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(Received July 23, 2022; revised December 8, 2022; accepted January 19, 2023; published online February 24, 2023)

As social behavior plays an essential role in people’s lives, the features of face-to-face interaction networks must be
examined to understand people’s social behavior. In this study, we focused on the stable community structure of a face-
to-face interaction network because it explains the persistent communities caused by the stationary communication
patterns of citizens and visitors in a city. We regarded citizens and visitors as two kinds of particles and the community
as a phase and theorized the stability of the community structure using the equilibrium conditions among communities.
We formulated the chemical potentials of the communities and examined whether they were in equilibrium under the
assumption of a canonical ensemble. We estimated the chemical potentials of persistent communities and found that
these values matched within approximately 10% error for each day. This result indicates that the cause of persistent
communities is the stability of community structure.

1. Introduction

Social behavior plays an essential role in people’s lives.
People are socially connected through various means of
communication. Social ties among people are represented by
networks. Face-to-face interaction networks shed light on an
important aspect of social life, because face-to-face inter-
action is one of the major means of forming and maintaining
social ties. Hence, the features of face-to-face interaction
networks must be examined to understand people’s social
behavior.

Recently, social networks via cell phones and social
networking services (SNSs) have been broadly studied.
However, large-scale face-to-face interaction networks have
not yet been studied because of the cost of data collection.
Networks with only a few hundred people have been
constructed by conventional methods using a radio frequency
identification (RFID) sensor and Bluetooth with a cell
phone.1,2) On the other hand, substantial amounts of data
collected by cell phones and SNSs have been used to
construct large-scale social networks. The analysis of these
networks has revealed the structural characteristics of social
networks and their impact on people’s lives. These studies
revealed the relationships between people’s social connec-
tions and their economic status,3–6) social segregation among
people with different attributes,7,8) and universal structural
features of social networks.9,10) We must overcome the
limitations of constructing large-scale face-to-face interaction
networks and comprehensively understand face-to-face
interaction networks.11)

A communication pattern between citizens living in the
city and visitors from outside forms a face-to-face interaction
network. We question whether this face-to-face interaction
network has persistent communities on weekdays because the
commuting flow in the city is steady, and the communication
pattern between citizens and visitors seems to be stationary.
In this study, persistent communities were defined as
communities that formed in a particular location in the city.
We note that persistent communities do not necessarily mean
that the nodes comprising communities represent the same
population. The persistence of communities is an important
characteristic of a face-to-face interaction network in the city.

The existence of persistent communities indicates that people
in a major part of the network have stable social connections
among themselves, while people in other parts are exposed to
unsteady social interaction. People tend to isolate themselves
from social connections in non-persistent communities.
Social isolation is a serious problem that needs to be
measured.12) Previous studies using activity pattern analysis
have examined communication patterns among people with
different attributes.13–15) However, these studies have not
analyzed the stationarity of communication through face-to-
face interaction using the network science approach. We aim
to find persistent communities from real data analysis to
understand the characteristics of communication patterns in
the city.

Persistent communities have factors that enable their stable
existence. We consider thermodynamic stability to be the
cause of the persistence of the community. Therefore, we
expect that persistent communities in face-to-face interaction
networks are satisfied under thermodynamic stability con-
ditions. Previous studies have analyzed the stability of
communities to evaluate the quality of community analysis.
Some methods have been proposed for measuring stability
using network structures, such as clusters and reci-
procity,16,17) node centrality within communities relative to
the outside,18) groups of nodes that are invariant over time in
the network,19,20) consensus of results from multiple methods
of community analysis,21) and autocorrelation of dynamic
Markov processes.22) However, these stability measures do
not represent the cause of the community’s stable existence.
We developed a theory to examine stable community
structures in terms of thermodynamics. This theory provides
a thermodynamic explanation of the stability of persistent
communities in face-to-face interaction networks. It is also
possible to adapt the developed theory of stable community
structure to any kind of complex system because a network
structure universally exists in any complex system.

We aim to achieve three goals: (i) to construct a large-scale
face-to-face interaction network using mobility data, (ii) to
identify persistent communities consisting of citizens and
visitors, and (iii) to explain the cause of persistent
communities according to the theory of stable community
structure using a statistical mechanics model. We used
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mobility data to construct a large-scale face-to-face inter-
action network in Kyoto City, Japan, and explored the
persistent communities. We calculated the chemical poten-
tials of the communities based on the statistical mechanical
model. We then explain the stability of the community
structure that satisfies the equilibrium condition among the
communities.

This study contributes to our understanding of social
networks in several ways. First, we developed a method to
construct a large-scale face-to-face interaction network using
mobility data, which makes it easy to collect a large amount
of data. Second, we show a persistent community structure in
Kyoto City, which indicates stationary communication
patterns between citizens and visitors. Third, we adapt the
theory to the results of real data analysis and find the
community structure among persistent communities that
satisfy the thermodynamic stability conditions. This theory
of a stable community structure has been missing in previous
network science studies. We consider this to explain the
cause of the persistence of communities.

The remainder of this paper is organized as follows. In
Sect. 2, we describe a method for constructing a large-scale
face-to-face interaction network using mobility data, and
identify persistent communities from data analysis. We then
develop the theory of a stable community structure and
formulate the chemical potential in each community in
Sect. 3. In Sect. 4, we present the results of the network
construction, community analysis, and estimation of chemi-
cal potential. Section 5 discusses the stable community
structure of the face-to-face interaction networks. Finally,
we conclude the paper in Sect. 6.

2. Face-to-face Interaction Network

We used mobility data acquired from the global position-
ing system (GPS) of the cell phones in Kyoto City, Japan. We
describe methods to construct a face-to-face interaction
network using the data, analyze the basic network features
and community structure, and identify persistent commun-
ities over the data period.

2.1 Data
The data were collected by Agoop23) over 39 days,

including weekdays in February and April 2019. People’s
movements were recorded by GPS on a personal level
in Kyoto City. Table I summarizes these data. The data
included 33,238 people and 1,716,164 logs on an average
for each day. Each log included the location of a person at a
given time. The data items were person ID, time, latitude,
longitude, 100m mesh ID, GPS measurement accuracy, and
the estimated residential area. All data were anonymized, and
each participant had one unique ID. The ID was consistent
for one day but varied daily, and the personal trajectory could
only be tracked within one day.

We labeled people who were estimated to live in Kyoto
City as citizens and others as visitors. Figures 1(a) and 1(b)
show the spatial distribution of the number of logs of
people’s mobility data during the activity period (09h00–
16h59) on Tuesday, April 2, 2019. The activity area of the
citizens tended to spread widely, whereas visitors were
concentrated in the city centers, such as Kyoto station and
Shijo Karasuma.

2.2 Network construction
We constructed daily face-to-face interaction networks

using this data. We set a condition to identify face-to-face
interaction. When two people stayed in the same 100m mesh
for more than one hour, we regarded them as having face-to-
face interaction. The procedure for constructing a face-to-face
interaction network is as follows. First, we estimated 100m
mesh IDs from the data where people stayed every min.
Second, we compared the trajectories of the two people and
examined whether they stayed in the same 100m mesh for
>1 h, as shown in Fig. 2(a). This step was repeated for all
combinations of people. Third, we connected two people and
the place where they interacted and constructed a person–
place bipartite graph, as shown in Fig. 2(b). Finally, we
projected the person–place bipartite graph and constructed a
person–person graph representing the face-to-face interaction
network, as shown in Fig. 2(c).

Table I. Summary of mobility data.

Number
of people

Number
of citizens

Number
of visitors

Number
of logs

Mean 33238 18282 14956 1716164
SD 1934 782 1262 30112
CV 0.058 0.043 0.084 0.018

SD: standard deviation, CV: coefficient of variation.

(a)

(b)

Fig. 1. (Color online) Spatial distribution of the number of logs of the
mobility data of citizens and visitors during the activity period (09h00–
16h59) on Tuesday, April 2, 2019. The solid and dashed circles indicate the
locations of Kyoto station and Shijo Karasuma, respectively, which are city
centers in Kyoto City: (a) Citizens, (b) Visitors.
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We removed data for which the GPS measurement
accuracy was much higher than 100m. The distribution of
the measurement accuracy during the data period is shown in
Fig. 3. The mean accuracy was 1,929m. We removed data
with an accuracy of 1,000m or more, which was 9.7% of the
data. 81.5% of the data had an accuracy of 100m or less. This
indicates that most of the data were accurate within the mesh
size.

