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Various seismic and wind engineering designs and retrofit strategies have been in devel-

opment to meet structures’ proper and safe operation during earthquake and wind excitation.

One such method is the addition of fluid and particle dampers, such as sand dampers, in

an effort to reduce excessive and dangerous displacements of structures. The present study

implements the discrete element method (DEM) to assess the performance of a pressurized

sand damper (PSD) and characterize the dissipated energy under cyclic loading. The idea

of a PSD is to exploit the increase in shearing resistance of sand under external pressure and

the associated ability to dissipate energy through interparticle contact sliding. The dissi-

pated energy in the pressurized sand during cyclic motion results in a reduction of excessive

displacement. The advantage of using the DEM is that applying a simple linear contact

model for the entire contacts assembly and also utilizing the advantage of irregular-shaped

particles to mimic the behavior of actual sand grains.

The series of DEM simulations reported herein examine the effects of multiple factors

on the magnitude of dissipated energy. These factors include stroke amplitude, grain size

iv



distribution, the magnitude of pressure imposed on the sand, and different configurations of

the PSD.

The results reveal that the main energy dissipation mechanism is generated through inter-

particle frictional sliding in the sand. Additionally, the magnitude of cumulative dissipated

energy increases with the pressure level applied to the sand damper, as well as with the

stroke amplitude of the loading. Moreover, operating the piston with multiple spheres leads

to a significant increase in the magnitude of dissipated energy. However, the soil exhibits

similar behavior to the case of one sphere where a strain hardening behavior was noticed. A

noticeable increase in the piston capacity was observed when the sphere size was increased

by 10%, and the rest of the response patterns remained unchanged. According to the results,

by increasing the sphere friction, the piston capacity remains almost the same. It is also

worth mentioning that when a wider range of particle sizes was employed, the capacity of

the maximum force considerably increased. A significant increase in the piston capacity was

clearly noticed when a boxed-shaped piston configuration was utilized at the origin of the

pressurized sand damper instead of a single sphere.

The results of the conducted simulations were quantitatively compared with experimental

data obtained from physical modeling of a similar pressurized sand damper which revealed a

fairly good agreement. This confirms the ability of the proposed framework to satisfactorily

analyze complex geotechnical problems involving soil interaction and large deformations. The

proposed sand damper model is shown to be a promising device that mitigates vibrations in

structural systems subject to seismic and wind loading.

v
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Chapter 1

INTRODUCTION

1.1. Objectives and Motivation

Earthquakes are regarded as one of the deadliest natural disasters. They lead to severe

economic loss due to infrastructural damage and devastating loss of human life. Mitigation

techniques include proper damping devices, which absorb the energy associated with shaking

and play a large role in reducing the human and capital costs. Seismic events such as the

1994 Northridge earthquake, the 1995 Kobe earthquake, and the 2008 Sichuan earthquake

draw into focus the significance of examining local geologic conditions for insight into the

seismic ground response.

Using strong-motion records, these studies achieved major progress in improving struc-

tural design and analysis of different types of structures such as dames, bridges, buildings.

These studies also yielded results identifying the damage due to seismic displacements. The

results of these investigations were the impetus for the design and development of well-

engineered structures to study energy dissipation mechanisms in soils and seismic retrofit

of civil structures. Concurrently, inclusive retrofit programs, implemented globally, employ

emerging response modification technologies (Buckle Ian and Ian, 1995; SEMINAR, 1997;

FEMA, 2000; Agency, 2006).
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Previous studies, focused on energy dissipation and damping characterizations of soils,

developed models that estimate dynamic modulus degradation and damping curves (Hardin

and Drnevich, 1972; Seed et al., 1986; Vucetic and Dobry, 1991). Seismic and wind en-

gineering designs and retrofit strategies were developed to satisfy the mandated structural

performance during a given seismic event or wind excitation. Along with seismic isolation

(Kelly, 1986; Buckle and Mayes, 1990; Makris, 2019), studies found alternative strategies

to traditional seismic capacity designs of structures. These include supplemental damping

or strength/ductility-oriented designs, such as yielding steel dampers or buckling-restrained

braces (Kelly et al., 1972; Skinner et al., 1974; Robinson and Greenbank, 1976; Soong and

Dargush, 1997; Constantinou et al., 1998; Black et al., 2002, 2018, 2004; Symans et al., 2008).

These devices have been designed specifically for energy dissipation, which has also been uti-

lized to reduce building vibrations under wind loading (e.g (Davenport, 1967; Kareem and

Gurley, 1996; McNamara et al., 1997; Kareem et al., 1999))

Many retrofitting methods and equipment can be installed in new or old buildings for

comparatively low cost. This can make buildings much more ”high performing” by consid-

erably enhancing their structural integrity. The effect of earthquake ground motion trans-

mitted to the buildings is reduced through passive energy dissipation. The base isolation is

one form of passive energy dissipation systems. Figure 1.1 shows one location of the base

isolated that could be installed in a structure to reduce seismic shaking. Base isolation’s

limitations are that it cannot be done on every structure. For example, it is not suitable for

structures resting on soft soils. It becomes less efficient for high-rise buildings and cannot
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be applied partially to the structure. Its Implementation is efficiently complicated and often

requires highly skilled labor and engineers. Severe structural damage caused by earthquakes

and wind motivated the exploration of pressurized sand dampers for earthquake and wind

engineering systems (Makris et al., 2021). Other research explored a device designed to

dissipate energy to reduce building vibrations (Davenport, 1967; Kareem and Gurley, 1996;

McNamara et al., 1997; Kareem et al., 1999). Another type of device relies on fluid-dampers

to limit excessive displacements (Makris et al., 2021). In a building, fluid-dampers can be

incorporated within the skeleton of a structure (Miyamoto and Scholl, 1997), at the isolation

level of a seismically isolated building (Asher et al., 1996; Constantinou et al., 1998), or in

soft stories within a building to control drifts (Kelly and Konstantinidis, 2011; Youssef et al.,

1995).

Some bridges are now fully equipped with large-capacity fluid-dampers (Makris et al.,

2021), however, a challenge that arises with fluid-dampers is whether they can maintain

their long-term integrity when placed in civil structures subjected to a variety of loads, ap-

preciable dynamic displacements, or long-term deformation patterns (Makris et al., 2021).

With earthquake loading, large displacements and velocities can be expected, and with pro-

longed wind loading, the temperature of the fluid-dampers is likely to increase substantially

(Makris et al., 2021). Similar to wind loading, traffic loading on bridges induces vibrations

of small amplitude, and over time this can fatigue the damper and lead to failure of the

devices(Makris et al., 2021; Matier and Ross, 2013). These issues with fluid-dampers can

be both disruptive and costly (Makris et al., 2021). Buckling-restrained braces increase the
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Figure 1.1. Structure with base isolation. Source: BRIDGESTONE Solutions for your

journey (BRIDGESTONESolutionsforyourjourney, 2022).
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Figure 1.2. Fluid viscous damper. Source: Taylor Devices Inc. (Tay, 2022).

Figure 1.3. Evidence of fluid damper leaking. Source: Dimitrios Konstantinidis et. al

(Konstantinidis et al., 2015).
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strength of a structure while allowing for supplemental hysteretic energy dissipation and are

used as an alternative method for the response medication of buildings (Watanabe et al.,

1988; Wada et al., 1989; Black et al., 2002, 2018, 2004; Agency, 2006). The distributed

yielding leads to a stable hysteretic behavior, resulting in the buckling-restrained braces

being accepted worldwide and are now proven to be dependable response modification de-

vices; however, where the displacement demands are small and only up to a few centimeters,

buckling-restrained braces are suitable (Makris et al., 2021). The idea for the development

of an innovative pressurized sand-damper (PSD) is being proposed due to recent failures of

fluid-dampers and the displacement limitations of buckling-restrained braces (Makris et al.,

2021).

This device has many advantages, for example, the symmetric force output is nearly

velocity-independent due to the friction along the sand-steel interface being temperature-

independent. In addition, heat challenges that could cause failure do not affect the perfor-

mance of the device. This device can be used in harsh environments with extremely high

or low temperatures. Strain gauges are utilized to monitor the exerted output force from

the sand damper, and they are inexpensive and reliable, while the nominal pressure can

easily be adjusted with additional post-tensioning. Furthermore, this system is environmen-

tally friendly and coincides with the current trends for sustainable engineering due to its

stability and simplicity in its design (Makris et al., 2021). Sand was selected as the dissipa-

tive material because of its dissipative performance that granular materials exhibit within

minutes depending on the temperature (Saeki, 2005; Shah et al., 2009; Bannerman et al.,
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2011; Heckel et al., 2012; Sack et al., 2013). The pressurized sand damper (PSD) utilizes

the pressure-dependent strength of the yielding sand as well as its effect on increasing the

dissipated energy during cyclic motion (Makris et al., 2021). Although PSDs serve as the

modern philosophy of response modification, it only consists of traditional materials, such

as sand and steel, together with the use of post-tensioned steel rods (Makris et al., 2021).
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1.2. Outline

This research is focused on energy dissipation in a sand damper under cyclic loading.

In this case, the particle dampers consist of discontinuous grains that can be modeled as

a collection of discrete particles. Because of this, the discrete element method (DEM) is

the computational technique that should be used to model and analyze the proposed sand

damper. The history of the energy dissipation mechanism, as well as the concept for the

sand damper and its benefits and characterization are highlighted in the literature review

in Chapter 2. The computational framework and the microscale energy components are

presented, as well as the results of the DEM test simulations that have been conducted.

The details of the discrete element modeling analysis are discussed in Chapter 3 and the

validation results can be seen in Chapter 4. The results of the conducted tests are presented

in Chapter 5. Dissipated energy is calculated based on micromechanical considerations.

Next, it’s compared to the dissipated energy that is calculated and based on the area of

force-displacement hysteresis loops. Analysis on the results from the tests that consist of

various sand damper configurations are also included. The mechanical behavior of the energy

dissipation and its related energy performances are highlighted in Chapter 5. Finally, the

conclusions and future work are presented in Chapter 6.
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Chapter 2

LITERATURE REVIEW

The proposed pressurized sand damper is a type of particle dampers. Its resulting energy

dissipation is a relatively novel concept being explored and is greatly different than commonly

used collision-based particle dampers. Particle-based damping systems provide means to

mitigate the response of the structure. This response is assessed by the energy dissipated by a

group of particles, which are embedded in the structure or attached enclosures. The damping

systems provide the dual advantage of exploiting the properties of solid-like and fluid-like

material. In this regard, the solid-like properties allow for temperature to be an independent

factor in the system, while the fluid-like properties allow the flow and rearrangement of the

particles to facilitate fatigue-free performance (Shah et al., 2009).

Particle damping has been the basis of several research efforts in aerospace and machinery

fields. It explores the use of Discrete Element Method (DEM) in simulating a multi-degree-

of-freedom structure. They also introduce a simpler model whereby the particles are modeled

as a single mass in Finite Element Method (FEM) and explore the benefits of both FEM

and DEM. The use of particle damping in civil engineering is at its infant stage. Particle

damping technology involves the use of small particles to dampen the impact of vibrations.

A combination between the inelastic collisions of the particles and the friction between has a

strong impact on damping (Fang et al., 2007; Liu et al., 2005; Wong et al., 2009; Mao et al.,
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2004).

Some benefits of particle damping include the ease of its application, its low cost, and

durability in both extreme environments and a range of frequencies (Panossian, 1992; Friend

and Kinra, 2000; Hollkamp and Gordon, 1998; Fowler et al., 2000; Simonian, 1995). The

application of particle damping technology has been used in a wide variety of applications

from space shuttle engine turbines (Panossian, 1992; Moore et al., 1995) to medical and

dental tools (Heckel et al., 2012). However, the particle damping method is not well under-

stood, due in part to its nonlinear nature (Wong and Rongong, 2009; Sánchez and Carlevaro,

2013). Structurally, particle damping is valuable for reducing earthquake and wind damage.

Dampers commonly used in this field include viscous dampers (Halperin et al., 2016), vis-

coelastic dampers (Tubaldi, 2015), metallic dampers (Foti et al., 2013), friction dampers

(Miguel et al., 2014), tuned liquid dampers (Wang et al., 2016; Rozas et al., 2016), and

tuned mass dampers (Fadel Miguel et al., 2016; Lu et al., 2017a; Miranda, 2016; Rathi and

Chakraborty, 2017). However, current issues with these techniques include the loss of ef-

ficacy of seismic isolation techniques under extreme horizontal displacement. Additionally,

high temperatures can degrade viscoelastic materials. Friction dampers are limited in that

in the case of a change of surface condition, if the interacting objects lose a degree of com-

pactness, the damping method will not be as effective. Tuned liquid dampers are prone to

leaking and are not applicable in extreme environments. Lastly, tuned mass dampers are

limited to a smaller frequency range than particle dampers.
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Particle dampers use large quantity of small particles placed in a vibrating structure to

dissipate the energy. The particles can be made from many different materials, and the

mechanism of dissipation uses both inelastic collisions and friction between the individual

particles as they move within the structure. Additionally, momentum exchange between

the particles leads to stored kinetic and strain energy within the particles in the damping

process. Two of the primary benefits of this method are that the damper can perform well in

extreme environments such as high temperature or over a wide range of different vibration

frequencies.

The first particle damping emerged with the use of a single particle to dampen the

vibration of turbine blades (Paget, 1937). The next particle damper placed the particle to

move between the two walls of a container (Lieber et al., 1945). This study used a variation

of a particle damper, the single-particle impact damper, and this method was applied to

airplanes for reducing the impact of vibrations. Since then, particle damping has been

explored in its various forms, but the method still poses some challenges to modeling (Lieber

et al., 1945). Due to the high noise and relative ineffectiveness, such single-particle dampers

have now been replaced with numerous, smaller particles.

Two of the main challenges when modeling particle dampers are the nonlinearity of the

amplitude in the system and that many different design parameters, such as the shapes

and materials of the structure and particles, add complexity to the system. Therefore, the

modeling of particle dampers is often simplified to modeling the conglomerate of all the

particles as a single particle. Another solution to the complexity issue involves linearizing
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the model for the different conditions, but because this varies under the different conditions,

it makes the models difficult to apply. Another challenge with particle dampers is that

parametric models are too complex to understand and effectively apply. Mostly, these models

are understood by extracting the power dissipated and power trapped directly from the

vibration data. The Fourier Transform-based power flow method is one way to do this, and

this method was used by Yang (Yang, 2003). Limitations of this approach, however, are that

the method is time-averaged and that the vibrations on the damper must be periodic.

One key characteristic of particle dampers are the phases the particles endure during

damping, including phases where the particles mimic three states of matter. Since particles

in some phases of damping have been likened to gasses and liquids, measurements of granular

temperature, granular velocity, and mass density have been introduced (Goldhirsch, 2003).

As a result of the fluid-like properties, a hydrodynamic model has been developed for the

study of particle dampers (Martin et al., 2005; Ohtsuki and Ohsawa, 2003). However, this

model is not applicable to the other damping phases of the particles. As a result, three types

of constitutive relations have been developed: soil mechanics (Nedderman et al., 1992),

Bingham fluid-like visco-plasticity (Jop et al., 2006), and statistical mechanic kinetic theory

(Martin et al., 2005). A combination of all three were used in this study. The hydrodynamic

model is useful because it is an effective predictor for the particle dampers, but it is limited

by some of the assumptions made in the model and the lack of separation between the

microscopic and macroscopic properties. Therefore, DEM can be used to study the details

of the particle interactions more directly, barring the tradeoff issue between accuracy and
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computational efficiency.

