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Abstract: This paper presents the mathematical roots in fractional calculus that are present in
the modeling of diffusion in the human body. Respiratory diffusion, as well as drug diffusion, are
discussed and presented with their common mathematical framework. The links and discussion
presented in this paper suggests that emerging tools from fractional calculus are natural solutions
for modeling complex phenomena in biological tissue.
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1. INTRODUCTION

Fractal time series analysis, and implicitly fractional cal-
culus, have been used to improve the modeling accuracy of
many phenomena in natural sciences (West (2013)). The
fractional order derivative model is appropriate for mod-
eling complex dynamics, eg. ions undergoing anomalous
diffusion in dielectrics. Fractional order models are a gen-
eralizations of the classical integer order models. The net
advantage os that fractional differ-integration enables the
inclusion of memory and hereditary properties in models
for processes governed by diffusion in all its aspects (i.e.
sub-diffusion, classical and super-diffusion).

Non-integer order systems, also known as fractional order
systems, have been introduced long ago in various fields
of science for the modeling of diffusion processes such as
electrochemical phenomena encountered in batteries (Lin
et al. (2000); Sabatier et al. (2006)), the modeling of
frequency effects (skin effect) in the squired-cages of in-
duction machine and heat transfer. Such systems are char-
acterized by long range memory transients (Gabano and
Poinot (2009)). Fractional differential equation models are
used to study anomalous diffusion; when a space fractional
derivative is replaced by the second-order derivative in a
diffusion model, it leads to super-diffusion (Meerschaert
and Tadjeran (2009)).

There are many ongoing efforts in modeling diffusion by
means of fractional calculus. Meerschaert et al. (Meer-
schaer et al. (2006)) gave a second-order accurate numer-
ical approximation for the fractional diffusion equation,
while Murio (Murio (2008)) discussed implicit finite differ-
ence approximation for time fractional diffusion equation.
In the work of Lijuan et al. (Lijuan et al. (2009)), a
finite difference-approximation for the fractional diffusion

? This research is supported by the Flemish Reseach Council
(FWO), Research Project FWOPR2013 005101. C.M. Ionescu is a
post-doctoral fellow of FWO.

equation has been done using the Riemann-Liouville space
fractional derivative.

Diffusion in the human body, such as respiratory or drug
diffusion, is governed by power law semi-empirical models.
Diffusion at cellular level is performed with energy loss,
producing heat. In this paper, we employ heat unidirec-
tional conduction in a homogeneous material with a spher-
ical geometry. We first determine and analyze the non-
polynomial transfer functions characterizing the diffusion
interface in the case of front face thermal characterization
experiments which consist in measuring the temperature
at the surface of a material where a random heat flux is
applied.

Previous works concerning diffusion interface modeling
using the fractional approach have already shown the
ability of such models to estimate with good accuracy the
frequency behavior from time data acquisition (Lin et al.
(2000); Wang et al. (2002)). By analyzing the diffusion
interface Bode plots in the case of the heat transfer
through a finite thickness sphere, we outline the fractional
behavior at high frequencies.

The paper is organized as follows: next section presents
the mathematical framework for modeling diffusion and
relation to fractional calculus. The third section presents
biological principles of diffusion in the living tissue, i.e.
respiratory diffusion and drug diffusion. The fourth section
presents a discussion with respect to the use of these
models in practice and a conclusion section summarizes
the main outcome of this work.

2. MATHEMATICAL FRAMEWORK

Fractional calculus has been successfully employed in the
last decennia to model biological systems and implicit
complex phenomena, linking structure, morphology, geom-
etry, with dynamical behavior and mechanical properties
(West (2013); Magin (2006); Ionescu (2013); Ionescu et al.
(2013)).
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We will start by introducing some basic functions. The
gamma function is intrinsically tied to fractional calculus
by definition. The simplest interpretation of the gamma
function is the generalization of the factorial for all real
numbers. The definition of the gamma function is given
by:

Γ(z) =

∫ ∞
0

e−uuz−1du, forallz ∈ R (1)

The ’beauty’ of the gamma function can be found in its
properties:

Γ(z + 1) = zΓ(z)

Γ(z) = (z − 1)!
(2)