We also removed people with low log counts from the data
analysis after removing the data due to poor measurement
accuracy. We used data from people whose daily logs were
recorded at a frequency of at least once every 30min, because
the raw data included people with very few daily logs.
In addition, we used logs only during the activity period
(09h00–16h59) because visitors tended to leave Kyoto City
outside before and after this period and did not have any logs
at night.

Figure 4 shows a histogram of the number of people
staying at the same time for each mesh on Tuesday, April 2,
2019, at 9:00 a.m. We excluded meshes without any people
staying from the distribution. This shows that approximately
60% of the meshes have only one person staying, and
approximately 95% have four or fewer people staying
simultaneously. Since only a few meshes showed a concen-
tration of more than ten people, we consider that the mesh size
is appropriate for identifying face-to-face interaction.

2.3 Network features
We calculated the average degree, distance, clustering

coefficient, and assortativity as network features of face-to-
face interaction networks. These features represent the overall
network structure. We used these features to confirm the
structural similarity of the constructed networks for all days.

Average degree
The number of edges of a node i is a degree ki. The

average degree hki is the average of the degrees of all the
nodes: hki ¼P ki=N ¼ 2L=N in a network with N nodes and
L edges. The face-to-face interaction network represented the
average number of interactions.

Average distance
The distance dij is the minimum number of edges between

nodes i and j. The average distance hdi ¼Pi; j;i≠j dij=
NðN � 1Þ is the average of the distances among nodes. This
means the average number of interactions that people connect
through.

Average clustering coefficient
The clustering coefficient of a node is the ratio of adjacent

10-2 100 102 104 106 108

GPS measurement accuracy (m)

10-8

10-6

10-4

10-2

100

C
C
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Fig. 3. (Color online) Empirical complementary cumulative distribution
functions of GPS measurement accuracy during the data period. We removed
Data with an accuracy of 1,000m or more, which is 9.7% of the data. 81.5%
of the data had an accuracy of 100m or less.

100m

Face-to-face
interaction

(a)

Fig. 2. Procedure for constructing a face-to-face interaction network:
(a) Identify face-to-face interactions when two people stay in the same 100m
mesh >1 h, (b) Construct a person–place bipartite graph, (c) Project it into a
person–person graph.

Fig. 4. (Color online) Histogram of the number of people staying at the
same time for each mesh on Tuesday, April 2, 2019, at 9:00 a.m.
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nodes with edges among them. When node i has a degree ki
and the number of edges among its adjacent nodes is li, the
local clustering coefficient Ci ¼ 2li=kiðki � 1Þ. The average
value of Ci for all nodes is the average clustering coefficient
hCi ¼P

Ci=N. This indicates the tendency for when a
person interacts with others; they also have interactions
among themselves.

Assortativity
Assortativity rass is the Pearson correlation coefficient

between the degrees of both ends of the edges. When
rass > 0, the face-to-face interaction network was an
assortative network. However, when rass < 0, it was a
disassortative network.

2.4 Community analysis
Infomap was used to detect the communities. This is a

community analysis method that optimizes the map equation
as an evaluation function.24,25) Modularity maximization is
a widely used method for community analysis. However, it
can fail to detect small communities owing to its resolution
limit.26) Infomap has the advantage of a smaller resolution
limit than modularity.27) We chose Infomap because of the
merit of the resolution limit and the suitability for community
analysis of large-scale networks.

The network was assumed to be partitioned into n
communities, and the trajectory of a random walker in this
network was encoded in the most efficient manner. In other
words, this trajectory was described by the smallest number
of codes. In ideal encoding, the random walker remains in the
communities and did not come out easily. We obtained this
ideal code in the following manner. First, a codeword was
assigned to each community. Second, one codeword was
assigned to each node in each community. The same
codeword can be used for different communities. Finally,
an exit codeword was assigned to each community when a
random walker left the community. The goal was to provide
the shortest code for describing a random walk in a network.
We determined the community structure by looking at the
codebook, which has the code assigned to each community.

The optimized code was obtained by minimizing the map
equation:

Lmap ¼ q↷HmapðQÞ þ
Xn
i¼1

pi↻HmapðPiÞ ð1Þ

where the first term was the expected value of the number of
bits are needed to describe the random walker’s movement
between the communities. q↷ was the probability that the
random walker moved between communities during a given
step, and HmapðQÞ was the entropy of the random walker’s
movement between the communities. The second term was
the expected value of the number of bits required to describe
a random walker’s movement within communities. pi↻ was
the summation of the probability that the random walker
moved within community i and exited the community i
during a given step, and HmapðPiÞ was the entropy of the
random walker’s movement within the community i.

Lmap was the value obtained for a particular network
partition. The best partition was determined by minimizing
Lmap across all possible partitions. Each node started as a
separate community, and adjacent nodes were combined into

a single node in random sequential order. If the integration of
adjacent nodes into a single community reduced Lmap, then
integration was adopted. After each integration, the value of
Lmap was updated using Eq. (1). This was systematically
repeated for all nodes. The resulting community structure was
integrated into a new community to complete the path. We
then repeated the algorithm for the new network with
aggregated nodes.

2.5 Identification of persistent communities
We defined persistent communities as those that remained

at the same location during the data period. We used the
spatial distribution of interactions among nodes belonging to
the community and clustering analysis of the distributions to
identify persistent communities.

The edges of the face-to-face interaction network con-
tained spatial information about the 100m mesh ID where the
interaction occurred. Community i was characterized as the
spatial distribution of interactions and was represented using
the vector xi:

xi ¼ ð fi1; fi2; . . . ; fil; . . . ; fiMÞ; ð2Þ
where fil is the number of edges with a mesh l in the
community i, and M is the total number of meshes where
people have at least one interaction during the data period dall.

The distance sij between communities i and j was
calculated using the cosine distance (1 − cosine similarity):

sij ¼ 1 � xix
T
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxixTi ÞðxjxTj
p

Þ
: ð3Þ

The distance matrix S is a nall � nall matrix and its i; j
component is sij, where nall is the total number of
communities for all days. Let the number of communities
of day d be nd, and nall ¼

Pdall
d¼1 nd. We classify nall

communities for dall days into k clusters using the distance
matrix S by the k-means method.

From the results of the clustering analysis, we identified
persistent communities. If communities belong to a cluster on
more than 80% of the days, the communities of the cluster are
persistent.

3. Theory of Stable Community Structure

We developed a theory to examine stable community
structures in terms of thermodynamics. A stable community
structure indicates that relationships among communities
satisfy the condition for thermodynamic stability. We
regarded citizens and visitors as two types of particles and
the community as a phase, and theorized the stability of the
community structure using the equilibrium conditions among
communities. Figure 5 illustrates the concept of this model.

3.1 Basic assumption
We considered Kyoto City as a two-dimensional plane

and as system in which interactions occur between people
moving around a location on the plane. When the system is
in a bound state, some people remain in their neighborhood
because of their interactions with neighboring people. Groups
of people interact densely with each other in locations where
multiple people are concentrated and form a cluster structure.
Consequently, these clusters were detected as persistent
communities in the face-to-face interaction network. Corre-
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sponding to persistent communities, we examined whether
the equilibrium among persistent communities is satisfied as
a function of thermodynamic stability. We assumed people
move freely and interact with each other in a two-dimen-
sional plane, and applied physical position and momentum to
treat people’s face-to-face interactions in a statistical mechan-
ics model. We formulated an equilibrium relationship among
communities in a face-to-face interaction network during the
weekday activity period. This study focused on face-to-face
interaction networks during the weekday activity period
(09h00–16h59). Since many visitors flow into Kyoto City
before the activity period starts and flow out of Kyoto City
after the activity period ends, the number of people entering
and leaving the system is sufficiently small during the activity
period on weekdays. We examined the time of each person’s
first and last log from all the weekday data. The percentages of
those with the first log before 9:00 a.m. were 93% for citizens
and 71% for visitors, while those with the last log after
4:59 p.m. were 97% for citizens and 82% for visitors. It was
observed that the number of people entering and leaving
during the activity period on weekdays was small. Therefore,
it is appropriate to assume that the system is in equilibrium.