Two of the main simulation methods are hard sphere, which reduces the complexity of

contact mechanics, and soft sphere, which allows the particles to overlap. By only calculating

the collision events in discrete time intervals, the method ignores events between collisions.

One benefit of this model is its simplicity, but it experiences the issue of inelastic collapse

(Goldhirsch, 2003), reducing the accuracy of the model. Soft sphere models, on the other

hand, use springs and sliding friction interfaces to model the particle collisions and the

particles have both mass and rotational inertia. While this model may have a higher accuracy,

it is more computationally expensive (Goldhirsch, 2003).

Some main types of traditional particle dampers are featured in the Figure 2.1. From

left to right, these four types of particle dampers include the impact damper, the multi-unit

impact damper, the particle damper, and a multi-unit particle damper. One variation of

the impact damper is the bean bag impact damper which wraps the particles in a bag to

place in the cavity. This simultaneously decreases the noise and increases the frequency

range of effectiveness. Additionally, a piston-based particle damper was developed which

allows the system to be dampened effectively at any range of temperatures. In addition

to the previously-mentioned solutions to common issues with traditional particle dampers,

there is the beam-like impact damper (Chen and Semercigil, 1993) and the linear particle

chain impact damper (Gharib and Ghani, 2013). Each of these are useful for eliminating the

directional requirements and increasing kinetic energy dissipation, respectively.
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Figure 2.1. Diagrammatic representation of traditional particle dampers: (a) impact damper;

(b) multi-unit particle damper; (c) particle damper; and (d) multi-unit impact damper.

(modified after Lu et al. (2018)).

Moreover, the flexible restraint particle impact damper, which dates back to the early

1980s, is another name for the bean bag impact damper. When studying the vibration

attenuation issue with the boring bar, Popplewell et. al. (Popplewell and Semercigil, 1989)

utilized this type of dampening technology. As depicted in Figures 2.3 and 2.2, the bean

bag impact damper replaces the rigid mass block of the conventional impact damper with a

soft bag that has a predetermined elastic resilience and places a specific quantity of metal or

nonmetal microparticles inside. Bean bags are better than rigid slugs at damping horizontal,

sinusoidal, resonant vibrations. Resonant displacement, acceleration, contact forces, and

noise are all reduced. Experience by Bapat and Sankar (1985b) shows that a rigid slug should

have the most possible mass and be placed where the speed is highest. These standards

attempt to optimize slug momentum. This also applies to beanbags. The bean bag’s tight

cover adds variable resilience. To account for the tiny clearances, it has been determined

that a cover that is only loosely fitted is necessary. When using an empirical approach, it’s
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possible to start with a small clearance and then shake the bean bag until the lead shot

is compacted enough to allow for an increase in the size of the gap. The bean bag impact

damper has the advantages of no impulsive noise and a broad frequency range of vibration

reduction as compared to the traditional impact damper.

Figure 2.2. Mechanical model of bean bag impact damper.

Figure 2.4 illustrates how the piston-based particle damper introduces a damping pole

on the foundation of the nonobstructive particle damper (NOPD). When the primary struc-

ture vibrates, the damping pole and the particles collide, press, and rub against one an-

other, transforming mechanical energy into thermal and acoustic energy, which produces the

damping effect. By experimentation, Binoy et. al. (Shah et al., 2009) discovered that the

damping effect of such piston-based particle dampers is totally irrelevant to temperature.
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Figure 2.3. Schematic diagram of bean bag impact damper.
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Additionally, it can continue to exert damping effects even in the presence of minor external

excitation, whereas the impact damper typically loses its effectiveness in such circumstances.

Moreover, the displacement decrease is nonlinear, and the damped frequency is bigger than

the undamped frequency. Because of these two scenarios, neither a viscous nor a frictional

damping model can accurately depict the damping behavior. When designing a damping

system, the particle properties and damping device parameters should be appropriately con-

sidered because they can affect damping performance by influencing particle flow patterns,

packing density, and granular stress. This study (Shah et al., 2009) suggests that because of

free-flowing particles, the size, mass, and surface characteristics of particles should be chosen

to maximize their flowability. The particle bed has an optimal value for its radius. Below

this value, piston jamming occurs, and above it increases the size and mass of the device

without providing additional damping. The damping rate is also affected by the starting

position of the piston. The starting position of the piston is defined by the immersion depth

of the piston and the direction and magnitude of the initial amplitude. When displacements

begin above the equilibrium position, greater damping is produced, and the damping rate is

unaffected by variations in the initial amplitude.

Later, Shah et al. (2011) proposed to accomplish semi-active control using a magnetic

field, as illustrated in Figure 2.5, based on the piston-based particle damper under passive

control . The purpose of this research was to look into a semi-active particle-based damp-

ing system that uses a dry magnetic particle bed to absorb and dissipate the energy of a

vibrating piston. The damping efficiency can be adjusted by adjusting the electric current
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used to generate a magnetic field. In the scenario of a magnetic piston, the magnetization of

both particles and pistons can improve damping efficiency until the magnetization reaches

saturation. If the particles and pistons are both free of magnetic hysteresis, demagnetization

can return the damping system to its original unmagnetized state; thus, the entire system

is reversible during the magnetization and demagnetization processes. Damping is demon-

strated to be temperature independent within a magnetic field over a certain temperature

range. Particularly, damping with chrome steel particles is unaffected by temperature varia-

tions ranging from 20 to 140 Co, despite the particles’ magnetization declining by less than

20%. Besides that, the magnetization of a single chrome steel particle remains constant when

the temperature ranges from 268 to 0 Co, implying that temperature variation within this

range will not affect damping performance. It is determined that in order to accomplish a

predictable damping rate, the particles and piston in a semi-active particle-based damping

system has to be ferromagnetic and free of magnetic hysteresis. Magnetic materials should

always be chosen for applications at high temperatures relying on their melting point and

Curie temperatures.

Due to their flexibility, a few particular constructions, including a flexible mechanical

arm and a cantilever beam, would cause a noticeable immediate movement if stopped sud-

denly when moving swiftly. The beam-like impact damper developed by Chen and Semercigil

(1993) is a solution to the problem of impulsive instantaneous vibration damaging the struc-

ture. In comparison to the conventional impact damper, the beam-like impact damper can

eliminate the direction dependency of its damping efficacy. To enhance kinetic energy dissi-
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Figure 2.4. Diagrammatic representation of the piston-based particle damper under passive

control
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Figure 2.5. Diagrammatic representation of the piston-based particle damper under semi-

active magnetic field control
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pation during the collision process, Gharib et. al. (Gharib and Ghani, 2013) introduced a

unique impact damper called as the linear particle chain impact damper. As shown in Figure

2.6, this impact damper was made by sandwiching a small ball between two huge balls. This

impact damper offers new tools for designing effective structure damping systems and can

be used in a variety of industries. The LPC impact damper is made up of a linear chain

of spherical balls that alternate between large and small balls. The new impact damper is

based on an innovative energy absorption method that takes advantage of multiple impacts

between spherical balls. The energy absorption method performs by sandwiching a small

ball between each larger ball in the chain. As a result, when the primary system is activated,

the small ball collides with a large number of larger balls. The kinetic energy is dissipated

as a consequence of numerous collisions between the small and large balls.

By comparing its responses to those of a conventional single unit impact damper, the

LPC impact damper is validated. The numerical results demonstrated that the LPC im-

pact damper reduces vibration significantly more than the conventional impact damper. A

parametric study was carried out to determine the effect of the damper clearance, ball gaps,

ball mass ratio, and coefficient of restitution. It was discovered that decreasing the damper

clearance, increasing the damper mass ratio, and using spherical balls with a low coefficient

of restitution improved system response. Nevertheless, in order to select these parameters

based on the damper application, a design compromise is required (Gharib and Ghani, 2013).

In addition to the structural developments in particle impact dampers mentioned above,

new materials were explored to increase performance and reduce challenges. One study (Li
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Figure 2.6. Schematic diagram of linear particle chain impact damper.

and Darby, 2008) used rubber to coat the inner wall of the damper. This led to increased

performance and reduced the noise. Another material explored was the use of fine particles

around steep spheres which helped permanently reduce the vibration of the main structure

(Du and Wang, 2010). A similar variation by Darabi and Rongong (2012) used more vis-

coelastic particle to replace the more rigid particles traditionally used, which resulted in

particles reaching a convection region at a high amplitude. Bustamante et al. (2013) took

this a step further by replacing the particle material with an elastomer. At the fluidiza-

tion point, it was found that the particles were able to achieve maximum damping at their

optimized excitation level. Another replacement material used was soft, hollow particles (Mi-

chon et al., 2013). This method utilized the properties of honeycomb structures, resulting in

strong performance at a wide range of frequencies and a reduction in stress on the primary
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structure. Lastly, Abbas et al. (2014) used rubber spheres to substitute metal swarfs, and

it was found that the metal swarfs can be highly effective at damping over a broad range

of both frequencies and amplitudes. The combination type particle dampers are a useful

compromise for particle damping technology because they can improve the damping capa-

bility relative to other damping technologies, but it sidesteps the congested development of

particle damping applications. This sort of version primarily consists of the combination of

impact damper and tuned absorber, particle TMD, and tuned liquid particle damper. The

first example of this emerged with research by Masri (1972) and involved a combination

of the impact damper with a tuned absorber. Masri used a dynamic vibration neutralizer

and motion-limiting stops which provided a solution under steady-state conditions and ver-

ified the value of such damping systems under various conditions. Next, the tuned particle

damper involved the use of a particle damper combined with flexible supports which helped

the particle damper be more effective at low vibration acceleration (Yao et al., 2014) as

shown in Figures 2.7 and 2.8.

The particle tuned mass damper (PTMD) is another variation which couples particle

damping with tuned mass dampers (TMDs) to create a nonlinear energy-consuming system,

which increases the performance at a wide range of frequencies and improve robustness. For

high-rise building vibration control, PTMD has been introduced to the shaking table tests

and wind tunnel testing, during which the PTMD is suspended on the primary structure

by four equal-length strands, which are attached to the primary structure. A considerable

impact on the reduction of high-rise building vibration caused by wind and earthquake has
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been demonstrated by utilizing the PTMD (Lu et al., 2017b, 2016, 2017b). This has been

studied in civil engineering applications where it has been shown to help reduce the impact

of wind and earthquake vibration on structures. Lu et al. (2018) assessed the physical state

of various particle impact dampers. A study conducted by Yan et al. (2014) shows how to

create tailored particle dampers for continuous viaducts. A 1/10 scale model bridge was

shaken with and without adjustable particle dampers to evaluate system performance and

verify analytical method. Using a finite-element model and an analytical energy approach,

the damper’s behavior was simulated. Experimental and analytical results reveal that the

preliminary design method for tuned particle dampers can be used to control the seismic

response of bridges. A tailored particle damper reduces a viaduct’s seismic reactivity. Exci-

tation intensity affects a tuned particle damper’s performance. Tuned particle dampers have

a wider control frequency band than tuned mass or liquid dampers. Using a finite-element

model, the simplified method simulates the damper’s action (Yan et al., 2014).

The two main ways that the particle damping method absorbs energy is through the

energy consumption between the particles and the impact between the particles and the

surface of the primary fixture. While variations of particle damping have been implemented

for hundreds of years, there is still some debate about the primary way that damping is

achieved. Lenzi (1985) proposed that the main method for energy consumption was through

friction. However, Kerwin Jr (1965) proposed that the primary energy consumption comes

from friction as well as nonlinear deformation of the particle contact points and particle

material resonance. Another prominent theory by Sun et al. (1986) is that the acoustic
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Figure 2.7. Mechanical representation of a classical dynamic vibration absorber.
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Figure 2.8. Mechanical representation of the tuned particle damper.
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energy consumed by the particles results in the damping. All of the theories can be reduced

to two main thought processes: that the nonperfect elastic collision results in the energy

loss, and that the momentum exchange results in the damping effect. Using DEM, it was

discovered that friction is a primary contributor to the damping effect, but that the friction

coefficient does not vary much with respect to the amount of energy consumed (Wong et al.,

2009). Masmoudi et al. (2016) found that the total mass of the particles and the amplitude

of excitation had the highest influence on energy consumption. Lastly, Zhang et al. (2016)

found that for the nonobstructive particle damper (NOPDs), the energy was dissipated in

the form of both thermal energy and potential energy.

A common explanation for particle damping has yet to be found, despite a great deal

of effort by researchers worldwide. Nonlinear energy sinks (NESs) are vibration absorption

technologies extensively explored in various industries, including machinery, aerospace, and

civil engineering (Gourc et al., 2015; Bergeot et al., 2017; , Lu). TMDs and nonlinear

absorbers of this type have some similarities. A substantial displacement should be used to

minimize the response time of each of these components by moving the excess mass (as for

building structures, it is usually at the top story). The main distinction between TMD and

NES is that TMD generates linear resilience, whereas NES generates nonlinear resilience.

Since linear oscillators typically have a single inherent frequency, NES differs from them.

Vibrational energy affects changing the fundamental frequencies of NES. This means that

the fundamental structure of NES can be heard in numerous modes across a wider spectrum

of frequencies. In other words, NES is capable of achieving the goal of minimizing vibration
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for a wide range of frequencies (Vakakis, 2001; Lee et al., 2008; Roberson, 1952). The

pounding TMD was created when Li and Song Zhang et al. (2013); Li et al. (2015); Zhang

et al. (2015) applied impact energy dissipation to the classic TMD. The heat created by the

impact of pounding between a tuned mass block and a delimiter covered in viscous-elastic

material can be used to disperse vibration energy in this system. Because of this, pounding

(TMD), a dynamic vibration neutralizer with motion-limiting stops is also considered a type

of NES with good resilience. It has also been used to operate subsea jumpers as well as

power transmission towers (Heckel et al., 2012; Wong and Rongong, 2009; Zhang et al.,

2013). Figures 2.9-2.14 depict the mechanical models of various types of dampers.

In the first study of impact dampers (single-particle) by Lieber et al. (1945), each collision

was considered as purely elastic. Later Grubin (1956) added the elastic restitution coefficient

to the study of the system, accounting for the lost energy during the collisions. Masri (1970)

later added the same concept to symmetric collisions that occurred twice during each cycle.

Bapat (1998) added nonlinear control equations to help analyze vibration state for more than

two collisions per cycle. Masri (1969, 1970, 1967a) later determined an analytical solution

and Bapat and Sankar (1985b,a) studied the impact of Coulomb friction on the system by

creating a table that shows the optimum gaps and amplitude reduction when the system

undergoes forced vibration. Bapat and Sankar (1985b) Ema and Marui then built on Bapat

and Sankar’s work by Ema and Marui (1994) showing that the damping effects are a result

of the collisions between the impact mass and the primary system. Lastly, Duncan et al.

(2005) studied the vertical impact damper.
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Figure 2.9. Mechanical representation of the impact damper.
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Figure 2.10. Mechanical representation of the particle damper.
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Figure 2.11. Mechanical representation of the nonlinear energy sink.
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Figure 2.12. Mechanical representation of the tuned mass damper.
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Figure 2.13. Mechanical representation of the pounding tuned mass damper.
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Figure 2.14. Mechanical representation of the particle tuned mass damper.
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Analysis of dampers with multiple particles is more complex than that of single-particle

dampers. Masri (1967b) was able to develop one example of an analytical solution, but

many analyses depend on theoretical and numerical experimentation. Mao et al. (2004)

simulated particle damping via DEM to demonstrate that a combination of impact damping

and friction damping can generate additional damping over a finite period. Salueña et al.

