤
2 ξ⊤

2 π10

)
+

λ1(Hcc
1 π2 + Hcc

2 π7) + λ2(π′
11 − π11) + α

2 ∥Hcc
1 π2 + Hcc

2 π7∥2
2 + α

2
∥∥∥π′

11 − π11

∥∥∥2

2

)
(7.58)

Therefore, the problem in (7.51)-(7.57) is reformulated as the problem given in (7.59)-(7.63)

max
ξ,π(.)

(L) (7.59)

D⊤
1 π1 + H⊤

1 π2 + F ⊤
1 π4 + S⊤

1 π′
11 ≤ b1 (7.60)

D⊤
2 π5 + H⊤

2 π7 + F ⊤
2 π10 + S⊤

2 π11 ≤ b2 (7.61)

∥π3∥2 ≤ π4 (7.62)

∥π8∥2 ≤ π9 (7.63)

5) Step 3B - Using the ADMM algorithm, the variables π2, π7, π11, π′
11, λ1 and λ2 are

updated in iteration τ as shown in (7.64)-(7.67).

πτ+1
2 ,πτ+1

11 := arg max
ξ,π1,...,π5,π11

L1(λτ
1, λτ

2, π2, π11, πτ
7 , π

′τ
11) (7.64)

πτ+1
7 ,π′τ+1

11 := arg max
ξ,π6,...,π10,π′

11

L2(λτ
1, λτ

2, πτ
2 , πτ

11, π7, π
′

11) (7.65)

λτ+1
1 = λτ

1 + α(Hcc
1 πτ+1

2 + Hcc
2 πτ+1

7 ) (7.66)

λτ+1
2 = λτ

2 + α(π′τ+1
11 − πτ+1

11 ) (7.67)

Using ADMM method, the problem (7.59)-(7.63) is decomposed and solved in an iteratively.

First, the problem (7.64) which is expanded in (7.69)-(7.71) for distribution network is solved

using the Lagrangian function L1 in (7.68) and the dual variables (i.e. π2, π11,λ1) are
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procured. Next, the problem (7.65) which is expanded in (7.73)-(7.75) is solved for MGs

to procure the dual variables (i.e. π7, π′
11, λ2) considering the Lagrangian function L2

formulated in (7.72). Next, the lagrangian multipliers λ1 and λ2 are updated using (7.66)

and (7.67) respectively. Next, proceed to Step 3C.

L1 =
(

g⊤
1 π1 + f⊤

1 π2 + N⊤
1 ξ⊤

1 π5 + λ1H
cc
1 π2 + λ2π11+

α

2

[
∥Hcc

1 π2 + Hcc
2 π̂7∥2

2 +
∥∥∥∥π11 − π̂′

11

∥∥∥∥2

2

])
(7.68)

max
ξ1,π1,...,π5,π

′
11

(L1) (7.69)

s.t.

D⊤
1 π1 + H⊤

1 π2 + F ⊤
1 π4 + S⊤

1 π′
11 ≤ 0 (7.70)

∥π3∥2 ≤ π4 (7.71)

and

L2 =
(

g⊤
2 π6 + f⊤

2 π7 + N⊤
2 ξ⊤

2 π10 + λ1H
cc
2 π7 − λ2π

′
11+

α

2

[
∥Hcc

1 π̂2 + Hcc
2 π7∥2

2 +
∥∥∥π̂11 − π′

11

∥∥∥2

2

])
(7.72)

max
ξ2,π6,...,π10,π11

(L2) (7.73)

s.t.

D⊤
2 π5 + H⊤

2 π7 + F ⊤
2 π10 + S⊤

2 π11 ≤ 0 (7.74)

∥π8∥2 ≤ π9 (7.75)

6) Step 3C - Check the convergence criteria: The convergence criteria (7.76) is checked. If

the convergence criteria is not satisfied, go back to Step 3B. Otherwise, update the upper
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bound of the C&CG loop (7.77) and go to Step 4.

rτ = max

[
∥Hcc

1 π̂τ
2 + Hcc

2 πτ
7∥∞ +

∥∥∥π′τ
11 − πτ

11

∥∥∥
∞

]
≤ ε2 (7.76)

UB = min{UB,L1
∗(k+1) + L2

∗(k+1)} (7.77)

7) Step 4 - Check the convergence criterion of C&CG algorithm: If UB − LB ≥ ε1, then go

to Step 5, otherwise terminate the algorithm.

8) Step 5 - Generate columns and constraints: Add constraints (7.30)-(7.39) to the master

problem and go to Step 2.