Unit system
We defined the unit system using ħ, kb, lm, and mp as the

fundamental units. Here ħ is the Dirac’s constant, kb is the
Boltzmann constant, lm is the unit of length, and mp is the
mass of a person. Unit of length lm ¼ 100m to match the
mesh size. We considered mp ¼ 50 kg as a uniform value for
all people. We did not explicitly define the value of kb. Since
� ¼ 1=kbT, we considered T 0 ¼ kbT as the thermodynamic
temperature. Since ħ is defined at the micro-scale Smicro

(molecule-level), we need to correct the value of ħ for
macro-scale Smacro (person-level). Table II shows the typical
correspondence scales of the mass dimension M, length
dimension L, and time dimension T on the macro- and micro-
scales. The macro-scale quantities represent per-person
quantities, whereas the micro-scale quantities represent per-

molecule quantities. The scales of micro-scales are consid-
ered as follows: The mass dimension M scale is 10�23 g,
because 1mol of mass per molecule scales as the order of g.
The length dimension L uses one Å as the scale of the size of
the molecule. The time dimension T is one ns, which is the
period of molecular vibration since the vibration frequency
scale is of the order of GHz.

If the quantity x is approximately proportional to the scale,
we can convert the micro-scale quantity xmicro to the macro-
scale quantity xmacro according to the following equation:

xmacro ’ Smacro½x�
Smicro½x� xmicro: ð4Þ

Here Smacro½�� and Smicro½�� represent the macro- and micro-
scales of a certain quantity, respectively. We examine the
macro scale’s value of ħ using this equation. We denoted
ħ on the macro- and micro-scales as ħmacro and ħmicro,
respectively. Since ħ is a quantity with dimension ML2T�1,
the relationship between ħmacro and ħmicro is represented as
follows using the relationship in Eq. (4):

ħmacro ’ Smacro½ħ�
Smicro½ħ� ħmicro

¼ Smacro½m�
Smicro½m� �

Smacro½l�
Smicro½l�

� �2

� Smacro½t�
Smicro½t�

� ��1
ħmicro: ð5Þ

Here m is the mass, l is the length, and t is the time. Since
ħmicro ¼ 1:054 � 10�34 kg·m2=s is used for the micro-scale
system, we assigned this value and the values in Table II to
the Eq. (5) and obtained ħmacro ’ 1:054 � 104 kg·m2=s as the
Dirac’s constant for the macro-scale system. Hereafter, ħmacro

is simply denoted as ħ and used as one of the fundamental
units.

These fundamental units entirely determine the unit of
each dimension: the mass dimension M, length dimension L,
time dimension T, and thermodynamic temperature dimen-
sion Θ. All of the units treated in this theory were assembled
using these fundamental units.

Kinetic energy
Kinetic energy is the energy due to the movement of

people and represents the activity of movement of a person at
a certain location on a two-dimensional plane moving around
its neighborhood. The kinetic energy H id

i of person i is
represented by the following equation:

H id
i ¼ 1

2mp
p2i : ð6Þ

Here pi denotes the momentum of i. People move around
randomly on a two-dimensional plane when there is no
interaction with other people.

Interaction energy
The interaction energy represents the potential energy

Fig. 5. (Color online) Model of the system in which the face-to-face
interaction network is regarded as a system consisting of citizens and visitors
and each community of the network as a phase in this system. μ is the
chemical potential of each community. Values of μ for each community are
equal under the equilibrium condition.

Table II. Correspondence scales on macro-scale Smacro and micro-scale
Smicro.

Dimension Smacro Smicro Smacro=Smicro

Mass M 10 kg 10�23 g 1027

Length L 1m 1Å 1010

Time T 1 s 1 ns 109
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acting between two people. Since the face-to-face interaction
between people takes place at an approximately constant
distance, we assumed there is a stable distance for the
interaction of face-to-face interaction. We introduced the
interaction energy to represent the stability of face-to-face
interaction. The interaction energy H int

ij between persons i
and j is expressed as

H int
ij ¼ �ghðjri � rjjÞ ðg; h ¼ c; vÞ: ð7Þ

Here, subscripts c and v denote citizens and visitors,
respectively and distinguish interactions between people of
the same and different types. ri and rj denote the positions
of persons i and j. We assumed the interaction potential ϕ to
be Lennard-Jones potential. Since face-to-face interactions
between people are temporary, we used the Lennard-Jones
potential, which represents a weak interaction, such as
van der Waals forces. Therefore, �ðrÞ can be expressed as
follows:

�ghðrÞ ¼ 4�gh
�gh
r

� �12
� �gh

r

� �6� �
ðg; h ¼ c; vÞ: ð8Þ

The Leonard-Jones potential has parameters ϵ and σ. We
assumed that these parameters have different values for each
combination of citizen and visitor.

Average kinetic energy and inverse temperature β
According to the physical picture, we need to set β as the

value for which the root-mean-square speed
ffiffiffiffiffiffiffiffiffi
hv2i

p
is an

appropriate value for the velocity of movement of a person.
In addition, it should be satisfied that the system is in a bound
state under the value of β.

First, we considered the root-mean-square speed
ffiffiffiffiffiffiffiffiffi
hv2i

p
.

The inverse temperature β represents the average kinetic
energy as in the following equation:

1

2mp
hp2i ¼ 1

2
mphv2i ¼ 1

�
: ð9Þ

Equation (9) holds when both members are calculated using
the same unit system. When β is given under the unit system
described in this section, we must convert the kinetic energy
on the left member into a value in this unit system. We
obtained a unit of energy derived from the fundamental units
as follows:

ħ2

mpl2m
¼ 1½E�; ð10Þ

where E represents the unit of energy in the unit system.
Using this quantity of one unit of energy, Eq. (9) can be
rewritten as follows:

1

2
mphv2i � mpl

2
m

ħ2
¼ 1

�
; ð11Þ

where all quantities on the left member represent quantities
under the SI unit system. From the above equation, we
obtained

ffiffiffiffiffiffiffiffiffi
hv2i

p
as following equation:

ffiffiffiffiffiffiffiffiffi
hv2i

p
¼

ffiffiffiffi
2

�

s
ħ

mplm
: ð12Þ

Since this value represents the scale of the velocity of a
person’s movement, we need to check that

ffiffiffiffiffiffiffiffiffi
hv2i

p
is the

appropriate size for a person’s movement.

Next, we considered the relationship between the depth of
the potential and the average kinetic energy. The bound state
of the system means that the interaction energy between
people in close proximity is larger than the average kinetic
energy. Therefore, it is necessary to confirm � > 1=�. The
results for these conditions that β must satisfy are described
in Sect. 4.3.

3.2 Formulation of chemical potentials using spatial
coordinates

Communities are thermodynamically stable when in equi-
librium. When n communities exist in the network, the equili-
ium condition is that the chemical potential μ of each commu-
nity is equal. The chemical potential indicates the energy
required for one person to transfer between communities. The
following equation shows the equilibrium conditions:

�1 ¼ �2 ¼ � � � ¼ �n: ð13Þ
Thus, if the chemical potential for each community was
formulated, the equilibrium conditions among the commun-
ities could be examined. The detail of this derivation is
described in Appendix A. The total energy H of a
community in this system is expressed as follows:

H ¼ ðH id
c þH int

cc Þ þ ðH id
v þH int

vv Þ þ ðH int
cv Þ: ð14Þ

H id
c and H id

v represent the total kinetic energy of citizens and
visitors, respectively. And, H int

cc , H int
vv , and H int

cv represent the
total interaction energy between citizen–citizen, visitor–
visitor, and citizen–visitor, respectively. These quantities
are represented using Eqs. (6) and (7) as follows:

H id
g ¼ 1

2mp

XNg

i¼1
p2i ðg ¼ c; vÞ ð15Þ

H int
gh ¼

X
i; j

�ghðjri � rjjÞ ðg; h ¼ c; vÞ; ð16Þ

where Nc and Nv denote the number of citizens and visitors,
respectively.

A canonical ensemble was used to formulate the chemical
potential. We consider a situation in which the temperature
is given by the inverse temperature β and is maintained
constant. The temperature indicates the average activity level
of the movement of people. The total partition function Z tot is
given by,

Z tot ¼ ðZ id
c � Z int

cc Þ � ðZ id
v � Z int

vv Þ � ðZ int
cv Þ: ð17Þ

First, the partition function for an ideal gas, Z id is
calculated. It is calculated as follows, considering the
momenta of citizens and visitors are independent:

Z id ¼ 1

Nc!Nv!

mp

2�ħ2�

� �NcþNv

ð18Þ

Since we defined mp and ħ as the fundamental units, let
mp ¼ 1, ħ ¼ 1 and we obtain the following equation:

Z id ¼ 1

Nc!Nv!