(1999) used molecular dynamic simulations to study energy dissipation of the particles and

found that the rate of energy loss can be classified into solid, convective, and gas-like. Sánchez

and Carlevaro (2013) explored dynamic particle interaction with DEM and showed that

an increase in excitation frequency results in a switch in a particle from periodic motion

to chaotic motion. Romdhane et al. (2013) developed a different experimental method to

measure the loss factor of NOPDs quantitatively. Lu et al. (2011b,a, 2010) introduced

the concept of “effective momentum exchange” which shows the physical properties of the

particles’ movement and serves as an index for finding the optimal damping performance.

Additional research has been conducted to allow the particle damping system to be stud-

ied in a simplified manner numerically. First, the system was studied as a single-unit impact

damper by Papalou and Masri (1996a,b, 1998). For such a simulation, it was necessary that

the different types of energy dissipation be combined into a single metric. This came to

be known as the effective coefficient of restitution, and it was studied by Friend and Kinra

(2000). They accomplished this by fitting the data to the results of experimental testing.

Using a similar method of fitting numerical data to experimental results, Liu et al. (2005)

and Xu et al. (2004) contributed to understanding the nonlinear aspects of particle damping.
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Wu et al. (2004) combined multiphase flow theory with the study of particle dampers, Fang

and Tang (2006) added to the model by simplifying it and reducing the computation time.

One issue with these studies, however, is that many of them can be difficult to extend to

other applications.

In recent decades, several developments have been made regarding how to model particle

damping. Granular dynamics (GD) are simulations that model discontinuous grains as

discrete particles. Two approach groups are used for this type of analysis: soft and hard

contact. The discrete element method is the soft contact approach used for most GD models.

The discrete element method (DEM) was first introduced by Cundall (1971) and is nearly

a Lagrangian technique because individual particle is treated separately and it allows for

large strain deformation. It allows researchers to include both the inter-particle interactions

and the interactions between the particles and the wall. Inter-particle contact forces are

determined using models like springs, dashpots, and frictional sliders. This method works

such that each of the particles are modeled as discrete entities and it allows each of these

elements and their movements to all be studied in relation to each other. The numerical

integration of Newton’s equations of motion is used to determine the particles’ motion.

Any assumptions about the solid’s rheology can be disregarded. Dry cohesionless soils are

typically assessed using discrete element modeling (Ng, 2004; Wang et al., 2008; Jiang et al.,

2006; Iwashita and Oda, 1998; Bathurst and Rothenburg, 1988; Kuhn and Mitchell, 1992;

Thornton, 2000; O’Sullivan and Bray, 2003; Bolton et al., 2008; Evans and Frost, 2010)
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Granular particle dampers serve inhibit the effect of vibrations on a primary structure

through passive vibration control and the subsequent absorption and dissipation of energy

among the particles (Friend and Kinra, 2000; Mao et al., 2004). Some benefits of particle

damping are that it is easy and inexpensive to retrofit, it is effective in harsh environments

and over a wide frequency range (Saeki, 2005), and it dissipates energy without a significant

impact to the weight or stiffness of the primary structure (Friend and Kinra, 2000; Saeki,

2002, 2005). While particle damping has many benefits, it has been difficult to model due to

the various types of interparticle collisions, particle-wall collisions, and friction (Mao et al.,

2004), and the nonlinear nature of the collisions (Fowler et al., 2000). Previously, this has

been studied effectively and applied using DEM (Cundall and Strack, 1979; Tijskens et al.,

2003; Chen et al., 2001), a numerical simulation which applies Newton’s equations to mimic

the interparticle interactions of small-step collisions over a longer time period. This allows

the system to capture small collisions between particles before they spread into collisions

with other particles (Cundall and Strack, 1979). However, in order for the simulation to be

accurate, the force-displacement model must adequately govern the movement of the parti-

cles, and there must be an efficient way to determine which particles are in contact with each

other (Tijskens et al., 2003; Grest et al., 1989; Vemuri et al., 1998). While there are currently

algorithms to identify the contacts (Saeki, 2002, 2005), they are still computationally ex-

pensive. Part of the reason for this is that motion of the particles depends on the motion of

the primary structure, so positions change quickly with time, making them more difficult to

detect. Additionally, due to the nonlinear nature of the motion, it must be studied over long
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periods of time, further adding to the computational expense, especially at low frequencies.

Therefore, it is important to improve the computational efficiency of the DEM simulations

to better understand the damping mechanisms and optimal application of particle dampers.

Research on the use of DEM in geomechanics has been conducted by O’Sullivan (2011).

Walton and others have also researched DEM and analyzed its ability to model granular

shear flow (Walton and Braun, 1986; Vemuri et al., 1998; Vu-Quoc et al., 2000; Hanes and

Walton, 2000). DEM has also been used recently to analyze particle dampers (Salueña et al.,

1999; Fowler et al., 2000; Chen et al., 2001; Mao et al., 2004; Fang et al., 2007; Wong et al.,

2009). The hard contact is used by the second group of GD models. This approach assumes

the interaction forces are impulsive, meaning the transfer of particle momentum can only

occur when they collide, which are instantaneous and processed one at a time. The time steps

on the same order of magnitude as the length of the intervals between collisions, which are

typically larger than what is required. This approach, which uses a two-dimensional model to

simulate granular shear flows, has previously been studied by Campbell and Brennen (1985).

The analysis of the collision-based GD approach in geomechanics has also been researched

in many studies (Pytlos et al., 2015b,a; Izadi and Bezuijen, 2015, 2018; Lee and Hashash,

2015).

In harsh conditions, granular damping could reduce vibration. DEM is utilized in granu-

lar damping analyses involving a large number of grains. While the discrete element method,

which is based on direct numerical integration of Newton’s equations, has been widely used to

investigate granular motion, granular damping presents unique difficulties. Grain movements
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are tightly related to the host structure in granular damping analysis, and grains collide often.

The energy dissipation mechanism is highly nonlinear and necessitates a lengthy simulation

time, particularly for low-frequency structures. Using the discrete element method, a new

computational scheme for analyzing granular damping was created by Fang et al. (2007).

This study investigated the effectiveness of contact detection, which is an approach com-

bining an improved LC method with an adaptively updated Verlet table. In addition, the

effect of time step in simulation and provide a method for optimizing the selection of time

step based on the contact duration of given granules was investigated. Collectively, these

enhancements resulted in a highly efficient discrete element approach that can multiply the

computing efficiency of granular damper analysis compared to the current state of the art.

This new approach is ideally suited for large-scale granular damping analysis. This method

was validated by connecting numerical and experimental benchmark findings. On the ba-

sis of the novel algorithm, case studies on a large number of granules were conducted to

demonstrate the parametric analysis of granular damping mechanisms and the enhancement

of damping performance (Fang et al., 2007).

Fang et al. (2007) addresses the optimization of particle damping performance based

on varying the different parameters under harmonic force excitation. The particles move

according to Newton’s motion equations, and involve both translocation and rotation, and at

each contact point the forces are calculated according to a force-displacement law. Using the

radius of the particles, a contact is detected when the centers of two particles are sufficiently

close. These contact forces are then modeled using a spring, dashpot, and slider (Tsuji
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et al., 1992, 1993). In contrast to previous studies with linear modeling (Zhang and Whiten,

1996; Mishra and Murty, 2001), this study uses a nonlinear contact model based on Hertzian

contact theory. It was shown that particle damping resulted in an 81.3% reduction in peak

amplitude, and it was effective over a wide frequency range. Additionally, it was found that

under certain conditions, the damping effectiveness can be increased by changing the number

of particles while keeping the total mass constant. For this setup, the optimal number of

particles was 490. More particles result in more collisions, resulting in a higher damping

effect. However, the damping effect also depends on the amount of energy dissipated in each

collision, which changes with the size of the particles. For that reason, optimal performance

of the particle damper finds an optimal value which does not simply maximize the number

of particles. However, this can be further improved by including non-homogenous particle

sizes in the damper. This study developed an improved method for the DEM simulation

of particle dampers. The model used by Fang et al. (2007) shows that the utilization of

both the LC method and a Verlet table to reduce the number of contact points that must

be calculated, thus improving the computational efficiency of the model. Not only was this

found to be an accurate and efficient method, but it was further tested to understand optimal

performance measures for a particle damper. From this, it was found that granules of mixed

sized improved the effectiveness of the particle damper (Fang et al., 2007).

Tong and Wang (2015) study observed the impact of particle size on shear modulus G and

damping ratio D through shear tests conducted using DEM. The researchers used a nonlinear

contact model and clumped particles to provide a more realistic simulation. The results
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showed an inverse relationship between shear modulus and particle size, but they showed

a direct relationship between damping ration and particle size. The two methods used to

calculate G and D were by the traced energy and the hysteresis loop. Additionally, when

the particle size became sufficiently small, differences in the shear modulus and damping

ratio became negligible. Decreasing the sphericity of the particles resulted in increased G

and decreased D. Lastly, the researchers explored the effect of aging on G and D and found

that age increased the shear modulus and decreased the damping ratio.

As mentioned earlier, this use of particle dampers was first explored in 1945 by Lieber

et al. (1945). The study used a variation of a particle damper, the single-particle impact

damper, and this method was applied to airplanes for reducing the impact of vibrations.

Since then, particle damping has been explored in its various forms, but the method still

poses some challenges to modeling. Wong et al. (2009) study used the DEM approach to

mechanism of energy dissipation for particle dampers as well as determine an appropriate

way to model the complex nonlinear collision process. Of the energy dissipation mechanisms,

the contact conditions in particular are explored using small particles of <3mm diameter

and the measurements were collected for both the coefficient of restitution and the interface

friction. Additionally, the complex interactions between the particles pose a computational

challenge whereby a balance must be established between model accuracy and computation

time.

The simplified analytical method studies all the particles involved as a single unit, and

this method was proposed by Lu et al. (2017b). While this method has been accurate enough
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to support practical applications, it neglects the particle-to-particle interactions. Sánchez

et al. (2012) has addressed this concern by demonstrating that the particles behave like a

single mass when there is a sufficient number of particles and therefore the effect of the

particle-to-particle collisions is negligible. In addition to supporting the simplified analytical

method, this shows why particle dampers are effective in extreme conditions and it helps to

simplify the modeling of particle dampers.

The primary current applications of particle dampers include securing structures under

wind and earthquake conditions. Other passive control technologies have been implemented

to structures and this has been well studied in civil engineering. However, the applications

of particle damping mechanisms are still developing. Two examples of particle damping

applications include its use as a damper for the pylon of a bridge in Japan (Ogawa et al.,

1997) and on the 21st floor of a building in Santiago, Chile (Naeim et al., 2011). Both

have performed well. For studying the practical applications of particle dampers in civil

engineering, researchers first looked at their impact on smaller components of a structure

such as cantilever beams. The results of these studies can then be applied on a larger scale to

evaluate their performance on it. Masri (1973); Masri and Kahyai (1974) explored the use of

the particle impact dampers on continuous beams. Once the application of particle dampers

was explored at the smaller scale, studies looked to examine their use on entire buildings and

other structures. In the application of particle dampers for civil engineering, the following

four advantages have been found: they are effective over a wide frequency band, they are

not as susceptible to temperature and degradation, they are versatile for application, and
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they are cost effective relative to other commonly used damping technologies.

One of the disadvantages to applying particle damping methods is that they have not

been studied as extensively as other methods. Most of the studies have only included SDOF

systems, meaning that there is a lack of analysis of particle damping in MDOF systems.

Additionally, this lack of research means that a standardized consensus on design has not

been reached. Recent research has shown that particle damping might not be as effective

under weak excitation. Other differences include the scale of application – civil engineering

structures are often much larger, and the arrangement of the particle dampers may be

different. Therefore, more research is necessary on the application of particle damping in civil

engineering. Though much research has been conducted on particle damping, there are still

many gaps in understanding and a lack of research on applications for civil engineering. While

the underlying energy dissipation mechanism is not universally agreed upon, DEM allows a

more detailed simulation. However, simpler models may still be preferred for applications.

Of the various types of studies, researchers have explored using different materials for the

particles and for the container. Additionally, studying particle dampers can be difficult due

to their nonlinear nature. Simulations must find a balance which maximizes accuracy while

minimizing the computational expense. Particle dampers have been applied in aerospace

and mechanical fields, but differences in the application for civil engineering still needs to

be explored. Additionally, using DEM techniques could be useful for studying the primary

structure and the particle dampers in unison.
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In order to mitigate large displacements, one alternative idea is the usage of fluid-

dampers. Originally used in military applications as a shock isolation of hardware, fluid-

dampers have developed and are used to terminate vibrations caused by earthquakes and

wind in structures. For example, in buildings, fluid-dampers are installed in soft stories of

structures to reduce the amount of building story drift. In addition, many bridges utilize

fluid-dampers to absorb wind, seismic, and pedestrian energies, for example the Bay Bridge

connecting San Francisco and Oakland. One challenge experienced with fluid-dampers is

their ability to be sustainable in the long-term when faced with different loads, deforma-

tions, and displacements. Research by Makris et al. (2021) has shown that traffic loading

on bridges creates small amplitude vibrations with long durations, which can lead to the

damper failing due to fatigue. Another issue with fluid-dampers is that lengthy wind load-

ing will increase the temperature of fluid-dampers, which can lead to device failure. The use

of buckling-restrained braces is another strategy to increase the structure’s strength. These

braces distribute their yielding, due to the yielding of the inner core which limits displace-

ment to the inelastic elongation of the inner steel core. This allows for the structure to

experience more stiffness and have great response devices for applications in which there is

minimal displacement. Due to many failures of fluid-dampers and the displacement restric-

tions of buckling-restrained braces, a pressurized sand-damper, PSD, was created (Makris

et al., 2021).

Makris et al. (2021) explored the application of pressurized sand dampers for earth quake

and wind engineering systems. This device has many advantages, for example, its symmetric
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force output is nearly velocity-independent due to the friction along the sand-steel interface

being temperature-independent. The schematic of a pressurized sand damper (PSD) is

shown in Figure 2.15. In addition, heat challenges that could cause failure do not affect the

Figure 2.15. Schematic of a pressurized sand-damper. (Makris et al., 2021).

performance of the device. This device can be used in harsh environments with extremely

high or low temperatures. Strain gauges are utilized to monitor the exerted output force from

the sand damper, and they are inexpensive and reliable, while the nominal pressure can easily

be adjusted with additional post-tensioning. Furthermore, this system is environmentally

friendly and coincides with the current trends for sustainable engineering due to its stability

and simplicity in its design (Makris et al., 2021). The pressurized sand damper (PSD)

makes use of the pressure-dependent of the yielding sand strength and its effect on improving

energy dissipation during cyclic motion. The PSD uses post-tensioned steel rod in addition

to standard materials like sand and steel, serving as the modern philosophy of response

modification (Makris et al., 2021).
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The pressurized sand-damper was developed using dimensional analysis (Makris et al.,

2021; Langhaar, 1962; Barenblatt et al., 1996; Makris and Black, 2003, 2004; Hardin and

Drnevich, 1972). The velocity-independent shearing forces acting on the sphere moving over

the sand that flows over the surface overpower the inertia forces of the sand grains when a

pressurized sand-damper has finite dimensions (Makris et al., 2021). Velocity-independence

indicates that there are friction (hysteretic) stresses present (Hardin and Drnevich, 1972).