Algorithm 2 The proposed algorithm
1: initialization the C&CG loop: k = 0, ε ≤ 10−3, LB = −∞ and UB = ∞.
2: while UB − LB ≥ ε1 do
3: Solve master problem (7.28)-(7.39).
4: Update the LB using (7.40).
5: initialization the ADMM loop: ε2, λ1, λ2, τ and α.
6: while rτ ≥ ε2 do
7: Solve subproblem given in (7.69)-(7.71).
8: update the parameters π2 and π11 using (7.64)
9: Solve subproblem given in (7.73)-(7.75).

10: update the parameters π7 and π′
11 using (7.65)

11: update the λ1 and λ2 using (7.66)-(7.67)
12: end while
13: Update the UB as given in (7.77).
14: Generate column and constraints (7.30)-(7.39) and set k = k + 1.
15: end while

7.3 Numerical Results

The simulation are conducted on a a PC with 2.60 GHZ Core-i7 CPU and 16.0 GB

memory. The problem formulation is modeled in Python/Pyomo and Gurobi solver is used
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to solve the MISOCP problem.

7.3.1 Characteristics of the test system

The modified IEEE 34-bus unbalanced distribution network is considered as a test case.

Two single-phase microgrids, MG1 and MG2 are connected to the phase A of the distribution

network through tie-lines on buses 12 and 26 as shown in the Fig. 7.1, respectively.Three-

phase and single-phase loads are connected to the network, where the maximum real and

reactive forecasted demands on phase A, phase B, and phase C are (606 kW , 357 kV ar),

(584 kW , 344 kV Ar), and (579 kW , 343 kV ar), respectively. Three 3-phase PV generation

units with maximum forecasted output power of 126.92 kW are considered. The peak

real and reactive demand of MG1 is 420 kW and 200 kV ar, respectively. MG1 includes

two single-phase PV units each with maximum forecasted generation of 42.3 kW , and

two distributed generation units. The peak real and reactive demand of MG2 is 180 kW

and 90 kV ar, respectively. MG2 includes two single-phase PV units each with maximum

forecasted generation of 42.3 kW and two distributed generation units. The characteristics

of the dispatchable DG units and solar PV generation units for the distribution network

and microgrids are given in Table 7.1 and Table 7.2, respectively. The marginal costs of the

DGs for each segment in the linearized cost curve are given in Table 7.3. The operation

cost of all DGs in MGs and distribution network are considered to be the same. The hourly

electricity price is considered as the marginal cost of the distribution feeder to provide power

in the day-ahead operation of the distribution network. In Fig 7.1, the switchable lines are

shown as red dashed lines. The lower and upper bounds of the polyhedral uncertainty sets

are considered to be [0.9, 1.1] of the maximum forecasted values for the solar PV generation

and demand. The initial values for λ1 and λ2 are 1.4 and the initial value for α is 0.9.

7.3.2 Performance of Proposed Optimization Framework

The error tolerance ε2 for the ADMM is 10−3 and error tolerance ε1 for the C&CG

algorithm is 10−1. Here, the C&CG algorithm is converged after 3 iteration, while ADMM

algorithm convergence in the subproblem is highly depends on the parameters’ initialization.

Here, the ADMM algorithm in the subproblem is converged in 63 iteration. The residuals

140



Figure 7.1: Schematic of modified IEEE 34-bus distribution network with two microgrids
Table 7.1: Characteristics of the dispatchable DG units in the DS, MG1 and MG2

System DG Bus Pmax[kW ] Qmin[kV ar] Qmax[kV ar]

DS 1 9 500 -250 250
2 26 400 -200 200

MG1 1 2 450 -225 225
2 3 350 -170 170

MG2 1 1 300 -150 150
2 3 150 -70 70

Table 7.2: Characteristics of solar PV units in the DS, MG1 and MG2

System PV Bus Pmax[kW ] Qmin[kV ar] Qmax[kV ar]

DS
1 15 130 -65 65
2 19 130 -65 65
3 30 130 -65 65

MG1 1 1 45 -20 20
2 4 45 -20 20

MG2 1 1 45 -20 20
2 5 45 -20 20

Table 7.3: The marginal cost of each segment for DGs ($/kWh)

DG C1
i C2

i C3
i C4

i

1 0.18 0.22 0.26 0.30
2 0.17 0.23 0.28 0.36
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calculated in (7.76) are shown in Fig. 7.2 for the last iteration of C&CG algorithm. The

switching status of the switchable branches in the distribution network is shown in Table

7.4. The switching capability decreases the total power loss and improves the voltage

profile in the distribution system. However, ignoring the switching capability will reduce

the computation time and the C&CG algorithm is converged in two iterations. Without the

switching capability, the total power loss on phase A, phase B and phase C in distribution

network are 342.45 kW , 224.36 kW , 230.17 kW respectively. Considering the switching

capability will reduce the distribution network loss to 339.03 kW , 218.60 kW , 225.28 kW on

phase A, phase B and phase C, respectively. Fig. 7.3 shows the dispatch of the feeder, DG

and solar PVs generation units and interconnected tie-lines between MG1 and MG2 with the

distribution network on phase A. The power exchanged between microgrids and distribution

feeder reduces the operation cost and improves the voltage profile in the distribution network.