1

2��

� �NcþNv

: ð19Þ

Next, the partition function for the interaction Z int was
calculated. The interaction potentials H int is derived from
H int

cc , H int
vv , and H int

cv . Following Eq. (8), we assume that �ðrÞ
is the Lennard-Jones potential. Z int is calculated as the
following equation:
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Z int ¼ SNc
c SNv

v expð�N2
cBcc � N2

vBvv � NcNvBcvÞ: ð20Þ
Here, Sc and Sv represent areas where citizens and visitors
stay at least once, respectively. Bcc, Bcv, and Bcv can be
expressed as follows:

Bcc ¼ 1 � qc�ccq
T
c

2S2c
ð21Þ

Bvv ¼ 1 � qv�vvq
T
v

2S2v
ð22Þ

Bcv ¼ 1 � qc�cvq
T
v

ScSv
: ð23Þ

The vector qc; qv in the above equation are,

qc ¼ ðqc1; qc2; . . . ; qcMcÞ ð24Þ
qv ¼ ðqv1; qv2; . . . ; qvMvÞ: ð25Þ

These represent the fractions of time spent in each mesh by
citizens and visitors, respectively. Mc and Mv are the
numbers of meshes where citizens and visitors stay at least
once, respectively. They were calculated from the mobility
data. Matrices �cc, �vv, and �cv are as follows:

�gh ¼
	
exp


���gh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxk � xlÞ2 þ ðyk � ylÞ2

p �� ð26Þ
ðg; h ¼ c; vÞ:

The k; l components of � are the Boltzmann factors of the
interactions of the distance between meshes k and l. Here
ðxk; ykÞ and ðxl; ylÞ denote the positions of meshes k and l.

Because the Helmholtz free energy F ¼ �1=� lnZ, F is
obtained from Eqs. (19) and (20) as,

F ¼ Nc

�
ln

2��Nc

Sc

� �
� 1

� �
þ Nv

�
ln

2��Nv

Sv

� �
� 1

� �

þ N2
cBcc þ N2

vBvv þ NcNvBcv: ð27Þ
Finally, the chemical potential μ is formulated from F as
follows:

� ¼ 1

�ðNc þ NvÞ
�
Nc ln

2��Nc

Sc

� �
þ Nv ln

2��Nv

Sv

� �

þ 2N2
cBcc þ 2N2

vBvv þ 2NcNvBcv

�
: ð28Þ

We use this equation to examine the thermodynamic stability
of the community structure of the face-to-face interaction
network. In the next section, we describe a formulation of the
chemical potential using the adjacency matrix to demonstrate
the applicability of the theory to general networks without
spatial coordinates.

3.3 Formulation of chemical potentials using adjacency
matrix without spatial coordinates

We use the adjacency matrix to calculate the partition
function Z int to formulate chemical potentials without spatial
coordinates. The detail of the derivation is described in
Appendix B. Let the interaction potential H int

ij between nodes
i and j be as,

H int
ij ¼

�cc (Citizencitizen interaction)

�vv (Visitorvisitor interaction)

�cv (Citizenvisitor interaction)

0 (No interaction)

8>>>><
>>>>:

: ð29Þ

We consider that an interaction occurs when there is an edge
exists between i and j. Partition function of the interaction
Z int is formulated using the adjacency matrix as,

Z int ¼ SNc
c SNv

v

�
1 þ expð���ccÞ � 1

2S2c
IcAcc I

T
c

� expð���vvÞ�1

2S2v
IvAvvI

T
v �

expð���cvÞ�1

ScSv
IcAcvI

T
v

�
:

ð30Þ
Acc, Avv, and Acv represent citizen–citizen, visitor–visitor,
and citizen–visitor adjacency matrices, respectively. Ic and Iv
are column vectors with all components are one in the Nc and
Nv columns. We consider ln Sc / lnNc and ln Sv / lnNv and
replace Sc and Sv with Nc and Nv, respectively:

Sc ¼ bcN
ac
c ; Sv ¼ bvN

av
v : ð31Þ

Using Eq. (31), the partition function is represented without
spatial coordinates as follows:

Z int ¼ ðbcNac
c ÞNcðbvNav

v ÞNv

�
1 þ expð���ccÞ � 1

2ðbcNac
c Þ2 IcAcc I

T
c

þ expð���vvÞ � 1

2ðbvNav
v Þ2 IvAvvI

T
v

þ expð���cvÞ � 1

ðbcNac
c ÞðbvNav

v Þ IcAcvI
T
v

�
: ð32Þ

Since the Helmholtz free energy F ¼ �1=� lnZ, F is
obtained as follows:

F ¼ Nc

�
ln

2��

bcN
ac�1
c

� �
� 1

� �
þ Nv

�
ln

2��

bvN
av�1
v

� �
� 1

� �

þ 1

�
ðBcc IcAcc I

T
c þ BvvIvAvvI

T
v þ BcvIcAcvI

T
v Þ: ð33Þ

Here, Bcc, Bvv, and Bcv are as follows:

Bcc ¼ 1 � expð���ccÞ
2b2cN

2ac
c

ð34Þ

Bvv ¼ 1 � expð���vvÞ
2b2vN

2av
v

ð35Þ

Bcv ¼ 1 � expð���cvÞ
bcbvN

ac
c Nav

v
: ð36Þ

Finally, the chemical potential μ is derived as the following
equation:

� ¼ 1

�ðNc þ NvÞ
�
Nc ln

2��

bcN
ac�1
c

� �
� ac

� �

þ Nv ln
2��

bvN
av�1
v

� �
� av

� ��
� ½2acBcc IcAcc I

T
c

þ 2avBvvIvAvvI
T
v þ ðac þ avÞBcvIcAcvI

T
v �; ð37Þ

which is associated with the formulation using spatial
coordinates.

3.4 Parameter estimation
The model parameters must be estimated to calculate the

chemical potential using Eq. (28), which is a formulation that
uses spatial coordinates. We solved the optimization problem
to obtain the values of the model parameter that satisfy
Eq. (13), which is the condition for equilibrium among n
communities. The parameters included in μ are β, �cc, �vv,
�cv, �cc, �vv, and �cv.
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Considering the average kinetic energy and β in Sect. 3.1,
we set β as the value at which the root-mean-square speed
takes the appropriate value as a scale of velocity for a person,
and the system is in a bound state (see Sect. 4.3). In addition,
we assume �cv and �cv are determined according to the
Lorentz–Berthelot combining rules:

�cv ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
�cc�vv

p
; �cv ¼ �cc þ �vv

2
: ð38Þ

Thus, we must estimate �cc, �vv, �cc, and �vv.
The loss function L is defined as follows:

Lð�cc; �vv; �cc; �vvÞ :¼ 2

nðn � 1Þ
X
i<j

ð�i � �jÞ2: ð39Þ

The model parameters were obtained by solving the
minimization problem of L. μ in Eq. (39) was calculated
using Eq. (28) derived from the chemical potential formula-
tion using spatial coordinates. Since μ is composed of the
chemical potential due to the ideal gas �id and the chemical
potential due to the interaction �int, we can represent it as
follows:

� ¼ �id þ �int ð40Þ

�id ¼ 1

�ðNc þ NvÞ Nc ln
2��Nc

Sc

� �
þ Nv ln

2��Nv

Sv

� �� �
ð41Þ

�int ¼ 1

�ðNc þ NvÞ ð2N
2
cBcc þ 2N2

vBvv þ 2NcNvBcvÞ

¼ �intc þ �intv þ �intcv : ð42Þ
Here, �intc , �intv , and �intcv represent the chemical potentials of
the citizen–citizen, visitor–visitor, and citizen–visitor inter-
actions, respectively. For the calculation, we considered the
distance between adjacent meshes as lm ¼ 100m. However,
the actual mesh is based on latitude and longitude, and the
size of the length and width were not exactly 100m.

4. Result

The features of the constructed networks and the results of
the community analysis were shown to identify persistent
communities from real data analysis. The model parameters
were then optimized and used to calculate the chemical
potentials to satisfy the equilibrium condition among the
persistent communities.