Thus, the resisting force on the moving sphere is the result of the projection along the

direction of motion of the shearing strength. This strength is mobilized along the sand-steel

interface as well as the passive normal stresses on the front of the moving sphere (Makris

et al., 2021). Makris et al. (2021) describes the drag force on the moving sphere as being

proportional to the pressure that is exerted and quadratic on the radius of the sphere.

Experimentation can confirm by the dimensional analysis the quadratic dependence (Albert

et al., 2001). Albert et al. (2001) states that the drag force is the result of jamming the grains.

Jamming can be referred to as the formation of force chains along the compression direction

of granular particles. The solid structure of the particles comes directly from loads being

applied. When the force chains are formed, the shear stress will be supported indefinitely

(Makris et al., 2021; Cates et al., 1998; Gates et al., 1999; Liu and Nagel, 1998). Cates et al.

(1998) explains that when compression is along the force chain, jamming can sustain a static

load (Makris et al., 2021). One example is when a structure is loaded any way other than

the initial direction and the load-bearing capacity vanishes due to the collapse of the force

chains, thus new ones are recreated along the new loading orientation for jamming to be
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able to occur again (Makris et al., 2021).

The inelastic, fragile materials behave like a fixed principal axes (FPA) model (Cates

et al., 1998; Gates et al., 1999). The pressurized sand-damper is not a fragile material in the

model being designed because of the hydrostatic stress tensor that results from appreciable

externally applied pressure (Makris et al., 2021). This can be described using the idealization

of a yielding continuum. This is when the normal, or passive, and shear stresses along the

sand-steel interface create drag on the moving sphere (Makris et al., 2021). Makris et al.

(2021) analyzes the drag force on the sphere, which moves along the axis of the cylindrical

damper housing. In this research, only single sphere-shaped was equipped in the pressurized

sand-damper configurations are simulated, so it is unnecessary to analyze the dependence

of the damper force on the ratio of the diameter of the pressurized sand damper cylinder to

the radius of the sphere (D/R) in the Equation 4.2. The pressurized sand damper studied

in this research affects energy dissipation due to the shear forces in the pressurized sand,

which use the stress level-dependency of sand shear-strength, while also considering how the

increase in dissipated energy impacts the system during cyclic motion.

This research project aims at examining a damping instrument that could be installed on

members of structures to absorb shaking energy. The purpose of this work is to enhance high-

performance structures using response modification devices. These devices display stable

cyclic performance under extreme temperature conditions, are low-cost, capable of long-

stroke demands, and use materials, like steel and sand, all while the force output can be

monitored. The proposed pressurized sand-damper (PSD) meets all the above-mentioned
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criteria and is also capable of being used as response modification for flexible buildings or the

isolation systems of buildings with the isolation bearings. It also accompanies the buckling

restrained braces for long-stroke demands as a sustainable response modification device with

the use of materials like steel and sand. The discrete particulate nature of soils require

discrete element method simulations to capture the micromechanics of soil behavior. The

discrete element method (DEM) is useful for simulating and modeling movement of granular

materials through the process of observing individual particle interactions and can be used to

characterize energy dissipation mechanisms in cyclically loaded soils. The conducted DEM

simulations employed the linear contact model and irregular-shaped particles. Being able to

model the irregular particle shapes with a linear contact helped make the simulation more

realistic. Therefore, the first objective of the research was to explore using irregular particles

and linear contact to model pressurized sand damper under cyclic loads. Tracing energy

components in the simulations is one advantage of utilizing Discrete Element Method.

In the performed series of DEM simulations, the effects of stroke amplitude and the mag-

nitude of pressure imposed on the sand on the magnitude of cumulative dissipated energy

were studied, in addition to different configurations of the pressurized sand damper that in-

clude differing sphere sizes, replacing the sphere with a box, changes in surface roughness of

the sphere, and grain size. This research aimed to create a validated model that produces re-

sults in agreement with the experimentally measured behavior of the physical damper. The

validation process included comparisons between DEM numerical experiments in a direct

shear testing environment with physical direct shear testing on the same sand utilized in the
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damper to ensure that the selected microscale properties in the simulations yield meaningful

outcomes at the macroscale. A large number of simulations were performed that strate-

gically identified the effect of the parameters that were considered in these work studies.

Operating the sand damper with an enlarged sphere size, the force capacity of the pressured

sand damper was increased. It was found that increasing the friction of the sphere had an

insignificant impact on the piston capacity. When the range of grain sizes was increased from

2-4 mm to 1-5 mm in radius, the overall dissipated energy increased. In addition, the simula-

tions went beyond those parameters mentioned above and investigated design configurations

without the need to manufacture and test dampers of different scales. In this regard, the

simulations present a cost-effective method compared to the manufacturing process. For in-

stance, the configurations shown in Figure 3.7 and 3.8 were tested numerically for potentially

improved performance over the basic system shown in 2.15. These configurations yielded in

more efficient energy dissipation levels due to higher friction surface areas. The results pre-

sented in this work using DEM complement the experimental work by monitoring energy as

well as stress tensors, and strain rate over time. In this study, DEM allows for the variation

of parameters of interest without necessitating a new simulation model, demonstrating its

vast capabilities as a tool to solve complex configurations.
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Chapter 3

NUMERICAL SETUP AND METHODOLOGY

3.1. Introduction

Energy dissipation at the macroscopic level is the combination of individual mechanisms

at the microscopic level. Research on these individual mechanisms highlight how frictional

losses are the resulting factor of energy dissipation (Dobry and NG, 1992; Lai, 1998; The-

vanayagam et al., 2003). Soil that is subjected to large seismic loads use these mechanisms,

but they are not fully understood because of their complexity. Energy loss mechanisms can

be grouped together and represented by damping mechanisms.

Microscale computational modeling assesses macroscale response mechanisms, like those

involved in energy dissipation during cyclic loading of soils. The discrete element method

(DEM) is an effective technique to model granular soils in the sand damper and there has

been extensive engineering research conducted in the last few decades to confirm (Dobry and

NG, 1992; Tsuji et al., 1993; Rajamani et al., 2000; El Shamy and Zeghal, 2005; El Shamy and

Aydin, 2008). DEM is capable of testing theoretical hypotheses and response mechanisms

for qualitative analysis and its simulations provide data on the microscale and macroscale

levels, enabling a comprehensive assessment of the results. Simulations like this are capable

of testing samples under various strain and frequency amplitudes with the same initial con-
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ditions. In this research, DEM is used to investigate energy dissipation in the sand damper

under cyclic loading.

3.1.1. Computational modeling

DEM offers users the ability to explore hypotheses about particle interactions and their

macroscale response by implementing contact constitutive models to describe their interac-

tions (O’Sullivan, 2011). At the macroscopic level, soil skeleton deformations reveal particles

movements and show their complex material behavior. The movement of the particles as they

slide, spin, and in the process form and break connections with surrounding particles is re-

flected in the deformations of the soil skeleton. This behavior exhibits pressure-dependency,

permanent deformations, anisotropy, and localized instabilities. Discrete particles can cap-

ture the behavior of actual materials using simple assumptions and less input parameters at

the micro-scale level (particle density, elastic modulus, Poisson’s ratio, coefficient of friction,

and coefficient of restitution) compared to the finite element method (FEM). The material

becomes an unexpected property of the assembly due to the complexity of its behavior (Cun-

dall, 2001). Previous 3-D DEM studies determined that particles were spherical, however,

recent studies show how they actually have an irregular particle shape and how that impacts

the soil behavior (Lim and Andrade, 2014; Vlahinić et al., 2017; Kawamoto et al., 2018).

This research has shown that DEM is the best technique for modeling the proposed sand

damper where the particle dampers consist of an assemblage of discontinuous grains which

can be modeled effectively as a collection of discrete particles. The DEM model is displayed

in Figure 3.3 and it shows the configuration of the PSD, which can be found in Figure 3.6.
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Particles of equal grain size distribution within the sand and the grain shapes resembling

actual granular materials are used in the computational setup of this simulation. Figure

3.3, which contains approximately 70,000 particles, is modeled using PFC3D Version 6.0.

This version is capable of parallel computing and can also generate the irregular shaped

particles, as shown in Figure 3.3. The discrete element method is a mesh-free numerical

technique (Cundall and Strack, 1979) which involves the motion of every particle in the

simulation, while gravity is not taken into consideration in the partial motion. In this

research, DEM has been used to model soil deposits. It is used to idealize the soil grains as

rigid spherical bodies. If the grains are modeled as rigid spherical bodies, the computational

cost and the complexities are reduced compared to modeling as irregular shaped particles.

However, it must be considered that this simplification may produce a higher inaccuracy

of the rotational inertia. When there is significant rotational inertia, it has been proven

that there are major impacts that occur on the energy dissipation during the rotational

movements and micromechanical behavior (Iwashita and Oda, 1998; Misra and Jiang, 1997;

Bardet and Huang, 1992). Thus, irregularly-shaped blocks are the best representation of a

soil deposit. Rigid blocks are being used to create non-spherical particles (Itasca, 2018).
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3.1.1.1. Soil Grain as Irregular shape 3D Rigid Blocks

A rigid block is a closed, convex-shaped body composed of multiple triangular facets

(polyhedra in 3-D). A rigid block assembly can exist in a domain. Inside the domain, rigid

blocks can interact with other particles such as balls, clumps, walls, zones, and structural

elements in 3-D. Each one of the rigid blocks is treated as a single body (unlike bodies that

can exist of one or more pieces or clumps) which means there can only be one contact point

between two rigid blocks or between a rigid block and a wall. The reduction of contact points

is useful for performance and reduction of the simulation time. A rigid block is created from

vertices. The irregular shape (non-sphericity) of these particles has advantage of eliminating

the need for application of rolling friction, and therefore, the linear elastic contact model

suffices to describe their interaction. The information of facet connectivity is kept to assist

with contact detection and resolution. The process to determine if pieces collide is called

contact detection, while the process to define the contact normal, gap and position is called

contact resolution (Itasca, 2018). However, the contacts detection between rigid blocks is

done using the Gilbert-Johnson-Keerthi (GJK) algorithm (Ong and Gilbert, 1997), which is

an iterative scheme that uses Minkowski difference to find the overlapping particles. If two

closed, convex bodies are in contact, the origin is located inside the constructed Minkowski

difference between the two bodies. In order to determine the location of the contact for the

rigid block, the contact location must be placed at the centroid of the overlapped volume in

3-D. For contacts between wall facets and rigid blocks, a point at the center of the facet is

added to the collection of points used in the GJK algorithm. After detecting the overlaps, the
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contact point located at the centroid of the overlap volume must be determined to compute

the associated contact forces using the method presented by Shamos and Hoey (1976).

3.1.2. Mathematical Formulation and Constitutive Models

Particle motion can be specified by the transnational and rotational motion and deter-

mined by the resultant force and moment vectors acting on it. Position X, velocity Ẋ, and

acceleration Ẍ are the three expressions to describe the motion of the center of mass of the

particle while angular velocity ω and angular acceleration ω̇ present the rotational motion

of the particle.

The transnational equation of motion can be expressed in vector form as

F = m(Ẍ−g) (3.1)

where:

F = denotes the resultant force,

m = denotes the particle mass,

Ẍ = represents the acceleration,

g = is the gravitational loading (e.g. the body force acceleration vector) .

This equation is solved using second order Velocity Verlet algorithem (Verlet, 1967). For

example, if the previous cycle solved Equation 3.1 at time t and that the timestep resolved

for the present cycle is ∆t. The 1/2 step velocity, Ẋ
(t+∆t/2)

can be calculated as
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Ẋ
(t+∆t/2)

= Ẋ
(t)

+
1

2

[
F (t)

m
+ g

]
∆t (3.2)

The 1/2 step velocity is used in order to update the position at time t+∆t using the

equation below:

X(t+∆t/2) = X(t) + Ẋ
(t+∆t/2)

∆t (3.3)

The forces can be updated during the force displacement cycle point and this event leads

to the updated acceleration Ẍ
(t+∆t)

. Thus, the updated velocity can be as

Ẋ
(t+∆t/2)

= Ẋ
(t+∆t/2)

+
1

2

[
F (t+∆t)

m
+ g

]
∆t (3.4)

The rigid body fundamental rotation equation is as shown below:

L=Iω (3.5)

where:

L = is the angular momentum,

I = denotes the inertia tensor,

ω = represents the angular velocity.

Equation 3.5 can be used to obtain the Euler’s equation by taking the time derivative shown

below:
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M=L̇=Iω̇+ω×L (3.6)

M is the resultant moment acting on the rigid body. The relation refers to a local coordinate

system that is attached to the center line of the body.

The 3D rotational motion for a rigid body has a full inertia tensor in the global coordinate

system. It is a fourth-dimensional vector. Quaternions are the commonly utilized to describe

the 3D rotations and orientations (Shoemake, 1985). Quaternions cannot affect the loss of

a degree of freedom under certain conflagrations and its equation is shown as:

q = q0 + qii+ qjj + qkk = q0 + q (3.7)

where:

q0 = denoted the scalar part,

q = the vector part,

i, j, k = represents the basis elements.

i2 = j2 = k2 = ijk = −1 (3.8)

ij = k

jk = i
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ki = j

Note that the product of two quaternions denote the Hamilton product which can be found

using the distributive law the identities showed above. The vector notation can be as:

qp = p0q0 − p.q + p0q + q0p+ p× q (3.9)

The product of two quaternions is not commutative qp 6= pq and this is because of the

cross product. A pure vector quaternion with 0 scalar part (e.g. ν = 0+V ) is created and

performing the multiplication in Equation 3.9 occurs when the performing of the product

of the vector V and a quaternion. The conjugate of the quaternion is describe in Equation

3.10 and the quaternion length is shown in Equation 3.11.

q∗ = q0 − q (3.10)

||q||= q2
0 + q2

i + q2
j + q2

k = qq∗ = q∗q (3.11)

A converted unit quaternion (||q||= 1) can form as shown below in Equation 3.12 to a

pure rotation matrix.

ν
′
= qνq∗ (3.12)
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where:

ν
′

= is the rotated vector,

q = the vector part,

i, j, k = represents the basis elements.

The sequential rotation q followed be the rotation p is given by the quaternion product

pq, meaning that any number of rotations can by composed into a single quaternion and

applied at once, provided they are unit quaternions. Properties of unity quaternions q and

−q represent the same rotation, the inverse rotation of q is the conjugate q∗, and the null

rotation is q=1 where the vector part is 0.

Another algorithm was proposed in 2000 by Buss (2000) . These algorithms represent a

different order to solve the rotational equations of motion described above. The proposed

algorithms were all based on the Taylor-series expansion of angular velocity. This is a great

procedure to supply more accurate estimates of the average angular velocity during timestep.

Using the modified form of Equation 3.5 leads to calculating the angular velocity at time, t,

see the equation below:

ω(t) = I(t)−1L(t) (3.13)

When rotating the principle moments of inertia by the rigid body orientation that is denoted

with qc, the inertia tensor (in the global coordinate axis) can be calculated 3.14.