As shown in Fig. 7.3, at hours 2, 3, 4, 5, 18, 19, 20 and 21 the MGs delivering power to

the distribution network and for the rest of the hours the distribution network supplies part

of the load of the microgrids. Fig. 7.4 and Fig. 7.5 illustrate the dispatch of feeder, DG

and solar PV generation units on phases B and C respectively. In Fig. 7.5, on phase B,

at hour 18, the hourly price of the electricity at the feeder in $0.27/kWh, the marginal

costs of DG1 and DG2 in the distribution network are $0.26/kWh $0.28/kWh respectively.

Therefore, DG1 generates more power (i.e. 258.64 kW ), compare to DG2 (i.e. 81.07 kW )

and feeder (i.e. 174.37 kW ). Similarly, in Fig. 7.6, on phase C, at hour 18, DG1 generates

more power compared to DG2 and the feeder. Furthermore, the MGs are single-phase and

connected to phase A, therefore there are no power exchange between phase B and phase

C of the distribution network with MG1 and MG2. With switching capability, the total

operation cost of whole network (distribution system and MGs) is $6236.31, however, the

total operation cost of the network without the switching capability will increase to $6237.09.

7.3.3 Operation of Microgrids in Island Mode

In this section the performance of the proposed optimization approach is compared with

the case in which the microgrids are operating in island mode. The total operation cost in this
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Figure 7.2: The ADMM convergence criteria
Table 7.4: The status of switchable branches

Switchable
branch Hours (24 hours)

B1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
B2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
B4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 7.3: The power dispatch of feeder, DGs, PVs, Tie-lines and demand on phase A.
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Figure 7.4: The power dispatch of feeder, DGs, PVs and demand on phase B.

Figure 7.5: The power dispatch of feeder, DGs, PVs and demand on phase C.
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case is increased to $6338.22 which is more than the total operation cost in grid-connected

operating mode of MGs (i.e. $6236.31). Fig. 7.6 shows the voltage profile in the distribution

network, at hour 19 in the island operation of MGs with switching and the grid-connected

mode with and without switching capability in the distribution network. With switching

capability, the voltage deviation from the nominal voltage 1.0 p.u., in the grid-connected

operation mode is lower compare to the islanded operation mode. Furthermore the voltage

deviation from the nominal voltage with switching capability is lower compare to the case

ignoring the switching capability. The voltage profile for the rest of the operation horizon

have similar pattern.

Fig. 7.7 shows the DGs and PV dispatch in MG1 and MG2 in islanding and grid-connected

operating modes. At hour 7 while MG1 and MG2 are connected to the grid, the dispatch of

DGs are zero because the electricity price of the feeder (i.e $0.13) is less than the marginal

cost of the DGs. Therefore the demand in MG1 is supplied by the distribution network as

shown in Fig 7.3. In this figure, the negative value of the power flow on tie-lines means the

direction of the power is from the distribution network to the microgrids. However in the

islanding operation mode, the demand in the microgrids are supplied by the DGs and PVs

(i.e. the dispatch of DG1 at hour 7 in grid-connected mode is 87.22 kW and dispatch of the

DG2 is 109.62 kW ) which results in higher total operation cost.

7.4 Conclusion

This chapter presents an adaptive robust distributed optimization framework for the

operation of the unbalanced distribution network with interconnected microgrids. The

problem is formulated as a multi-stage optimization problem where, the network topology is

determined in the first stage and the operation costs of the MGs and distribution network

are minimized considering the worst-case realization of the uncertain variables in the second

stage. The second-stage problem is solved in a distributed fashion using the ADMM algorithm.

The first stage and second stage problems are formulated as MISOCP problems. The

presented solution algorithms are applied to a modified IEEE 34-bus unbalanced distribution

network with two single-phase interconnected MGs. The performance and the results are

evaluated in the grid-connected and island operation modes of the MGs. It shown that the
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Figure 7.6: The voltage profile of the distribution network on phase A, in grid connected
mode with and without switching capability and in islanding operation mode with switching
capability at hour 19.

total operation cost is decreased and the voltage profile is improved in the grid-connected

operating mode of MGs. Furthermore, the switching capability of distribution network

improves the voltage profile, network loss and operation cost of the distribution network.
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Figure 7.7: The power dispatch of DGs and PVs in microgrids in islanding and grid-connected
mode. (a) MG1 in grid-connected mode (b) MG2 in grid-connected mode (c) MG1 in
islanding mode (d) MG2 in islanding mode
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