4.1 Network features of constructed networks
Daily face-to-face interaction networks were constructed

using mobility data, and the maximum connected compo-
nents of the networks were analyzed. The network features of
each daily network were then calculated, and the commun-
ities were detected. The average network features over the
data period and the number of communities are listed in
Table III. Multi-level Infomap was used for community
analysis, and the first level of communities was used for
further analysis. The coefficients of variation were less than
10%. Complementary empirical cumulative distribution
functions of degrees and community sizes are shown in
Figs. 6 and 7, respectively. Based on these results, the
network structures of the constructed networks were
confirmed to be similar over the data period.

Figure 8 shows a histogram of the percentage of citizens
Nc=Ntot for the top 15 communities with the most

components for each day, where Ntot ¼ Nc þ Nv. The peak
was in the range of 65–70%, and the distribution was around
the peak. The overall proportion of citizens in the network is
consistent with the percentage of the peak. All communities
contain both citizens and visitors, which implies that they
coexist in each community.

Table III. Average values of network features and number of
communities of daily face-to-face interaction networks.

Number
of nodes

Fraction
of citizens

Number
of edges

Mean 4974 0.641 32850
SD 298 0.010 2387
CV 0.060 0.015 0.073

Degree Distance
Clustering
coefficient

Mean 13.2 6.33 0.779
SD 0.4 0.15 0.005
CV 0.033 0.024 0.006

Assortativity
Number of
communities

Mean 0.667 29.7
SD 0.044 2.9
CV 0.067 0.099

SD: standard deviation, CV: coefficient of variation.

(a)

(b)

Fig. 6. (Color online) Empirical complementary cumulative distribution
functions of degrees. Each color represents the distribution for each day:
(a) double logarithmic plot, and (b) single logarithmic plot.
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4.2 Identifying persistent communities from data analysis
We used clustering analysis to detect persistent commun-

ities. The total number of communities for all days of the data
period nall was 1,157. We classified them into k ¼ 40 clusters
using the k-means method. To determine the number of
clusters, clustering analysis was performed for k ¼ 30, 40,
and 50. We used the result of k ¼ 40, because the geospatial
boundaries of each cluster were clear compared to the results
of k ¼ 30 and 50.

The communities in the seven clusters satisfy the
conditions for a persistent community. The communities
classified in each of the seven clusters were present for 80%
or more of the days during the data period. The center of
gravity of the spatial distribution of the interactions of each
persistent community is shown in Fig. 9. From this result, we
confirmed that each of the seven clusters was characterized
by a specific location in Kyoto City. The total number of
persistent communities on all days was 284, averaging of 7.3
communities=day. A total of 49.8% of people belonged to
persistent communities. These clusters include communities
in the urban areas of Kyoto City (Shijo Karasuma and

Karasuma Oike) and those around individual objects, such as
large train stations (Kyoto Station and Katsura Station), city
hall (Kyoto City office), hospitals (Kyoto University Hospi-
tal), and workplaces (ROHM). The areas and objects where
persistent communities were observed attracted large pop-
ulations during weekday daytime.

The network features of persistent communities in each
cluster are listed in Tables IV–VI. The formulations of the
network features are described in Sect. 2.3. If more than one
community belongs to a cluster on the same day, it is treated
as a single network, and if it is disconnected, the average
distance is calculated from the largest connected component
of the network. The coefficient of variation, which is the
standard deviation divided by the mean, was used to evaluate
the variation in community features (Table VI). The
coefficients of variation for the number of nodes and the
number of edges are relatively large, varying from 50 to 60%
at the maximum. However, the average degree, distance, and
assortativity varied from 10 to 30%, and the average
clustering coefficient varied by less than 10%. Although the
variation is large compared to the overall network features
shown in Table III, the coefficients of variation are all smaller
than one and can be considered to vary within a certain range.

Fig. 7. (Color online) Empirical complementary cumulative distribution
functions of community sizes. Each color represents the distribution for each
day.

Fig. 8. (Color online) Histogram of the proportion of citizens Nc=Ntot in
the top 15 communities with the largest number of components per day.

Fig. 9. (Color online) Diagram of the centers of gravity of communities
belonging to persistent clusters.

Table IV. Average values of network features of persistent communities
belonging to seven clusters.

No.
Number
of nodes

Number
of edges

Degree

1 904 9732 21.8
2 498 3840 15.3
3 344 2770 16.3
4 319 1911 12.0
5 253 1269 10.2
6 229 1065 9.3
7 124 556 9.1

No. Distance
Clustering
coefficient

Assortativity

1 4.18 0.823 0.578
2 4.17 0.813 0.442
3 4.14 0.831 0.654
4 4.57 0.798 0.572
5 4.68 0.787 0.507
6 4.66 0.786 0.480
7 4.24 0.801 0.535
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Figure 10 illustrates the transition of each network feature for
the top two clusters with a large number of components. On
days when no communities belong to a cluster, the previous
day’s values were used for imputation of the missing values.
These figures indicate that there is a similarity in the network
structure of communities that occur persistently in the same
location.

4.3 Estimation of chemical potential
We solved the optimization problem to estimate the

chemical potential μ of the persistent communities for each
day. We targeted the persistent communities in the top 15
with the largest number of components for each day to limit
the community size to a certain level. The number of target
communities was 241, with an average of 6.2 communities=
day. These communities accounted for 48.2% of the
population.

First, we determined the value of β to determine μ. We set
� ¼ 5 as the value at which the root-mean-square speed is
appropriate as the velocity of a person’s movement, and the

system is in a bound state. In this case, the error in �id is
approximately 10%, which is sufficiently large to estimate the
proper model parameters, as shown in Fig. 11.

Second, we considered the constraints of the optimization
problem. We constrained � > 0 and � > 0 because all had
positive values. We also constrained �int < 0 because it had
a negative value, assuming a real gas. The optimization
problem considering these two constraints is as follows:

minimize Lð�cc; �vv; �cc; �vvÞ
subject to �inti < 0 i ¼ f1; 2; . . . ; ng

�cc; �vv > 0 ð43Þ
�cc; �vv > 0:

We used an interior point method algorithm to solve the
constrained nonlinear optimization problem.

We estimated μ of persistent communities for each day and
obtained model parameters. Figure 12 shows the results of
the estimated μ values. Standard deviations are shown above
and below the mean values. Under conditions in which it is
expected to be estimated with an error of approximately 10%,
the value of the chemical potential was estimated with a
smaller error than expected due to the contribution of the
interaction of people. We compared μ and �id in Fig. 13(a). μ
was estimated to be smaller than �id. We also confirmed that
the contribution of �int in satisfying the equilibrium condition
varied from day to day. The maximum effect of �int was
approximately 6% from Fig. 13(b), which is the difference
between the coefficients of variation of μ and �id.

Table VII and Fig. 14 show the values of the model
parameters. The values were within a certain range for the
data period, although some variation was observed. The
average σ value was approximately one. This indicated that
the distance of the interaction was related to the mesh size.

Finally, we checked the consistency between the given
condition of β, � ¼ 5, and the physical picture. The root-
mean-square velocity was calculated using Eq. (12), and is
found to be

ffiffiffiffiffiffiffiffiffi
hv2i

p
’ 1:3m=s. We confirmed that this value

of
ffiffiffiffiffiffiffiffiffi
hv2i

p
is valid for the velocity at which a person moves. In

addition, it was confirmed � > 1=� comparing the average
kinetic energy 1=� and ϵ, which means that the system is in a
bound state. Therefore, we considered � ¼ 5 appropriate for
this analysis.

5. Discussion

We discuss these results in terms of the goals of this study.
First, we constructed a face-to-face interaction network using
the mobility data with approximately 5,000 people in the
maximum connected component. The sizes of the networks
were much larger than networks constructed by conventional
methods using Bluetooth of cell phones and RFID sensors
with a few hundred people.1,2) In addition, when we analyze
mobility data for more people in a wider area, we can
construct a larger network. We also found that the network
structures were similar during the data period. This implies
that the proposed method for constructing face-to-face
interaction networks is valid. We succeeded in proposing a
method for constructing large-scale face-to-face interaction
networks using mobility data.

However, the features of the constructed network were
different from those of other social networks. Scale-free
properties have been revealed as a characteristic of social

Table V. Standard deviations of network features of persistent
communities belonging to seven clusters.