The consequence of this relation for integer values of z
is the definition for factorial. Using the gamma function
we can also define the function Φ(t), which later will
become useful for showing alternate forms of the fractional
integral:

φα(t) =
tα−1+

Γ(α)
(3)

Also known as the Euler Integral of the First Kind, the
Beta Function is in important relationship in fractional
calculus. Its solution not is only defined through the use
of multiple Gamma Functions, but furthermore shares a
form that is characteristically similar to the Fractional
Integral/Derivative of many functions, particularly poly-
nomials of the form tα and the Mittag-Leffer Function:

B(p, q) =

∫ 1

0

(1− u)p−1uq − 1du =
Γ(p)Γ(q)

Γ(p+ q)
= B(q, p),

where p, q ∈ R+

(4)

The Laplace Transform is a function transformation com-
monly used in the solution of complicated differential equa-
tions. With the Laplace transform it is frequently possible
to avoid working with equations of different differential
order directly by translating the problem into a domain
where the solution presents itself algebraically. The formal
definition of the Laplace transform is given as:

L{f(t)} =

∫ ∞
0

e−stf(t)dt = f̃(s) (5)

The Laplace Transform of the function f(t) is said to
exist if the above definition is a convergent integral. The
requirement for this is that f(t) does not grow at a rate
higher than the rate at which the exponential term e−st

decreases. One important property of the Laplace trans-
form that should be addressed is the Laplace transform of
a derivative of integer order n of the function f(t), given
by:

L{fn(t)} = snf̃(s)−
n−1∑
k=0

sn−k−1f (0) =

= snf̃(s)−
n−1∑
k=0

skf (n−k−1)(0)

(6)

The Mittag-Leffer function is an important function that
finds widespread use in the world of fractional calculus
(Podlubny (1999)). Just as the exponential naturally arises
out of the solution to integer order differential equations,
the Mittag-Leffer function plays an analogous role in the
solution of non-integer order differential equations. In fact,
the exponential function itself is a very specific form, one
of an infinite set, of this seemingly ubiquitous function.
The standard definition of the Mittag-Leffer is:

Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)
, α > 0 (7)

The fractional time derivative is given by Podlubny (1999):

Dα
t [f(t)] =

1

Γ(n− α)

dn

dtn

∫ τ

0

f(t′)dt′

(t− t′)(1−α−n)
(8)

where [α]+1 ≥ n ≥ [α] and the bracket denotes the closest
integer value to α. Relation (8) denotes the Riemann-
Liouville fractional differential operator.

Generalization of the relaxation function to its fractional
order form is given by (West (2013)):

Dα
t [Y (t)] + λαY (t) =

t−αY (0)

Γ(1− α)
(9)

where the dissipation term λα is positive definite. Analyti-
cal solutions for this kind of equations have been developed
by several research groups, notably in (Miller and Ross
(1993)). Taking the Laplace transform of (9) one obtains:

Ŷ (s) =
Y (0)

s
· sα

sα + λα
(10)

Re-writing relation (9) in terms of the Mittag-Leffler
definition from (7) we have that:

Y (t) = Y (0)Eα (−(λt)α) = Y (0)

∞∑
k=0

−1k

Γ(αk + 1)
(λt)kα,

(11)

which for α = 1 results in the exponential function:

lim
α→1

Eα (−(λt)α) = e−λt (12)

which is indeed the case of (9) when α → 1. The Mittag-
Leffler function from (7) can be used to express long-time
memory associated with fractional relazation process:

lim
t→∞

Eα (−(λt)α) = (λt)−α (13)

which denotes an inverse power law.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9278



It has been shown that diffusion process obey power law
distribution (Magin (2006)).

3. DIFFUSION PRINCIPLES

In this section we shall introduce the biological framework
of diffusion occurring in the human body. Two examples
are given: i) diffusion in the respiratory system for gas
exchange and ii) drug diffusion during anesthesia.

3.1 Respiratory diffusion

This complex phenomena is part of an intricate system of
airways and lung parenchyma which has the purpose to
facilitate air flow into the body to the capillaries. It has
been shown that a structural, geometrical and morphologi-
cal modeling leads to impedance models of fractional order
(Ionescu (2013)). In this paper, the basic bio-chemical pro-
cesses are lined-out for motivating diffusion to be modeled
by fractional order derivatives.