I = qcJq
∗
c (3.14)
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I−1 = qcJ
−1q∗c

By using Equation 3.7 and 3.14 the angular acceleration at time t can be

ω̇ = q(t)
c J

(−1)q(t)∗
c (M (t) − ω(t) ×L(t)) (3.15)

The estimated average angular velocity over timestep is as follow

ω̄ = ω(t) + ω̇(t) ∆t

2
(ω̇(t) × ω(t))

∆t2

12
(3.16)

Equation 3.16 is utilized to update the orientation of rigid body q
(t+∆t2)
c by using the angular

displacement, Θ = ω̄∆t. and also converting the angular displacement to a unit quaternion

and rotating qtc by this unit quaternion (Itasca, 2018).

q(t+∆t)
c =

(
cos

(
Θ

2

)
+ sin

(
Θ

2

)
ω̄

||ω̄||

)
q(t)
c (3.17)

After the rigid body orientation got updated, the new angular velocity wt+ ∆t can be as

follow:

ω(t+∆t) = q(t+∆t)
c J (−1)q(t+∆t)∗

c Lt (3.18)

The fourth-order solution shows that the time derivative of the quaternion as given in

Equation 3.19
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q̇c =
1

2
$qc (3.19)

Where $ here is the pure vector component with vector component ω. By substituting

Equations 3.13 and 3.14 into 3.19, Equation 3.20 form as:

q̇c =
1

2
(qcJ

(−1)q∗cL
(t))qc (3.20)

When applying the standard fourth-order Runge-Kutta method in Equation 3.20 , the ori-

entation at time t+ ∆t can be as shown in Equation 3.21 below (Itasca, 2018):

q(t+∆t)
c = q(t)

c +
∆t

6
(k1 + 2k2 + 2k3 + k4) (3.21)

The quaternion k1 is as given:

k1 =
1

2
(q(t)

c J (−1)q(t)∗
c L(t))q(t)

c (3.22)

In order to come up the value of k2 3.24, an intermediate step should be performed as shown

in Equation 3.23.

qc1 = q(t)
c + k1

∆t

2
(3.23)

k2 =
1

2
(qc1J

(−1)q∗c1L
(t))qc1 (3.24)
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The following intermediate value of the orientation quaternion qc2 3.25 can be obtained

after the finding of k3 3.26 and the final value of the orientation quaternion qc3 3.27 is found

after calculating the quaternion k4 3.28. Finally, Equation 3.18 is utilized when the 3D rigid

body got updated as well as the angular velocity to time t+∆t. This mode is the same as

the one presented in 2008 by Johnson et al. (2008)

qc2 = q(t)
c + k2

∆t

2
(3.25)

k3 =
1

2
(qc2J

(−1)q∗c2L
(t))qc2 (3.26)

qc3 = q(t)
c + k3∆t (3.27)

k4 =
1

2
(qc3J

(−1)q∗c3L
(t))qc3 (3.28)

Particle motion can be specified by the translational and rotational motion. The motion

of a particle, p, can be expressed by the momentum equations:

mpüp =
Nc∑
c=1

fc (3.29)

Ipθ̈p =
Nc∑
c=1

rc × fc (3.30)
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where üp and θ̈p are translational and rotational acceleration vectors, mp is particle mass,

Ip is particle moment of inertia, Nc is the total number of contacts, fc refers to inter-particle

force at contact c, and rc is vector connecting the center of the particle to the location of

the contact, c.

In DEM, particles are assumed to be rigid but can overlap. The amount of this overlap

is dictated by a contact force model. A contact force, fc, between two particles consists of

normal, fcn, and shear, fcs, components (Itasca, 2018). The normal component was idealized

using a linear spring model connected in parallel with a viscous dashpot that is shown in

Figure 3.1:

The contact normal force is described by:

fcn = fn + fdn (3.31)

in which fn is the vector of normal spring contact forces and fdn is the vector of damping

forces given by:

fn = knunn (3.32)

fdn = cnvnn (3.33)

where un and vn are, respectively, relative displacement and velocity at the contact along

the line connecting the particle centers, n is unit normal vector at the contact, kn is normal
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Figure 3.1. Schematic of the constitutive law of normal and shear contact forces between

two particles.
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contact stiffness, and cn is the normal viscous damping coefficient. The incremental shear

contact force, dfcs, was modeled using an elastic spring in series with a frictional slider:

dfcs = dfs + dfds (3.34)

in which dfs is vector of incremental shear spring contact forces and dfds is vector of damping

forces in the shear direction given by:

dfs = ksdus (3.35)

dfds = csdvs (3.36)

where dus and dvs are incremental shear displacement and velocity vectors at the contact,

cs is shear viscous damping coefficient, and ks is shear contact stiffness. A slip Coulomb

model (Itasca, 2018) is used to connect the shear and normal forces, such that Fs ≤ µFn. Fs

and Fn are the resultant shear and normal forces at the contact, respectively. The Coulomb

friction coefficient is denoted as the Greek letter (µ). Once the total shear force in the spring

and dashpot exceeds the limiting value, the frictional slider assumes control of the response

in the shear direction, as shown in Figure 3.1.

Each particle’s motion is estimated using an explicit time integration approach that

assumes that the change in velocities and accelerations during an incremental time step is

small enough that they can be presumed constant within that time step. The interaction
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between particles is tracked during a calculation cycle, and the contact forces are modified

depending on the contact laws. To acquire new particle positions, the particle equations

of motion are then integrated. As a result, new contacts are established in each time step,

while existing contacts are removed as applicable.
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3.2. Energy Calculation

The discrete element method was utilized to characterize energy dissipation mechanisms

in cyclically loaded soils (sand) based on micromechanical considerations. Computational

simulations are carried out to investigate the energy dissipation mechanism on the sand

damper and reveal that monitoring the particle energy components has a powerful benefit in

describing the dissipated energy. This is one advantage of the DEM approach. The different

components of microscale energies were monitored during the course of the simulations and

characterized into input and dissipated energies. Monitoring the particle energies enhanced

the understanding of the particle interaction at the microscale level where it can supply the

means to understand the response mechanism. One advantage of monitoring an individual

energy component is that it informs energy conservation and determines the contribution

of each energy term to the total dissipated energy. The energies that are considered in this

work include friction, kinetic, boundary, strain, and viscous damping energies.

The total accumulated work Ew refers to the boundary work (e.g. wall work). The work

done by all walls in the assembly is as follow:

Ew =
t∑

t=0

Nw∑
w=1

fTwduw + mT
wdθw (3.37)

where Nw is the number of walls, fw is the resultant force acting on the wall, duw denotes

to the incremental translational displacement vector of the wall, mw refers to the resultant

moment acting on the wall, and dθw denotes the incremental rotational displacement vector

of the wall.
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The total kinetic energy Ek accounts for both translational and rotational motion of all

particles and can be written as:

Ek =
1

2

t∑
t=0

Np∑
p=1

mpu̇
2
p + Ipθ̇

2

p (3.38)

where u̇p and θ̇p are the translational and rotational velocity vectors, and Ip is particle

moment of inertia.

Strain energy is related to the deformation of the particles. When deformation occurs,

the particle tends to revert back to its original shape. The total strain energy Es, stored at

all contacts of the entire assembly can be described as follows:

Es =
1

2

Nc∑
c=1

f2
n

kn
+

f2
s

ks
(3.39)

where Nc is the number of contacts at contact c, fn, fs, and kn, ks are the vector of normal

spring contact force, the vector of shear spring contact force, normal contact stiffness, and

shear contact stiffness, respectively.

The total fictional work, donated by Ef , is the dissipated energy by fictional sliding at

all contacts:

Ef =
t∑

t=0

Nc∑
c=1

fTs duslip (3.40)

where Nc is the number of contacts at time, t, and fTs and duslip, are the average shear

force and the increment of slip displacement, respectively, at the contact force of the current
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timestep.

The total viscous damping energy, Ed, due to particle-to-particle and particle-to-wall

impacts at all contacts:

Ed =
t∑

t=0

Nc∑
c=1

fd.(δ̇∆t) (3.41)

Where fd is the total dashpot forces in normal and shear, fd=( fdn + fds), and δ̇ is the relative

translational velocity, δ̇ = δ̇n + δ̇s, δ̇n and δ̇s, are the relative translational velocities normal

and tangential, respectively, to the contact plane, and the subscripts n and s correspond

with normal and shear action, respectively.

The DEM-based commercial software PFC3D version 6.00.29 was used for all simulations

in this work (Itasca). Within PFC3D, the energy given by Equations 3.37 to 3.41 were

monitored.

3.3. Modeling of Energy Dissipation in PSD Using Discrete Element Method

3.3.1. 3-D Discrete Element Model Features

In the presented studies, all the analyses were conducted utilizing the software PFC3D

(Itasca, 2018), which is a discrete element simulation environment software. This software

uses a high performance computing technique. In this research, there were several model

configurations performed and studied by considering sensitivity analyses with respect to dif-

ferent base-case model simulations of energy dissipation in the sand damper equipped with
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a single sphere, double sphere, a single enlarged sphere, and a roughened surface sphere.

Prototypes of the sand damper are shown in Figures 3.6, 3.7, 3.8, and 3.9. The applied

particles are irregular shapes of rigid bodies and all models were user controlled (e.g. the

contact model, calculation cycle order, and timestep magnitude). The dry sand was repre-

sented by irregular shape sizes ranging from 2 mm to 4 mm and 1 mm to 5 mm. These

irregular particle shapes were utilized to simulate energy dissipation mechanics of the sand

damper in the 3-D simulation. The particles and facet (i.e. wall) frictions are set to be 0.5

and 0.15, respectively. Linear contact is established between rigid blocks as well as between

the rigid block and a facet. The shear and normal stiffnesses are 1e7 N/m for the particle

and 1e8 N/m for the wall. The piston velocity is represented by:

v(t) = ω u0 cos(ω t) (3.42)

where ω is the loading frequency given by

ω = 2 π f0 (3.43)

The frequency f0 = 20 Hz, and the amplitude u0 has values of 4 and 6 cm. The pressure

level p has values of 1.0, 2.0, 3.0, 4.0 and 5.0 MPa. The sand solid density is 2660 kg/m3.

Figures 3.3, 3.4, and 3.5 describe the features of a typical model utilized in the study, which

is equipped with different sphere configurations and focuses on the pressurized sand. In all

conducted cases, the sand damper was simulated with a linear entity in which the sphere
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can move freely in in one direction (i.e. y-direction) to accomplish the desired amplitude at

the required pressure levels (p= 1.0, 2.0, 3.0, 4.0 and 5.0 MPa ) during the simulation time.

In the first model, the sphere is placed in the center of the metal rod and at distance of

± 120 mm to the rod center in the second model. In the remaining models, the sphere is

established in the origin of the metal rod (the origin is located at the center of the rod). The

recorded piston force (i.e. when the sphere is passing through the origin and at its the peak

velocity during its harmonic motion) is proof that the force increases as the displacement

increases at each assigned pressure level. Kinetic, boundary, friction, dashpot, strain, and

slip energy are monitored throughout the simulation. The duration of the considered studies

ranged between 20 and 25 days and were computed with a high tower workstation which has

dual Intl(R) Xeon(R) CPU E5-2687W v3 @ 3.10 GHz processors and 128 GB of memory

rams.

3.3.2. The Simulated Configurations

The dimensions of the sand damper and the characteristics of the utilized sand assembly

considered in this study are selected to mimic the behavior of energy dissipation in the

experimental cyclic loading configuration. The DEM models of the sand damper utilized in

this research are shown in Figures 3.3, 3.4, 3.5. The particle shape can be shown in Figure

3.2. The grain size distribution varies in range from 2 mm to 4 mm, and 1 mm to 5 mm.

In this research, various sand damper configurations and parametric studies investigated

the behavior of the pressurized sand damper by evaluating the energy dissipation in the

sand damper. These configurations include a single, double, triple, and enlarged spheres in
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Figure 3.2. Particle shape characterizing the PSD.

the sand damper. For instance, the first PSD model considered in this paper was equipped

only with a single sphere piston configuration. Figure 3.3 shows the proposed configuration

of the pressurized sand damper that was tested numerically in DEM simulations while the

second model has two spheres (see Figure 3.4). The third model consists of three spheres

inside the pressurized sand damper. These spheres have the same diameter of 6 cm. Its

simulated configuration can be seen in Figure 3.5. These three proposed models all have the

same sphere diameter of 6 cm. The fourth model increases the sand damper sphere radius.

The ratio of the diameter to the cylinder radius is D/R= 5.696 for the fourth model (see

Figure 3.9). Another DEM model was conducted numerically by considering an increase in

the friction of the metal sphere. In this case, the friction coefficient was increased from 0.15

to 0.9 to study the effect of surface roughness of the sphere. This case is conducted when

the sand damper is equipped with a single sphere with the sphere size shown in Figure 3.6.
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3.3.3. Simulated Geometry

Figure 3.6 shows the simulated geometry for the pressurized sand damper with a single

sphere. The length and the diameter of the PSD are 62 cm and 18.9 cm, respectively. The

rod on which the sphere is attached has a length of 165 cm, and its diameter is 4 cm. The

sphere radius in this case is 3 cm. Figures 3.7 and 3.8 show the schematic configurations

of the PSD utilizing the same dimensions as mentioned in Figure 3.6. Another geometric

design case can be seen in Figure 3.9 where the sphere is attached at the center of the rod

with a different size. The attached sphere has a radius which is 33.18 cm.

3.3.4. Material Properties

The considered properties of the utilized pressurized sand damper in these studies for

each case at varying pressure levels, displacement amplitudes, and piston configurations can

be found in Table 4.1 listed below. For example, the deposit porosity n, density ρ, the

pressure p, and shear stiffness of the soil deposit and walls ks, normal stiffness of the soil

deposit and walls kn, and friction coefficient µ are shown. Their values are also summarized

in following Tables 4.1, 3.2, and 3.3.

3.4. Simulations

The numerical model can be seen in Figure 3.2. Following the generation of the sample,

a servo-mechanism was applied iteratively to isotropically consolidate the specimen to the

desired confining stress. The servo-mechanism uses the feedback of the stresses on the walls
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Table 3.1. DEM simulation parameters for trials 1,2, and 3.

Simulation (1) Simulation (2) Simulation (3)

Amplitude 40 (mm) 60 (mm) 40 (mm)

Frequency (f) 20 HZ 20 HZ 20 HZ

Pressure magnitude 1 MPa 1 MPa 2 MPa

Configuration one sphere one sphere one sphere

porosity 0.40 0.40 0.40

Particle solid density 2660 kg/m3 2660 kg/m3 2660 kg/m3

Particle size (Radius) (2-4) mm (2-4) mm (2-4) mm

Number of particle 70,000 70,000 70,000

Wall normal stiffness 1e8 N/m 1e8 N/m 1e8 N/m

Wall shear stiffness 1e8 N/m 1e8 N/m 1e8 N/m

Particle normal stiffness 1e7 N/m 1e7 N/m 1e7 N/m

Particle shear stiffness 1e7 N/m 1e7 N/m 1e7 N/m

Wall coefficient friction 0.15 0.15 0.15

Particle coefficient friction 0.5 0.5 0.5

Normal viscous damping ratio 0.1 0.1 0.1

Shear viscous damping ratio 0.1 0.1 0.1
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Table 3.2. DEM simulation parameters for trials 4,5, and 6.