No.
Number
of nodes

Number
of edges

Degree

1 202 1958 2.64
2 181 1543 2.20
3 193 1628 3.77
4 114 708 1.55
5 68 294 1.46
6 77 448 1.52
7 59 278 1.65

No. Distance
Clustering
coefficient

Assortativity

1 0.36 0.013 0.099
2 0.49 0.023 0.070
3 0.99 0.035 0.173
4 0.65 0.023 0.076
5 0.68 0.028 0.073
6 0.70 0.022 0.100
7 1.10 0.032 0.147

Table VI. Coefficients of variation in network features of persistent
communities belonging to seven clusters.

No.
Number
of nodes

Number
of edges

Degree

1 0.223 0.201 0.121
2 0.364 0.402 0.144
3 0.559 0.588 0.232
4 0.357 0.370 0.129
5 0.269 0.232 0.143
6 0.336 0.420 0.164
7 0.472 0.500 0.183

No. Distance
Clustering
coefficient

Assortativity

1 0.086 0.016 0.171
2 0.117 0.028 0.158
3 0.239 0.042 0.265
4 0.142 0.029 0.133
5 0.146 0.036 0.145
6 0.150 0.029 0.207
7 0.259 0.040 0.275
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networks.9,10) The degree distribution of the constructed face-
to-face interaction networks was similar to an exponential
distribution and did not exhibit a scale-free property. We
confirmed that the degree distributions are similar to an
exponential distribution because the tail is linear when
plotted in a one-logarithmic form, as shown in Fig. 6(b).
Further analysis is required to understand whether this is a
unique feature of face-to-face interaction networks.

Second, we identified persistent communities using
clustering analysis of daily face-to-face interaction networks

over the data period. We used clustering analysis of the
spatial distribution of each community to define persistent
communities without information regarding individual node
identification. We found that communities belonging to seven
clusters were persistent, and each cluster was characterized
by a specific location in Kyoto City. This indicates that
communication patterns between citizens and visitors are
stationary on weekdays because of the commuting flow in
and out of Kyoto City. We infer that this communication
pattern is common in many cities and that the persistent

(a) (b)

(c) (d)

(e) (f)

Fig. 10. (Color online) Transition of network features for the networks of the top two clusters with the largest number of components among the clusters to
which persistent communities belong. Missing values on days when the communities belonging to the cluster do not exist are complemented with the previous
day’s values. (a) The number of nodes. (b) The number of edges. (c) Average degree. (d) Average distance. (e) Average clustering coefficient. (f ) Assortativity.
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community structure may be a universal feature of face-to-
face interaction networks in cities.

Third, we developed the theory of stable community
structure to formulate the chemical potential of each
community and adapted the theory to the results of the data
analysis. Consequently, we estimated the chemical potential
μ of the communities each day with errors of approximately
10% under � ¼ 5. This suggests that the statistical mechanics
model can explain the emergence of persistent communities
because of their stable community structure.

Although the estimated values of μ matched over the data
period, the level of agreement varied from day to day. We
analyzed the reason for this variance in μ by separating �id

and �int. We focused on the particle density and configuration
for each community because the value of �id is determined by
the particle density, and �int is determined by the second-
order particle density and configuration.

From Eq. (41), the value of �id was determined by the
particle density, Nc=Sc and Nv=Sv. Therefore, the variance
in �id reflects the difference in particle density among the
communities. �id and Nc=Sc; Nv=Sv are positively related to

each other, as shown in Fig. 15 (the correlation coefficient
R ¼ 0:821 and 0:537, respectively). This means that forces
act on particles from communities with high particle density
to communities with low particle density owing to �id.

From the results shown in Fig. 13(b), �int corrects the
instability caused by the variance of �id and stabilizes the
community structures on some days. When �int contributes to
community stability, it has an opposite effect on the action of
�id. This suggests that the community structure is stable if
each particle is configured close to one another, and acts in
communities with a higher particle density.

We used the Shannon entropy HðpÞ ¼ �Pr pr log pr to
confirm this consideration, which indicates the localization of
the particle configurations. Here, r is the particle distance,
and pr is the frequency at which the distance between
particles is r. Particles tend to be configured in a more
concentrated manner if H is higher in the community. We

Fig. 11. (Color online) Coefficient of variation of the ideal gas component
of chemical potential �id. Each color represents the values for each day.

Fig. 12. (Color online) Average value of the estimated chemical potential
μ. The standard deviation is shown above and below.

(a)

(b)

Fig. 13. (Color online) Comparison of chemical potential μ and its ideal
gas component �id: (a) Average values of μ and �id, and (b) Difference in
coefficient of variation between μ and �id.

Table VII. Estimated values of model parameters.

�cc �vv �cv �cc �vv �cc

Mean 0.99 2.40 0.71 1.56 1.39 1.48
SD 1.55 1.83 0.78 0.85 0.60 0.48
CV 1.57 0.76 1.10 0.54 0.43 0.33

SD: standard deviation, CV: coefficient of variation.
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obtained the distributions of distances between citizens pc,
visitors pv, and citizens–visitors pcv, from vectors qc and qv
as shown in Eqs. (24) and (25), respectively. The probability
pr of particle distance r is calculated as pr ¼

P
i; j2Rij

qi � qj,
where Rij :¼ fi; jj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 þ ðyi � yjÞ2

p
¼ rg, the set for

which the distance between meshes i and j is equal to r.
We analyzed the relationship among the coefficient of

variation of �int, Shannon entropy HðpcÞ, HðpvÞ, and HðpcvÞ,
and second-order particle densities N2

c =S
2
c , N2

v=S
2
v, and

NcNv=ScSv. Figure 16 shows that the difference in density
and the configuration of particles leads to a variance in the
estimated value of �int. When the variances are large, �int

contributes to stabilizing the community structure. From
Eq. (42), each component of �int is the product of the second-
order particle density and the value determined by the particle
configuration because the denominators of Bcc, Bvv, and Bcv

shown in Eqs. (21)–(23) are calculated from the vectors qc
and qv. However, the chemical potential �intv among visitors is
negatively related to the variation in HðpvÞ. We also consider
that the citizen–visitor parameters �cv and �cv are not
independently determined, so that no relationship appears at
all in �intcv .

As a result of these considerations, it seems that there are
two requirements for �int to act as a correction for the
variation in �id: (i) a tendency toward structural instability

with large variations in particle density, and (ii) large
variations in the localization of the particle configuration. If
(i) is not satisfied, the contribution of �int is unnecessary
because the structure is already stable. If (ii) is not satisfied,
the contribution of �int is almost uniform for all communities,
and it does not act to stabilize the structure. Therefore, when
both (i) and (ii) satisfy, �int is estimated to stabilize the
structure.

We also discuss the estimated values of the model
parameters. When �cc, �vv, and �cv are estimated with large
values, the contributions of �intc , �intv , and �intcv tends to be large
as shown in Fig. 17 (the correlation coefficient R ¼ 0:822,
0.546, and 0.638, respectively). Since ϵ is a parameter of
the depth of interaction, in case the value of ϵ is larger, the
effect of �int is larger too. When the particle density and
configuration within communities satisfied the situation in
which �int acted to stabilize the community structure, the
value of ϵ was estimated to be higher.

The value of σ represents the range of the interactions. We
considered that the distributions of the distance between
particles in the communities were related to σ. When the
proportion of particles in the proximity distance was high, it
was expected to be small. Shannon entropy HðpcÞ, HðpvÞ,
and HðpcvÞ were used as the values for the particle

(a)

(b)

Fig. 14. (Color online) Estimated values of model parameters. ϵ is a
parameter of the depth of interactions. σ is a parameter of the range of
interactions: (a) ϵ, and (b) σ.

(a)

(b)

Fig. 15. (Color online) Scatter plots of the ideal gas component of the
chemical potential �id and particle densities of citizens and visitors: (a) �id

and the particle density of citizens Nc=Vc, and (b) �id and the particle density
of visitors Nv=Vv.
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localization. Figure 18 shows the relationship between σ and
H. The larger the average value of H, the smaller is the value
of σ that tends to be estimated (the correlation coefficient
R ¼ �0:101, −0.042, and −0.180, respectively). This
indicates that if the distribution of particles within a
community tends to be more locally concentrated, the
estimated value of σ decreases, although the absolute values
of the correlation coefficients are small.

The variance of ϵ was larger than that of σ. This suggests
that σ is less sensitive to differences in the particle density
and configuration among communities. Although there are
variations in particle density and configuration among
communities, the distance of interaction is constant to some
extent. In addition, the variances of �cc and �cc were larger
than �vv and �vv. This implies that the communication pattern
among visitors is more stationary than that among citizens.