Carbon dioxide (CO2) transport : The systemic capillaries
deliver oxygen to the tissues and remove carbon dioxide.
About 8% of the CO2 in blood is simply dissolved in
plasma; another 20% is bound to hemoglobin. The re-
maining 72% of the CO2 diffuses into the red blood cells,
where the enzyme carbonic anhydrase catalyzes the combi-
nation of CO2 with water to form carbonic acid (H2CO3).
Carbonic acid dissociates into bicarbonate (HCO3) and
hydrogen (H+) ions. The H+ binds to deoxyhemoglobin,
and the bicarbonate moves out of the erythrocyte into the
plasma via a transporter that exchanges one chloride ion
for a bicarbonate (this is called the chloride shift). This
reaction removes large amounts of CO2 from the plasma,
facilitating the diffusion of additional CO2 into the plasma
from the surrounding tissues. The formation of carbonic
acid is also important in maintaining the acid-base balance
of the blood, because bicarbonate serves as the major
buffer of the blood plasma (Levitzky (2007)). The blood
carries CO2 in these forms to the lungs. The lower PCO2

of the air inside the alveoli causes the carbonic anhydrase
reaction to proceed in the reverse direction, converting
H2CO3 into H2O and CO2. The CO2 diffuses out of the
red blood cells and into the alveoli, so that it can leave the
body in the next exhalation.

Oxygen transport : The PO2 of the air within alveoli at
sea level is approximately 105 millimeters of mercury (mm
Hg), which is less than the PO2 of the atmosphere because
of the mixing of freshly inspired air with old air in the
anatomical dead space of the respiratory system. The
PO2 of the blood leaving the alveoli is slightly less than
this, about 100 mm Hg, because the blood plasma is not
completely saturated with oxygen due to slight inefficien-
cies in lung function. At a blood PO2 of 100 mm Hg,
approximately 97% of the hemoglobin within red blood
cells is in the form of oxyhemoglobinindicated as a percent
oxyhemoglobin saturation of 97%. As the blood travels
through the systemic blood capillaries, oxygen leaves the
blood and diffuses into the tissues. Consequently, the blood
that leaves the tissue in the veins has a PO2 that is
decreased (in a resting person) to about 40 mm Hg. At
this lower PO2 , the percent saturation of hemoglobin is
only 75% (Levitzky (2007)). In a person at rest, therefore,

22% of the oxyhemoglobin has released its oxygen to the
tissues. Put another way, roughly one-fifth of the oxygen
is unloaded in the tissues, leaving four-fifths of the oxygen
in the blood as a reserve. In figure 1a the gas exchange in
the blood capillaries of the lungs and systemic circulation
is shown. As a result of gas exchange in the lungs, the
systemic arteries carry oxygenated blood with a relatively
low carbon dioxide concentration. After the oxygen is
unloaded to the tissues, the blood in the systemic veins
has a lowered oxygen content and an increased carbon
dioxide concentration. In figure 1b the heat transfer trough
a sphere is represented (Levitzky (2007)).

Fig. 1. a) Gas exchange in the blood capillaries of the lungs
and systemic circulation and b) heat transfer trough
a sphere.

Sphere heat transfer (diffusion) modeling for the respira-
tory system: Let us consider the problem which consists
in computing the heating temperature Tin(t) at the inner
surface of a sphere of radius r1 where a random heat flux
φ in is applied. Heating temperature T (r, t) is assumed to
be uniform on any spherical slice of radius r (see figure
1b). Let φ (r,t) to be the flux passing through the sphere
at radius r. Assuming the heat conduction is isotropic, the
heat diffusion is an unidirectional phenomenon governed
by the following equations, which can be written, using
spherical coordinates:

∂T (r, t)

∂t
= a[

∂2T (r, t)

∂r2
+

2

r
x
∂T (r, t)

∂r
] (14)

Φ(r, t) = λ(4πr2)
∂T (r, t)

∂r
(15)

where:

λ: thermal conductivity (Wm−1C−1),
a=λ/ρc: thermal diffusivity (m2s−1),
ρ: mass density (kgm−3),
c: specific heat (Jkg−1C−1).