Simulation (4) Simulation (5) Simulation (6)

Amplitude 60 (mm) 40 (mm) 40 (mm)

Frequency (f) 20 HZ 20 HZ 20 HZ

Pressure magnitude 2 MPa 3 MPa 4 MPa

Configuration one sphere one sphere one sphere

porosity 0.40 0.40 0.40

Particle solid density 2660 kg/m3 2660 kg/m3 2660 kg/m3

Particle size (Radius) (2-4) mm (2-4) mm (2-4) mm

Number of particle 70,000 70,000 70,000

Wall normal stiffness 1e8 N/m 1e8 N/m 1e8 N/m

Wall shear stiffness 1e8 N/m 1e8 N/m 1e8 N/m

Particle normal stiffness 1e7 N/m 1e7 N/m 1e7 N/m

Particle shear stiffness 1e7 N/m 1e7 N/m 1e7 N/m

Wall coefficient friction 0.15 0.15 0.15

Particle coefficient friction 0.5 0.5 0.5

Normal viscous damping ratio 0.1 0.1 0.1

Shear viscous damping ratio 0.1 0.1 0.1
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Table 3.3. DEM simulation parameters for trials 7,8, and 9.

Simulation (7) Simulation (8) Simulation (9)

Amplitude 60 (mm) 40 (mm) 60 (mm)

Frequency (f) 20 HZ 20 HZ 20 HZ

Pressure magnitude 4 MPa 5 MPa 5 MPa

Configuration one sphere one sphere one sphere

porosity 0.40 0.40 0.40

Particle solid density 2660 kg/m3 2660 kg/m3 2660 kg/m3

Particle size (Radius) (2-4) mm (2-4) mm (2-4) mm

Number of particle 70,000 70,000 70,000

Wall normal stiffness 1e8 N/m 1e8 N/m 1e8 N/m

Wall shear stiffness 1e8 N/m 1e8 N/m 1e8 N/m

Particle normal stiffness 1e7 N/m 1e7 N/m 1e7 N/m

Particle shear stiffness 1e7 N/m 1e7 N/m 1e7 N/m

Wall coefficient friction 0.15 0.15 0.15

Particle coefficient friction 0.5 0.5 0.5

Normal viscous damping ratio 0.1 0.1 0.1

Shear viscous damping ratio 0.1 0.1 0.1

The above Tables [4.1, 3.2, 3.3] present the simulation parameters for the trials from
1 to 9. However, this tables herein manifest different parameters utilized for the sand
damper equipped with a single piston configuration.
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to determine if the isotropic stress is more or less than the desired value and adjusts the

wall positions accordingly (Itasca, 2018). During this stage, a specific prescribed pressure

is reached by adjusting the wall position of the sand damper. In this study, the results of

samples packed at initial porosity of 40%. The particle properties that were considered in

these simulations can be seen in the Table 4.1. The final step of the simulation that followed

the servo-mechanism is the piston loading with varying stroke amplitudes and frequencies.

A sinusoidal motion is applied for loading the damper. In contrast to the laboratory testing,

the numerical simulations make it easy to repeat a test on the exact same sample, changing

one parameter at a time without changing the initial conditions of the sample. The mea-

surement sphere is created with radius of 35.5 mm at a distance of 150 mm in the y-direction

and at varying positions in x-direction stress and strain components developed in the sand

inside the damper were monitored using averaging volumes (spheres) positioned at different

locations in the damper. and z-direction from the center of the rod. Figure 3.10 shows the

location of the measurements sphere that were employed inside the sand damper where its

main purpose is to measure porosity, and components of the stress tensor throughout the

simulation (Itasca, 2018). The horizontal stresses computed inside the measurement spheres

were almost identical to those computed from the walls. A code was developed to monitor

energy components during the course of the simulation for the entire sample.
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Figure 3.3. Generated DEM model of the proposed pressurized sand damper equipped with

a single sphere at the center of the rod.
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Figure 3.4. The DEM model for the pressurized sand damper which is equipped with two

metal spheres appended on the piston rod.
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Figure 3.5. Generated DEM model of the proposed pressurized sand damper equipped with

three metal spheres.
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Figure 3.6. The simulated geometry of the pressurized sand damper model equipped with

one sphere at the center of the metal rod.
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Figure 3.7. Schematic design of sand damper model equipped with two spheres.
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Figure 3.8. Schematic design of sand damper model equipped with three spheres.
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Figure 3.9. Schematic of sand damper model equipped with an enlarged single sphere of

radius 33.18 mm.

Figure 3.10. The measurements spheres inside the sand damper model equipped with one

sphere.
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Chapter 4

VALIDATION RESULTS

4.1. Experimental Study of Sand Damper Energy Dissipation to Validate the

Numerical Studies

The study conducted by Makris et al. (2021) in 2020 approximated the nonlinear hys-

teretic behavior of the proposed pressurized sand damper of the Structures Laboratory in

the University of Patras, Greece (Makris et al., 2021). This study used dimensional analysis,

a mathematical tool which expands on the general forms of the relation that was developed

by (Langhaar, 1962; Barenblatt et al., 1996; Makris and Black, 2003, 2004). The schematic

model of the sand damper is shown in Figure 2.15.

To develop a quantitative illustration of the energy dissipation mechanism in the pressur-

ized sand damper under the mechanical loads, the following assumptions were made (Makris

et al., 2021):

� The experimental test uses a steel sphere of radius, R.

� The sphere moves with a constant velocity, v.

� The gravity loading is neglected in the tests.

� A sufficiently large enclosed sand medium is pressurized with a pressure p at the end

gates of the cylinder over the direction of sphere motion.

84



� The surface contact of sphere while moving in the direction of the harmonic motion

and sand grain flowing around its surface causes the shearing force.

� The density of the sand is not related to the resistance (drag) exerted on the moving

sphere.

� The exerted shear stresses by the sand grains on the steel sphere are nearly velocity-

independent, i.e. they are friction (hysteretic) stresses. The developed shearing strength

on the front of the moving sphere in the direction of motion is called the resisting force,

which acts along the sand-steel interface and the passive normal stresses.

Equation 4.1 shows the drag mechanism as a function of the exerted pressure, p, along

the direction of motion and the radius of the sphere, R.

Fs = f(p,R) = ΠspR
2 (4.1)

Where R is the radius of the sphere, p is the exerted pressure, and Πs denotes a dimensionless

coefficient. Πs accounts for the spherical geometry, the Poisson effect that controls the level

on normal stresses along the direction that the pressure p is exerted (against the direction

of motion), and the developed mobilized normal and shear stresses from the projections on

the sand-sphere interface along the direction of motion of the sphere. According to Equation

4.1, Fs is proportional to the exerted pressure p and is quadratically related to the radius

of the sphere, R. Dimensional analysis was employed for the quadratic dependence of the

drag force, Fs, on the radius of the sphere, R, which, was proven in an experimental study

by Albert et al. (2001).

According the study were conducted by Albert et al. (2001), drag force on the sphere is the
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result of jamming of the grains. Jamming is recognized as the figuration of force chain in the

literature of physics (Cates et al., 1998; Gates et al., 1999; Liu and Nagel, 1998) throughout

the granular particles compression direction whose unsettled solid structure stems directly

from the applied loading. When creating a single array of the force chains, a shear stress will

be supported indefinitely. Other studies carried out in 1998 and 1999 by Cates et al. (1998)

and Gates et al. (1999) found that as long as the compression is sustained on the direction

of the force chain, jamming may sustain a static load.

When jamming occurs for a structure that is loaded at a certain direction, the jammed

structure load-bearing capacity will vanish due to the collapse of the force chain. Thus,

another new jammed structure should be initiated for the new loading direction for the loose

materials. The materials used in this study are not elastic materials due to their ability

to transmit elastic waves (i.e. being described with an elastic shear modulus, G, and a

Poisson ratio, ν) and the inability to elastically support some infinitesimal load along any

direction other than the direction of the force chains. This kind of material is made (coined)

by stamping metal “fragile materials”. According to Cates et al (Cates et al., 1998; Gates

et al., 1999), their behavior can be characterized with a “fixed principal axes” (FPA) model

(Makris et al., 2021). The configuration (Makris et al., 2021) of the pressurized sand damper

is shown in Figure 2.15. The sand damper is characterized by a single sphere with radius

R = 3 cm attached to the piston rod with radius of 2 cm and is moving within the finite

domain of the cylindrical damper housing with diameter D = 18.9 cm and length L = 62 cm.

The resisting force on the sphere also depends on the displacement of the sphere (stroke of
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the damper), u and on the gap (clearance) between the sphere and the cylindrical housing,

D−2R. Following a similar reasoning, the resisting (drag) force on the sphere moving along

the axis of the cylindrical damper housing of diameter D is expressed as:

Fd = f(p,R, u,D) = ΠspR
2Φ

(
u

R
,
D

R

)
(4.2)

where p = 4F/(ΠD2) is the pressure along the direction of motion of the piston rod that

is exerted by the post-tensioning of four external steel rods (each post-tensioned rod exerts

a force F ), Πs is a dimensionless coefficient, and Φ( u
R
, D
R

) is a dimensionless function. Φ

depends on the normalized stroke u/R and the normalized clearance of the moving sphere

from the damper housing D/R, where R is the sphere radius that moves within a damper

housing and is equal to 3 cm, and D is the diameter of the damper housing and is equal to

18.9 cm Makris et al. (2021). An ad-hoc assumption was made that

Φ

(
u

R
,
D

R

)
= Φu

( u
R

)
· ΦD

(
D

R

)
(4.3)

Thus, the new form of Equation 4.2 follows as

Fd = ΠSDpR
2Φu

( u
R

)
= QΦu

( u
R

)
(4.4)

Where ΠSD is a new dimensionless coefficient associated with the specific damper configu-

ration (D/R = 6.3). Q = ΠSDpR
2 is the strength of the pressurized sand-damper (Makris

et al., 2021).
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4.1.1. Numerical Modeling of PSD

The generated DEM model and particle shape used to characterize the PSD is shown

in Figure 3.2. The dry sand was represented by irregular shape sizes ranging from 2 mm

to 4 mm in radius. The particles and facet (i.e. wall) frictions are set to be 0.5 and 0.15,

respectively. Linear contact is established between rigid blocks as well as between the rigid

block and a facet.

The frequency f0= 20 Hz, and the amplitude u0 has values of 4 and 6 cm. The pressure

level p has values of 1.0, and 2.0 MPa . The sand solid density is 2660 kg/m3. The dimensions

of the sand damper and the characteristics of the utilized sand assembly considered in this

study are selected to mimic the behavior of energy dissipation in the experimental cyclic

loading configuration. The sphere is placed at the center of the rod. The length and the

diameter of the PSD are 62 cm and 18.9 cm, respectively. The rod on which the sphere is

attached has a length of 165 cm, and its diameter is 4 cm. The sphere radius in this case is

3 cm. The piston force was recorded during the course of the simulation.

The considered properties of the utilized pressurized sand damper in these studies for

each case at varying pressure levels, displacement amplitudes, and piston configurations can

be found in Table 4.1 listed below. For example, the porosity, particle solid density ρ, the

pressure p, and shear stiffness of the particles and walls ks, and normal stiffness of the

particles and walls kn, and friction coefficient µ are shown.
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Table 4.1. DEM simulation parameters.

Amplitude 40, 60 mm

Frequency (f) 20 Hz

Pressure magnitude 1, 2, 3, 4, 5 MPa

Porosity 0.40

Particle solid density 2660 kg/m3

Particle size range (Radius) 2-4, 1-5 mm

Number of particles 70,000

Wall normal stiffness 1e8 N/m

Wall shear stiffness 1e8 N/m

Wall friction coefficient 0.15

Normal viscous damping coefficient 0.1

Shear viscous damping coefficient 0.1

Particle normal stiffness 1e7 N/m

Particle shear stiffness 1e7 N/m

Particle friction coefficient 0.5

4.1.2. Validation Results

The obtained results were superimposed over the experimental results of same sand

damper configuration in order to validate the DEM model in Figures 4.1-4.2. The applied

pressure in these cases is p= 1, 2 MPa, the amplitude uo= 40, 60 mm, and frequency of the

cyclic tests is fo= 20 Hz. Note that the loading frequency of 20 Hz is substantially higher

than that used in the experiments to save simulation time. Makris et al. (2021) showed that

there is no significant impact of loading frequency on the performance of the PSD. Figure 4.1

shows a comparison between obtained DEM and published experimental results for the force

plotted against displacement of the PSD equipped with a single sphere-shaped configuration:

(a) the applied pressure is p 1 MPa, the amplitude uo= 40 mm, and (b) the applied pressure
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is p 1 MPa, the amplitude uo= 60 mm. Figure 4.1 shows the fairly good agreement between

the DEM and experimental results.

Figure 4.1. Comparison between obtained DEM and experimental published results for the

force versus displacement of PSD equipped with a single sphere-shaped configuration: (a)

The applied pressure is p= 1 MPa, the amplitude uo= 40 mm, and (b) The applied pressure

is p= 1 MPa, the amplitude uo= 60 mm.

Both results exhibit similar cyclic force and displacement magnitude. For case (a), the

maximum cyclic force magnitude obtained from the numerical simulation and the lab ex-

perimental test was around 30 kN. For case (b), the maximum cyclic force for both DEM

and experimental result was approximately 60 kN. This was expected because of the longer

stroke amplitude in case (b) recorded at uo= 60 mm. A strain hardening behavior can also

be detected in both cases when the piston reaches its maximum displacement amplitude in

each direction, seen by steeper slope of the force displacement curves. This indicates soil

dilative behavior during cycling motion. As can be seen from both DEM and experimental

results in both cases (a) and (b), the first cyclic loop demonstrates a higher peak which

gradually decreases in the following cycles in both the experimental and the DEM results.
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Further DEM simulations were conducted that show a good agreement with the experi-

mental lab test. Figure 4.2 shows similar cyclic loops for the force and displacement during

cycling loading. Both the DEM and experimental results exhibit the same pattern in the

first cycle. The first cyclic loop has a higher peak which gradually decreases in the following

cycles. The applied pressure here in both cases are 2 MPa and the stroke amplitude in case

(a) is uo= 40 mm and in case (b) is uo= 60 mm. As seen from the plots in case (a) and (b),

the maximum forces are around 80 kN and 100 kN. The soil experiences similar behavior as

in Figure 4.1 where a strain hardening behavior is exhibited in both cases when the piston

reaches its maximum displacement in the direction of motion. As previously mentioned, this

is seen in the steeper slope of the force displacement curves that indicate the soil dilative

behavior during cycling motion.

Figure 4.2. Comparison between obtained DEM and experimental published results for the

force versus displacement of PSD equipped with a single sphere-shaped configuration: (a)

The applied pressure is p= 2 MPa, the amplitude uo= 40 mm, and (b) the applied pressure

is p= 2 MPa, the amplitude uo= 60 mm.

As previously discussed, the DEM simulations and experimental lab tests manifest a
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similar pattern in all pressurized sand damper behavior for the force and displacement loops

induced by the sphere movement and the harmonic excitation in the direction of motion.