(a)

(b)

(c)

Fig. 16. (Color online) Scatter plots of the interaction component of the
chemical potential �int, second-order particle densities, and Shannon entropy
of the distribution of particle distances. (a) Citizen–citizen relationships: �intc ,
N2
c =S

2
c , and HðpcÞ, (b) Visitor–visitor relationships: �intv , N2

v =S
2
v, and HðpvÞ,

(c) Citizen–visitor relationships: �intcv , NcNv=ScSv, and HðpcvÞ. The linear
regression planes are plotted together.

(a)

(b)

(c)

Fig. 17. (Color online) Scatter plots of the model parameter ϵ and the
interaction component of the chemical potential �int. �cc and �intc . (b) �vv and
�intv . (c) �cv and �intcv . ϵ represents the depth of the interaction.
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From the above discussion, we found that the variation in
the estimated value of μ resulted from the differences in
particle density and configuration among communities in
each daily face-to-face interaction network. The variations of
ϵ and σ are also explained in the same way. Based on the
developed theory, we discuss the conditions of a stable
community structure in terms of particle density and
configuration. This result demonstrates that communities in

the face-to-face interaction network are stable, and this
stability leads to persistent communities in the face-to-face
interaction network.

6. Conclusion

Social behavior is an important aspect of people’s lives
and is projected as a social network formed by means of
communication. Face-to-face interaction networks are one of
them and are worth analyzing to understand social behavior.
However, it has been difficult to construct large-scale face-to-
face interaction networks despite their importance. Because
of the limitations, previous studies have not revealed the
characteristics of the communication pattern in a city using
a network science approach. We intended this research to
accomplish three goals: (i) to construct a large-scale face-to-
face interaction network using mobility data; (ii) to find
persistent communities consisting of citizens and visitors;
(iii) to explain the cause of persistent communities according
to the theory of stable community structure using a statistical
mechanics model.

We used mobility data for 39 weekdays in February and
April 2019 in Kyoto City and analyzed daily face-to-face
interaction networks to identify persistent communities. We
found persistent communities that existed over the data
period belonging to seven clusters, and each cluster was
characterized by a specific location in Kyoto City. This result
indicates that persistent communities of face-to-face inter-
action networks are formed by the communication pattern
between citizens and visitors in a specific location in Kyoto
City. Moreover, the chemical potential of each persistent
community was calculated to explain the thermodynamically
stable community structure. We found that the values of the
chemical potentials were matched with approximately 10%
error for each day. This means that persistent communities
satisfy the condition of a stable community structure. This
indicates that a stable community structure creates persistent
communities.

In this study, we revealed that persistent communities were
formed by stationary communication patterns between
citizens and visitors on weekdays as one of the features of
face-to-face interaction networks.We have developed a theory
to explain the cause of persistent communities as a stable
community structure in terms of thermodynamics. Future
studies are planned to adapt this theory to other networks
without spatial coordinates. We use it to investigate the stable
community structures of universal networks, including social
networks via cell phones or SNS, and to understand the
characteristics of people’s communication patterns.
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Number JP17KT0034). Y.O. thanks JST for the support of the establishment of
university fellowships for the creation of science technology innovation (Grant
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Appendix A: Deriving of Chemical Potentials Using
Spatial Coordinates

If we denote citizens and visitors by the subscripts
c and v, the total energy H of a phase of this system is as
follows:

H ¼ ðH id
c þH int

cc Þ þ ðH id
v þH int

vv Þ þ ðH int
cv Þ: ðA:1Þ

(a)

(b)

(c)

Fig. 18. (Color online) Scatter plots of the model parameter σ and
Shannon entropy of the distribution of particle distances. (a) �cc and
HðpcÞ. (b) �vv and HðpvÞ. (c) �cv and HðpcvÞ. σ represents the range of
interactions.
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H id represents the energy of an ideal gas, that is, without
interaction, and H int represents the energy of the interaction.
H id

c and H id
v represent the total kinetic energy of citizens and

visitors, respectively. And, H int
cc , H int

vv , and H int
cv represent the

total interaction energy between citizen–citizen, visitor–
visitor, and citizen–visitor, respectively. These quantities
are represented by Eqs. (6) and (7) as follows:

H id
g ¼ 1

2mp

XNg

i¼1
p2i ðg ¼ c; vÞ ðA:2Þ

H int
gh ¼

X
i; j

�ghðjri � rjjÞ ðg; h ¼ c; vÞ; ðA:3Þ

where Nc and Nv denote the number of citizens and visitors,
respectively.

The partition function was calculated to determine the
chemical potential. The total partition function Z tot can be
derived as follows:

Z tot ¼ ðZ id
c � Z int

cc Þ � ðZ id
v � Z int

vv Þ � ðZ int
cv Þ ðA:4Þ

H id is a function of momentum p, and H int is a function of
coordinates x. Replace d�p ¼ dp1 � � � dpN, d�x ¼ dp1 � � � dxN
with mp and ħ ¼ 1, Z tot is as follows:

Z tot ¼ 1

Nc!Nv!ð2�Þ2Ntot

�
ZZ

d�pc d�pv exp ��
X

i¼1;...;Nc

H id
ci þ

X
i¼1;...;Nv

H id
vi

 !" #

�
ZZ

d�xc d�xv exp

&
$��

0
B@ X

i<j
i; j¼1; . . . ;Nc

H int
cicj

þ
X
i<j

i; j¼1; . . . ;Nv

H int
vivj þ

X
i¼1; . . . ;Nc
j¼1; . . . ;Nv

H int
civj

1
CA
’
%
: ðA:5Þ

Ntot ¼ Nc þ Nv, where Nc is the number of citizens and Nv is
the number of visitors. The partition function is defined as the
integral of the Boltzmann factor e��E over the phase space
divided by 2�ħ. We assume that the quantum states are
distributed in the phase space at a rate of one per area, 2�ħ. It
is divided into Nc! and Nv! to account for the overlap of
homogeneous particles.

We set the first and second terms as Z id, and the third term
as Z int:

Z id ¼ 1

Nc!Nv!ð2�Þ2Ntot

ZZ
d�pc d�pv

exp ��
X

i¼1;...;Nc

H id
ci þ

X
i¼1;...;Nv

H id
vi

 !" #
ðA:6Þ

Z int ¼
ZZ

d�xc d�xv exp

&
$ � �

0
B@ X

i<j
i; j¼1; . . . ;Nc

H int
cicj

þ
X
i<j

i; j¼1; . . . ;Nv

H int
vivj þ

X
i¼1; . . . ;Nc
j¼1; . . . ;Nv

H int
civj

1
CA
’
%
: ðA:7Þ

First, we calculated the partition function of the ideal gas Z id

as follows:

Z id ¼ 1

Nc!Nv!ð2�Þ2Ntot

2�

�

� �Nc 2�

�

� �Nv

¼ 1

Nc!Nv!

1

2��

� �NcþNv

: ðA:8Þ

Next, we calculated the partition function for the
interaction Z int. The interaction potential H int acting between
the particles is respectively given by,

H int
cc ¼

X
i; j

�ccðrijÞ ðCitizencitizen interactionÞ ðA:9Þ

H int
vv ¼

X
i; j

�vvðrijÞ ðVisitorvisitor interactionÞ ðA:10Þ

H int
cv ¼

X
i; j

�cvðrijÞ ðCitizenvisitor interactionÞ: ðA:11Þ

�ðrÞ is assumed to be the Lennard-Jones potential:

�ghðrÞ ¼ 4�gh
�gh
r

� �12
� �gh

r

� �6� �
ðg; h ¼ c; vÞ: ðA:12Þ

Z int is calculated as follows:

Z int ¼
ZZ

d�xc d�xv

Y
i<j

i; j¼1; . . . ;Nc

ð1 þ f cij Þ
Y
i<j

i; j¼1; . . . ;Nv

ð1 þ f vij Þ

Y
i¼1; . . . ;Nc
j¼1; . . . ;Nv

ð1 þ f cvij Þ: ðA:13Þ

Note that f cij , f
v
ij , and f cvij are respectively defined as,

1 þ f cij ¼ expf���ccðjri � rjjÞg ðA:14Þ
1 þ f vij ¼ expf���vvðjri � rjjÞg ðA:15Þ
1 þ f cvij ¼ expf���cvðjri � rjjÞg: ðA:16Þ