Let Tout(t) to be the outer surface temperature and φout(t)
the output flux. We write Tin(s), φin(s) and Tout(s),
φout(s) the Laplace transforms of Tin(t), φin(t) at r = r1
and Tout(t), φout(t) at r = r2. The wall modeling can
be done using a thermal quadrupole relating the inputs
Tin(s), φin(s) to the outputs Tout(s), φout(s) (Wang et al.
(2002); Maillet et al. (2000)).

As in the case of the alveolar wall, we can establish the
terms A, B, C, D of the matrix characterizing the heat
transfer of the sphere.
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A =
r1
r2
cosh(δ(r2 − r1))− sinh(δ(r2 − r1))

δr1
(16)

B =
1

4πr1r2

sinh(δ(r2 − r1))

δλ
(17)

C = 4πr2λ[1− r1
r2
cosh(δ(r2 − r1))+

+(λr1 −
1

λr2
)
sinh(δ(r2 − r1))

δr1

(18)

D =
r1
r2
cosh(δ(r2 − r1)) +

sinh(δ(r2 − r1))

δr1
(19)

At high frequencies, the thermal impedance of the sphere
behaves like a non-integer integrator whose order is equal
to 0.5:

lim
s→∞

Zs(s) =

√
a

λ(4πr2i )s
0.5

(20)

which motivates us to consider that indeed, respiratory
diffusion with loss of energy and heat production, can be
modeled by fractional order impedance models.

3.2 Drug diffusion

From the point-of-view of regulating anesthesia, mathe-
matical modeling of drug diffusion can be very useful to
better understand the mechanism of drug delivery systems.
Therefore, the description of drug transport into the hu-
man body can be highly beneficial (Siepman and Siepmann
(2008); Siepmann and Goepferich (2001); Baker (1987))
from two points-of-view: (i) allows you to understand the
insight of the mechanism and (ii) allows you to do quan-
titative prediction of the effects of formulation and pro-
cessing parameters on the resulting drug release kinetics.
The major challenge in the development or optimization
of automated drug delivery systems is to achieve optimal
drug concentration at the site of action. In order to have
the optimal concentration-time-profile at the site of action
the release of the drug must be controlled as accurately as
possible.

Diffusional behavior is based on the assumption that the
molecules perform a random walk in the space that is
available to them, this is called Brownian motion (Berg
(1993)). The nature of this random walk is such that
the molecules have equal chance to go either way (in the
absence of external fields). In its classical form, diffusion is
described by Fick’s law and strong experimental evidence
of diffusion processes which deviate from this law has
been found (Resigno (2004)). Diffusion process represents
a very important role in many areas of research, such
as: chemistry, biology an physics and the results of this
process is to mix and move the molecules from one point
to another, which have different concentration gradients.

Compartmental models for pharmacokinetics (PK) have
been generalized using fractional calculus in order to ex-
tend the systems to the form of fractional-order differential
equations (Dokoumetzidis and Macheras (2009); Popovic
et al. (2010)). PK can be defined as the study of drug dis-
position in the body and it focuses on drug plasma (blood)

amount changes. The plasma amount of any type of drug
depends on three processes: absorption, distribution and
elimination. These processes will make the amount rise
and fall according to their rates. Absorption is related to
the movement of the drug into the bloodstream. Its rate
depends on the physical characteristics of the drug and
the drug’s chemical formula. Distribution is defined as the
process where a drug leaves the bloodstream and goes into
neighboring organs and tissues (Higuchi (1961)).

Considering a two-compartmental model depicted in fig-
ure 2. Assuming that qi(t) = vici, for i=1,2, denote the
amount of a drug in a specific compartment. Therefore,
ci is the concentration of a drug, given by ci = qi/vi
and vi is the volume of compartment i. Kij represent the
given constants of elimination from compartment i to com-
partment j. The first compartment represents the place
where the drug is applied (plasma) and the second com-
partment represents the target organ (muscle). The basic
idea behind this model can be used to model the diffusion
process in the human body by a multi-compartmental
model (Dokoumetzidis and Macheras (2009); Popovic et al.
(2010); Copot et al. (2013)). The model is formulated while
maintaining the mass balance principles.