The harmonic velocity is

vo = ωuocos(ωt) (4.5)

which was recorded along the direction of motion of the pressurized sand damper. The

motion of the sphere starts exactly at the origin of the rod. These findings are consistent

with the above-mentioned data because the sand damper configuration that led to the above

results agree. Furthermore, all of the DEM simulations and the experimental test results

exhibit a strain hardening behavior. This occurs when the sphere reaches its maximum

stroke amplitude in each direction, and is marked by a steeper slope in the force-displacement

curves. This behavior indicates soil dilative behavior during cycling motion.
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Chapter 5

RESULTS AND DISCUSSIONS

5.1. Mechanical Behavior of the PSD in Response with Different Technical

Configurations and Particle Sizes

Energy dissipation is an important concept to help better understand the relationship

between soils and structures. The discrete element method (DEM) is useful for simulating

and modeling movement of granular materials through the process of observing individual

particle interactions. The DEM can be used to characterize energy dissipation mechanisms

in cyclically loaded soils. DEM simulations can also provide information at the microscopic

and macroscopic levels. Energy monitoring is a useful means of understanding the interaction

of particles at the microscopic level, which enhances understanding of the response mecha-

nisms at the macroscale level. Seismic activity has prompted the investigation of the energy

dissipation that occurs in soils to gain a better understanding of soil-structure interactions.

In this section, parametric study results will be presented. The findings of the considered

utilization techniques of different numerical analyses were performed on various sand damper

configurations. The scope of work considers a single, double, and triple spheres of pressurized

sand damper configuration, conducted through 3-D transient discrete element simulations

that occurred over 25 days. This research contained two approaches to cyclical loading in
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DEM: the utilization of irregular, rather than spherical, particles and the use of the linear

contact model to dictate the particle interactions. These adjustments to DEM simulations

of cyclical loading allow the process to be reflected more accurately, and the results of the

simulations were analogous to other studies which mutually confirmed their results. The

force-displacement loops in the following figures in this chapter corresponded to the energy

dissipation. This study showed that the experiments produced results that agreed with the

DEM results regarding the impact of particle size and shape on the energy dissipation of the

pressurized sand damper.

—

5.1.1. The Results of PSD with A single sphere-shaped under Varying Stroke Amplitude

and Exerted Pressure

The energy dissipation mechanism was investigated in a pressurized sand damper equipped

with a single sphere-shaped configuration. For instant, the effect of the exerted pressure p

on the performance of the pressurized sand damper was examed. The obtained DEM results

for the force-displacement hysteresis loop for varying pressure level and stroke amplitudes of

uo= 40, 60 mm can be seen in Figures 5.1-5.9. The applied pressure p in these cases varies

from 1, 2, 3,4 ,5 MPa and loading frequency of the cyclic motion is fo= 20 Hz. These figures

manifest that as the exerted pressure increases the force capacity of the pressurized sand

increases. It worth mentioning that, when the piston reaches its maximum displacement

amplitude in each direction of loading (Y direction), the force displacement curves have a

steeper slope, indicating strain hardening. This demonstrates soil dilative behavior while
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cycling. As seen in all DEM results in all cases, the first cyclic loop has a higher peak that

gradually decreases in subsequent cycles. This behavior was also evident in all of the exper-

imental results. It is due to the expansion of particles during cyclic shearing. Figures 5.10

and 5.11 show the magnitude of the dissipated energy of the pressurized sand damper for the

simulation conducted at applied pressure of p= 1.0 ,2.0 ,3.0 , and 4.0 MPa, and amplitude

displacement of uo= 40,60 mm. This figure confirm that the increase of the dissipated energy

as the sand damper operates at high pressure magnitudes.

Figure 5.1. The obtained DEM result for the force versus displacement of PSD equipped with

a single sphere-shaped configuration. The applied pressure is p= 1 MPa; the displacement

amplitude is uo= 40 mm; and frequency of the cyclic loading fo= 20 Hz.
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Figure 5.2. The obtained DEM result for the force-displacement loops of PSD equipped with

a single sphere-shaped configuration. The applied pressure is p= 2 MPa; the displacement

amplitude is uo= 40 mm; and frequency of the cyclic loading fo= 20 Hz.
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Figure 5.3. The obtained DEM result for the force-displacement loops of PSD equipped with

a single sphere-shaped configuration. The applied pressure is p= 3 MPa; the displacement

amplitude is uo= 40 mm; and frequency of the cyclic loading fo= 20 Hz.
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Figure 5.4. The obtained DEM result for the force-displacement loops of PSD equipped with

a single sphere-shaped configuration. The applied pressure is p= 4 MPa; the displacement

amplitude is uo= 40 mm; and frequency of the cyclic loading fo= 20 Hz.
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Figure 5.5. The obtained DEM result for the force-displacement loops of PSD equipped with

a single sphere-shaped configuration. The applied pressure is p= 5 MPa; the displacement

amplitude is uo= 40 mm; and frequency of the cyclic loading fo= 20 Hz.
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Figure 5.6. The obtained DEM result for the force-displacement loops of PSD equipped with

a single sphere-shaped configuration. The applied pressure is p= 1 MPa; the displacement

amplitude is uo= 60 mm; and frequency of the cyclic loading fo= 20 Hz.
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Figure 5.7. The obtained DEM result for the force-displacement loops of PSD equipped with

a single sphere-shaped configuration. The applied pressure is p= 2 MPa; the displacement

amplitude is uo= 60 mm; and frequency of the cyclic loading fo= 20 Hz.
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Figure 5.8. The obtained DEM result for the force-displacement loops of PSD equipped with

a single sphere-shaped configuration. The applied pressure is p = 4 MPa; the displacement

amplitude is uo= 60 mm; and frequency of the cyclic loading fo= 20 Hz.
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Figure 5.9. The obtained DEM result for the force-displacement loops of PSD equipped with

a single sphere-shaped configuration. The applied pressure is p = 5 MPa; the displacement

amplitude is uo= 60 mm; and frequency of the cyclic loading fo= 20 Hz.
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Figure 5.10. Time-history of dissipated energy for the numerical results at varying pressure

levels and stroke amplitudes of uo= 40 mm. The PSD is equipped with a single sphere-

shaped configuration.
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Figure 5.11. Time-history of dissipated energy for the numerical results at varying pressure

levels and stroke amplitudes of uo= 60 mm. The PSD is equipped with a single sphere-

shaped configuration.
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Figure 5.12 shows the dissipated energy of several DEM simulation cases with different

pressure levels and stroke amplitudes. The magnitude of cumulative dissipated energy in-

creased with the pressure level applied to the sand damper, as well as increasing the stroke

amplitude of the loading.

Figure 5.12. Time-history of dissipated energy for the numerical results at varying pressure

levels and stroke amplitudes. The PSD is equipped with a single sphere-shaped configuration.

In all the conducted simulations, the energy components were traced. The use of the

DEM allows tracking energies such as the input (boundary) energy, the strain energy, the

frictional work, and the kinetic energy and viscous damping energy. Figures 5.13 and 5.14

display energy components that were traced during the simulation. The applied pressure in

both cases are p= 5 MPa and the stroke amplitude in Figures 5.13 is uo= 40 mm and in

Figure 5.14 is uo= 60 mm. The loading frequency in both cases is fo= 20 Hz.
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Figure 5.13. Time-history of input, kinetic, dashpot, strain, and slip energies for the ob-

tained results by applying pressure level of p= 5 MPa, stroke amplitude of uo= 40 mm, and

frequency of the cyclic loading fo= 20 Hz. The sand damper is equipped with a single sphere

configuration.
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Figure 5.14. Time-history of input, kinetic, dashpot, strain, and slip energies for the ob-

tained results by applying pressure level of p= 5 MPa, stroke amplitude of uo= 60 mm;

and frequency of the cyclic loading fo= 20 Hz. The sand damper is equipped with a single

sphere-shaped configuration.
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Figure 5.15 shows the time-history of the energy balance for the input and dissipated

energies during cyclic loading for the different cases. As it can be seen in the figure, the

dissipated energy increases as the stroke amplitude increases. The input energy and the

dissipated energy for each case overlaps as expected from the energy balance. The input

Figure 5.15. Time-history of the energy balance for two DEM simulations results by applying

pressure level of p= 4 MPa and stroke amplitudes of uo= 40 mm and uo= 60 mm in case

(a) and (b), respectively. The frequency of the cyclic loading is fo= 20 Hz. The PSD is

equipped with a single sphere-shaped configuration.

energy is the work done by the moving piston that accumulated over time at each piston-

particle contact throughout the existence of that contact. At each timestep, the boundary

work (input energy) is defined by Equation 3.37 (Itasca, 2018). The output is the dissipated

energy due to strain, kinetic, friction, viscous damping energies. These energies are also

accumulated over time at each contact throughout the existence of that contact.
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Figure 5.16 shows the division of the sand damper particles into 9 zones with the intent

of comparing each zone to better understand the variation of dissipated energy in the sand

damper. Section 1 is located at the centerline of the piston at the origin. Section 2 is

Figure 5.16. The nine groups of the pressurized sand damper used to locate the maximum

magnitude of the dissipated energy.

located at the origin immediately surrounding Section 1. Section 3 is located around Section

2, touching the walls of the sand damper. Sections 4, 5, and 6, and Sections 7, 8, and 9

follow a similar pattern.

Figure 5.17 shows the dissipated energy due to frictional interactions between all the

contacts inside the pressurized sand dampers in the corresponding zones. The maximum

amount of the dissipated energy is located where around zone 1 as followed by zones 4 and

7. The rest of the zones in Figure 5.17 manifest a much lower dissipated energy as expected

because they are not in direct contact with the piston.

Figure 5.18 shows the dissipated energy due to the dashpot. The magnitude of the

dissipated energy in the dashpot is much smaller than that of the frictional losses, as seen in

the difference in axis labels (kJ in 5.17 and J in 5.18). As mentioned in the 2, many studies

have shown that frictional losses are the main mechanism of energy dissipation.
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Figure 5.17. The particle contacts divided into nine groups to locate the maximum magni-

tude of the dissipated frictional energy in the pressurized sand damper.The applied pressure

is p= 1 MPa and stroke amplitude of uo= 60 mm. The frequency of the cyclic loading is

fo= 20 Hz.
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Figure 5.18. The particle contacts divided into nine groups to locate the maximum magni-

tude of the dissipated dashpot energy in the pressurized sand damper. The applied pressure

is p= 1 MPa and stroke amplitude of uo= 60 mm. The frequency of the cyclic loading is

fo= 20 Hz.
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Figure 5.19 shows the dissipated energy due to strain deformation. As the sphere moves

towards its maximum stroke amplitude, the particles experience more deformation at the

Sections 4 and 7 as the particles are being pushed under shearing loading by the piston to

the edges of the sand damper. The dissipated energy due to strain deformation is much

lower than frictional losses, as the units in Figure 5.19 are in J, not kJ as in Figure 5.17.

Also comparing the results in 5.19 to the dashpot energy results in 5.18, there is less strain

energy dissipated than dashpot energy dissipated.

Figure 5.19. The particle contacts divided into nine groups to locate the maximum magni-

tude of the dissipated strain energy in the pressurized sand damper. The applied pressure is

p= 1 MPa and stroke amplitude of uo= 60 mm. The frequency of the cyclic loading is fo=

20 Hz.
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Figure 5.20 demonstrates that the particle-particle interactions yield a larger magnitude

of dissipated energy compared to the piston-particle interactions. This is as expected from

the larger value of the friction coefficient for the particles and the walls (piston).

Figure 5.20. The magnitude of the dissipated energy due to particle-to-particle and particle-

to-piston interactions in the pressurized sand damper. The applied pressure is p= 1 MPa

and stroke amplitude of uo= 60 mm. The frequency of the cyclic loading is fo= 20 Hz.
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5.1.1.1. Cyclic Shear Stress and Cyclic Shear Strain

The plots of the cyclic shear stress-strain loops at different locations inside the sand

damper can be seen in Figure 5.21.

Figure 5.21. Cyclic shear stress-strain loops at different locations inside the sand damper.

The sand damper is equipped with a single piston-shaped configuration. The applied pressure

is p= 1 MPa, the amplitude uo= 40 mm, and frequency of the cyclic tests fo= 20 Hz.

The sand damper is equipped with a single piston-shaped configuration. The applied

pressure is p= 1 MPa, the amplitude uo=40 mm, and frequency of the cyclic tests is fo= 20

Hz. As seen in Figure 5.21, a one-sided loop happened at measurement points, meaning that

shear stress was significantly higher in the loading direction. The shear stress was maximum

in the positive direction at points (1),(3),(6) and (8) while it was the opposite for points

(2),(4),(5) and (7). The reason is that points (1),(3),(6) and (8) are located on the right side
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of the sphere and when the sphere is moving in the positive direction, so the stresses at this

locations will be much higher. The opposite side exhibited similar behavior in the negative

direction which are located in the left side of the sphere. The maximum cyclic shear stress

amplitude was approximately 200 kPa at all points.

Figure 5.22 shows cyclic shear stress-strain loops at different locations inside the sand

damper. The sand damper is equipped with a single piston-shaped configuration. The

applied pressure is p= 1 MPa, and the stroke amplitude is uo= 60 mm, at the same motion

frequency of fo= 20 Hz.

Figure 5.22. Cyclic shear stress-strain loops at different locations inside the sand damper.

The sand damper is equipped with a single piston-shaped configuration. The applied pressure

is p= 1 MPa, the amplitude uo= 60 mm, and frequency of the cyclic tests fo= 20 Hz.
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A similar pattern of Figure 5.21 can be seen here, where locations on the right side of the

piston-sphere experienced large positive shear stresses while the points that are located on

the left side of the piston-sphere had larger negative shear stresses. However, the maximum

magnitude of the cyclic shear stresses were significantly higher, 600 kPa compared to 200

kPa in this case. Figure 5.22 shows a gradual degradation of soil stiffness as the cyclic motion

continues. This was not seen in Figure 5.21 where the motion amplitude was smaller (uo=

40 mm).

Figure 5.23 shows similar loops for the cyclic stress-strain to Figure 5.21. However, the

maximum shear stress amplitude has increased from 200 kPa to 500 kPa due to the increase

of the applied pressure from p= 1 MPa to p= 2 MPa. From the area inside the loops it can

be inferred that the amount of the energy dissipation here was noticeably higher that the

case where the pressure was p= 1 MPa.

Another case for cyclic stress-strain loops is that the applied amplitude displacement has

been increased from uo= 40 mm as seen Figure 5.24 to uo= 60 mm. The maximum shear

stress has increased from approximately 500 kPa to 1000 kPa due to the stroke amplitude

increase. As seen in Figures 5.21-5.24 the color mapping of the plots defines the number of

cycles ranging from blue to red.
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Figure 5.23. Cyclic shear stress-strain loops at different locations inside the sand damper.

The sand damper is equipped with a single piston-shaped configuration. The applied pressure

is p= 2 MPa; the amplitude uo= 40 mm; and frequency of the cyclic tests fo= 20 Hz.
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Figure 5.24. Cyclic shear stress-strain loops at different locations inside the sand damper.

The sand damper is equipped with a single piston-shaped configuration. The applied pressure

is p= 2 MPa; the amplitude uo= 60 mm; and frequency of the cyclic tests fo= 20 Hz.
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5.1.2. PSD Response with the Different Configuration and Particle Sizes

5.1.2.1. Piston Ball Roughness

In this simulation, the coefficient of friction between sphere and particles was increased

from 0.15 to 0.9 to enable study of the effect of roughness on energy dissipation. This

case is conducted when the sand damper is equipped with a single sphere with the sphere

size shown in Figure 3.6. The sand damper filled with irregular particles. It is important

to mention that the inter-particles friction coefficient was kept 0.5. The applied pressure

in these simulations is p= 1 MPa, the stroke amplitude is uo= 60 mm, and the loading

frequency of both cases are fo= 20 Hz. Figure 5.25 shows a comparison between results

obtained from DEM simulations for the relationship between the force and displacement

of the PSD equipped with a single sphere-shaped configuration. By increasing the ball

friction coefficient, the force output of the piston remains almost the same. A comparison

between obtained DEM results for dissipated energy over loading can be seen in Figure 5.26.