We used a discrete probability distribution using the
proportion of time people spent at mesh m, qm, to represent
The probability piðxm; ymÞ that a person i exists in a certain
mesh mðxm; ymÞ:

qm ¼ piðxm; ymÞ ðA:17Þ
XM
m¼1

qm ¼
XM
m¼1

piðxm; ymÞ ¼ 1: ðA:18Þ

M denotes the total number of meshes. We represent the
existence probability pjðxm; ymÞ of another person j at mesh
m using qm in the same manner. We consider qm ¼
piðxm; ymÞ ¼ pjðxm; ymÞ. We treat the discrete probability
density functions piðx; yÞ and pjðx; yÞ as continuous proba-
bility density functions using the delta function and obtain
the following equation:

piðx; yÞ ¼ pjðx; yÞ ¼
XM
m¼1

qm�ðx � xmÞ�ðy � ymÞ: ðA:19Þ

We use this probability distribution to calculate Z int

considering the approximation for a real gas.
Equation (A·13) expands to terms representing the interac-
tion of i pairs of particles. Since the maximum number of
combinations for i-particle pair interactions occurs when all
the particles in the particle pairs are different, we obtain the
following equation leaving only the largest contribution as
the approximation:
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Z int ’ SNc
c SNv

v

X
i¼0

1

i!
ð�N2

cBcc � N2
vBvv � NcNvBcvÞi: ðA:20Þ

Since Eq. (A·20) is in the form of a Taylor series of
exponential functions, and Z int is represented as follows:

Z int ¼ SNc
c SNv

v expð�N2
cBcc � N2

vBvv � NcNvBcvÞ ðA:21Þ
In Eq. (A·21), Sc and Sv represent areas where citizens and
visitors stay at least once, respectively. And Bcc, Bcv, and Bcv

are expressed as follows:

Bcc ¼ 1 � qc�ccq
T
c

2S2c
ðA:22Þ

Bvv ¼ 1 � qv�vvq
T
v

2S2v
ðA:23Þ

Bcv ¼ 1 � qc�cvq
T
v

ScSv
: ðA:24Þ

The vector qc; qv in the above equation are,

qc ¼ qc1 qc2 � � � qcMc

	 � ðA:25Þ
qv ¼ qv1 qv2 � � � qvMv

	 �
: ðA:26Þ

These represent the fractions of time spent in each mesh by
citizens and visitors, respectively. Mc and Mv are the number
of meshes where citizens and visitors stay at least once,
respectively. We calculated them by examining the time
spent in each mesh of citizens and visitors from the mobility
data. Matrices �cc, �vv, and �cv are as follows:

�gh ¼
	
exp


���gh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxk � xlÞ2 þ ðyk � ylÞ2

p ��
ðg; h ¼ c; vÞ: ðA:27Þ

The k; l components of Boltzmann factor are citizen–citizen,
visitor–visitor, and citizen–visitor interactions of a distance
between meshes k and l, respectively.

Because the Helmholtz free energy is F ¼ �1=� lnZ, we
obtain F as,

F ¼ Nc

�
ln

2��Nc

Sc

� �
� 1

� �
þ Nv

�
ln

2��Nv

Sv

� �
� 1

� �

þ N2
cBcc þ N2

vBvv þ NcNvBcv: ðA:28Þ
We obtain the chemical potential of the citizen �c ¼ @F=@Nc as,

�c ¼ 1

�
ln

2��Nc

Sc

� �
þ 1

�
ð2NcBcc þ NvBcvÞ: ðA:29Þ

We also obtain the chemical potential of the visitor �v ¼
@F=@Nv as,

�v ¼ 1

�
ln

2��Nv

Sv

� �
þ 1

�
ð2NvBvv þ NcBcvÞ: ðA:30Þ

Therefore, the chemical potential μ is formulated as follows:

� ¼ 1

�ðNc þ NvÞ
�
Nc ln

2��Nc

Sc

� �
þ Nv ln

2��Nv

Sv

� �

þ 2N2
cBcc þ 2N2

vBvv þ 2NcNvBcv

�
: ðA:31Þ

Appendix B: Deriving Chemical Potentials Using
Adjacency Matrix Without Spatial
Coordinates

We computed the Z int using an adjacency matrix. We
obtain the following equation from Eq. (A·13):

Z int ’
ZZ

d�xc d�xv

1 þ
X
i<j

i; j¼1; . . . ;Nc

f cij þ
X
i<j

i; j¼1; . . . ;Nv

f vij þ
X

i¼1; . . . ;Nc
j¼1; . . . ;Nv

f cvij

0
BB@

1
CCA:

ðB:1Þ
Here, we assumed that the second and subsequent terms of fij
are small and approximated it.

Let the interaction potential H int
ij between nodes i; j be,

H int
ij ¼

�cc (Citizencitizen interaction)

�vv (Visitorvisitor interaction)

�cv (Citizenvisitor interaction)

0 (No interaction)

8>>>><
>>>>:

: ðB:2Þ

We consider the interaction to occur when there is an edge
between i and j. At this time, f cij , f

v
ij , and f cvij are respectively

calculated as follows:

1 þ f cij ¼
expð���ccÞ (Interaction between i; j)

1 (No interaction between i; j)

�
ðB:3Þ

1 þ f vij ¼
expð���vvÞ (Interaction between i; j)

1 (No interaction between i; j)

�
ðB:4Þ

1 þ f cvij ¼
expð���cvÞ (Interaction between i; j)

1 (No interaction between i; j).

�
ðB:5Þ

We use these to calculate each term of Eq. (B·1).
Sorting the adjacency matrix, A such that Nc rows and

columns are citizens, and the rest are visitors, and we can
represent A as,

A ¼ Acc Acv

Avc Avv

" #
; ðB:6Þ

where Acc, Avv, and Acv represent the citizen–citizen, visitor–
visitor, and citizen–visitor adjacency matrices, respectively.
Ic and Iv are column vectors with all components set to one
in the Nc and Nv columns. Using Acc, Avv, Acv, Ic, and Iv, we
formulate the partition function of the interaction Z int using
the adjacency matrix:

Z int ¼ SNc
c SNv

v

�
1 þ expð���ccÞ � 1

2S2c
IcAcc I

T
c

� expð���vvÞ � 1

2S2v
IvAvvI

T
v

� expð���cvÞ � 1

ScSv
IcAcvI

T
v

�
: ðB:7Þ

We consider ln Sc / lnNc and ln Sv / lnNv and replace Sc
and Sv with Nc and Nv, respectively:

Sc ¼ bcN
ac
c ; Sv ¼ bvN

av
v : ðB:8Þ

Using Eq. (B·8), the partition function is represented without
spatial coordinates as follows:

Z int ¼ ðbcNac
c ÞNc ðbvNav

v ÞNv

�
1 þ expð���ccÞ � 1

2ðbcNac
c Þ2 IcAcc I

T
c

þ expð���vvÞ � 1

2ðbvNav
v Þ2 IvAvvI

T
v
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þ expð���cvÞ � 1

ðbcNac
c ÞðbvNav

v Þ IcAcvI
T
v

�
: ðB:9Þ

Since the Helmholtz free energy F ¼ �1=� lnZ, we obtain
F as,

F ¼ Nc

�
ln

2��

bcN
ac�1
c

� �
� 1

� �
þ Nv

�
ln

2��

bvN
av�1
v

� �
� 1

� �

þ 1

�
ðBcc IcAcc I

T
c þ BvvIvAvvI

T
v þ BcvIcAcvI

T
v Þ: ðB:10Þ

Bcc, Bvv, and Bcv are as follows:

Bcc ¼ 1 � expð���ccÞ
2b2cN

2ac
c

ðB:11Þ

Bvv ¼ 1 � expð���vvÞ
2b2vN

2av
v

ðB:12Þ

Bcv ¼ 1 � expð���cvÞ
bcbvN

ac
c Nav

v
: ðB:13Þ

Finally, the chemical potential μ is derived in the following
equation:

� ¼ 1

�ðNc þ NvÞ
�
Nc ln

2��

bcN
ac�1
c

� �
� ac

� �

þ Nv ln
2��

bvN
av�1
v

� �
� av

� �
� ½2acBcc IcAcc I

T
c

þ 2avBvvIvAvvI
T
v þ ðac þ avÞBcvIcAcvI

T
v �
�
: ðB:14Þ

This is associated with Eq. (A·31), which is a formulation
using spatial coordinates.
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