Fig. 2. A two compartmental model representation.

Fig. 3. Drug diffusion as a function of time for compart-
ment 1 (i.e. blood).

Figure 3 shows the results of anesthetic drug diffusion
in the human body in compartment 1 (i.e. blood). In
this figure, we can observe that various dynamics can be
captured simply by modifying the value of the fractional
order n. The red line represent the result for a value of
n = 1, green line a value of n = 0.8 and the blue line
a value of n = 0.6. Notice that both X and Y scales are
logarithmic. This is of particular interest when capturing
inter-patient variability and dynamics between different
mass compartments (i.e. blood, muscle, fat) which have
significantly different dynamics.
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Effect to drug concentrations curves are very important to
characterize the sensitivity of the patient to the adminis-
tered drug. The relation between the effect site concentra-
tion Ve from figure 2 and its effect is given by a nonlinear
sigmoid Hill curve:

Effect(t) = E0 − Emax ·
V γe (t)

V γe (t) + V50γ
(21)

where E0 is the effect value when the patient is awake;
Emax is the maximum effect that can be achieved by the
infusion of anesthetic drug; V50 is the anesthetic drug
concentration at half of the maximum effect and γ is a
parameter which together with the V50 determines the
patient sensitivity to the drug. E0 and Emax are usually
considered equal to 100.

Based on (13) one can write the same relationship for the
Hill curve:

Effect(t)

Ve(t)
= k · tn (22)

where k and n are varying on the patient PK-PD charac-
teristics. If one compares (21) with (22) it can be recog-
nized the resemblance in the power term and observe in
fact a simplification of the model from (21) in terms of
parameter number. From a structural point of view, there
is no difference between the models, since both are semi-

empirical models. The term Effect(t)
Ve(t)

denotes the effect-to-

concentration ratio (ECR) and its units are [%/mg/ml].
Based on the principles of fractal walk, if the scale of the
ECR representation is changed from linear to logarithmic,
it becomes a (quasi)linear relation.

Fig. 4. Example of ECR curve for arbitrary patient model
parameter values.

Notice that in figure 4 both X and Y scales are logarithmic.
Observe that the ECR is indeed quasi-linear and difference
in slope can be used to account for the variations in the
dynamic profiles of Ve(t) which depend on patient’s drug
intake time-varying dynamics.

Fig. 5. Example of the response (Ve/Effect) curve.

In figure 5 the response (Ve(t)/Effect(t)) is shown, i.e.
the inverse of (22). This dynamic behavior can be easily
approximated by transfer functions with gain-pole-zero
structure. This approach has also been contemplated in
(Heusden et al. (2014)).

4. CHALLENGES

A first problem is to find online adaptation algorithms
which may adapt the model parameters k and n to the
patient characteristics. Identification from logarithmically
sampled data has been proposed in (De Keyser et al.
(2011)) and represents a good framework for developing
the online identification algorithm.

The next problem is to find a solution to integrate the
model from (22) into a closed loop control system taking
into account the requirement for a logarithmic sample time
(i.e. in order to maintain linearity). Although it may look
surprisingly, it has already been shown in various examples
that a Riemann sampling rate (i.e. linear periodic) may
be outperformed by a Lebesque sampling rate (i.e. event-
triggered) in several applications (Goodwin et al. (2013)).
Since the Lebesque sampling rate is an event triggered rate
used successfully in practice in closed loop control (e.g.
networked control, sensor networks), it may be revealing
to look into the possibility of a logarithmic sampling rate.

5. CONCLUSIONS

This paper presented the available tools emerging from
fractional calculus to model the nonlinear characteristics of
the diffusion phenomena in the human body. Two example
shave been given and related to principles of fractional
calculus: i) respiratory diffusion and ii) drug diffusion.
Advantages and challenges have been discussed.

Results suggest that the high degree of inter-patient vari-
ability and nonlinearity may be avoided, leading to linear
control techniques instead of advanced, complex control
techniques. Further steps of this research line are dealing
with the current limitations: i) online identification of loga-
rithmically sampled data and ii) control of logarithmically
sampled systems.
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