By increasing the friction coefficient of the piston sphere, the amount of dissipated energy

increased just only by 7.05%.

5.1.2.2. Piston Enlarged Sphere-Size

Makris et al. (2021) defined the quadratic dependence of the drag force Fs on the radius

of sphere R under exerted pressure p. Equation 5.1 shows the drag force as a function of the

exerted pressure, p, along the direction of motion and the radius of the sphere, R.
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Figure 5.25. Comparison between obtained DEM results for the force versus displacement

of PSD equipped with a single sphere-shaped configuration when the wall (sphere) friction

is set to be 0.15 and 0.9. The applied pressure is p= 1 MPa; the amplitude uo= 60 mm; and

frequency of the cyclic loading is fo= 20 Hz.
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Figure 5.26. Comparison between obtained DEM results for dissipated energy over loading.

The PSD is equipped with a single sphere-shaped configuration. The piston’s sphere coeffi-

cient of friction is set to be 0.15 and 0.9. The applied pressure is p= 1 MPa; the amplitude

uo= 60 mm; and frequency of the cyclic loading is fo= 20 Hz.
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Fs = f(p,R) = ΠspR
2 (5.1)

where Πs is a dimensionless coefficient that accounts for the spherical geometry, the Poisson

effect that controls the level on normal stresses along the direction that the pressure p is

exerted (against the direction of motion), and the developed mobilized normal and shear

stresses from the projections on the sand-sphere interface along the direction of motion of

the sphere. According to Equation 4.1, Fs is proportional to the exerted pressure p and

quadratically related to the radius of the sphere, R. Dimensional analysis was employed for

the quadratic dependency of the drag force, Fs, on the radius of the sphere, R, which, was

proven in an experimental study by Albert et al. (2001). Accordingly, in this simulation

the radius of the sphere increased by 10% in order to measure the dissipated energy of the

system. The piston sphere size used in the simulations presented in the previous case 3.6 had

a ratio of (D/R= 6.3) while the new piston sphere size had a ratio of (D/R= 5.696). Figure

5.27 shows the recorded piston force against displacement. By utilizing a larger sphere size

by 10 %, the force capacity increases by about 24%, approximately confirming the quadratic

dependence of the piston force on the radius of the piston sphere. Figure 5.28 shows the

amount of dissipated energy for the two DEM simulation results where the applied pressure

is p= 2 MPa; the amplitude is uo= 60 mm; and frequency of the cyclic loading is fo= 20 Hz.

As shown in the figure the dissipated energy increased by 120% as the D/R ratios decreased

by 10%.
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Figure 5.27. Comparison between obtained DEM results for the force versus displacement

cyclic loops of PSD equipped with differing D/R ratios. The applied pressure is p= 2 MPa;

the amplitude uo= 60 mm; and frequency of the cyclic loading is fo= 20 Hz.
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Figure 5.28. Comparison between obtained DEM results for dissipated energy over loading.

The PSD is equipped with a single sphere-shaped configuration with differing D/R ratios.

The applied pressure is p= 2 MPa; the amplitude is uo= 60 mm; and frequency of the cyclic

loading is fo= 20 Hz.
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5.1.3. Grain-Size Distribution

The effect of the grain size was studied to evaluate the response of the PSD under cyclic

shearing by utilizing a wider range of particles (varying from 1-5 mm). These particle size

variations are closer to the actual sand sizes. Figure 5.29 shows the piston force capacity for

the two cases. In both DEM cases the exerted pressure is p = 1 MPa, the stroke amplitude

is uo = 60 mm, and the frequency of loading is fo= 20 Hz. The use of a wider range

of particles improved the performance of the PSD: the maximum force capacity has been

increased by 19%. The dry sand exhibits a strain-hardening behavior when the piston reaches

its maximum displacement. This is marked by the force-displacement curves’ steeper slope,

which shows soil dilation during cycling motion. In the first cycle, the same pattern is visible

in both outcomes from the DEM simulations. It is important to note that the initial cyclic

loop shows a more significant peak, which gradually falls during subsequent cycles. Similar

observations have been reported by Makris et al. (2021). A comparison of the dissipated

energy under cyclic loading is shown in Figure 5.30. It is a worthy mission that the dissipated

energy increases by 187.5% when the grain size was varying from 1-5 mm as compared with

2-4 mm.

5.1.3.1. Multi-Sphere Configuration

Various sand damper configurations were considered and the behavior of the PSD was

assessed using DEM simulations. The original PSD model was equipped with only a single-

sphere piston configuration (Figure 3.6). Figures 5.31 and 5.32 show the schematic configu-
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Figure 5.29. Comparison between obtained DEM results for the force versus displacement

cyclic loops of PSD equipped with a single sphere-shaped configurations. The applied pres-

sure is p= 1 MPa; the amplitude uo= 60 mm; and frequency of the cyclic loading is fo= 20

Hz.
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Figure 5.30. Comparison between obtained DEM results for dissipated energy over loading.

The PSD is equipped with a single sphere-shaped configuration. The grain size is from 2-4

mm and 1-5 mm. The applied pressure is p= 1 MPa; the amplitude is uo= 60 mm; and

frequency of the cyclic loading is fo= 20 Hz.
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rations of the PSD utilizing the same dimensions as depicted in Figure 3.6.

In Figure 3.6, the sphere is placed in the middle of the metallic rod (origin). In the

second model, the two spheres are located at distance of ± 120 mm from the origin as shown

in Figure 5.31. The third model shown in Figure 5.32, one sphere is established in the origin

of the sand damper and the other two spheres are at a distant of ± 120 mm. These three

proposed models all have the same sphere diameter of 6 cm. The applied pressure here in all

cases is p= 1 MPa and the stroke amplitude in all cases is uo= 60 mm. Figure 5.33 shows the

DEM models of configurations that included two and three spheres mounted on the piston

rod.

Figure 5.31. Schematic design of the pressurized sand damper model equipped with two

spheres.

Figure 5.34 shows cyclic loops for the force and displacement during loading. All DEM

simulation results exhibit the same pattern in the first cycle. The first cyclic loop has a
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Figure 5.32. Schematic design of the pressurized sand damper model equipped with three

spheres.

Figure 5.33. Different configurations of the sand damper tested numerically in DEM

simulations: Left: Damper with two metal spheres appended on the piston rod; Right:

Damper with three metal spheres.
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higher peak which gradually decreases in the following cycles. The applied pressure here

in all cases is p= 1 MPa and the stroke amplitude in all cases is uo= 60 mm. It can be

seen from Figure 5.34 when the piston is equipped with double spheres that the maximum

force capacity increased by 80.6%, and with three spheres there is a 328.3% increase. The

amount of the dissipated energy is the area inside the loops. The soil experiences similar

behavior as in Figure 4.1 and 5.25 where a strain hardening behavior can also be noticed in

both cases when the piston reaches its maximum displacement in the direction of motion.

This is exhibited by the steeper slope of the force-displacement curves which indicates the

soil dilative behavior during cycling motion. Figure 5.35 shows the dissipated energy of the

PSD, when the piston is equipped with double spheres that the amount of dissipated energy

increased by 75.91%, and with three spheres, there is a 265.27% increase.
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Figure 5.34. Comparison between obtained DEM results for the force versus displacement

cyclic loops of PSD equipped with single, double, and triple sphere configurations. The

applied pressure is p= 1 MPa; the amplitude is uo= 60 mm; and frequency of the cyclic

loading is fo= 20 Hz.
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Figure 5.35. Comparison between obtained DEM results for the dissipated energy of PSD

equipped with single, double, and triple sphere configurations. The applied pressure is p= 1

MPa; the amplitude is uo= 60 mm; and frequency of the cyclic loading is fo= 20 Hz.
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5.1.4. Box-Shaped Configuration

Figure 5.36 shows the generated DEM model with a box replacing the sphere at the

origin of the pressurized sand damper. Each side of the box has a length of L= 0.06 m in

the first model while the second model has a length of L= 0.0484 m replacing an equivalent

volume of the utilized sphere-shaped piston configuration.

Figure 5.36. The generated DEM model of the PSD equipped with a single box-shaped

configuration.
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Figure 5.37 shows significant improvement of the force capacity of the pressurized sand

damper compared to the sphere configuration at the same exerted pressure of p= 1 MPa and

stroke amplitude of uo= 60 mm. The magnitude of the force capacity has been increased

by 189.5% when the the box length is L= 0.06 m. Another simulation was carried out

when the PSD equipped with a single box to analysis the capacity of the system utilizing

the equivalent volume of the a single sphere with a ratio of D/R= 6.3. The magnitude

of the force capacity has been increased by 117.83%. Figure 5.38 shows a comparison for

the amount of dissipated energy under cyclic loading for the conducted simulations. The

amount of dissipated energy for these simulations that utilize length of the box is L= 0.06

m and L= 0.0484 m are increased by 131.48% and 111.08%, respectively over the sphere-

shaped configuration with a ratio of D/R= 6.3 due to the larger surface area provided by

the box-shaped configuration.

It is important to note that the projected surface area of the sphere is As= π R2 =2827.43

mm2, which is larger than the projected surface area of the cube, which is Ac= L × L

=2342.56 mm2 where R=30 mm and L= 48.4 mm. The amount of energy dissipated is

influenced by the shape of the piston. In fact, when the PSD is equipped with a single cube,

the dissipated energy increases despite the fact that the projected surface area of a single

sphere is larger than the projected surface area of a single cube, as demonstrated in Figure

5.38.
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Figure 5.37. Comparison between obtained DEM results for the force versus displacement

cyclic loops of PSD equipped with a single spherical-shaped and box-shaped configurations.

The applied pressure is p= 1 MPa; the amplitude uo= 60 mm; and frequency of the cyclic

loading is fo= 20 Hz.
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Figure 5.38. Comparison between obtained DEM results for dissipated energy over loading.

The PSD is equipped with a single sphere-shaped and box-shaped configurations. The

applied pressure is p= 1 MPa; the amplitude is uo= 60 mm; and frequency of the cyclic

loading is fo= 20 Hz.
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Chapter 6

CONCLUSIONS AND FUTURE RESEARCH

6.1. Conclusions

This study showed that the DEM-based approach produced results that agreed with

other experiments about the impact of particle size, and particle shape. Some of the many

benefits of using DEM is that the simulation technique allows the energy components to be

traced easily and it helps ensure that variables can be studied in isolation by keeping all of

the other features constant.

This research contained two approaches to cyclical shearing in DEM: the utilization

of irregular particle shape, rather than spherical particles and the use of the linear contact

model to dictate the particle interactions. These adjustments to DEM simulations of cyclical

loading allow the process to be reflected more accurately, and the results of the experiment

were analogous to other studies which mutually confirmed their results. This study involved

performing DEM simulations of the proposed sand damper with multiple goals in mind. One

of the main objectives was to produce a validated model that produces results in agreement

with the experimentally measured behavior of the physical damper.

This study also aimed to perform a large number of simulations that strategically identify

the effect of the parameters that were consider in these studies presented in chapter 3. In
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addition, the simulations went beyond those parameters to investigate design configurations

without the need to manufacture and test dampers of different scale. In this regard, the

simulations present a cost-effective method compared to the manufacturing process. For

instance, the configurations shown in Figure 3.7 and 3.8 were tested numerically for potential

improved performance over the basic system shown in 3.6. These configurations yielded

different and more efficient energy dissipation levels due do the higher friction surface areas.

Furthermore, the use of multiple spheres produced a high force output; while the buckling

length of the portion of the piston rod that has the highest axial force is reduced. In all

simulations, the performance of the PSD is evaluated based on the amount of dissipated

energy. This was quantified macroscopically through the classical force-displacement loops

and by monitoring the energy dissipation mechanisms (inter-particle frictional sliding, strain

energy stored at the contacts, kinetic energy, and contact viscous damping).

Upon satisfactory agreement of the analytical to the experimental results, extensive para-

metric studies were carried out for assessing the effect that the various parameters of the

damper design have on its behavior. These simulations were performed using PFC3D Itasca

(2018). Presented in this work are the results of a numerical study that utilizes discrete

element method (DEM) simulations to assess the performance of pressurized sand dampers

under cyclic loading. The damping effect in pressurized sand dampers originates from the

sheering action of the sand and its stress-dependent shear strength. This allows for an in-

crease in absorbed/dissipated energy in the pressurized sand during cyclic motion resulting

in a reduction in excessive displacement. In the performed series of DEM simulations, stroke
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amplitude, grain size distribution, the magnitude of pressure imposed on the sand, and

different configurations of the pressurized sand damper were studied.

The results reveal that the main energy dissipation mechanism is generated through inter-

particle frictional sliding in the sand. Additionally, the magnitude of cumulative dissipated

energy increases with the pressure level applied to the sand damper, as well as with the stroke

amplitude of the loading. The results suggest that when the piston was equipped with multi

spheres , the maximum forces capacity has been increased significantly. The soil exhibits

behavior similar to that of the case of one sphere in which a strain hardening behavior was

noticed. A noticeable increase in the piston capacity was observed when the sphere size was

increased by 10% and the rest of the response patterns remained unchanged. By increasing

the sphere friction, the piston capacity remains nearly identical. When a wider range of par-

ticle sizes was employed, the maximum force capacity increased considerably and the amount

of dissipated energy significantly increased. A significant improvement in the performance

of the PSD was observed when it was equipped with a single box instead of a sphere. The

capacity of the piston increased significantly as well as the dissipated energy. The results of

the conducted simulations were quantitatively compared and fairly agreed with experimental

data obtained from physical modeling of a similar pressurized sand damper. The proposed

sand damper model is shown to be a promising device that mitigates vibrations in structural

systems subject to seismic and wind loading.
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6.2. Future Research

As the use of a single cubed-shaped mounted on the piston has shown higher energy

dissipation compared to its spherical counterpoint, the use of multiple cubic-shaped config-

uration may produce a high force output; while the buckling length of the portion of the

piston rod that has the highest axial force is reduced.

The performance of the pressurized sand damper needs to be examined in the case of

having wet sand. A study conducted by Liefferink et al. (2020) investigated the effect

of adding small amounts of water on the sliding friction on the sand and discovered that

adding small amounts of water can reduce the friction coefficient by nearly a factor of two

and increases the sand hardness. Adding more water to the sand reduces its hardness

and increases friction. This inverse relationship between the hardness of a wetted granular

material and its frictional response to sliding is attributed to sled plowing.

Particle crushing over the life of the damper is another important factor to study as

contact forces in the bottleneck zone between the metal sphere and the enclosure might be

extremely high. Two approaches could be considered. The first (and more popular) approach

could be to model the sand particles as agglomerates created by joining smaller fundamental

particles with strength-limiting bonding contacts. Once the inter-particles contact stress

exceeds the bond strength, the fundamental particle breaks (Robertson and Bolton, 2001;

McDowell and Harireche, 2002; Cheng et al., 2003; Bolton et al., 2008; Cil and Alshibli, 2012;

Wang and Yan, 2013).
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The second approach characterizes the fundamental particle itself and marks it a failed

particle if a prescribed strength measure is exceeded (Hanley et al., 2015). Both approaches

could be considered depending on the resulting computational time.
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